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Abstract 

 

The use of forensic entomology in providing reliable death-time estimates using 

knowledge of carrion insect species’ ecology and larval development has been used 

for many years. Aside from insects, mites (Acari) can act as reliable indicators of 

time of death. The use of forensic acarology is growing rapidly into a valuable 

additional input into forensic analysis. This field of forensic analysis has always 

been closely connected to forensic entomology. This study aimed to identify and 

qualitatively assess the mites of forensic importance within the outdoor 

environment. The outcomes from this study provide data that will enable a basic 

forensic acarology service to be provided in other research, as well as initiate 

further development of forensic acarology in crime scene investigations. The 

ubiquitous of mites in the soil beneath corpses adding valuable information on 

decomposition process and reconstruct the scene of death. Using the micro-habitat 

specific to mites, the abundance, species richness and composition of mite orders 

was examined and compared and the unique presence of certain mites would be 

uncovered. Two outdoor settings for forensic study were set up by using pigs as 

proxies for human cadavers: 1) seasonal study of temperate area with four 

different seasons in almost 2 years (November of 2013 – August 2015) 2) carcass 

position/condition over a year (Jun 2013 – September 2014). The majority of mites 

found were phoretic with the mesostigmatid families, Macrochelidae and 

Parasitidae the most abundant. There are few quantitative data available on the 
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carcass colonisation patterns of insects and other arthropods; however these data 

are forensically valuable. There may be differences in the taxa collected during this 

successional study on pigs and those that occur on human bodies from different 

habitats. Therefore, mites collected from three crime cases were used to prove the 

reliable approaches in using pig carcasses to the real cases. The mites present on 

the corpses were compared with those collected from the pig carcasses and there 

was extremely close agreement between the mite presence from bodies and 

carcasses. 
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Chapter 1 : Acarology in forensic investigation – the 

introductory notes. 

 

 

1.1 OVERVIEW OF THE RESEARCH PROJECT 

 

Forensic acarology is the term used to describe the use of mites, a group of 

arachnids, in forensic investigations. This approach is used mainly when other 

arthropods such as insects cannot reach the corpses because of the restricted 

conditions. Insects have been used to aid in forensic investigations by determining 

the minimum time since death. After the reports of forensic entomology by 

Brouardel (1879) that described the used of mites and caterpillars on the 

mummified body of a newborn child to estimate the time of death, acarology is 

being accepted and has played a major role in forensic investigations,  and legal 

procedures in many countries  (Wolffet al., 2001). The high diversity and 

abundance of mites that inhabit many microhabitats is the reason why mites are 

useful in forensic investigations. However, the term forensic acarology is rarely 

used. Instead, it is defined as one of the branches of forensic entomology. As in 

forensic entomology, the idea is to use the developmental rates and successional 

ecology of specific taxa that feeds on or colonises carcasses or corpses 

(Campobasso, Di Vella & Introna, 2001; Wolff et al., 2001; Goff, 2009; Turner, 

2009). Using this concept of developmental rates and successional ecology, we can 
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estimate the time of death or post-mortem interval (PMI) of a corpse (Catts & Goff, 

1992; Wolff et al., 2001; Amendt et al., 2007; Matuszewski, Barjelein, Konwerski & 

Szpila 2008).  

 

The symbiotic relationship between mites and insects has become as important as 

using insects in forensic investigation and now, this relationship is being 

incorporated as trace evidence in investigation of crime cases. The relationship 

involves species of phoretic mites that attach themselves to insects of forensic 

importance (Campobasso, Di Vella & Introna, 2001; Perotti & Braig, 2009). The first 

use of mites in forensic investigations was started by army veterinarian, Jean 

Pierre Mégnin, a research assistant at the Museum of Natural History in Paris, who 

described the utility of mites in the case of the mummified body of a newborn child 

that was autopsied in 1878 (Perotti et al.,  2009). He discovered a brownish layer 

that was composed of mite skins and faeces covering the whole body. A large 

number of single mite species was found inside the cranium. According to his 

calculations on the number of individual mites, he estimated that the corpse might 

have been abandoned for almost 7 to 8 months (Megnin, 1894; Benecke, 2001, 

2008; Perotti, 2009; Perotti & Braig, 2009). This report linked phoresy, mites and 

the determination of a post-mortem interval (Perotti, Braig & Goff, 2010).  Since 

then, mites have been reported in many cases involving human and animal remains 

(Goff, 1991; Perotti & Braig, 2009). 
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This research project is focused on a new field of research, aiming to investigate 

the effects of decomposition on mites (soil-mesofauna) underneath pig carcasses 

and analyse the fauna exposed to different experimental forensic settings. It is 

hoped that at the end of this study, a dataset of soil mite profiles of forensic 

importance can be produced for future forensic analysis. 

 

1.2 THE INTRODUCTION OF MITES. 

 

The Acari, comprising mites and ticks, are a group of arthropods in the Subphylum 

Chelicerata or Cheliceriformes. It forms one of the largest and most diverse groups 

of Arachnida. A large number of acarines have developed intimate associations 

with other animals while the free-living mites occur in a great variety of habitats 

but they are especially numerous where organic detritus is abundant. Most mites 

inhabit the organic strata of soil where they form a numerically important 

dominant component of the arthropod mesofauna. The mite associations range 

from commensalism to parasitism while many species living in temporary habitats 

practise phoresy, using a variety of other arthropods as vehicles for dispersal 

(Brown & Wilson, 1992). This group is named accordingly to their body plan which 

is different from other arthropods. Chelicerates do not have a head, thorax and 

abdomen but their bodies are divided into two parts; prosoma and opisthosoma. 

The prosoma holds all the appendages; the chelicerae or mouthparts are the first 

pair, followed by the palps or pedipalps and four pairs of walking legs.  
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1.2.1 Reproductive system of acari 

One of the major reasons for the success of mites in diversity is their reproductive 

strategies. Three modes of reproduction exist in the Acari: diplodiploidy, 

haplodiploidy and thelytoky. Mites develop through the basic pattern of life cycle 

from the egg to a hexapod larva stage and nymphal stages (1, 2 or 3) to adult 

(Figure 1.1). However, the life cycle length varies between species, and within the 

same species under different environmental conditions (Schuster & Murphy, 

1991). The adult is the productive stage. In 1961, Wade and Rodriguez managed to 

document the range of egg production by fertilized female mites. They found 

fertilized female mites produced an average of four to five eggs per day for about 

22 days and a maximum of 25 eggs per day (Wade & Rodriguez, 1961). 

Parthenogenesis, the phenomenon of development of an organism from an 

unfertilized egg, is quite common among mites (Bloszyk, Klimczak & Lesniewska, 

2006) and has various types such as arrhenotoky, thelytoky, deuterotoky, artificial 

parthenogenesis, gynogenesis. Parthenogenetic reproduction requires a 

mechanism to circumvent the normal halving of ploidy that results from 

gametogenesis. Mites are a promising group for investigating the evolution of 

haplodiploidy or arrhenotoky.  
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Figure 1.1: Life cycle of mite from Symbiotic mites by University of Nebraska – 
Lincoln, 1989, https://entomology.unl.edu/scilit/symbiotic-mites 

 

1.2.2 The classification of Acari 

Mites are classified into three major taxa: Opilioacariformes, Parasitiformes and 

Acariformes. The Opilioacariformes resemble small harvestmen while 

Parasitiformes that include orders Ixodida, Mesostigmata and Holothyrida. The 

Acariformes are all small mites encompassing three orders; the Sarcoptiformes, the 

Trombidiformes and the Endeostigmata. Almost all Parasitiformes are in the 

Mesostigmata, which includes ∽80 families and ˃ 12,000 spp. (Krantz & Walter, 

2009). Acari is a very large and diverse group which is well represented in the soil, 

has colonised a variety of terrestrial situations such as the aerial parts of 

herbaceous and woody vegetation, rock crevices, the nests of various invertebrates, 

birds and mammals, human habitations and decaying refuse.  

https://entomology.unl.edu/scilit/symbiotic-mites
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1.3 INTRODUCTION TO MESOSTIGMATA 

 

The Mesostigmata (Gamasida) are large, cosmopolitan assemblages of parasitiform 

mites and are known perform in unusually diverse variety life styles and habitats 

(Krantz, 1990). They are known from a wide range of habitats. Through their high 

diversity, often in great numbers, they are integrally involved in many ecological 

interactions. Most of them are free living predators (Karg, 1993; Krantz, 1998) in 

soil and litter, on the soil surface or on plants; while others are parasites or 

symbionts of mammals, birds, reptiles and arthropods (Walter & Proctor, 1999). 

Some are able to disperse rapidly by phoresy and it is relatively common in 

Mesostigmata (Costa, 1969; Lundqvist, 1974). Only a few members live in 

freshwater habitat.  Mesostigmatid mites range in size from 200μm to 4,500μm. 

Many of the smaller forms are weakly sclerotized and pale in colour but generally 

the idiosoma is covered by a number of chestnut-brown shields separated by a 

whitish striated cuticle. The idiosoma of mesostigmatid mites carries several 

distinctive and recurrently diagnostic characters that serve to distinguish them 

from other parasitiform mites (Krantz, 1998). Distinct external features of these 

mites are shown in Figure 1.2. 
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       Figure 1.2: External morphology of Mesostigmata (Krantz, 2009) 
  

Ontogenic development in the Mesostigmata is limited to a larval and two nymphal 

(proto and deutonymph) instars prior to appearance to the adult. Arrhenotoky is a 

reproductive system that produces diploid females from fertilized eggs while 

haploid males are produced parthenogenetically, as illustrated in Figure 1.3.  This 

mechanism of sex-determining is common among the Mesostigmata and 

predominant in at least several families; Macrochelidae, Dermanyssidae, 

Macronysidae and Phytoseiidae. (Oliver Jr, 1977). Facultative parthenogenesis is a 

relatively common phenomenon in phoretic females of the Mesostigmata. 
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Figure 1.3: Mesostigmata reproductive strategies. 

                        

1.4 THE SOIL ENVIRONMENT 

 

1.4.1 Soil chemistry 

Soil is a mixture of organic and inorganic components which are present in 

different combinations of chemical composition and physical attributes such as 

particle size (Marumo, 2001). The soil environment is complex and heterogenous. 

Sampling soil can be challenging considering the range of conditions that can affect 

decomposition of organic materials (Cragg & Bardgett, 2001; Ducarme, & Lebrun, 

2004). In the past century, scientific innovations have increased our understanding 

1
st

 generation 
(all haploid male) 

2
nd

 generation 
(diploid female) 

3 days 

female virgin 

    (unfertilized egg) 
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of soil and our ability to analyse it for forensic applications (Dawson & Hillier, 

2010).  Various types of analysis using soil properties in terms of both its chemical 

composition and physical attributes such as particle size (Sugita & Marumo, 2001) 

can reveal a great deal of information in forensic investigation (Dawson & Hillier, 

2010).  

 

The process of decomposition on the soil releases the cadaver materials that enter 

associated soil beneath or surrounding the cadaver, which results in the formation 

of a concentrated island of fertility. A Cadaver decomposition island (CDI) is 

defined as a highly concentrated island of fertility (Carter, Yellowlees & Tibbett, 

2007) which is the region that below and around decomposing cadaver. These 

changes in soil chemistry alter the structure of insect communities, which are 

typically associated with the degrees in richness (insect communities) over time 

(Bornemissza, 1957; Anderson & Vanlaerhoven, 1996). The soil chemistry on the 

decomposition products may have an effect on post-mortem interval (PMI) 

predictions using CDI soil models (Aitkenhead-Peterson et al., 2015). 

 

1.4.2 Soil arthropods and decomposition 

Soil is one of the most complex habitat systems that provides a living place for 

many arthropods, either for their entire life cycle or at least for a part of their life 

cycle. Small arthropods, including several groups of mites, contribute to the humus 

fraction and permit complexes of other soil organisms, such as micro-organisms, 

nematodes and Collembola to exist. The most important group of arthropods that is 
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affected by the formation and maintenance of soil structure is mites. Even though 

the role of mites in soil mixing is small in comparison with that of larger 

invertebrates such as earthworms, insects, crustaceans and millipedes, 

nevertheless mites exercise an important function in mineral turnover, vegetation 

succession and as decomposers of organic matter (Peterson & Luxton, 1982). The 

analysis of soil associated with decomposed remains can provide useful forensic 

information, particularly for estimating time since death (Vass, et al., 1992) or 

deposition (Forbes, 2004). The carcass itself acts as host for hundreds of different 

species of microbes and invertebrates that are attracted to the corpse by different 

chemicals produced during cadaver decomposition.  

 

1.5 MITES AND FORENSIC INVESTIGATIONS 

 

1.5.1 Mites in the soil  

Soil mites are one of the most abundant micro-arthropod types in the upper soil 

layers and form a large and functionally important part of the mesofauna in the 

soil. They are particularly abundant not only within the soil, but also in forest litter, 

as important decomposers and nutrient-cycling of organic materials. (Badejo, 

1990; Stork & Eggleton, 1992). Mite communities are extremely sensitive to all 

types of soil disturbance. Water content in soil influences mite population. This was 

proved and stated in the findings of Badejo (1990) who compared mites from two 

contrasting soil environments. High soil temperature will cause mortality of the 

sperm of soil mites, as well as reducing egg-laying in mites (Butcher, Snider, & 
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Snider, 1971). This makes them suitable bioindicators for soil system (Gulvik, 

2007). A nation-wide study of soil biota in Great Britain suggested that mites are 

the most frequently recorded group, occurring in 94% of all soil samples (Gulvik, 

2007). 

 

Mites are the most abundant invertebrates beneath the carrion (Behan-Pelletier, 

1998) and Goff and Catts (1990) recovered several significant mite groups. The 

abundance of Macrochelidae (Parasitiformes: Mesostigmata, Gamasina) in soil was 

observed to increase over time in the presence of carrion (Reed, 1958; Anderson & 

Vanlaerhoven, 1996). Population development of Gamasina is very much 

influenced by microclimate (Koehler, 1999). The differences in the microclimate 

influenced the rate of decay (Bornesmissza, 1956). Bunch (2009), in his 

observational study on pigs at Oswego, USA, came out with the result observed that 

there were varying rates of decomposition between three specimens with different 

microclimates. 

 

1.5.2 Phoretic mites relation with insects 

Phoresy is a phenomenon in which an animal actively attaches to another animal in 

order to disperse (Athias-Binche, 1994). Phoresy by mites occurs typically via 

transmission on associated insects. This association is only transitory and general 

with the mite using a variety of insect species for transport. In many cases, 

however, the mites have specialized on a restricted range of host species and have 

established permanent associations in which their non-phoretic stages also live in 
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close proximity to the hosts (Schwarz, 1997).  This is the most common method by 

which mites disperse from and colonize temporary accumulations of organic 

matters. These associations occur among mites species that inhabit temporary and 

discontinuous habitats such as dung, carrion, fungi or plant materials (Hunter & 

Rosario, 1988). These associations can be influenced by ecological conditions such 

as host availability, climate and soil conditions. Phoresy results in dispersal from 

one habitat to the new ones which have better conditions for the development of 

phoretic mites or their offspring (Farish & Axtell, 1971; Athias-Biche, 1994). 

 

A majority of larger species of phoretic mites belong to the suborder Mesostigmata 

(Takaku, Katakura, & Yoshida, 1994). Studies came out with lot of carrier records 

of mesostigmatid mites (Takaku, 1994). In many species, the life cycle of the mite is 

synchronized to the host (phoront) species that may accelerate or suspended 

development of phoretic instar (Evans & Hyatt, 1963). Generally, only one 

developmental stage of each mite species is phoretic (a second stage only occurs in 

rare cases) and most Macrocheles species associated with insects are 

arrhenotokous (Cicolani 1992; Norton et al., 1993; Schwarz, Starrach & Koulianos, 

1998). Only the female is phoretic in the Macrochelidae and she is arrhenotokous 

which enables the establishment of the species within the new habitat by a single 

or few individuals (Filipponi, 1955). Takaku revealed that phoretic mesostigmata 

are also known as important control agents of pest flies (Takaku, 1994). He also 

investigated the carrier specificity of some species in Mesostigmata (Takaku, 

1994). 
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1.6 DECOMPOSITION AND INSECTS SUCCESSION 

 

Decomposition is a process that varies greatly from body to body, environment-to-

environment, the circumstances of the death, the place where the body was found, 

and even the climate. It consists of a number of processes including the enzymatic 

liquefaction of cells, bacterial decomposition of tissue, dying of the skin and 

remaining soft tissue, followed by skeletonisation (Smith, 1986). The biological 

process of decaying of a carcass or a corpse will continuously produce a new 

biological process and consequently change the underlying structure of soil and its 

fauna under the remains (Saloña-Bordas et al., 2010). The exploration of different 

species associated with decomposition is part of creating a wider ecological 

understanding of the ecosystem (Lindgren et. al., 2015).  As the bacteria begin the 

processes of cell breakdown, fermentation and putrefaction, the large scavenging 

animals will begin to play a significant role in the consumption of the soft tissues of 

the copses (Smith, 1986). The role of insects as the main invertebrate assemblage 

that associates with carrion has commonly been applied in homicide investigation 

(Morris & Dadour, 2005). However, the use of invertebrates other than carrion-

dwelling insects, particularly the soil fauna, has received little attention in a 

forensic context. Soil fauna affects decomposition processes both directly, through 

fragmentation and comminution of litter material and indirectly by altering 

microbial biomass and through excretion of nutrient rich waste (Petersen & 

Luxton, 1982; Cole et al., 2006). Carrion-associated mites often disperse between 
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carcasses or corpses using phoresy, typically flies and beetles (Perotti et al., 2009; 

Perotti, Braig & Goff, 2010). 

 

 As the body progresses through the stages of decomposition, the odours emitted 

by the corpse will change (Anderson, 2001) and this will attract different insects. 

As the body decomposes and various resources are depleted, new insect types will 

colonize while being more suited to the current decomposition stage (Dadour & 

Harvey, 2008). These insect taxa reflect the physical changes in the body and are 

therefore, predictable and useful in the estimation of Post-mortem interval (PMI).  

According to Payne (1965), insects arrive at a corpse in a predictable manner 

specific to the location and environmental conditions under which the remains are 

found. In such cases, the composition of taxa found on a corpse (named corpse 

fauna) are usually compared with the composition the arthropod assemblage at a 

given period of time, derived from an animal model (baseline fauna) (Schoenly & 

Reid, 1987). Decomposition studies have shown that decomposing carcasses or 

tissues have an effect on soil chemistry such as soil nutrients, trace elements and 

pH (Aitkenhead-Peterson et al., 2012 ). 

 

Organic body decomposition takes place in five distinct stages: i) fresh, ii) bloat, iii) 

active decay, iv) advanced decay and v) dry/skeleton (Wolff et al., 2001;; Amendt et 

al., 2004; 2007; Matuszewski et al.,2008; Goff, 2009). The process of decomposition 

primarily depends on environmental temperature, humidity, light, and wind. 
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Studies of decay rates of corpses in Tennessee by Rodriguez and Bass (Rodriguez & 

Bass, 1983) showed temperature, access by insects and depth of burial are the 

three most important environmental factors in corpse decay (Catts & Goff, 1992). 

Later, Campobasso (2001) revealed that other than ambient temperature, 

ventilation and air humidity are important factors that influence decomposition. 

Microclimatic factors such as light, temperature and atmospheric pressure, 

precipitation, humidity, wind and turbulence affect insect dispersal (Pasek, 1988). 

It is proposed that in a strong wind atmosphere, there is no carrier that can 

transport mites from a carcass to a new habitat. Mites will accumulate when the 

phoresy conditions are restrained. This situation may also change the mite host-

specificity behaviour to non-specific phoretics. The switching of mites to non-

specific hosts so that they can leave a carcass was observed in indoor cases and 

concealed bodies, which prevented insect dispersal (Perotti et al., 2010). Therefore, 

lack of dispersal due to windy conditions increases mite abundance. We need to 

understand the decomposition process because it affects forensic investigations in 

a variety of ways. There is successional activity by a community of arthropods 

along the decomposition process (Payne, 1965; Archer, 2003) which is continuous, 

starting at the point of death until the corpse or carcass reaches the skeletal stage. 

Mites, as well as other arthropods are typically understood to show a rapid 

invasion stage, a peak in abundance and richness, and a monotonic decline 

thereafter (Schoenly & Reid, 1987). Mites are hyperabundant, proliferate and 

complete many lifecycles leading to an increase in population abundance and 

density (Perotti, Braig & Goff, 2010); whilst a particular beetle species may colonise 
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a carcass, but then only complete one life cycle  (Barton, Weaver & Manning, 2014). 

Specific mite families do occupy a carcass at specific stages of decay (Bornemissza, 

1957) and this can be of potential value.   

 

1.7 OBJECTIVES 

 

Aims and objectives  for each chapter: 

Chapter 2: Seasonal changes in the soil mite fauna underneath pig carcasses in 

Reading, preliminary investigation. The aim was to provide the first comprehensive 

experiment investigation the mites of forensic importance using the concept of 

forensic entomology. The objectives  for the experiment: 1) to describe the fauna of 

soil Acari associated with pig carcasses lying on the ground, in an outdoor 

environment in Reading (Berkshire, UK); and 2) gather information on potential 

mite markers of stages of decomposition.  

 

Chapter 3: Mesostigmata mites of forensic importance in the soil beneath hanged 

and on-the-ground carcasses.  The main aim was to gather information on potential 

mite markers of the body’s position. The objectives are; 1) to compare the diversity 

and abundance of mites between 2 different treatments; pigs on the ground and 

the hanging with the empty plot as a control; 2) to compare the decomposition 

stages among the 3 treatments. 
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Chapter 4: The value of Macrocheles species (Acari: Macrochelidae) as trace 

evidence markers of location and time: three case studies from Europe.  This 

chapter was aimed to demonstrate the used of biology features of phoretic mite in 

real crime cases in giving the additional information in forensic investigation. 
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Chapter 2 :  Seasonal changes in the soil mite fauna 

underneath pig carcasses in Reading, a preliminary 

investigation.  

 

2.1 INTRODUCTION 

 

During the process of decay in animals (including humans), bodies go through a 

series of decomposition stages (Smith, 1986) and characteristic assemblages of 

invertebrates colonise them as a medium for oviposition or feeding (Payne, 1965). 

This includes specialization of scavengers to particular stages of decomposition  

(Schoener, 1974; Braack, 1987). The composition of the invertebrate assemblage 

can be utilised forensically to estimate minimum time since death (Catts & Haskell, 

1990) since the order of succession of carrion invertebrates and the arrival and 

departure times of taxa involved are potentially predictable (Smith, 1986). The 

sequence of the insect succession visiting carcasses is predictable at the family 

level (Early & Goff, 1986) however, at the genus and species level, the colonization 

relies on environmental and geographical characteristics (Payne, 1965; Early & 

Goff, 1986).  

 

Seasonal variation has been documented as a factor influencing insect activity 

(Reed, 1958; Rodriguez & Bass, 1983; Goddard & Lago, 1985) and the pattern of 
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the succession differs greatly between seasons (Linhares & de Carvalho, 2001). The 

movement of Earth in an elliptical path around, and is tilted towards or away from, 

the sun causes the seasons. Astronomically, it is considered that the occurance of 2 

annual solstices mark the beginning of summer and winter, while spring and 

autumn begin on the occurance of 2 annual equinoxes.The sun heats the Earth and 

changes the temperatures. Temperatures also depend on the heat that is absorbed 

and reflected by land and the oceans. The change of seasons has an effect on the 

weather. Temperatures ranging between 250C and 350C are optimal for the 

development of bacteria (Campobasso, Vella & Introna, 2001) that helps the 

decomposition process. Variability of ambient temperature (certainly the most 

important of extrinsic factors) among seasons is the most important factor 

influencing the rate of decomposition of carcasses (Horenstein, Rosso & Garcia, 

2012).  It is also influenced by variables of different nature concerning the corpse 

itself and the external environment that include temperature, humidity, 

precipitation (especially rainfall) and by the composition of the carrion-associated 

fauna (scavengers) and the circumstances related to death (Bornemissza, 1957; 

Smith, 1986; Linhares & de Carvalho, 2001). Archer (2004) in his study on the 

patterns of decomposition of exposed neonatal remains found that high 

temperatures increased the rates of body mass loss and progression of 

decomposition. Decomposition studies in the temperate regions must therefore 

examine insect activity and species composition in the four seasons; autumn, 

spring, summer and winter. 
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Few studies have been conducted to observe the relationship of insect succession 

in the decomposition process considering the effect of seasonality (Mann, Bass & 

Meadows, 1990; de Carvalho & Linhares, 2001). Some carrion-taxa may also be 

seasonally active (Anderson, 1982; Davies, 1999; Archer & Elgar, 2003 ), whilst 

others maybe active all year-round (Archer, 2004). Bass (1997), in his experiment 

on 150 cadavers exposed on the soil surface in Tennessee, concluded that the decay 

process was retarded  at low temperature which caused severe reduction of insects 

colonising the corpses.  Several groups of arthropods are known to visit the carcass 

of a vertebrate at its various stages of decay (Bornemissza, 1957; Arnaldos et al., 

2005; Perotti et al., 2010;). They play a main role in the consumption of carcass by 

reducing them to the skeleton, depending on their biological preferences and the 

stage of body decay. This produces a faunal succession which varies between 

seasons and environmental conditions (Díaz-Martín & Saloña-Bordas, 2015). Two 

abundant groups of arthropods that are always found at carrion or carcasses are 

insects (beetles and flies) and mites (Bornemissza, 1957; Braack, 1987; Braig & 

Perotti, 2009).  Many mite species found on carrion are phoretic and use flies and 

beetles as hosts for dispersal between carcasses. Many mite species prefer to attach 

to a specific host (Perotti & Braig, 2009). Aside from insects, mites are capable of 

providing a timescale of death based on their colonisation patterns in relation to 

different stages of decay. It is possible to analyse the time of arrival of the host of 

the phoretic mites to the carcass even if the host has already departed from the 

carcass. Therefore mite evidence can often complement or reinforce the 
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colonisation information provided by insects in time of death estimations(Perotti 

et al., 2009; Saloña-Bordas & Perotti, 2014).  

 

In this work, the seasonal effects on the process of decomposition were 

investigated by studying the Mesostigmata (Acari: Parasitiformes), following 

Krantz & Walter (2009), mite fauna underneath carcasses with the main aim of 

uncovering the occurrence of certain mite species that can be used as markers of 

season or environmental conditions. A true picture of seasonal variation requires 

data on decomposition over more than one year at a single study site. This is 

because between years, as well as within the same year, seasonal differences may 

affect decomposition.  

 

The aim of this research was to study carcass decay in relation to diversity and 

seasonal variation of mite species and their potential value as forensic indicators. 

 

2.2  MATERIALS AND METHODS 

 

2.2.1 Study area 

The study site for this research project was situated within the main campus of 

University of Reading at the following geographic coordinates 51°26′31″N, 0°56′44″W 

(Fig. 2.1 a) & b)), located in Berkshire, South West England. A research environment 
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was set up near the small bushes close to the Greenhouse of the School of Biological 

Science. Predominant tree cover on the site is from deciduous trees, while on the 

ground mostly covered by shrubs. The soil is porous and dry and tree cover of the area 

is dense. This site is beside a road (Pepper Lane) that has heavy traffic during peak 

hours. Faunal native inhabitants of the area are foxes, squirrels, birds and small 

rodents such as mice.  
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Figure 2.1: a) & b); Location and study area of research. c); Cage used to keep the 
carcasses.  

200m 

30cm



34 

 

2.2.2 Experimental design for test subjects 

Four domestic pigs (Sus scrofa domesticus), that were acquired from a private butcher 

located in Oxford, were used. The pigs were bred for the domestic meat markets and 

were killed on the farms by a licensed professional. Following DEFRA and Health and 

Safety regulations (University of Reading) to ensure biosecurity and prevent any 

inadvertent spread of disease during transportation from farm, each animal was 

placed into a body bag, which was sealed before being transported within 2-3 hours to 

the experimental site. One carcass was placed in each season, a total of 4 carcasses 

(Table 2.1). However, due to limitations regarding to availability of pigs, availability of 

study site and waiting for permissions, the experiments were not being able to start in 

the exact date of particular season but attempted to carry out as close to start of each 

season as it was possible. The carcasses were always placed on the site between 1300 

to 1400hrs, were enclosed in scavenger-proof cages (Figure 2.1 c)) which prevented 

vertebrate disturbance while allowing the access to invertebrates. The cages used 

were 100cm long, 80cm wide and 60cm high with a 25-mm mesh and were secured to 

the ground with four 45cm long steel spikes. One part of the cage was hinged to open 

for easy access while doing the soil sampling underneath. All the carcasses were 

placed in a similar position; laid laterally and with the same environmental setting; 

under trees giving canopy cover, to standardise microclimate as far as possible.  
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Table 2-1: Date of placement. 

Season Periods of observation 

Autumn From 20th Oct 2013 until 20th March 2014 

Winter From 9th Dec 2014 until 3rd August 2015 

Spring From 14th April 2014 until 17th July 2014 

Summer From 19th August 2014 until 2nd Dec 2014 

 

2.2.3 Data collection protocol 

In each season, carcasses were visited daily for the first 2 weeks after placement, 

every third day for the following week and once a week thereafter until they reached 

skeletal remains. At each visit, carcasses were photographed from each direction 

around the enclosure with a digital camera (Canon EOS500D with EF-S 18-55mm 

lens), and odour and appearance were also described. Detailed notes were taken for 

any changes during the decomposition process as well as arthropod abundance and 

activity on carcasses was recorded over time. Classification of the stages of 

decomposition followed the definitions of Payne (1965) and Anderson (1978).  

 

A Fourtec Microlite USB Temperature and Humidity data logger was placed attached 

to the cage with the carcass. The same type and brand of data logger was also placed 

underneath the carcass to record the body’s temperature. The data loggers were 

attached to the cage and were programmed to take the daily maximum and minimum 

temperature as well as temperature readings at 30-minutes intervals from 0000-

2330hrs. The temperature readings were compared with the meteorological data from 
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the Department of Meteorology, University Reading. Other environmental factors that 

were carried out during sampling are detailed in Table 2.2.  

Table 2-2: The environmental factors that were taken in situ 

 
Instrument 

 
Method and function 

Infrared Digital Gun with  

Laser Sight by Mazoom  

(-50°C ~380°C) 

Pointing the laser beam to the body surface 

– body temperature  

Digital Sound level meter 

(A & C Measuring functions) 

(30 ~130dB) (31.5Hz ~ 8kHz) 

Using in situ while sampling 

 - record the surrounding noise 

Waterproof pH and temperature  

meter tester model 8685  

by Easypet 

pH of soil was measured in the lab with an 

electronic pH meter.  

for pH by using the pH meter 

 – soil pH  

Light meter LX1330B Lux  

Luxmeter - Mastech 

(0.1 ~200,000 Lux) 

Using in situ while sampling  

– read the intensity of light that reach the carcass 

 

For soil sampling, two body parts of the carcass; head and lower abdomen (bottom), 

were raised briefly and the soil beneath was collected.  Soil samples were collected 

between 0900 to 1200hrs every 2 days for the first 15 days of decomposition or while 

decay was between fresh to active. As decay entered an advanced stage, the collection 

of samples was reduced to collection once in five days for 2 weeks and afterward once 

a week until the entire carcass flesh has been consumed (dry).  
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Soil samples were then separated by using adapted apparatus based on the Berlese-

Tullgren method (Stork & Eggleton, 1992; Behan-Pelletier, 1998). Large clean plastic 

bottles (~2L) were used to make disposable funnels to separate small arthropods 

from soils (André, Ducarme & Lebrun, 2002) (Fig. 2.2). Table lamps with 15W 

incandescent light bulbs were placed 8-10cm above the funnels to provide heat and 

light for up to 7 days after the beginning of the extraction process.  

 
Figure 2.2: Funnels to separate the soil samples.  

 

 

2.2.4 Isolation and identification of invertebrates 

The contents of collection-jars from separating funnels were sorted under a stereo 

microscope (MOTIC magnification up to 40x). Taxa separation included mites, 

insects and other invertebrates. Mites were collected in separate vials for each 

10cm 
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sample, labelled and preserved for further identification. All samples were kept 

preserved in 70% ethanol until further processing for identification. Only mites 

from order Mesostigmata were identified up to species level for this study while 

other taxa were identified to family level and kept preserved for future research 

studies.  

 

2.2.4 Clearing and mounting 

For each individual mite the procedure used for permanent mounting for 

identification was as follows:  

 Mites from ethanol were placed in distilled water in a watch glass, using a 

flat-tip needle or fine brush, and were kept in water for one hour. The mites 

were transferred again into a second watch glass containing fresh distilled 

water and kept for an hour.  

 The mites were then transferred to an Eppendorf centrifuge tube with 50% 

lactic acid to clear the well-sclerotized mites.   

 The tubes containing lactic acid and mites were then heated on a hot plate 

(400C) for about one hour or kept overnight at room temperature (give 

temperature (or range)).  

 Most specimens were ready to mount the next day but mounting can be 

postponed for up a week if the specimens have a hard cuticle (Faraji & 

Bakker, 2008). Mite specimens were mounted dorso-ventrally on 
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microscope slides in Hoyer’s medium (Faraji & Bakker, 2008) for 

permanent mounting.  

 The mounted slides were sealed along the edge of the coverslip with a layer 

of Glyptal paint by using a  fine artists’ brush. Glyptal prevents moisture 

entering and fracturing the specimen (Travis, 1968). 

The mounted mites were then added to the lab mite collection. 

 

2.2.6  Identification 

The mounted mites were identified under a phase contrast microscope (Leica 

DMLS) (objectives used 10x to 100x). Mites were identified at the Order and Family 

level using the keys of Krantz et al., (2009). Mesostigmata species were identified 

using the keys of Evans (1956), Hyatt (1980) Hyatt & Embersom (1988) Hyatt 

(1990) and Masan (2003). 

 

2.2.7 Data and statistical analysis 

The total of individuals counted for each species was used for analyses. The 

analysis of variance (ANOVA) is performed to primarily test whether the 2 factors; 

decomposition stage and season, are significantly different from each other. This 

test is implemented using the statistical software PAST (Hammer, 2001). Faunistic 

indexes (FI) for the species of the major families of Mesostigmata collected were 

calculated to determine the diversity of species found in the study area for each 
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season sampled. The three faunistic indexes calculated for the collected species 

were the Evenness, Richness and Simpson’s index (D) (Help, Herman & Soetaert, 

1998). 

 

The relationship of Mesostigmata abundance among the different decomposition 

stages and seasons was analysed using a Generalised Linear mixed-effects model 

with stages and seasons as fixed effects and ‘individuals’ count of mesostigmatid’ as 

random effect. Model fitting and estimates were obtained with the linear mixed-

effect with a specified ‘Poisson’ error family using R package (R studio version 

3.2.5, 2016). Wald’s Z statistic and probability ‘P’ values of best-fit models were 

quoted throughout.  Environmental data were averaged over each day and were 

used for the analyses. The average data of environmental variables were compared 

as these were the main factors that affect the stages of decomposition.  A 

regression analysis provided by Generalised Linear Model ANOVA with Fisher’s 

protected least significant differences (R studio version 3.2.5, 2016) is used to test 

the environmental variables and decomposition stages as factors with the effect on 

the Mesostigmata abundance. 
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2.3  RESULTS 

 

2.3.1 Decomposition factors 

Seasonal variation of decomposition stages was observed from year 2013 to 2015 

and corresponded with factors of decomposition variation such as; ambient 

temperature, soil temperature, soil pH, rainfall, wind speed, light intensity, air 

humidity and carcass temperature. Reading, United Kingdom is located in the 

temperate zone and experiences four distinct seasons. The fresh stage of each 

carcass began approximately at the beginning of each season and each carcass was 

studied until it reached the skeletal stage. As the duration of decomposition is 

affected by various seasonal factors; mainly temperature, the time it took for each 

carcass to reach the skelatal stage during each season took more than the 3 months 

associated with each season.Therefore, although there were a total four 

experiments, one for each season, the experiments, in reality, overlapped by a few 

months. For example, the duration for the whole body to be fully decomposed and 

reach the skeletal (dry/remain) stage was approximately 150 days during autumn, 

94 days during spring, 98 days during summer and 223 days during winter. As 

noted, the decomposition process for summer is longer than spring since spring 

attracts pollinating insects that carry phoretic mites along which expedites the 

decomposition process of the carcass.  

 

The mean temperature  is shown in (Fig. 2.3(a) – 2.3(d)). Throughout the study, 

spring (April-July) had mild to warm weather with low rainfall, summer (July-
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September) had warm to mild weather with moderate to high rainfall, autumn 

(October-December) had mild to cool weather with moderate rainfall, and winter 

(January-March) was cool with low rainfall. Temperature is one of the important 

factors in determining the rate of decomposition (Mann, Bass & Meadows, 1990) 

then it is critical that accurate temperature data is collected. The averages of other 

factors such as soil temperature, wind speed at 2m high from soil surface, ambient 

humidity, soil pH, body temperature of carcasses, ambient noise and light intensity 

that reached the bodies are shown in Table 2.3. 

 

 

Figure 2.3: Mean temperature and cumulative rainfall (mm) per sampling 
throughout decay for pig placed in spring. 
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Figure 2.4: Mean temperature and cumulative rainfall (mm) per sampling 
throughout decay for pig placed in summer.  

 
 

 

Figure 2.5: Mean temperature and cumulative rainfall (mm) per sampling 
throughout decay for pig placed in autumn.  
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Figure 2.6: Mean temperature and cumulative rainfall (mm) per sampling 
throughout decay for pig placed in winter.  

 

 

Table 2-3: The average of other factors (±SE) in the research study (2013-2014) 

Season 
Soil 

temp. 
(0C) 

U2 (wind 
speed at 

2m)(m/s) 
RH (%) Soil pH 

Body temp.  
(surface) 

(0C) 

Noise 
(dB) 

Light 
intensity 

(lux) 

Spring  
14.257 ± 

4.678 
2.843 ± 
1.689 

65.227 ± 
11.658 

7.9 ± 0.2 12.266 ± 5.186 
86.983 ± 
21.134 

224.979 ± 
214.125 

Summer 
14.379 ± 

4.305 
3.103 ± 
2.709 

57.171 ± 
18.407 

8.0 ± 
0.23 

13.654 ± 4.226 
79.774 ± 
19.713 

227.030 ± 
97.401 

Autumn  
9.505 ± 
3.011 

2.423 ± 
1.432 

88.302 ± 
18.372 

7.4 ± 
0.42 

8.185 ± 4.094 
63.451 ± 

4.188 
242.350 ± 

304.24 

Winter  
7.467 ± 
4.193 

4.363 ± 
2.153 

77.962 ± 
9.569 

7.3 ± 0.4 6.429 ± 7.025 
71.208 ± 

10.09 
159.037 ± 

152.51 

 

2.3.2 Decomposition stages 

The total duration of the decomposition was determined by the rate of individual 

carcass decay processes, starting from fresh stage, until the skeletal (dry/remain) 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 6 10 19 28 33 41 49 58 78 85 99 108 148 177 223

A
m

b
ie

n
t 

te
m

p
 (0

C
) 

R
ai

n
 (

m
m

) 

Day 

Winter 



45 

 

stage. Determination of stage change over time is subjective because there were no 

clearly defined boundaries between stages. The stages were recognised visually by 

characteristic morphological changes on the carcass body as described in Table 2.4. 

The carcass appearance and odour were the main criteria to divide decomposition 

into the stages. Five stages of decomposition; fresh, bloating, active decay, 

advanced decay and skeletal were observed on pig carcasses in four seasons; 

autumn, winter, spring and summer. It is literally impossible for any carcass to 

decompose fully in exactly 3 months or less as it completely depends on 

environmental factors. The temperatures year round in UK are quite low therefore 

it is unlikely the decomposition will be very fast in any season. The period for each 

stage of decomposition between seasons was different as shown by a bar chart 

(Fig. 2.4). Observation made on the rates of decomposition among seasons has 

produced the same conclusions as the statistical analyses.  The decomposition 

stages were longer in autumn and winter and shortest in spring. In autumn and 

winter, the onset of decay was prolonged and carcasses remained relatively fresh 

for a month. From daily observations, the details of each stage were recorded and 

are discussed: 

Fresh stage – Carcasses did not produce discernible odour. The skin had the 

original colour; pink or white, with purplish or greenish discoloration on the 

underside abdomen. The body orifices at the head (eyes, nose, mouth and ears), 

anus and genitals, and cut wounds had attracted the first insect invasion.  
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Bloating stage – The body had an inflated appearance. The leakage of body fluids 

with strong smell came from the natural orifices; nose, mouth and ears. The carcass 

developed a marbled-appearance on the skin. The entire body bloating occurred at 

a different time for carcasses in each season. Green mold grew on the skin of 

carcasses during autumn and winter.  

Active stage – This stage was characterised by greater mass loss, resulting from the 

large feeding masses of maggots and fluid decomposition leaking from the body to 

the surrounding environment. The body started to deflate due to skin rupture. The 

fluid accumulated around the body and created a cadaver decomposition island 

(CDI). A strong odour of decomposition persisted.  

Advanced decay stage – A very strong odour of decay was recorded. The exposed 

body parts had a black appearance. Only skin, cartilage and bone were left at this 

stage. Skin colour darkened; changed from brown to tan and hair loss increased. 

Decomposition fluid drained from the carcass, and seeped into the soil.  

Skeletal (Remains/dry) stage– This stage was recognised when only bones and hair 

remained. The skin, cartilage and exposed bones became dry and bleached, with a 

cheesy smell. There were a few insects on the carcass. 
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Table 2-4: Description of key features characterising stage of decomposition of the 
4 carcasses. 

Stage 
Skin colour 

change 
Decomposition 
fluid leakage 

Odour 
Body 

condition 
Arthropod 
succession 

Fresh 

No 
discoloration Nil Nil 

Nothing 
changes 

1st flies lay 
eggs on face 

White-pink 

Bloating 

Brownish in 
certain 
areas; nose, 
ear 

Small leakage 
from the 
orifices 

Strong 
Skin 
slippage 

1st instar of 
maggots 

Active 
decay 

Green 
discoloration Fluid leaked 

and pooled 
under bodies 

Strong 

Produce 
sagging of 
flesh 

Extensive 
maggot 
activity Marbled 

appearance 

Decayed in 
different 
body part 

Advanced 
decay 

Black or 
darkened on 
arms and 
legs 

Pools 
accumulated 
under bodies 

Peak 
levels 

Leathery 
appearance 

Large 
maggot 
masses 

Skeletal 
(Remains) 

Black 
mummified 

Black stained 
Cheesy 
smell 

Mummified 
tissues 

Few 
maggots 
feeding 

tissue left 
Dry bones 
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Figure 2.7: The duration of decomposition of each stage for the carcasses  

 

2.3.3 Mite community 

The succession of mites of each decomposition stage was compared among the 

seasons (Figure 2.5) with a grand total of 550 individuals of mites from 50 species 

belonging to the four main groups; Mesostigmata, Prostigmata, Astigmata and 

Oribatida were identified from the 4 experimental seasons (one carcass used for 

each season). Until present many prostigmatid, astigmatid and oribatid species 

were not confirmed; hence species identifications for these three groups were not 

included.  Thirty six species were identified in Mesostigmata followed by six 

species of Oribatida, four of Astigmata and four of Prostigmata. 
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The highest number of mites was recorded in spring (46.8%) followed by summer 

(26%), autumn (18.3%) and the least in winter (8.9%) of total mites counted.  The 

most abundant and consistent group present in all seasons was Mesostigmata that 

consisted 68.2% of total mites. Mesostigmata family composition was similar 

among seasons except that more species were counted in summer and spring. The 

ANOVA test (Table 2.5) showed the decomposition stages have significantly effect 

on the abundance of Mesostigmata, while changing of seasons has no significantly 

effect.   

Table 2-5: Analysis of variance on the abundance of Mesostigmata on 
decomposition stages and seasons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anova: Two-Factor Without Replication 
    

       SUMMARY Count Sum Average Variance 
  active decay 4 84 21 414 
  advanced decay 4 37 9.25 62.91666667 
  bloating 4 5 1.25 0.916666667 
  fresh 4 6 1.5 5.666666667 
  skeleton 4 81 20.25 15.58333333 
  

       Autumn 5 25 5 65.5 
  Spring 5 93 18.6 254.3 
  Summer 5 68 13.6 214.3 
  Winter 5 27 5.4 49.3 
  

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Rows (stage) 1493.3 4 373.325 5.331310246 0.010549843 3.259166727 

Columns (season) 656.95 3 218.9833 3.12721647 0.065879083 3.490294819 

Error 840.3 12 70.025       

              

Total 2990.55 19         
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               Figure 2.8: The proportion of mites’ main groups according to decomposition stages in four seasons.
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Among the Mesostigmata, species from the family Macrochelidae were the most 

frequent throughout all seasons, followed by Parasitidae (Table 2.6). Two species 

of Macrochelidae; Macrocheles glaber and M. matrius and three species of 

Parasitidae; Cornigamasus lunaris, Poecilochirus carabi and Gamasodes spiniger 

were the most collected from all carcasses during the last three stages of 

decomposition. While most of these species were recorded in spring and summer, 

there were some seasonal differences in relative abundance noted and different 

species exhibited peaks in each season. The most abundant species collected in 

last three stages was Macrocheles matrius with peaks from the advanced decay (10 

individuals), skeleton stage (7 individuals) and active decay (4 individuals). All 

were collected in spring. While Cornigamasus lunaris and Poecilochirus carabi 

were collected in spring, summer and autumn. Macrocheles nataliae was the only 

species collected in the bloating stage and only in the summer season. On the other 

hand, environmental conditions also play an important role, since there were 

species such as; Cornigamasus sp., Parasitus coleoptratorum, P. loricatus, 

Gamasodes spiniger and Holostaspella sp. which tolerate cold better than other 

species when they were found in winter. Two species of Macrochelidae and three 

species of Parasitidae have been selected as marker as they were present 

abundantly or with a single appearance throughout the decomposition stages in 

the four seasons. M. glaber, M. matrius, Cornigamasus lunaris, P.carabi and 

Gamasodes spiniger confirming their association with the decomposition of 

carrion.  
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                 the most abundant species 

x: more than 1 individual 

Table 2-6: The presence of Mesostigmata families and species in four seasons 
throughout all decomposition stages. A:Autumn, WI:Winter,  SP:Spring, 

SU:Summer 

Specimen 
Fresh  Bloating Active decay Advanced decay Remains 

SP SU AU WI SP SU AU WI SP SU AU WI SP SU AU WI SP SU AU WI 

Mesostigmata                                         

     Macrochelidae                                         

        Macrocheles carinatus                 1               1       

        M.muscaedomesticae                 1       1       1       

        M. punctatissimus                                     1   

        M.perglaber                 1               1       

        M.glaber                 5 12             1       

        M.matrius                 4       10       7       

        M.subbadius                   7       2             

        M.montanus                                     1   

        M.spiniger                 1               1       

        M.merdarius                         1               

        M.nataliae           1                             

        M.mammifer                                   1     

        M.punctoscutatus 1                                       

        Glyptholaspis confusa                                   1     

        Cornigamasus sp.                       1                 

        Holostaspella sp.                       1       1         

     Parasitidae                                         

         Pergamasus sp                                     1   

        Cornigamasus lunaris                 1       2 1       13 1   

        Poecilochirus carabi                 7 11 2     3     1 1     

         P.austroasiaticus                 1                       

         P.hyalinus                   1     1 1     1       

         P.fimetorum                                   1     

         P.coleoptratorum       1         1             2     4 3 

        P.loricatus                               1         

        Gamasodes spiniger                 1             3     5 1 

         G. fimbriatus                                       2 

    Parholaspididae                                         

         Parholaspis kewensis                                       3 

    Laelapidae                                         

         Crytolaelaps sp             1       1                   

    Uropodellidae                                         

         Uropodellidae1 2                                   1   

         Uropodellidae2                     1     1     1   1   

    Heterozergonidae                                         

        Heterozergonidae1                                     1   

    Antennophoridae                                         

        Antennophoridae1                                     1   
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Faunistic diversity indices (Table 2.7) were calculated by referring to the 

Mesostigmata species and families in all four seasons. According to Simpson’s 

Index, summer scored the highest (D=4.89), followed by spring (D=3.24) while in 

terms of species evenness, winter showed the highest while autumn showed the 

lowest. High Simpson dominance index indicate high diversity. Evenness measure 

the equal abundances in the community. In winter the proportion all species are 

equal abundance even it has a low diversity. 

 

Table 2-7: Diversity indexes associated to the four seasons. 
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Autumn 22 1.3967 0.0457 

Spring 60 3.24 0.0798 

Summer 33 4.8935 0.1026 

Winter 16 0.1183 0.1183 
 

 

According to GLM, fitting the data to a Poisson distribution, there were strong 

positive interactions between the decomposition stages and Mesostigmata species, 

with higher significance in three stages, namely the fresh, bloating and active 

decay stages (Z=6.574, P<0.001; Z=-4.570, P<0.001, Z=-6.187, P<0.001, 
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respectively; see Table 2.8). Meanwhile, there was no interaction between seasons 

as there was no replicate of seasons. 

 
Table 2-8: Regression analysis on the abundance of Mesostigmata  with the 

decomposition stages 

 

 

2.3.4 Mites as forensic marker 

Based on the data collected throughout all the decomposition stages, mite species 

with the potential to be markers for season and/or decomposition were sorted 

and selected. Mites of several orders inhabit carcasses and the colonization taxa 

are in a predictable sequence is forensically significant. Here the list of the 

selected mites as markers with their characteristic and previous relevant 

literature (Table 2.9). 
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Table 2-9: Summary of the phoretic mites and their association with insect 
described in literature. 

 

Mite Peak abundance 

(Stage/Season) 

Hosts described 

in literature 

Reference 

Macrocheles 

glaber 

Active decay, skeleton/ spring, 

summer 

Onthophagus 

spp. 

Halliday, 

1980 

M.matrius Active, advanced decay, 

skeleton/spring 

Mammals Krantz & 

Whitaker, 

1988 

Poecilochirus 

carabi 

Active, advanced decay, 

skeleton/autumn, spring, 

summer 

Silphidae 

(Coleoptera) 

Brown & 

Wilson, 

1192 

Gamasodes 

spiniger 

Active, advanced decay, 

skeleton/ autumn, spring, 

winter 

Muscidae, 

Drosophilidae 

 

Hyatt, 1980 

Cornigamasus 

lunaris 

Active, advanced decay, 

skeleton/ autumn, spring, 

summer 

 

Small mammals 

 

Hyatt, 1980 

 

 

Family : Macrochelidae 

Macrocheles glaber (J. Müller, 1860) 

Twelve female individuals were collected from the summer carcass in the active 

decay stage while five individuals were recorded in spring also in the same stage. 

Only one male was collected in the final stage of decomposition in spring. 

Macrocheles glaber (Fig. 2.10), decomposes organic material especially manure, 

when there is enough humidity and nitrate (Masan, 2003). This species is 
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commonly related to decomposition of carcasses and with different Coleoptera 

families such as Silphidae, Carabidae, Scarabaeidae, Staphylinidae, Histeridae, as 

well as several Diptera families (Perotti & Braig, 2009). It feeds on newly hatched 

eggs and small larvae of Musca domestica. the house fly (Pereira & Castro, 1945). 

This mite species is cosmopolitan and found in Europe, Asia, North America and 

Australia (Kontschan, 2005). This species has shown the association with the 

decomposition stages that taking place in summer and spring.  

 

 

Figure 2.9: Macrocheles glaber female with sternal shield with one linea arcuata. 
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Macrocheles matrius (Hull, 1925) 

Twenty-one individuals of females collected in spring were found during active and late 

decay stages (advanced and skeleton). This species feeds on house fly eggs and 

nematodes (Cicolani, 1977). It is a cosmopolitan mite that is abundant in Southern 

European countries (Greece, France and Italy). Most of the findings were from Silphidae, 

Lucanidae, Trogidae beetles, as well as on other dung beetles (Niogret, Lumaret & 

Bertrand, 2006). M. matrius (Fig. 2.11) could be used as seasonal and temporal markers; 

where it found abundantly in spring in stage of advanced decay of decomposition. 

 

 
 

Figure 2.10: Macrocheles matrius female with sternal shield coarsely punctate.  

 

 

 

 

 

 

 

 

 

100μm 
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Family : Parasitidae 

Poecilochirus carabi (G. & R. Canestrini, 1882) (Fig. 2.12) 

Twenty-five individuals were collected and identified throughout the seasons. Half of 

them were deutonymphs. They were collected in all seasons except winter, and at the 

end of the decay processes (active, advanced decay and skeleton). It is primarily 

associated with the silphid genus Nicrophorus, the burying or sexton beetles 

(Coleoptera: Silphidae) (Hyatt, 1980). The mites ride on carrion beetles as 

deutonymphs and feed on the carcass.  

 

 
 

Figure 2.11: A Poecilochirus carabi deutonymph with lintercoxal shield with granular 
tranverse band 

 

 

 

 

 

100μm 
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Gamasodes spiniger (Trägårdh 1910) 

Five deutonymphs and one female adult were collected and identified throughout the 

experiments. This species is identified through its unique and special sternal plate 

shape (deutonymphs). The mites are predators and were observed to feed on small 

collembola. They are commonly found on birds, small mammals and small scavenger 

insects such as flies of Sphaeroceridae (Diptera). They are recorded to be found in many 

European countries such as Sweden (Trӓgårdh, 1910), France (Cooremann, 1954) and 

Italy (Valle, 1955). G. spiniger (Fig. 2.13) could be used as a temporal marker as they 

were collected at late stages of decomposition in all seasons (except in winter). 

 

 
 

Figure 2.12: Gamasodes spiniger deutonymph with unique sternal plate shape. 

100μm 
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2.4  DISCUSSION 

 

2.4.1 The effects of seasons on the decomposition process 

The decomposition changes shown in all seasons in this study are similar to those 

recorded by Payne (1965); however, there were stages that have a combination of 

decay stage characteristics. From the study, it is shown that the carcasses in 

summer and spring decayed at a faster rate compared to autumn and winter. 

However the decomposition periodfor each decay stage for both carcasses varied.. 

For example, even though total cadaver decomposition from fresh to skeletal for 

spring lasted 94 days and summer was 98 days, the fresh stage for spring lasted 6 

days and for summer lasted 4 days. Meanwhile, the advanced decay stage for 

spring lasted 21 days and summer lasted 29 days. However, the initial 

decomposition stages; fresh and bloating of carcass in summer lasted for 2 weeks, 

whereas in spring it lasted approximately 3 weeks. The delay in spring is assumed 

to be due to the drop in average ambient temperature (10.85° C) in both stages, as 

compared to summer (16.33° C)., The onset of the skeletal/dry stage took place 

after 60 days from the start of the experiments. The temperature and rainfall in 

summer showed a fluctuating pattern. The increase of temperature sped the 

chemical reaction rate, triggering the increase of growth and feeding rate of 

necrophagous insect larvae (Anderson & Vanlaerhoven, 1996; Gill-King, 1997). 

This was coupled with higher relative humidity, influencing the decomposition 

rate. This contributed to rapid decay, whereas cold temperature prolonged the 

decaying process.  
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In winter, the decomposition period for each stage was prolonged. Temperature 

that ranged from 3 °C to 14 °C and rainfall that ranged from 0 mm to 1.7mm for 

the whole season; had affected decomposition period. The carcass appeared fresh 

for nearly a month and did not show the sign of bloating stage. However, the 

stages were both separated, in which the bloating stage was determined via the 

changes of skin colour after a long period of fresh stage. All the decomposition 

stages took longer in this season. On most days, soil sampling occurred in wet soil, 

due to moisture by more constant rainfall. However, soil moisture and increased 

relative soil humidity within the soil environment can also increase rate of decay 

and soil humidity is not only affected by rainfall but also other factors such as fluid 

leakage from the decomposing carcass. Continuous wet soil prevented the carcass 

from drying out and encouraged maggot and bacterial action in the fleshwhich 

prolonged the period of certain stages. According to Smith (1986), the rehydration 

of dried remains during rainfall sometimes allows carcass recolonization by 

blowflies. The carcass internal temperature was recorded as maggot masses 

developed from the inside of the body. The highest body temperature was 

recorded in spring (21.40 °C) while the lowest has been recorded in winter (-5.3 

°C) which both were recorded during the advanced decay.  

 

The designation of decomposition stages is relatively subjective and some 

invertebrates may vary in their stage associations (Archer, 2003). Carcass 

decomposition time and rate was profoundly influenced by the season during 

which exposure first occurred and this will affect the number and diversity of 
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insects visiting carcasses (Lopes de Carvalho & Linhares, 2001; Archer, 2002). The 

changes of seasonal temperatures affect decomposition rate, which differ greatly 

in insect succession (Archer & Elgar, 2003). As most of the mite species that 

colonise decomposition are associated with insects, it is important to use this 

information in this study. This study considered seasonal changes in mite 

succession on pig carcasses, following experiments that were held in the same 

habitat. In summary, mite assemblage significantly differed over time, with the 

progression of carcass decomposition within seasons. The decomposition stages 

used in the previous research used PMI estimations; such decomposition stages 

are determined by physical changes in the carcass (Segura et al., 2009).  The stages 

often follow one after the other but there is no clear distinction when one stage 

ends and another begins. Decomposition stages could be characterised by 

distinctive mite communities. As expected, over a year, mite succession changed; 

largely due to shift of climatic conditions. Therefore in general, the surrounding 

environment; was an influential factor on outdoor decomposition due to 

variations in temperature, rainfall, humidity and other factors associated with 

each season (Jalil & Rodriguez, 1970).  

 

2.4.2 Mite abundance throughout seasons 

The influence of seasonal variation in meteorological conditions on mite species 

abundance has never been documented before. However, the studies of insect 

succession in seasonal variation are well documented (Souza & Linhares, 1997; 

Linhares & de Carvalho, 2001; Arnaldos et al., 2005), thus this information was 
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used to study mite behaviour. After temperature, access to the body by insects is 

the most important factor affecting the decay rate (Meadows, Mann, & Bass, 1990). 

In the cold seasons (autumn and winter), there are fewer insects infesting the 

carcass. As the two most abundant groups of carrion arthropods are insects and 

mites (Bornemissza, 1957; Braack, 1987; Perotti & Braig, 2009), in this condition 

the presence of mites will be used to gather information for the decomposition. 

Mite assemblage at carrion is dominated by phoretic mesostigmatid mites (Perotti 

et al., 2010; Barton, Weaver, & Manning, 2014). In general, the biodiversity of 

mites was very low. The species that were the most eminent throughout the 

decomposition process were mesostigmatid mites. According to the result, the 

most abundant families belong to the Mesostigmata order; that makes up 64% of 

the total mites collected from the carcasses. The dominant families Macrochelidae 

and Parasitidae played a fundamental role in the carcass decomposition. These 

families were present at carcasses in all decomposition stages throughout the four 

seasons, confirming their roles as major factors in carcass decomposition and 

significance to forensic acarology. Other species were identified up to family level 

and were then separated in to Laelapidae, Uropodellidae, Heterozergonidae and 

Antennophoridae families. There were several species across seasons and 

throughout decomposition stages which are the major contributors to the 

difference in the seasonal community of decomposition (Lopes de Carvalho & 

Linhares, 2001; Archer, 2002). 
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Based on the data collected throughout the year, mite species with the potential to 

be markers for season and/or decomposition stages were sorted and selected. The 

Mesostigmata species were numerically higher in the late stages, showing some 

distinctive seasonal peaks. Macrocheles glaber, M. matrius, Cornigamasus lunaris, 

Poecilochirus carabi and Gamasodes spiniger all are good taxa for forensic use. 

Each mite species depicts a unique set of seasonal adaptation, due to resource 

exploitation by their carrier in a variety of microhabitats. These mites have short 

life cycles and their timetables are predictable. Most of mites synchronise their life 

cycle and development with their hosts (Perotti & Braig, 2009; Perotti, Braig & 

Goff, 2012; Saloña-Bordas & Perotti, 2014). Perotti discovered that most mites 

collected from corpses were carried phoretically by flying insects (Perotti & Braig, 

2009; Perotti et al., 2009; Perotti et al., 2010). Phoretic mites can be highly 

specific; they only arrive on a particular host or carrier, which has a unique 

complex of physical, chemical and behavioural characters (Athias-Binche, Schwarz  

& Meierhofer, 1993; Krantz, 1998). Deutonymphs of Poecilochirus carabi are 

phoretic on Silphidae burying beetles (Baker & Schwarz, 1997). This family from 

order Coleoptera has many species that occur on carrion (Cole, 1942; Payne, 1965; 

Andersen, 1982). Poecilochirus carabi was collected in spring, summer and 

autumn while M. matrius was only found in spring and this special presence could 

be selected as marker of season. Even though Parasitus loricatus and Gamasodes 

fimbriatus were only found from the carcass forwinter decomposition, their 

presence could not be considered as a marker of seasons since it was already 

spring. Therefore, eventhough their presence may not associated to a season, they 
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may be potential markers of late cadaver decomposition. The temperature 

increased according to the change of season. Thus, the possibility of these two 

species to be markers for seasons was rejected. 

 

This specific characteristic of mites such as host specificity shows the potential 

value of phoretic mites as markers. Mites of several orders inhabit carcasses and 

the taxa that colonise carcasses in a predictable sequence are forensically 

significant. These species were highlighted as markers of specific seasons and 

stages.  

 

2.4.3 Mesostigmata and environmental factors. 

The colonization observed by Macrochelidae agreed with that reported in 

previous studies with species from this family being the most frequent to discover 

and colonize cadavers (Perotti & Braig, 2009). There was strong positive 

correlation between certain environmental factors and the abundance of 

Mesostigmata, specifically wind speed and the abundance of taxa. Mesostigmata 

associated with carcasses are phoretic and therefore, their occurrence is link to 

their scavenger insect hosts arriving on or leaving a carcass (Perotti et al., 2010). If 

they do not have carriers to leave the carcass towards a new habitat, they will 

likely increase in numbers until a ‘transport’ carrier is available. With strong 

winds, insects especially flies and beetles avoid flying because of movement 
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difficulty with most insects tending to follow the direction of air current although 

some are inclined to go against it (Hurd, 1920).  

 

The carcass temperature and the light intensity too have a positive relationship 

with the abundance of Mesostigmata. Both environmental factors seem to affect 

mite occurrences, in which they increase in number under the warmer conditions 

and avoid direct sunlight by investing in reproduction and development. The 

carcass temperature affects the mites’ surrounding. According to Voss (Voss, 

Forbes, & Dadour, 2008), they observed heat generation by larval aggregation that 

largely contributes to the decomposition process, regardless of ambient 

temperature changes. Larval aggregation produces heat, and thus increases the 

temperature by several degrees above the surroundings (Campobasso et al., 

2001). This finding coincides with the previous studies that concluded that the 

carrion internal temperature is elevated during decomposition due to bacterial 

metabolic reaction (Payne, 1965; Rodriguez & Bass, 1983; Anderson & 

Vanlaerhoven, 1996). For the light intensity, mites are negatively phototropic, in 

which they avoid direct sunlight in their development. However, the results 

showed a higher abundance of mites when the light exposure was high. The mite 

phototropism behaviour does not apply to insects. Insects favour areas with light 

to produce progeny. Sun-exposed carrion attracts more species in terms of 

diversity and number as compared to the shaded area (Sharanowski, Walker & 

Anderson, 2008). This happens on the surface of a carcass since the lux meter was 

used to read the light intensity on the body. The mites collected in this experiment 
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were from the soil sampling, underneath the carcass and not where the light 

readings took place, therefore, this is an indirect effect. My interpretation of the 

positive correlation is that the more intense the light the more the mites avoid 

sunlight by seeking darker areas such as underneath the body or within the soil 

directly beneath the carcass (Walter & Proctor, 1999). 

 

2.5 CONCLUSION 

 

The results from this study are the first to demonstrate that there are possible 

variations in the abundance and diversity of mites associated with cadaver 

decomposition during different seasons. This was the first attempt to associate 

seasons and mites as forensic markers. During this study, five Mesostigmata 

species were chosen and considered as valuable forensic markers. The markers 

were selected according to their ‘special’ presence throughout decomposition 

stages in certain seasons. They became markers for certain seasons or stages. 

Macrocheles glaber for temporal and seasonal marker (active decay and warmer 

temperatures), Macrocheles matrius for both temporal and seasonal markers (later 

decomposition stages and spring), Poecilochirus carabi for a temporal marker 

(later decomposition stages), Gamasodes spiniger for both temporal and seasonal 

markers (later decomposition stages and colder temperatures) and Cornigamasus 

lunaris for a temporal marker (later decomposition stages). There were positive 

correlations between the abundance of Mesostigmata with certain microclimatic 

effect; wind speed and condition of the carcass; body’s temperature and exposion 
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to sunlight. These correlations will effect the decomposition process and the 

presence of arthropods onto the carcass. 
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Chapter 3 : The contribution of Mesostigmata mites to the 

carcass position. 

  

 

3.1 INTRODUCTION 

 

This chapter discusses the process of decomposition in an outdoor setting that 

involves forensic analysis, considering direct contact with or hanging above the 

soil. The decomposition at outdoor environment consist two primary habitats, 

each with their own chemical profile; the cadaver itself and the soil into which the 

cadaveric fluids are released (Aitkenhead-Peterson et al., 2015). During 

decomposition, materials from the carcass physically enters the associated soil, 

providing a localized pulse of nutrients (Carter, Yellowlees & Tibbett, 2007) which 

results in the formation of a concentrated island of decomposition fluids that 

transform the landscape and it is known as a Cadaver Decomposition Island (CDI) 

(Carter, Yellowlees & Tibbett, 2010). CDI can alter steady-state edaphic and 

biological characteristics (Hopkins, Wiltshire & Turner, 2000). Each cadaver acts 

as a specialised habitat for several organisms and this is important in ecosystem 

processes. Numerous insect species and other arthropods will occur on or around 

a cadaver during decomposition (Amendt et al., 2011). Forensic entomology 

estimates an accurate PMI (Post-mortem interval) according to assumption made 

that insects, usually blowflies, will discover the dead bodies soon after death (Hall, 

1990; Catts, 1992). The blowflies are attracted to body fluids like urine, saliva and 
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faecal material protruding from natural orifices or open wounds (Sumodan, 2002). 

Soil chemistry under decomposing bodies has been used to estimate PMI (Vass et 

al., 1992; Tumer at al., 2013) however the results depend on the environment 

factors that affect the soil properties. Not until recently, the use of soil in forensic 

investigations has focused on comparison of soil particles from the evidence and 

crime scenes (Pye, 2007; Ritz, Dawson & Miller, 2008).  

   

Hanging is one of the most common methods of suicide around the world (Dedouit  

et al., 2007). This likely stems from the easy accessibility of victims to a myriad of 

possibilities to suspend themselves and the relatively rapid lethality of this 

method to commit suicide (Sharma, Singh, & Harish, 2005). Hanging resulting 

from suicide, accident and (more rarely) homicide, is not an uncommon form of 

death. A body suspended above the ground could present a unique environment 

for insect succession, particularly in the soil below. The process of decomposition 

of hanging bodies differs from bodies lying on soil and alters the colonization of 

insects by excluding some soil-dwelling taxa (Saloña-Bordas & Perotti, 2014). This 

can reduce the number of insects and influences the colonization of certain species 

on the remains (Goff & Lord, 1994). There are few cases reporting the insect fauna 

associated with decomposition of hanged corpses and carcasses (Arnaldos et al., 

2005; Martins & Thyssen, 2005; Saloña-Bordas & Perotti, 2014). Different 

necrophilous insects are attracted to the corpse and changing over time thereby, 

the colonization of the corpse will occur in a predictable sequence (Amendt, 

2004).  
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In this study, the information provided by Mesostigmata mites in the soil beneath 

several pig carcasses was examined with the aim to add information of forensic 

importance about the soil fauna and its role as indicator of a different 

decomposition process; that of hanging-remains. This study was part of a working 

group project that included scientists from Switzerland (Neuchatel University), 

Frankfurt (University of Frankfurt) and University of Reading. The collaboration 

focused on the effects of decomposing cadavers on the soil fauna and chemicals 

below (hanging-carcasses) and underneath (carcasses on the ground) by using 

several methods to establish new forensic indicators that may aid in solving 

criminal cases. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Experimental site and design 

The experiment took place in a forested area close to Neuchatel University, and six 

pig carcasses were used. The study site covered an area of 1200 m2 in a small 

spruce (Picea abies) forest at the Bois-du-Clos, near Neuchatel, Switzerland. A total 

of 9 plots (ca. 4 metres from each other) with three treatments (and three 

replicates each) were set up. The treatments were the control (bare soil), surface 

pigs (carcasses placed directly on the ground) and hanging pigs (carcasses 

hanging 1 m above the ground) (Fig. 3.1). Six domestic pigs (Sus scrofa 

domesticus), were bought from a local farm and sedated with Stresnil® 

(Azaperone) and euthanized with T61® by a veterinarian. The carcasses were 
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immediately transported to the experimental site, weighed and placed on the 

plots. The average weight of carcasses was 27.8 kg ± 0.8 kg (SE). All carcasses 

were placed in cages (140 cm x 95 cm) surrounded by wire mesh fences to exclude 

any scavengers and larger animals, but allow free access of insects. The 

experimental area was surrounded by an electric fence for additional protection. 

Controls were marked with sticks and cords. One side each of the fences and cages 

was accessible for soil sampling and carcass-weighing. Carcasses were weighed 

just before the start of the experiment and on every sampling day, until Day 331 

using a digital hanging scale (Fig. 3.2).  

 

All procedures were approved by the Committee of Ethics in Animal 

Experimentation at the University de Neuchatel, Switzerland. 
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Figure 3.1: Study site, forest at the Bois-du-Clos, Neuchatel, Switzerland. 

 

 

 

500m 

1m 



74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: The experimental design and treatments (a) the plot for control soil (b) 

the carcass on the ground (c) the hanging carcass (d) the environmental probes. 
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3.2.2 Decomposition stages and sampling 

Decomposition stages and patterns are described in detail in Payne, (1965)(Table 

3.1). During the early stages (fresh until dry), each pig carcass was examined daily 

to record the state of decomposition based on the physical characteristics and 

arthropods present. When it started the dry stage, the carcasses were monitored 

at longer intervals (>9 days). Random sampling was done based on coordinates; a 

wooden frame identical in size with the experimental cages with x (letters) and y 

(numbers) was placed on the ground at each site. The coordinates corresponding 

to 10 subsamples per plot were selected by raffles for a random sampling and to 

avoid re-sampling on the same place. 

 

Table 3-1: Description of decomposition stages in this experiment 

Stage of decomposition State of the carcass 

Fresh stage No visible external changes 

Bloating 
Accumulation of gases in the abdomen, bloating of 

the body 

Active decay 
Ruptures in the skin, release of cadaveric fluids, 

extensive loss of mass 

Advanced decay Body starts to dry 

Dry Dry skin, cartilage, and bones 

Skeleton 
Skin and flesh have been removed, leaving teeth, 

bones and hair 
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3.2.3 Environmental parameters 

Mean temperature and total precipitation were measured on-site with a Decagon 

Em50 digital data logger that was centrally located and set as the experimental 

meteorological station. 

 

3.2.3 Cleaning and identification of soil arthropods 

The separation of arthropods from soil was performed in the Acarology Lab, 

School of Biological Sciences, University of Reading to proceed with the 

identification and studies on mites. The contents from collection jars were sorted 

based on taxa; mites, insects, myriapods, nematodes and other invertebrates 

under the stereomicroscope. Mites were collected in separate vials for each 

sample, labeled and preserved. Samples were preserved in 70% ethanol until 

further processed for identification. 

 

The basic methods for cleaning, mounting and identification were identical with 

the previous experiment (Chapter 2). 

 

3.2.4 Diversity Indexes and mite composition 

Faunistic indexes for the major families of Mesostigmata were based on the 

indices of species richness, and diversity indices of Evenness, Simpson, and 

Shahnon Weiner (H’) were applied. 
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3.2.5 Data and statistical analysis 

Total individuals per plot for each species were counted and used for analyses. For 

the analysis of mite communities collected from soil, the whole dataset was used 

which is the total count of species, families and orders in three replicates. Then, 

further analysis compared the abundance of mites through the decomposition 

stages in different body positions. In order to compare the abundance of 

Mesostigmata between the hanging and the surface pigs, the non-parametric 

Kruskal-Wallis test was employed. Estimation of initials was conducted using the 

statistical software PAST (Hammer et al., 2001). 

 

3.2.6 Multivariate analysis 

Principal component analysis (PCA) was conducted on the abundance of 

Mesostigmata between carcass positions and decomposition stages using PAST 

(Hammer et. al., 2001) to reduce the number of variables. We therefore removed 

decomposition stages variable since it did not show a large different in the number 

of mesostigmata throughout the different stages. The relationship of 

mesostigmatid richness with different stages of decomposition was analysed using 

a Generalised Linear mixed-effects model; stages and plots are fixed effects and 

the number of Mesostigmata is a random effect. Model fitting and estimates were 

obtained with the linear mixed-effect package in R (R studio version 3.2.5, 2016) 

with a specified ‘Poisson’ error family. Wald’s Z statistic and probability ‘P’ values 

of best fit models were quoted. 
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3.3 RESULTS 

 

3.3.1 Decomposition stages between hanged and ground.  

The decomposition process involves the study of hanging and on-the-ground 

carcasses (Fig. 3.3). The changes in stages were defined by body mass loss that 

was calculatedat each sampling. At the end of the experiment (Day 367), on-the-

ground and hanging carcasses had already reached skeleton decay. The 

decomposition was faster in the hanging carcasses compared with the on-the-

ground carcasses. The duration of each stage of decay in hanging carcasses was 

short which made it end faster. The decay process of hanging carcasses reached 

the dry (remains) stage on day 45, while the on-the-ground carcasses were still in 

the marble stages of dry and advanced decay. The carcasses on the ground have 

fully dried on day 50.  
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Figure 3.3: The duration (days) each of decomposition stages for hanging and on-
the-ground carcasses. 

 

3.3.2 Analysis the diversity of mite community. 

A total of 1017 individual mites were sampled during the research, which were 

ascribed to 4 orders comprising 45 morphospecies; recovered from both 

treatments (experimental) and control. The majority of mites collected from the 

soil near the pig carcasses were from the order of Mesostigmata (N=461), closely 

followed by Oribatida (soil mites) (N=448). The proportions of mite diversities 

were higher in fresh stage, dominated by soil mites of Oribatida and being 

outnumbered by Mesostigmata in later stages (Fig. 3.4). Mesostigmata mites 

collected from on-the-ground carcasses were recorded in the highest number 

(N=281), which is three times the count mites recovered from the hanging 

carcasses,N=77.
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 Figure 3.4: The composition of mites from on-the-ground (G), hanging (H) and control (C) treatments throughout the decomposition 

stages. The mite counts were the total number of three replications.
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To analyse the diversity of mites in the control and experimental carcasses, several 

indices were used; Simpson’s Diversity Index, Shannon Weiner Index, evenness and 

species richness (Fig. 3.5).  

 

Meanwhile, the highest diversity family of Mesostigmata was recorded from on-the-

ground carcasses (N=20; N is family), and the hanging plot recorded the least number 

(N=12). The composition of species in all plots throughout the decomposition stages is 

shown in Table 3.2. Macrocheles glaber dominated the species abundance throughout all 

decomposition stages. The highest count was recorded from on-the-ground carcasses 

during the active stage, followed by Macrocheles muscaedomesticae collected during 

bloating decay. There were three species found only associated with the hanging 

carcasses; Parasitus copridis and Macrocheles punctoscutatus (in bloating stages) and 

Macrocheles scutatus that was collected during the active decay stage.  
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Figure 3.5: Temporal patterns of Mesostigmata (species occurrence) in the three treatments (control, on-the-ground and hanging) 

through the decomposition stages, using diversity indexes. From left; Species richness, Simpson Index, Evenness and Shannon-Weiner 
Index.   Carcass conditions are indicated by point shape. Square: on-the-ground; Circle: hanging; Triangle: control. 
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Table 3-2: Comparison of Mesostigmata sampled from the experimental carcasses (on-
the-ground and hanging) with the control plots (without carcass). 

       Key H= hanging G=on-the-ground C=control   red numbers >0 

Stages Fresh Bloating Active decay 
Advanced 

decay 
Skeleton 

Plot H G C H G C H G C H G C H G C 

Macrochelidae   
 

    
 

    
 

    
 

  
  

  

     Cornigamasus sp. 0 1 0 0 0 0 2 3 0 0 0 0 0 0 0 

     Macrocheles scutatus  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

     M.muscaedomesticae 0 0 1 4   33 1 1 1 0 0 0 0 0 0 0 

     M.glaber 0 1 0 5 9 0 8 25 7 1 3 0 0 0 0 

     M.tardus 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

     M.subbadius 0 0 0 0 8 2 3 1 3 0 0 0 0 0 0 

     M.merdarius 0 0 0 4 21 0 0 1 0 0 0 0 0 0 0 

     M.nataliae 0 2 0 1 0 0 0 5 0 2 0 0 0 0 0 

     M.insignitus 0 0 0 4 2 0 0 1 0 0 0 0 0 0 0 

     M.punctatissimus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

     M.punctoscutatus 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Parasitidae   
 

    
 

    
 

    
 

  
  

  

      Vulgarogamasus remberti 0 1 0 0 0 5 0 0 0 0 3 0 0 0 0 

      V.kraepelini 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

      Cornigamasus lunaris 0 0 0 0 0 0 2 7 0 0 1 0 0 0 0 

      Parholaspis kewensis 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

      Parasitus hyalinus 0 0 0 0 0 2 1 2 0 0 1 0 0 0 0 

      P.evertsi 0 0 3 0 0 3 0 0 0 0 0 0 0 0 1 

      P.copridis 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

      P.loricatus 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 

      P.fimetorum 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

      P.mustelarum 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

      P.coleoptratorum 0 0 0 0 0 0 6 1 1 1 0 0 0 0 0 

      P.consanguineus 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

      P.kempersi 1 11 0 0 1 0 0 0 10 0 0 0 0 0 2 

      Parasitellus  crinitus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

      Eugamasus cavernicola 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

      E. berlesei 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

    Trachygamasus ambulacralis 0 4 7 0 0 3 0 0 3 0 0 0 0 0 2 

      Parasitidae2 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 

Uropodidae   
 

    
 

    
 

    
 

  
  

  

      Uropodidae1 0 2 0 0 3 0 0 0 0 0 0 0 0 1 0 

      Uropodidae2 0 2 0 0 2 0 0 0 0 0 0 0 0 2 0 

      Uropodidae3 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

      Uropodidae4 2 0 3 0 0 0 0 0 0 0 0 0 0 3 0 

Phytoseiidae   
 

    
 

    
 

    
 

  
  

  

      Phytoseiidae1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Uropodellidae   
 

    
 

    
 

    
 

  
  

  

      Uropodellidae3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eviphididae   
 

    
 

    
 

    
 

  
  

  

      Eviphis ostrinus 0 5 1 0 0 1 1 0 4 0 0 0 0 0 2 
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Table 3.2: continued 

 

Stages Fresh Bloating Active decay 
Advanced 

decay 
Skeleton 

Plot H G C H G C H G C H G C H G C 

Heterozergonidae   
 

    
 

    
 

    
 

  
  

  

       Heterozergonidae1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Ascidae   
 

    
 

    
 

    
 

  
  

  

       Ascidae1 0 0 0 0 1 0 0 8 0 0 0 0 0 0 0 

Zerconidae   
 

    
 

    
 

    
 

  
  

  

      Zerconidae1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

      Zerconidae2 2 12 9 0 0 1 0 0 1 0 0 0 0 0 0 

      Zerconidae3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

      Zerconidae4 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 

     Parazercone sp. 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heatherellidae   
 

    
 

    
 

    
 

  
  

  

      Heatherellidae1 0 0 0 4 5 0 0 0 0 0 0 0 0 0 0 

Pachylaelapidae   
 

    
 

    
 

    
 

  
  

  

      Pachylaelapidae1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

3.3.4  Mites as forensic markers of carcass positions 

Using the list of mites collected from 3 replications for each plot, species that visited the 

carcasses in specific positions were selected for the analysis. In total, six species from 

Mesostigmata were identified as valuable markers associated with the carcasses’ 

positions of decompose. The abundance of the species were compiled in Table 3.3. 

Macrocheles scutatus, Macrocheles punctoscutatus, Parasitus copridis and Parasitus 

coleoptratorum were found almost uniquely from the hanging carcasses (lower 

abundances). Macrocheles merdarius and Parasitus kempersi were greatly abundant 

from on-the-ground carcasses. The high number of Macrocheles glaber collected from 

experimental pigs but none from the control plots show the species is a great marker for 

outdoor decomposition. In order to analyse it as a forensic marker, we eliminated the 
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factor of different decomposition stages since it did not show a large difference in the 

number of mites throughout the different stages. 

 

Table 3-3: The abundance of forensic marker mites in different treatments. In yellow; 
hanging body markers, blue; on-the-ground markers, red; generalist forensic markers. 

H: hanging; G: on-the-ground; C: control plot 

Species 
Treatments (body positions) 

H G C TOTAL 

Macrocheles merdarius 4 22 0 26 

Macrocheles punctoscutatus 1 0 0 1 

Parasitus copridis 2 0 0 2 

Parasitus coleoptratorum 7 1 1 9 

Macrocheles gl aber 14 38 0 52 

 

 

3.3.5 Principal Component Analysis 

PCA diagram (Fig. 3.5) shows the patterns of colonization of Mesostigmata in different 

plots treatment and decomposition stages. PCA on mite orders (decomposition stages 

and treatments as variables) have resulted in 4 components, whereas the first two 

components account for 82.552% and 13.216% of the percentages of variance. The first 

component (PC1) was strongly dominated on carcass on the ground.   Analysis of 

variance on PC1 and PC2 for Mesostigmata, indicated significant effects Parasitidae, 

Ascidae and Zerconidae with fresh and active decay stages. Neither the effect of hanging 

carcasses nor the control plots with the abundance of major families of Mesostigmata. 
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3.3.6 Generalised Linear Model (GLM)  

Analysis on the number of Mesostigmata throughout the decomposition stages in two 

different treatments (on-the-ground and hanging) has shown that the overall number of 

Mesostigmata collected were highest from on-the-ground carcasses, followed by one of 

the three plots of hanging carcass (H3) (Table 3.5), while there were almost no 

interactions or small numbers of Mesostigmata from the control and other plots (H1 

and H2) of hanging carcasses. There was also a strong interaction of Mesostigmata in all 

stages of decomposition, except when the decomposition reaches to bloating phase in 

which the significance of interaction was low. 

 

Table 3-4: Interaction of Mesostigmata in all decomposition stages and different carcass 
positions 

Deviance Residuals:          
    Min       1Q   Median       3Q      Max   

 
  

-4.2053  -1.5079  -0.7408   0.9674   4.3345   
 

  
  

     

  
Coefficients: 

    

  
                     Estimate Std. Error z value Pr(>|z|)       
(Intercept)            2.8307     0.1603  17.656  < 2e-16 ***   
StagesAdvanced decay  -2.2970     0.2473  -9.290  < 2e-16 ***   
StagesBloating        -0.2457     0.1128  -2.178 0.029399 *     
StagesFresh           -0.3999     0.1180  -3.389 0.000700 ***   
StagesSkeleton        -2.2970     0.2473  -9.290  < 2e-16 ***   
PlotC2                -0.4055     0.2357  -1.720 0.085388 .     
PlotC3                -0.5108     0.2434  -2.098 0.035867 *     
PlotG1                 0.4560     0.1905   2.393 0.016700 *     
PlotG2                 1.1133     0.1718   6.480 9.19e-11 ***   
PlotG3                 0.6707     0.1833   3.660 0.000253 ***   
PlotH1                -0.3102     0.2292  -1.353 0.175959       
PlotH2                -0.2513     0.2254  -1.115 0.264809       
PlotH3                -1.6094     0.3651  -4.408 1.05e-05 ***   
--- 

     

  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  

     

  
(Dispersion parameter for poisson family taken to be 1)   
  

     

  
    Null deviance: 664.35  on 44  degrees of freedom   
Residual deviance: 175.24  on 32  degrees of freedom   
  (3 observations deleted due to missingness) 

 
  

AIC: 331.11 
    

  
  

     

  
Number of Fisher Scoring iterations: 6       
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Figure 3.5: Patterns of colonization of pig carcasses by Mesostigmata in different body positions, according to the stages of 
decomposition, as produced by principle component analysis (PCA). Colours and dot reflect the position (blue = on-the-ground; black = 

hanging; red = control).
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3.4 DISCUSSION 

 

3.4.1 The patterns of decomposition stages between different body positions. 

Decomposition is a sequential process which is depends on many factors, including the 

biotic (i.e. bacteria and insects) and abiotic (i.e. weather conditions) of habitat (Gunn, 

2011) among which temperature and insect activity are the most influential (Meadows, 

Mann & Bass, 1990). These factors were minimised by replicating the experiment three 

times in the same habitat, soil properties, types of habitat (forest floor), the 

characteristic of forest appearance (tree cover) and environmental factors were in the 

same range. It has been demonstrated that the suspended position can affect the rate of 

biomass removal and of decomposition as well as the overall insect activity (Lynch-Aird, 

Moffatt & Simmons, 2015; Shalaby, Carvalho & Goff, 2000). The number of 

decomposition stages and their characteristics for the terrestrial carcasses revealed in 

this study were similar to the previous (Payne, 1965; Early & Goff, 1986; Archer, 2004). 

The different decay rates are clearly indicated in the hanging and on-the-ground 

carcasses. The hanging carcasses reached the earlier stages (fresh and bloating) faster 

but stay significantly longer in active and advanced decay stages due to the reason of 

lower insect activity in this position. This finding is similar to the study by Shalaby 

(Shalaby & Goff, 2000), that compared a single hanging and on the ground pig, found 

that the mass decreases more slowly in the hanging carcass with each stage of 

decomposition was prolonged. The continuous dripping and loss of maggots from the 

hanging carcass, resultedin reducedtissue consumption which delayed the process of 

decomposition (Saloña-Bordas & Perotti, 2014). The prolonged time for these stages 



89 

 

was mainly related to the inability of larvae that fell to the ground or the ground-

dwelling insects to regain access to the carcass that prevented the formation of a well-

established internal maggot mass (Shalaby, Carvalho & Goff, 2000). There is a different 

approach if a hanging body is partially in contact with the ground, crawling insects 

would likely return to the carcass if they fall into the drip zone (Shalaby & Goff, 2000). 

Only certain insects can reach a hanging body to continue the process of decay. Whilst 

the on-the-ground carcass was continuously colonised by successive waves of actively 

feeding insects throughout, which resulted in faster total body decomposition in 

comparison to the hanging carcass.  

 

3.4.2 Mite distributions 

The abundance of mites collected at the research site resulted from mites colonising and 

following the progress of the carcass decomposition. When the decomposition 

happened in the vertical or hanging position, gravitational effect related to body 

position causes the body fluids falling to soil beneath. However the body fluids were not 

directly absorbed into the soil however the soil beneath became a medium for the 

falling body fluids and a trap for insect larva from the decomposing body (Saloña-

Bordas & Perotti, 2014). The species of insects attracted to a hanging body differ from 

carcasses on the ground because the carcasses were not touching the ground and this 

could give different composition of mite community (Hunter & Rosario, 1988). Goff and 

Lord (1994) already found that hanging could alter the insect colonization pattern 

excluding soil-dwelling taxa, thus changing the drying pattern of body, indirectly altered 

the presence of mites associated with it. Previous studies on arthropod succession on 
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animal and human remains have demonstrated a strong relationship between different 

insect communities and specific decomposition patterns (Mégnin, 1894; Payne, 1965; 

Schoenly, Goff & Early, 1992). The order of succession can be affected by various factors 

including burning, burial, habitat variation, sun exposure and hanging (Payne, 1965; 

King & Beinhart, 1968; Anderson & Vanlaerhoven, 1996; Avila & Goff, 1998; Shalaby & 

Goff, 2000). This experiment demonstrated that the processes of insect succession (a 

host for the mite) and decomposition were linked. It showed the reduction of mite 

numbers in the soil beneath the decomposing hanging bodies. The composition of mites 

at the family and genus level was much greater for on-the-ground carcasses compared 

to other plots, and most were found during the earlier stages of decay until it reached 

the advanced decay stage. Certain species of mites were present only during specific 

stages of decay. Previous studies demonstrated that mummification and the suspended 

position of the hanging carcass were two main factors to the lower diversity and the 

amount of insects (Lynch-Aird, Moffat & Simmons, 2015; Bugelli et al., 2018). The scarce 

diversity and scattered occurrence of insects associated with hanged bodies minimise 

the chances of finding the correct forensic marker of time (Saloña-Bordas & Perotti, 

2014). There was not much difference in diversity of mites in all plots. Both the 

treatment and the control show the same pattern which was high values of Shannon-

Weiner Index when carcasses reached the bloating stage and then went down during 

the active decay stage. The highest value of Simpson index was counted from on-the-

ground carcass in the bloating stage. The species richness line graphs show decreasing 

number of species starting from fresh to the final stage of decomposition. 
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The members of the Mesostigmata were still the most frequently collected order from 

this study and highly dominated all the carcasses in all stages, except the fresh and 

remains stages. Macrochelidae is the most frequently collected family. Macrocheles 

muscaedomesticae, Macrocheles glaber and Macrocheles merdarius were the most 

abundant macrochelids collected. Macrochelid mites are commonly found phoretic on 

insects or in soil samples (Glida, Bertrand, & Peyrusse, 2003). The small number of 

Prostigmata and Astigmata did not provide any relevant information on the carcasses’ 

conditions. Phoretic mites of forensic importance are highly specific and can provide 

clues, on a particular host or scavenger visiting a hanging-corpse, helping or aiding in 

the PMI estimations, and they are found in the soil below (Perotti & Braig, 2009). 

Macrocheles muscaedomesticae is a wide spread phoretic mite of forensic interest that 

attaches to the Diptera group such as Muscidae, Fanniidae, Calliphoridae and 

Drosophilidae. During carcass decay, blowflies (Diptera; Calliphoridae) are the main 

agents of flesh removal. They also remove uneaten soft tissue through enzymatic and 

mechanical action (Putman, 1978; Archer, 2004). They usually visit carcasses during the 

early stages (Anderson et al., 2002; Perotti et al., 2010). Their presence can be 

associated with the collected of phoretic mites, Macrocheles glaber and Macrocheles 

muscaedomesticae. Both mites prey on fly eggs and young larvae (Wade & Rodriguez, 

1961; Glida, Bertrand & Peyrusse, 2003; Perotti & Braig, 2009). This explains the 

significance of the abundance of M. glaber and M. muscaedomesticae in the bloating and 

active decay from on-the-ground carcasses during which they are large numbers of fly 

eggs and larvae feeding on the soft tissue of the cadaver. With the characteristic of host-

specificity of the phoretic mite, which means specific mite species have been brought to 
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the dead body by different insect species (Perotti et. al., 2001), the infestation of 

blowflies could be predicted even the taxa were not sampled. In most environments, an 

exposed body will be colonised within hours under suitable weather conditions 

(Greenberg, 1991). The reliable appearance of blowflies and their phoront mites is 

important forensically in establishing a time of death. 

 

Although two species, Macrocheles scutatus and Macrocheles punctoscutatus were only 

found on hanging carcasses, they were collected in low frequencies. Macrocheles 

scutatus is a commonly found phoretic mite on the most abundant family of dung 

beetles, Scarabaeidae. (Niogret, Lumaret & Bertrand, 2006).However it also has been 

found living in the fur of Rattus exulans (Emberson, 1973), while Macrocheles 

punctoscutatus as described before, has been found from a mole nest, rodents and small 

mammals (Lundqvist, 1974; Plumari, 2010). They choose to live on the fur of their hosts 

. The small mammals that act as the host for these two species of mites, may have been 

attracted to the soil directly underneath the hanging carcasses rich in decay fluids 

during the bloating and active decay stages. These mites species were found on the drier 

parts of the carcass, which fits in with their preference for habitats.  The decomposition 

fluids from the hanging dead bodies seep and drop down into the soil below; resulting 

in some parts of the carcass to dry out.  This allowed these two species to inhabit the 

dry regions of the carcass where they were collected from.  The conditions were 

different with the on-the-ground carcasses. The decay fluids from cadavers that are in 

direct contact with soil accumulate directly around and beneath the carcass resulting in 

a very wet environment; such wet conditions would be unsuitable for the existence of 
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these species of mites due to their preference of dry habitats. Hence their presence only 

on the hanging carcasses.  

 

Parasitus copridis is another phoretic mite on the dung beetle (Copris hispanus). It 

spends a long period as deutonymphs on the host beetle (Masan & Halliday, 2009) and 

will moult into an adult when the phoriont beetle is present. It feeds on nematodes and 

fungi, which were produced in both positions of carcass. The hanging body allowed 

faeces and gut contents to reach the soil faster than the carcass on the ground, thus 

access to faeces by coprophilous beetles was fast and easy. 

 

3.5 CONCLUSION 

 

The abundance of mites on the carcass depends on many factors, and one is the carcass 

position. The present study details the predictable succession of mite taxa under 

specific conditions of decay in habitats in Neuchatel, Switzerland. Additionally, the 

intermittent presence of order Mesostigmata mites is highlighted in the abundance 

tables. In the experiment that was set up to understand this factor, carcasses on the 

ground attracted the most mites compared with the hanging position. The results 

demonstrated variations in mite abundance patterns in different plots within a year of 

research study. The stage of decomposition was the most significant factor for the 

observed variation. The mite samples were collected from the soil underneath the 

bodies (from the ground) and the soil below the hanging bodies. Mites were not 

collected directly from the bodies since this study aimed for mites in the soil. The 



94 

 

presence of certain mite species could provide a marker for the carcass positions and 

could be used forensically to estimate the place of death.  
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Abstract 

The biology of macrochelid mites might offer new venues for the interpretation of the 

environmental conditions surrounding human death and decomposition. Three human 

corpses, one from Sweden and two from Spain, have been analysed for the occurrence 

of Macrochelidae species. Macrocheles muscaedomesticae (Scopoli) females were 

associated with a corpse that was found in a popular beach area of southeast Spain. 

Their arrival coincides with the occurrence of one of their major carrier species, the filth 

fly Fannia scalaris, the activity of which peaks during mid-summer. Macrocheles glaber 

(Müller) specimens were collected from a corpse in a shallow grave in a forest in 

Sweden at the end of summer, concurrent with the arrival of beetles attracted by odours 

from the corpse. Macrocheles perglaber Filipponi and Pegazzano adults were sampled 

from a corpse found indoors in the rural surroundings of Granada city, south Spain. The 

phoretic behaviour of this species is similar to that of M. glaber, but it is more specific to 

Scarabaeidae and Geotrupidae dung beetles, most of which favour human faeces. 

Macrocheles muscaedomesticae is known from urban and rural areas and poultry farms, 

M. glaber from outdoors, particularly the countryside, whereas M. perglaber is known 

from outdoor, rural, and remote, potentially mountainous locations. Macrocheles 

muscaedomesticae and M. perglaber are reported for the first time from the Iberian 

Peninsula. This is the first record of M. perglaber from human remains.  
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4.1 INTRODUCTION 

 

Mites (Acari) are ubiquitous in the human environment and interact with animals and 

humans both during life and after death (Braig & Perotti, 2009; Goff, 1991; Leclercq & 

Verstraeten, 1988a; Perotti, 2009; Perotti & Braig, 2009a). They inhabit the surrounding 

environment of any dead body, for instance by living within garments, by nesting in 

clothing or fabrics, by walking into a corpse or in the form of phoretic mites by arriving 

on a dead body by taking advantage of flying insects and other scavengers for transport 

(Goff, 1991; Perotti & Braig, 2009b; Perotti et al., 2010). Despite having been 

overlooked due to their minute dimensions, mites represent the most diverse 

eukaryotic organisms of the scavenger community; for each insect species landing on a 

corpse or a carcass, it is expected that between 1 and 11 + mite species will be carried 

into the remains (Perotti & Braig, 2009b). 

 

That mites occur in human and animal decay is not new. Over 160 years ago, Jean-Pierre 

Mégnin studied the entomological and acarological fauna of corpses (especially in the 

morgue of Paris) and already established a sequential colonization of arthropods 

following stages of decomposition (Braig & Perotti, 2009; Leclercq, 1978; Mégnin, 

1894). Within 3 years of the publication of Megnin’s book, Johnston and Villeneueve 

confirmed the ‘eight waves’ for Canada (Johnston & Villeneuve, 1897). The eight waves 

entered the Manual of Forensic Entomology and became a fundamental part for the 

understanding of decomposition (Lefebvre & Gaudry, 2009; Smith, 1986; Wyss & 

Cherix, 2013). The recognition of these waves is very important because it 
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acknowledges that mites in wave 1 are among the first colonizers of a corpse. Mégnin’s 

wave six, for example, which is associated with a specific stage of decomposition, is 

exclusively composed of mite species. After Mégnin, it took nearly 100 years until the 

Belgian pathologist Marcel Leclercq started using mites again in forensic case work to 

estimate the time of death (Leclercq & Verstraeten, 1988a, b, 1993; Leclercq & Watrin, 

1973). Unfortunately, most of his work was published in French or Dutch and did not 

reach the English-speaking forensics. Forensic acarology can assist, complement and, at 

times, even replace forensic entomology (Perotti & Braig, 2009a; Perotti et al., 2009). 

Insects are less likely to colonise corpses during winter months, particularly at high 

latitudes and altitudes. A corpse that has been covered with lead arsenate as an 

insecticide and a repellent for police dogs, with the aim of compromising entomological 

evidence, will still carry forensically important mites (Leclercq & Vaillant, 1992). 

Corpses decomposing indoors or concealed in any other way often carry an abundance 

of exclusive mites (Frost et al., 2010; Russell et al., 2004; Szelecz et al., 2018). 

 

By adding mites to case work evidence, corrections on the insect activity on remains can 

be made. These include information on insect arrival times, oviposition times, insect life 

span and departure times even the end of insect waves can be predicted (Mégnin, 1894; 

Perotti, 2009; Perotti et al., 2009, 2010). Used in a similar manner to insects, mites 

alone can provide timelines too. In this respect, they are of great help in time 

estimations of later stages of decomposition, when most flesh has disappeared (Mégnin. 

1894; Perotti, 2009; Russell et al., 2004; Saloña-Bordas & Perotti, 2014). In addition, 

mites can become reliable indicators of geographical location or origin (Hani et al., 
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2018). At genus or species level, mites have micro-habitat specific requirements, 

offering themselves as potentially one of the most informative pieces of biological trace 

evidence gathered from a crime scene (Perotti, 2009; Pimsler et al., 2016; Prichard et al., 

1986; Russell et al., 2004; Szelecz et al., 2018; Webb et al., 1983). 

 

The family Macrochelidae includes over 470 species in 20 genera, and Macrocheles, with 

around 325 described species, is the most diverse genus of the family (Beaulieu et al., 

2011; Emberson, 2010; Krantz, 1962, 1998, 2018; Krantz & Moser, 2012; Lindquist et 

al,. 2009; Makarova, 2012). New species of macrochelid mites and new phoretic 

associations are constantly described (Acs et al., 2017; Alatawi et al., 2018; Azevedo et 

al., 2017; Haloti et al., 2005; Hartini & Dwibadra, 2017; Knee 2018; Kontschan, 2018; 

Ozbek, 2017). Most Macrocheles species are predators feeding on small invertebrates, 

with the exception of only a handful of non-phoretic, detritivorous species (Manning & 

Halliday, 1994). As predators, they influence population growth of other micro-

invertebrates (Geden et al., 1988; Perotti, 1999, 2001) and, thereby, may have effects on 

the advancement and composition of ephemeral micro-ecosystems. 

 

Forensically important Macrocheles species arrive on carcasses through phoresy on flies 

and beetles. Those associated with corpses and carcasses can inform about 

circumstances of death, environment and habitat, making a link to a site or a location. In 

a recent crime case study, the inclusion of Macrocheles matrius as trace evidence a 

species highly prevalent in poultry manure allowed the reconstruction of the crime 

scene (Szelecz et al., 2018). Carriers for macrochelids linked to decomposing mammals 
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are necrophagous and necrophilous insects and micro-mammal hosts (Andreev, 1988; 

Halliday, 2000; Korn, 1983; Krantz & Whitaker, 1988; Leclercq & Watrin, 1973; Mašán, 

1999, 2003). 

  

One of the best known macrochelid species, Macrocheles muscaedomesticae, is highly 

prevalent on muscoid flies of the families Muscidae and Fanniidae (Axtell, 1964; 

Filipponi, 1960; Perotti & Brasesco, 1996, 1997; Rodriguez & Wade, 1961; Sacchi 

Carmona Rodrigueiro & Pires do Prado, 2004). These flies colonise and reproduce on a 

particular variety of organic material (e.g., poultry manure) as well as on sources of food 

decay abundant in urban areas. They are considered highly synanthropic insects 

(Legner & Bowen, 1973; Perotti, 1998). Macrocheles muscaedomesticae is much less 

common on other arthropods and mammals, to a point where it has rarely been 

reported on Calliphoridae, the dominating fly family of animal decomposition. It can 

occur on adult blowflies under special circumstances like in indoor decomposition, due 

to loss of phoretic specificity (Perotti & Braig, 2009b). Macrocheles glaber and 

Macrocheles perglaber are well known associates of dung beetles (Scarabaeidae, 

Geotrupidae) (Ciccolani et al., 1981; Filipponi & Pegazzano, 1962; Halliday & Holm, 

1985; Halliday, 2000; Mašán, 2003; Niogret et al., 2006; Shereef et al,. 1990). In Europe, 

macrochelids on carrion or burying beetles (Silphinae and Nicrophorinae) are 

outnumbered by species of Parasitidae (Hyatt, 1980, 1990; Mašán, 1999, 2003). 

Therefore, any assumptions on phoretic specificity based on unusual or rare reports 

should be taken cautiously as they might represent a case of loss of phoretic specificity 

and can compromise the interpretation of the acarological evidence from a crime scene.  
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Most phoretic macrochelids have a haplodiploid sex determination system termed 

arrhenotoky, where males are parthenogenetically produced from unfertilized eggs 

(Manning and Halliday, 1994; Norton et al., 1993; Oliver, 1977). A few species can be 

thelytokous and phoretic, like Macrocheles similis, a species similar to M. 

muscaedomesticae (Manning & Halliday, 1994), and one species, Macrocheles 

mycotrupetes, phoretic on dung beetles, behaves like a diplodiploid (Krantz & Royce, 

1994). Experiments on arrhenotokous and phoretic M. glaber indicated that virgin 

females can easily be fertilised by their sons, allowing the start of a population 

(Manning & Halliday, 1994). Fertilisation by sons—oedipal reproduction—has 

experimentally been studied for M. muscaedomesticae (Farahi et al., 2018). This is 

particularly important if the female is a virgin founder. Phoretic Macrocheles spp. can 

travel either as virgin or ‘mated’ females; still, mating does not guarantee fertilisation. 

The detailed experiments of Costa (1967) on the reproduction of the Macrocheles 

pisentii species complex proposed that wild phoretic females will produce a majority of 

males in their first progeny, independent of being mated, ruling out a 100% fertilisation. 

In a new population, as time goes and the number of mites increases, females dominate, 

to a point where a few males are left in an older dung pad (Kinn & Witcosky, 1977; 

Richards & Richards, 1977). This also explains many phoretic females leaving old dung 

pads unmated or unfertilised. 

 

Recently, confusion has arisen on the matter of the virgin/mated status of phoretic 

females, with some reports overlooking the fact that founding females will be either 

virgin or mated—and if mated, they will not necessarily autofertilise their first oocytes 
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(Glida et al., 2003; Kinn & Witcosky, 1977; Niogret et al., 2010). Costa (1966) found that 

slightly old virgin females have difficulties mating, due to the hardening of the genital 

slits in coxae III, impeding males from the introduction of spermatophora; these females 

will stay virgin and produce only males, a finding later confirmed by Yasui (1995). 

Fertilised and unmated M. muscaedomesticae will attach to either gender of house flies 

to move to a new habitat (Jalil & Rodriguez, 1970), and the majority of fertilised females 

will have been exposed in their teneral stage to multiple matings, as males fiercely 

guard moulting females (Yasui, 1995). On the other hand, species such as M. glaber, 

living off the limited habitat offered by an ephemeral (isolated) dung pad, will have 

difficulties finding mates. Dung-breeding species might resolve sperm competition, 

sperm precedence and female control on oocyte fertilisation in different ways (Yasui, 

1995), and might mate just once before departure, if sufficient males occur, otherwise 

will travel unmated. More research, especially on reproduction of Macrocheles species 

associated with corpses and carcasses, is critical to clarify this phenomenon. 

Interpreting gender bias of macrochelids would support estimations of time. If the M. 

glaber specimens found in/on a corpse exhibit a male bias, this is suggestive of a recent 

arrival, of both the carrying beetle and its mites. Under optimal environmental 

conditions, Macrocheles embryos will reach adulthood in just a few (3–4) days 

(Ciccolani et al., 1977; Singh et al., 1967; Wade & Rodriguez, 1961). The sex ratio of the 

first progeny from a majority of virgin phoretic females (F1 generation) will be mainly 

male-biased, having more males than females, or an even sex ratio within the adult 

Macrocheles population. A few days forward and the sex ratio will transition towards a 

higher number of females, leading much later towards almost female-only offspring, 
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ready to be transported to a new corpse or carcass, as it happens in nature within dung 

pads too (Ciccolani, 1992). 

 

The biology of three Macrochelidae mite species collected from three corpses 

decomposing under different environmental conditions is discussed in the light of the 

potential value these species might offer as indicators of any special circumstances 

surrounding the death of these individuals. 

 

4.2 MATERIALS AND METHODS  

 

Macrochelidae mites from three case studies occurring in two European countries, 

Spain and Sweden were received at Reading University, studied and discussed  

 

Case 1 

On April 23rd, 2010 (early spring), the corpse of a homeless man was found outdoors, in 

a lot close to the beach, called ‘Solar Vistahermosa’, Alicante, southeast Spain. The body 

was found under an umbrella (used for shadow), lying on the ground and face up. It was 

fully dressed and covered with a blanket up to the neck, exposing only the head. The 

corpse was reported as in advanced decay, and slightly mummified (Fig. 4.1). According 

to the pathologist, there were no signs of violence and death was stated as natural. The 

deceased was last seen alive 30 days before the finding. A weather station of the Spanish 

Meteorological Agency (AEMET) closest to the scene reported an average temperature 

of 15.3 °C, for the 30 days prior to the discovery of the body. 
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Entomological evidence was collected from the corpse during autopsy at the Institute of 

Legal Medicine of Alicante (IMLA), Spain, and consisted of empty puparia and blowfly 

adults (Calliphoridae: Calliphora vicina, Chysomya albiceps, Lucilia sericata); larvae, 

pupae and empty puparia of Hydrotaea capensis; larvae, pupae, empty puparia and 

adults of Synthesiomyia nudiseta (both Muscidae); larvae of the filth fly Fannia scalaris 

(Fanniidae); and pupae of the scuttle flies Conicera tibialis and Puliciphora rufipes 

(Phoridae) (Velázquez et al., 2010). The postmortem interval (PMI) was estimated using 

more than one species of Diptera and gave a maximum of 31 and a minimum of 27 days, 

which coincided with the time when the person was last seen alive (Velásquez, 2011). 

 

Mite samples were prepared for identification at the Acarology Lab (University of 

Reading) following standards for clearing and mounting of Acari, using Hoyer medium 

for permanent mounting (Faraji & Bakker, 2008). Mites were identified using 

appropriate taxonomical literature (Emberson, 1972; Evans & Browning, 1956; Evans & 

Hyatt, 1963; Hyatt & Emberson, 1988). Voucher specimens are deposited in the 

Forensic Acarology Reference Collection, University of Reading. 
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Figure 4.1: CASE 1. The corpse of homeless man found in a lot close to the beach, 
Alicante (Spain), in advanced decay and slightly mummified. Photo taken in the autopsy 

room (YW).  

 

Case 2 

On September 18th, 2009 (end of summer), the dead body of a woman was found by her 

boyfriend in a remote forested area in central Sweden. She was reported missing on 

August 2nd, almost 7 weeks earlier. The area where the remains were found is a boreal 

forest typical for Sweden with spruce (Picea abies), aspen (Populus tremula) and birch 

(Betula pendula). The corpse was lying in a very shallow grave, purposely covered with 

cut aspen branches and birch saplings, grass and moss, revealing only a minor portion 

of the left hip and right foot. The cover may have delayed the colonization by 

sarcosaprophagous Diptera for a while but was loose enough to allow colonization by 

the flies. 
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The forensic entomologist (AL) visited the crime scene the day after the body’s 

discovery and sampled insects from the body and nearby surroundings. Another 

forensic entomology investigation of the scene was held on September 24th when the 

soil in a radius of approximately 2 m from the center of the grave was dug up to a depth 

of 15 cm, and collected in search for Calliphoridae pupae. No hatched puparia were 

found. Adults of Calliphora vomitoria started to hatch on September 26th from pupae 

collected the first time. A time of death was estimated for the first half of August. Due to 

heavy decomposition of the body, the cause of death could not be established. 

 

Among the entomological specimens collected from the remains, there were many 

mites. All mite specimens were collected using a brush and transferred to 70% alcohol. 

Mites were then prepared for identification following the same protocol as for Case 1, 

and the voucher specimens were deposited in the Reading collection. The identification 

of the Macrocheles species of this case used a variety of keys and descriptions (Halliday, 

2000; Hyatt & Emberson, 1988; Mašán, 2003). Mites of the family Parasitidae were also 

identified (Hyatt, 1980). 

 

Case 3 

In September 2011, the dead body of a mature woman, in her mid-fifties, was found in 

her house in the mountainous country side of Granada, south Spain, in El Sacromonte at 

an elevation of 820–840 m a.s.l. (González Medina et al., 2012). The discovery was 

prompted by the odours coming from the house, detected by neighbours. The 

pathologist determined the cause of death as an overdose of acetaminophen 
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(paracetamol). At the time of the finding, the body was in active decay (Fig. 4.2) (indoor 

decomposition; Galloway et al., 1989; Goff, 2009). The deceased suffered from Diogenes 

syndrome, characterised by self-neglect, isolation, hoarding and accumulation of 

garbage (González Medina et al., 2012). Insect data were recorded and identified by the 

forensic entomologist (AGM) and consisted of empty puparia of Calliphora vicina 

(Calliphoridae); adults, larvae and pupae of Sarcophaga africa, Sarcophaga sp. 

(Sarcophagidae); adults of Musca domestica and Hydrotaea aenescens (Muscidae); adults 

of Megaselia sp. (Phoridae); adults of the clown beetles Saprinus subnitescens and 

Margarinotus brunneus (Histeridae); and adults and larvae of the skin beetle Dermestes 

frischii (Dermestidae). According to the original analysis of the case, a PMI of 13 days 

was estimated based on insect succession and activity of Silphidae and Poecilochirus 

austroasiaticus (Acari: Parasitidae) (González Medina et al., 2012). 

 

A list of mite species associated with the corpse was previously reported, together with 

an interpretation of the role of the Parasitidae, P. austroasiaticus (González Medina et 

al., 2012). For this study, an unpublished species of Macrochelidae was later rescued 

from entomological samples of the case, and is discussed here. Mites were kept in 70% 

alcohol and prepared for identification following the same protocol as for Case 1. 

Voucher specimens were deposited in the Reading collection. The identification of the 

Macrocheles species of Case 3 followed the description and key of Mašán (2003). 
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Figure 4.2: CASE 3. The body of a woman found in her house in Granada (Spain), in 

active stage of decomposition. Photo taken in the autopsy room (AGM). 

 

 

4.3 RESULTS AND DISCUSSION  

 

Three species of Macrocheles were identified, each corresponding to each case study, 

and the biology of these species was analysed in relation to the corpse and its 

environmental conditions. Table 4.1 compiles and expands literature records on habitat 

and geographic distribution of each species, the table presents a list of phoretic carriers 

that include common and specific-less-common-species of insects, birds and mammals. 

 

Case 1: A dead man found close to a popular beach area, southeast Spain 

Two mites were recovered and both were females of M. muscaedomesticae (Fig. 4.3). 

Macrocheles muscaedomesticae is highly synanthropic, its habitat is domestic, urban and 

semirural, being common in poultry farms (Farish & Axtell, 1971; Ho, 1990; Perotti, 

1996, 1998; Perotti & Brasesco, 1996; Rodriguez & Wade, 1961; Wade & Rodriguez, 
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1961; Williams & Rogers, 1976). It disperses as phoretic on synanthropic animals, 

preferentially flies (Axtell, 1964; Nuorteva, 1963) of Muscidae and Fanniidae (filth flies), 

and much less frequently on other insects or small mammals that live with or in 

association with humans (Filipponi, 1960; Jalil & Rodriguez, 1970). Inaccurate 

identification of mite species riding on insects can lead to confusing reports on phoretic 

carriers. For example, the latest publication on phoretic mites associated with 

necrophagous flies in Brazil, reports M. muscaedomesticae on the abdomen of 

Chrysomya albiceps (Sato et al., 2018). From the photos included in the publication, 

disparities emerge from the morphology of the sternal shield of the mites that question 

the identification of the Macrocheles specimens. In fact, none of the mite specimens 

were identified using keys to species level; instead, the consulted literatures were two 

major keys of Mesostigmata families (methodology section in Sato et al., 2018). 

 

Specific food items of M. muscaedomesticae adults are Musca and Fannia eggs, plus 

acarid mites. Larvae of M. muscaedomesticae feed on conspecifics (cannibalism), and 

proto- and deutonymphs feed on nematodes (Axtell, 1964; Farish & Axtell, 1971; Perotti 

& Brasesco, 1996, 1997; Rodrigueiro & do Prado, 2004; Rodriguez & Wade, 1961; Wade 

& Rodriguez, 1961). Coincidentally, in this case study fly larvae belonging to Muscidae 

and Fanniidae were collected. Fannia scalaris was found at larval stages. This is a highly 

synanthropic European species associated with food, decay, myiasis, faeces, and with 

sheltered corpses (Easton & Smith, 1970; Leclercq & Verstraeten, 1988b; Mégnin, 1894; 

Mihályi, 1965; Perotti, 1998; Velázquez et al., 2010). 
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The corpse was sheltered under a beach umbrella and covered by a blanket. Flies and 

mites independently link the scene of decomposition to a domestic/urban environment. 

In Europe, there are only two previous reports of M. muscaedomesticae on human 

corpses: (1) mites recovered from the brain, after a failed operation in a military 

hospital during mid-August in France (of the son of an acarologist), and (2) one female 

mite, recovered from a human corpse (Easton & Smith, 1970; Hermann, 1804; 

Oudemans, 1929). The latter was collected together with the Parasitidae species 

Poecilochius necrophori, from a corpse of a poison suicide. The body was found lying on 

a well-drained chalk hillside, in a small wood on the North Downs in southeast England. 

This occurred at the beginning of the autumn (October), when Fanniidae and Muscidae 

flies slow down their activity. Interestingly, according to Easton and Smith (1970), 

maggots of Fannia sp. were collected, although the mite occurred on adult Musca 

domestica (both flies are specific carriers). The body was found in a similar condition to 

the corpse in the present case. Exposed parts of the body were in advance stage of 

decomposition, while covered parts (inside a sleeping bag) still had soft tissue and were 

heavily colonised by the arthropods. 
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Table 4-1: Literature review and records of the Macrochelidae species with respect to habitat phoretic carriers and geographic 
distributionLiterature review and records of the three Macrocheles species, with respect to habitat, phoretic carriers and geographic 

distribution. 

Macrocheles muscaedomesticae 
Habitat 
 Animal carcasses 
  Fresh  cat xero + mesophytic (Early and Goff 1986) (Goff 1989) 
    kangaroo grassy woodland (Barton et al. 2014) 
  Bloating  cat xero + mesophytic (Early and Goff 1986) (Goff 1989) 
  Advanced decay  kangaroo grassy woodland (Barton et al. 2014) 
  Skeletal stage  cat xero + mesophytic (Early and Goff 1986) (Goff 1989) 
    impala woods  (Braack 1986; Braack 1987) 
    bird ?   (Emberson 1980) 
 Human corpses 
  Fresh  hospital    (Hermann 1804) (Oudemans 1929a) 
  Advanced decay  small wood    (Easton and Smith 1970) 
    near beach    this report 
 Dung/Faeces: poultry, cattle (outermost layer), pig, wombats (USA: poultry: summer; cattle: winter and spring)  

Bird nests: Ciconia ciconia, Fulica atra, Larus ridibundus, Merops apiaster, Perdix perdix, Remiz pendulinus, Tachycineta bicolor, Turdus merula, Zapornia tabuensis 
plumbea 

 Birds: Dryobates pubescens, Sayornis sp.  
Mammals: Apodemus agrarius, Cricetulus barabensis, Eothenomys melanogaster, Homo sapiens, Mus musculus, Myodes glareolus, Notomys alexis, Peromyscus 
leucopus, Rattus pyctoris, Sigmodon hispidus, Sciurus carolinensis, Spermophilus citellus 

 Reptiles: Crocodylus johnstoni (inside mouth), Terrapene carolina 
 Insect nests: Reticulitermes flavipes, bumble bees 
 Decomposing plants: litter 
 Other: facultative parasitism on adult drosophilid and muscoid Diptera 
 Phoretic carriers and parasite hosts 
  Diptera 
       Fanniidae: Fannia armata, F. canicularis 
                              Muscidae: Australophyra rostrata, Hydrotaea dentipes, Musca domestica, M. sorbens, M. vetustissima, Muscina stabulans, Ophyra chalcogaster, O. ignava, 
                             Stomoxys calitrans (common) 
       Calliphoridae: Calliphora vicina, C. vomitoria, Chrysomya megacephala, Cochliomyia hominivorax, Lucilia cuprina  
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         Sphaeroceridae: Copromyza equina 
         Syrphidae: Eristalis tenax, Syritta pipiens 
  Coleoptera:  
          Geotrupidae: Geotrupes stercorarius  
                                 Scarabaeidae: Bubas bubalus, Eupleurus (Aphodius) subterraneus, Catharsius dayacus, Microcopris hidakai, Onthophagus schwaneri, O. waterstradti, 
           Osmoder 
 
Macrocheles glaber sensu lato 
Habitat 
Animal carcasses 
  Advanced decay  fox garden  (Smith 1975) 
    kangaroo grassy woodland (Barton et al. 2014) 
  Human corpses 
  Active decay  forest    this report 
  Active decay   ?    (Leclercq and Verstraeten 1988a) 
  Dung/Faeces: chicken, boar, cattle, horse, sheep 

Bird nests: Accipiter gentilis, Acrocephalus arundinaceus, Anser anser, Ciconia ciconia, Cygnus olor, Larus ridibundus, Merops apiaster, Nycticorax nycticorax, 
Parus major, P. montanus, Passer montanus, Remiz pendulinus, Vanellus vanellus 

  Mammal nest: voles 
  Decomposing plants: compost, silage, hay, straw, moss, lichen, bark, rotten wood, seaweed 
  Other: garbage, discarded food 
 Phoretic carriers 
  Diptera 
       Calliphoridae  
       Muscidae: Australophyra rostrata, Hydrotaea dentipes, Musca domestica, Stomoxys calitrans  
  Coleoptera:  
       Aphodiidae: Aphodius aestivalis, A. constans, A. erraticus, A. haemorrhoidalis, A. luridus, A. merdarius
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 Carabidae: Carabus violaceus 
      Geotrupidae:Geotrupes mutator, G. spiniger, G. (Anoplotrupes) stercorosus,  G. stercorarius, Sericotrupes niger, Trypocopris pyrenaeus, T. vernalis  
      Histeridae: Pachylister lutarius 
      Scarabaeidae: Aphodius fimetarius, Bubas bison, B. bubalus, Caccobius schreberi, Catharsius molossus, Copris lunaris, Euoniticellus fulvus, Euonthophagus 
      crocatus, Onthophagus coenobita, O. lemur, O. ovatus, O. similis, O. taurus, O. vacca, O. verticicornis, Scarabaeus laticollis, S. sacer 
      Silphidae: Nicrophorus humator, N. marginatus, N. obscurus  
      Staphylinidae 

Distribution 
 Europe: Belgium, England, France, Hungary, Italy, Latvia, Poland, Slovakia, Sweden, Turkey, former USSR (from the Kola peninsula, Karelia and Yakutin in the north to 

the Caucasus and Central Asia in the south)  Americas: USA; South America (reported here: considered absent) Asia: China, Indonesia, Iran, Iraq, former USSR 
(Central Asia), Taiwan. Africa: North Africa, Morocco; Réunion, Saudi Arabia. Oceania: Australia, New Zealand 

 
Macrocheles perglaber 
Habitat 
 Human corpse 
  Bloating to Advanced decay  indoors    new record, this report 
 Dung/Faeces: chicken, cattle, horse, sheep 
 Decomposing plants: compost, straw, weeds 
                Phoretic carriers 
       Diptera 

Muscidae: Musca domestica, Stomoxys calitrans  
      Coleoptera:  

Aphodiidae: Aphodius constans, A. haemorrhoidalis, A. luridus, A. merdarius  
Geotrupidae: Geotrupes mutator, G. spiniger, G. stercorarius, Sericotrupes niger 
Scarabaeidae: Bubas bison, B. bubalus, Copris lunaris, Euoniticellus fulvus, Onthophagus taurus, O. vacca, Scarabaeus cicatricosus, S. laticollis, S. sacer, Sisyphus 

                         schaefferi 
 
Distribution 
 Europe: France, Italy, Spain (reported here: new record), Slovakia, Turkey, former USSR (Khabarovsk Territory)  
 America: USA; South America (reported here: considered absent) 
 Africa: Morocco; South Africa (reported here: considered absent) 
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Figure 4.3: Macrocheles muscaedomesticae female, ventral view, identified from the 
corpse of Case 1 (Spain). Legs are numbered from front to rear; G gnatosoma, SS sternal 

shield, GS genital shield, VAS ventro-anal shield. Scale bars: 100μm 

 

For this case study, M. muscaedomesticae adult males were absent and females were 

rare, possibly due to a late arrival of their carrier flies (likely F. scalaris). Indeed, 

Macrocheles first-generation offspring, which is almost exclusively male (Geden et al., 

1990; Jalil & Rodriguez, 1970) did not complete development. The presence of only two 

females is in concordance with a minimum number of F. scalaris reaching the corpse, as 

a first generation of flies of the year, early spring, correlate with the moment the corpse 

was found. Fannia’s activity peaks in the summer (Hewitt, 1912). Early colonisers, such 

as Calliphoridae and Muscidae specimens were used for PMI estimations, giving a time 

since death of approximately 1 month (Velázquez et al., 2010). 
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Despite being a cosmopolitan species, with most records from European countries, this 

is the first time M. muscaedomesticae is documented within the Iberian Peninsula 

possibly due to the lack of work on this taxon in Spain. 

  

Case 2: A dead woman found in a forest in Sweden 

A female (Fig. 4.4) and a deutonymph of M. glaber sensu lato were collected from the 

corpse, together with other Mesostigmata mites, mostly Parasitidae deutonymphs 

known to colonize corpses or carcasses (González Medina et al., 2012; Perotti & Braig, 

2009a, b; Perotti et al., 2009; Saloña-Bordas & Perotti, 2014). Macrocheles glaber is the 

type species of the glaber group (Filipponi & Pegazzano, 1962), which comprises 

coprophilous mites associated with large herbivore’s manure, and is less frequently 

found on carrion (Ciccolani, 1992; Fain & Miessen, 1997; Filipponi & Pegazzano, 1962; 

Mašán, 2003; Perotti & Braig, 2009b). It is a cosmopolitan species originally found and 

studied from the Mediterranean area (Europe and North Africa) (Halliday & Holm, 

1985; Mašán, 2003); however, it has been reported in Sweden from 1998 (Lundqvist 

1998; Lundqvist et al. 2000). In a recent survey in Hungary, 224 mites were found in 

rural forest patches, but only 26 in urban areas, in parks (Mizser et al., 2016). 

Macrocheles glaber is highly prevalent on dung beetles (e.g., Scarabaeidae), occasional 

on necrophagous and/or necrophilous beetles (e.g., Silphidae) and rare on Diptera (Fain 

& Miessen, 1997; Halliday, 2000; Hartini & Takaku, 2006; Hyatt & Emberson, 1988; 

Mašán 2003; Mašán & Krištofík, 1992; Perotti & Braig, 2009b; Perotti et al., 2010). Its 

phoresy on non-dung-related arthropods (e.g., carrion beetles or filth flies) is assumed 

as an opportunistic strategy used when its main hosts (dung beetles) are absent (Perotti 
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& Braig, 2009b). The corpse was partially covered with local vegetation, that restricted 

access of beetles and flies. This is not the first report of the species from human 

remains. Leclercq and Verstraeten (1988a) found M. glaber in a body that decomposed 

during the end of summer and begin of autumn, 3 months after the time of death, with 

the corpse found in October. Unfortunately, no details of the environment or potential 

fly or beetle hosts have been provided for this case in Belgium. No common carriers 

used by M. glaber in Sweden are known either (Lundqvist, 1998). 

 

Macrocheles glaber’s life cycle is slightly longer than that of M. muscaedomesticae, 

completing development after an average of 5 days at 30 °C (females) (Shereef et al., 

1990). Like many other macrochelids, the species is haplodiploid, and the F1 of female 

colonisers is mainly male. With sufficient food resources, the female lays eggs that she 

held under her gnathosoma (oviparity), with poor resources she will lay eggs that hatch 

immediately (ovoviviparity), and with very poor resources, she will eat her eggs 

(cannibalism) (Marquardt et al., 2015). It is impossible to sex the deutonymph found 

but, considering that the accompanying fauna of mites was dominated by Parasitidae 

(Mesostigmata) and Histiostomatidae (Astigmata), a time of arrival can be drawn 

(Perotti & Braig, 2009b; Perotti et al., 2010; Saloña-Bordas & Perotti. 2014). The 

deutonymph might represent an immature male, offspring of the first females arriving. 

Seven deutonymphs of Poecilochirus carabi, two of P. mrciaki (Parasitidae) and three 

deutonymphs (hypopi) of Spinanoetus pelznerae (Histiostomatidae) were recovered 

from Necrodes litoralis sub-elytral cavity, justifying the very recent arrival of the carrion  

beetle (Silphidae), as much as 2 days before the finding of the body (González Medina et 



117 

 

al., 2012). Otherwise, the Parasitidae individuals would have moulted into adulthood. In 

this sense, the Macrocheles specimens have spent long enough on the corpse to produce 

offspring. If M. glaber females arrived earlier, they very likely did on dung beetles. 

Niogret et al. (2006) carried out a numerical survey of phoront-mite/host species 

proportions in France and M. glaber were highly prevalent on Geotrupidae and 

Scarabaeidae; proposing that Aphodius and Onthophagus are the major hosts for the 

glaber group species. Linking this to the geographical location of the case, the most 

northerly members of the Scarabaeinae are Onthophagus beetles with a record of nine 

species reported for Sweden alone (Ljungberg, 2002). The preference of Onthophagus 

for faeces of omnivorous animals, especially human stool, has long been known; some 

species are also attracted to carrion (Fincher et al., 1970; Howard, 1900; Whipple & 

Hoback, 2012; Woodruff, 1967). Post-mortem discharge of faeces can occur during fresh 

decomposition due to relaxing of muscles (algor mortis), as well as at the end of the 

bloating stage, when fluids and excrement exit the body (Shkrum & Ramsay, 2007). 

 

In shallow graves, decomposition is delayed and there is no initial scavenger activity 

(Gaudry, 2010; Rodriguez & Bass, 1985). In the case study, insect and mite colonization 

took 6–7 weeks, despite carriers being highly active over the summer. Macrocheles 

glaber has even been recorded in high numbers in Australia at week 6 of decomposition 

during the summer months (Barton et al., 2014). The Australian study, which recorded 

a total of 1,003 M. glaber from 18 grey Kangaroo carcasses, also recorded very high 

numbers of beetles in the same week (Barton et al., 2014). Such abundance of M. glaber 

is expected when the mites have arrived earlier, because in this controlled experiment 
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there were no barriers that impeded colonization, the kangaroos were not covered. A 

small number of mites is expected if there is concealment of the body (as, e.g., in a 

shallow grave). Analysis of mite numbers should be exercised with caution in a crime 

scene. 

 

Calliphoridae flies were used in the Swedish case, giving a PMI of 6 weeks, which is 

supported by the mite evidence. 

 

 

Figure 4.4: Macrocheles glaber female, ventral view, identified from corpse of Case 2. 
Legs are numbered from front to rear; G gnatosoma, SS sternal shield, GS genital shield, 

VAS ventro-anal shield. Scale bars: 100μm 

 

 

 

 

 



119 

 

Case 3: A dead woman found inside a house in Granada, south Spain 

Three Macrochelidae specimens were recovered from the corpse together with other 

Acari reported elsewhere (González Medina et al., 2012). They were one female (Fig. 

4.5) and two males of M. perglaber. The identification to species level was based on the 

males, as the morphological differences to females of the sister species M. glaber were 

not conclusive. This has also been the situation for populations from Slovakia (Mašán, 

2003) and it is expected that many misidentifications of M. glaber and M. perglaber 

mites exist in the current literature (Halliday & Holm, 1985). 

 

 

Figure 4.5:Macrocheles perglaber female, ventral view, identified from corpse of Case 3 
(Spain). Legs are numberedfrom front to rear; G gnatosoma, SS sternal shield, GS genital 

shield, VAS ventro-anal shield. Scale bars: 100μm. 

 

Macrocheles perglaber is a member of the glaber group, which comprise coprophilous 

species associated with manure of large herbivores that occasionally are also 

necrophilous (Ciccolani, 1992; Mašán, 2003; Perotti & Braig, 2009b). Macrocheles 
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perglaber presents traits different from M. glaber. Macrocheles perglaber has not been 

found simultaneously with M. glaber on the same carriers. 

 

The original population described by Filipponi and Pegazzano (1962) was isolated from 

horse dung in central Italy. Macrocheles perglaber’s phoretic behaviour is similar to that 

of M. glaber, specialising in Scarabaeidae and Geotrupidae (Filipponi & Pegazzano, 

1962; Glida et al., 2003; Niogret et al., 2010). Most of its dung beetle hosts favour human 

faeces (Fincher et al., 1970; Howard, 1900; Whipple & Hoback, 2012; Woodruff, 1967). 

Although M. perglaber can be found at any altitude between sea level and 1200–1400 m 

a.s.l., it seems more restricted to higher elevations compared to its sister species M. 

glaber (Filipponi & Pegazzano, 1962; Mašán, 2003). The country-side house where the 

dead body was found is located on a hill (pre-Sierra Nevada Mountains) at an elevation 

of just over 800 m a.s.l. Livestock is common in this semi-rural area, and considering the 

waste and abundance of faeces in the house (González Medina et al., 2012), M. perglaber 

was very likely brought inside the house, which had open windows, by scarabs of the 

surrounding area. According to an inventory of scarabs performed 5 km from the house, 

at similar altitude, in Pinos de Genil, 12 candidates can be considered: one Bubas, five 

Onthophagus and six Aphodius species for the pre-Sierra Nevada area (Avila & Pascual, 

1987). All three genera are attracted to human, horse, cow and other wildlife animal 

faeces (Woodruff, 1967). Death occurred during the summer; therefore, no shortage of 

potential carriers is presumed. 

 

Macrocheles perglaber is haplodiploid, like other macrochelids (Cases 1 and 2). The 

collection of adult males confirms the presence of the species in the house for at least 5–
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7 days, as founder females will produce male offspring approximately 5–7 days after 

arrival to a suitable environment (Kinn & Witcosky, 1977; Richards & Richards, 1977). 

The new habitat, the corpse, and the exposition to faeces offered optimal conditions for 

starting a colony; otherwise, females would have kept attached to the carrier due to 

their specific requirements regarding the moisture level of the substratum (Niogret et 

al., 2010). Macrocheles perglaber would have arrived with one of the aforementioned 

dung beetles at an early stage of decomposition, like bloating, which has been confirmed 

by the presence of Poecilochirus mites. Taking into account all these factors, the period 

of activity of M. perglaber in the house would propose a PMI estimation of no less than 

8–11 days. This estimation considers (1) the arrival of females at bloating stage, 

happening 3–4 days after death, and (2) males reaching adulthood in 5–7 days. This 

minimum period of mite activity agrees with the PMI estimation of 13 days given by the 

entomological analysis (González Medina et al., 2012). 

 

This is the first report of M. perglaber from a human corpse and it is the first report 

from the Iberian Peninsula. 

 

4.4 CONCLUSION REMARKS 

 

The presence of M. muscaedomesticae on a corpse, even collected during autopsy, might 

provide information on the circumstances surrounding death; for example, it may 

provide links to synanthropic habitats. Macrocheles glaber is a mite species transported 

by beetles, widely prevalent in decomposition. Its specific association with rural 
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environments helps confirming exposure of remains or outdoor decomposition, 

especially in remote areas. This species cannot access sealed/closed buildings because 

it rides on large beetle carriers. If found indoors, it is either due to open doors or 

windows, or due to relocation of the body, from outdoors to indoors. Macrocheles glaber 

is a good indicator of rurality and outdoor habitats including shallow graves. 

Macrocheles perglaber occurrence in outdoor, rural or remote, potentially mountainous, 

locations is highlighted, due to its specific association with dung beetles. If a corpse is 

re-located to a new urban location, the presence of this species is indicative of a 

previous exposure to rural, likely mountainous environment. 
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Chapter 5 : Summary and concluding remarks  

 

5.1 BACKGROUND 

 

The concept of using arthropods in forensic investigations is not new. It dates to the 13th 

century in China with a documented case involving forensic entomology. The suspect in 

the case was identified by the attraction of insects (flies) to the blood on the murder 

weapon (translated by McKnight, 1981). It was easy to put the crime weapon and 

suspect together in the case when invisible traces of blood drew blowflies to single 

sickles that belong to the killer. Since then, there have been major contributions to the 

field of forensic entomology (Benecke, 2001; Gomes & Von Zuben, 2006). Bergeret 

(1855) was the first to give modern forensic entomology case reports that included an 

estimation of a post-mortem interval (PMI). A few decades later, Megnin (1894) 

documented his observations on the mummified body of a new-born girl in Paris. He 

estimated the PMI using information based on insect succession (Gomes & Von Zuben, 

2006).  Insect fauna is specific to the stage of decomposition and this was used to 

estimate when death occurred by identifying the species present on the cadaver. This 

was also the first case where mites provided substantial information on PMI. Most mites 

arrive at a carcass phoretically, that is, carried by other insects. Specific phoretic mites 

are found on a corpse at specific stages of decay. Because patterns of insect succession 

on a corpse are known based on the stage of decomposition, the arrival of phoretic mite 

on a carcass can be predicted. 
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The results presented from this research were covered up with the final findings for the 

experimental forensic settings for outdoor cases that were designed for a variety of 

scenes that involved the use of soil as a medium for collecting mites. The focus was on 

carrion-mites for use as forensic markers. Well-established forensic entomology 

methods from previous studies were used as additional templates to develop forensic 

acarology. The following sections will summarize the main findings from the different 

forensic settings used in these studies. In addition, the validity of using mites as forensic 

markers was demonstrated in a real-crime case study. 

  

5.2 THE SEASONAL ABUNDANCE OF MITES IN A SOIL COMMUNITY 

 

Seasonal experiments were conducted in the University of Reading for four seasons. 

Environmental variables were recorded and the patterns of carcass decay were 

monitored to explore their correlation with the abundance and diversity of mites. 

Determining the mite fauna associated with carcasses may significantly increase the 

amount of location- and time-specific information available for forensic evaluation. This 

study focused on the potential use of mites as forensic indicators of seasons and stages 

of cadaver decay in outdoor settings, a field of forensic science that has not before been 

studied in depth. Variability of the decomposition patterns throughout the seasons was 

determined. The succession of insects at different stages of decomposition is relatively 

significance and the abundance of mites has shown to follow a similar patterns to 

insects. It was determined that the abundance of mites collected in summer and spring 

season at its peak in the last stage.  The collected mites represented four orders, but 
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only mites of the order Mesostigmata were identified to the species level, as they were 

dominant in all seasons and from each decomposition stage. This is consistent with the 

characteristics of Mesostigmata being free-living predators in soil and litter. The spring 

season and active decay stage of decomposition had the highest number of 

Mesostigmata.  

 

5.3 SOIL MITES UNDERNEATH A CARCASS/CORPSE AS FORENSIC MARKERS 

 

This study involved interaction with members of the Animal, Plant and Soil Traces 

(APST) working group, of the European Network of Forensic Science Institute (ENFSI) 

as well with European Association of Forensic Entomologist (EAFE) members. Field 

work was conducted outside England, in a spruce forest near Neuchatel, Switzerland, to 

compare the presence and diversity of mites from carcasses either on the ground or 

hanging.   

 

This  study demonstrated that a decomposing cadaver influences the abundance and 

composition of mites in the soil. Carcasses on the ground decomposed faster and 

attracted more insects and mites than did the hanging carcasses. The properties of the 

soil beneath a hanging carcass also changed, along with the presence of soil arthropods. 

It was concluded that the effects of liquefaction from the cadaver decomposition island 

(CDI) affect the original soil properties and the succession of mites in that soil. These 

findings are important, as they could be of forensic use in cases where bodies have been 

removed from the scene. 



126 

 

5.4 REAL-CRIME CASE INVESTIGATION 

 

Three actual cases from European countries were investigated. The crime scene 

investigators and police provided soil samples from the crime scenes for us to assess if 

our approaches are reliable. Macrocheles species were identified in all cases. These 

species may be used as an indicator of time or location in forensic analyses, depending 

on the species. These results may provide missing information for the cases. The real-

case investigation demonstrated the feasibility of combining well-established methods 

such as use of insects with methods that use mite biology. 

 

5.5  EXTENDED RESEARCH 

 

Although we have presented relevant results of mites in forensic settings in outdoor 

cases, more research is needed to complement our findings. These studies have 

provided a list of mites useful as markers related to seasonal weather and body/corpse 

condition or position, outdoors. However, this data serves as a baseline for only the 

region where the studies were performed. For other regions, the data may be used as a 

guideline, with local environmental conditions factored in. With the environmental data, 

decomposition patterns and the succession of mites were predictable. Further 

refinement may be achieved by collecting a greater number of samples, as well as 

collecting seasonal data for more years. In conclusion, the findings from this research 

provide relevant information for the use of mites as forensic markers, which can be 

added to the database of forensic literature. A baseline for the presence and abundance 

of mites in temperate climates was described and can be used for the future reference. 
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APPENDICES 

Environmental data for all seasons (Chapter 2) 

Autumn 

Stages 
Time 
/ day 

A
m

b
ie

n
t 

te
m

p
 (

0
 C

) 

so
il 

te
m

p
 

ra
in

 (
m

m
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) 
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e
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p
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0

C
) 
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o
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e 

(d
B

) 

lig
h

t 
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n
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fresh 0 17.324 14.132 0.7895 2.64425 84.829 7.00 11.75 53.47 176.67 

fresh 2 12.66042 14.321 6.0355 2.88958 79.173 7.00 12.25 61.57 35.333 

bloating 5 14.52083 14.286 0.6484 3.50069 80.064 7.00 13.25 61.73 14 

active decay 8 11.18354 13.276 12.525 3.7899 78.855 7.00 10.2 60.47 68.667 

active decay 11 11.65854 11.97 1.3059 2.2554 87.324 7.00 12.25 60.67 54 

active decay 13 8.47625 10.226 1.1909 2.95401 73.695 7.00 10.95 62.23 75.333 

active decay 17 11.25313 10.794 2.2512 2.50767 89.467 7.00 13.7 64.33 57 

advanced 
decay 23 9.727708 10.346 1.0589 1.14286 86.797 7.50 10.9 64.37 65.333 

advanced 
decay 27 8.125417 8.0857 8.384 0.51463 90.117 8.00 7.6 65.67 36 

advanced 
decay 34 5.834375 6.4505 0.1 1.58014 76.855 7.80 4.5 58.67 110.67 

advanced 
decay 44 5.003542 6.7875 0.5334 1.18328 81.513 7.80 5.85 57.9 137.33 

skeleton 51 4.353333 7.5499 7.0149 7.04645 165.2 8.00 0.6 71.17 318.33 

skeleton 57 7.230208 7.6425 0.2125 1.25938 91.076 7.80 8 68.3 416 

skeleton 64 6.874792 8.1028 7.2815 3.5128 79.182 8.00 5.85 68.97 141.33 

skeleton 72 7.550208 6.5799 4.6084 3.3309 86.475 8.00 3.95 62.97 460.67 

skeleton 79 8.395833 7.5958 0.1794 2.35347 86.609 6.80 6.85 60.97 429.33 

skeleton 86 8.801875 6.576 0.8258 2.55764 90.114 7.50 8.25 69.27 448 

skeleton 93 6.825625 6.224 6.3259 1.47118 80.649 7.50 5.75 64.9 202.33 

skeleton 101 3.1325 5.141 1.7571 1.18958 92.627 7.20 -1.2 66.36 197.67 

skeleton 150 15.3 14.005 1.289 0.784 85.412 7.20 12.45 65.55 1403 
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Spring 

Stages 
Time 
/ day A
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fresh 0 18.311 19.14 0.311 1.217 74.622 8.00 15.7 93.87 298.33 

fresh 2 6.367 6.112 4.319 4.812 88.786 8.00 4 65.77 624.5 

fresh 4 7.855 6.59 6.012 0.876 76.4 8.00 5.15 72.2 693 

fresh 6 10.901 11.546 0.593 1.006 60.19 8.00 9.15 93.2 610.67 

bloating 8 11 12.063 0.39 3.766 61.421 7.80 9.5 87 169.5 

bloating 11 8.7 7.659 2.322 0.666 50.005 8.00 7.9 99.93 149.5 

active decay 14 11.11 11.814 5.495 1.441 75.21 8.00 9.65 103.8 278.33 

active decay 18 8.466897 12.79 0 44.5081 73.081 8.00 6.9 75.83 130.83 

active decay 23 10.71318 14.214 0.6946 92.2487 56.5 8.00 10.6 106.2 138.5 

active decay 28 9.7625 14.19 0 112.3 59.5 8.00 13.25 89.7 156.33 

advanced 
decay 35 14.55618 17.966 0 64.8878 52.71 8.00 21.4 113.5 70.167 

advanced 
decay 43 11.15382 14.14 1.3021 77.8612 55.8 8.00 11.9 104 63.5 

skeleton 56 17.85417 20.051 0.3731 53.4797 63.7 8.00 19.6 112.6 74.833 

skeleton 66 20.17206 19.057 0 34.2959 60.18 7.20 15.4 68.23 68.167 

skeleton 84 14.75243 18.767 2.475 68.5275 50.76 7.80 15.95 29.27 43.167 

skeleton 94 21.4375 22.017 0.1 40.6025 84.766 7.80 20.2 76.6 30.333 
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Summer 

 

Stages 
Time 
/ day A
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) 

U
2

 (
w

in
d

s 
sp

e
ed

 a
t 

2
m

) 

R
H

 (
%
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fresh 0 18.405 17.507 2.31 7.129 46.188 7.47 15.7 104.6 275.75 

fresh 2 14.987 12.954 0.117 3.006 51.007 8.00 12.2 105.1 148 

fresh 4 15.599 17.84 5.001 13.611 40.001 8.13 14.05 72.2 397.5 

bloating 7 15.7 13.109 32.078 30.007 87.112 7.60 14.6 103.5 391.17 

bloating 10 17.861 19.056 3 12.023 42.399 7.83 17.9 77.27 152.5 

active decay 14 17.1 19.8 1.003 10.387 40 8.03 17.1 103.3 111.17 

active decay 17 17.486 20.005 18.521 15.61 61.002 8.07 19.75 57.4 188.67 

advanced 
decay 35 11.7 12.865 0.229 7.803 52.222 8.27 11.75 105.9 178.5 

advanced 
decay 42 16.396 17.549 12.119 15.778 41.234 7.70 15.9 70.57 116.67 

skeleton 57 12.702 10.871 30.004 48.054 88.004 8.17 12.85 69.17 125.17 

skeleton 74 8.1 6.032 21.005 70.598 83.723 7.93 6.75 59.77 319 

skeleton 98 7.317 7.001 5.6442 40.005 40.283 7.90 2.95 66.2 324.67 
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Winter 

 

Stages 
Time 
/ day 
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fresh 0 4.68941 4.6924 0.1333 4.96597 88.67 7.20 21 64.1 1.86 

fresh 1 7.3 6.2934 1.1278 168.861 74.569 7.20 5.8 65.3 0.4 

fresh 6 7.3 5.7708 0.3306 2.67813 90.16 7.15 3.25 74.77 14 

fresh 10 8.2 8.9712 1.2493 6.86806 78.705 7.15 4.25 61.23 68.667 

fresh 19 3.1 5.6185 0 2.59375 78.578 7.25 -1.95 62.63 54 

bloating 28 10 5.4844 0.4208 3.93611 86.806 7.80 6.85 66.21 107 

active decay 41 3.2 3.7601 0 1.88264 84.691 7.40 -3.2 70.3 103.2 

active decay 49 8 3.2392 0 1.0309 88.865 7.35 3.15 66.93 33 

active decay 58 4.2 3.3205 2.5917 5.74097 82.115 6.95 -5.3 65.8 115.5 

active decay 78 9.2 5.0951 0.009 6.66875 72.212 6.65 6.05 65.5 137.5 

advanced 
decay 85 10.1 3.9451 0 8.02708 57.917 7.45 3.7 97.2 332.67 

advanced 
decay 99 8 7.9136 0 3.68715 68.982 7.20 6 83.47 192.33 

advanced 
decay 108 11.8 10.194 0 1.37917 78.038 7.10 11.75 82.1 426.17 

skeleton 148 13.2 13.031 4.8542 4.60868 90.197 8.20 10.2 86.9 150.67 

skeleton 177 14 14.849 0 5.84965 60.139 8.00 17.7 70.6 470.67 

skeleton 223 15.1 18.503 0 5.2059 70.643 6.75 17.55 57.2 439.5 



151 

 

 

Row Labels 
Sum of 
Mesostigmata 

Sum of 
Astigmata 

Sum of 
Prostigmata 

Sum of 
Oribatida TOTAL 

A 25 8 2 25 60 

active decay 5 0 0 2 7 

advanced decay 0 0 0 1 1 

bloating 1 0 0 1 2 

fresh 0 0 1 4 5 

skeleton 19 8 1 17 45 

SP 93 25 17 18 153 

active decay 41 4 10 5 60 

advanced decay 19 1 0 0 20 

bloating 2 0 1 2 5 

fresh 5 0 1 1 7 

skeleton 26 20 5 10 61 

SU 68 1 6 10 85 

active decay 36 0 5 3 44 

advanced decay 11 0 1 2 14 

bloating 2 0 0 1 3 

fresh 0 0 0 4 4 

skeleton 19 1 0 0 20 

WI 27 1 0 1 29 

active decay 2 0 0 0 2 

advanced decay 7 0 0 1 8 

bloating 0 0 0 0 0 

fresh 1 1 0 0 2 

skeleton 17 0 0 0 17 

Grand Total 213 35 25 54 327 
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Calculation for diversity indexes. 

 

Se
as

o
n

 

M
es

o
st

ig
m

at
a 

(N
) 

R
ic

h
n

es
s 

(S
) 

(n
) 

p
i (

n
/N

) 
ln pi pi ln pi 

Sh
an

n
o

n
's

 d
iv

e
rs

it
y 

(H
')

  

pi2 

Si
m

p
so

n
 In

d
ex

 (
D

) 

H
'm

ax
 

Ev
en

n
es

s 
( 

J'
) 

A 26 22 0.8462 
-

0.1670541 
-

0.14135 0.141353 0.715976 1.396694 3.091042 0.0457 

SP 108 60 0.5556 
-

0.5877867 
-

0.32655 0.326548 0.308642 3.24 4.094345 0.0798 

SU 73 33 0.4521 
-

0.7939519 
-

0.35891 0.35891 0.204354 4.89348 3.496508 0.1026 

WI 29 16 0.5517 
-

0.5947071 
-

0.32811 0.328114 0.3044 3.285156 2.772589 0.1183 

 

 

First loading PC1 for PCA (Chapter 3) 
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Second loadings PC2 

 

 

 

PC Eigenvalue % variance 

1 110.353 62.765 

2 44.7969 25.479 

3 13.4034 7.6234 

4 2.99963 1.7061 

5 2.31988 1.3195 

6 1.15737 0.65827 

7 0.508268 0.28909 

8 0.205172 0.11669 

9 0.05782 0.032886 

10 0.0170372 0.0096902 

11 0.00023173 0.0001318 

12 7.53E-32 4.28E-32 

13 1.41E-33 8.03E-34 

 

 


