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Abstract
Dynamical systems are often subject to forcing or changes in their governing parameters
and it is of interest to study how this affects their statistical properties. A prominent real-life
example of this class of problems is the investigation of climate response to perturbations. In
this respect, it is crucial to determinewhat the linear response of a system is as a quantification
of sensitivity. Alongside previous work, here we use the transfer operator formalism to study
the response and sensitivity of a dynamical system undergoing perturbations. By projecting
the transfer operator onto a suitable finite dimensional vector space, one is able to obtain
matrix representations which determine finite Markov processes. Further, using perturbation
theory forMarkovmatrices, it is possible to determine the linear and nonlinear response of the
system given a prescribed forcing. Here, we suggest a methodology which puts the scope on
the evolution law of densities (the Liouville/Fokker–Planck equation), allowing to effectively
calculate the sensitivity and response of two representative dynamical systems.

Keywords Response theory · Climate response · Transfer operator · Dynamical systems

1 Introduction

Response theory is the scientific research area at the boundary between mathematics and
physics dealing with the understanding of how complex systems react to perturbations
affecting their dynamics. Even if it addresses is a very classical problem, the mathemati-
cal framework to develop such a theory is still a matter of research.

Although the construction of response theory can be approached by taking many different
scientific point of views, it has beenmostly driven by statisticalmechanics [1]. In this context,
by considering a complex system in a steady state (equilibrium or nonequilibrium) and
applying some sort of forcing to the dynamics as, e.g., a change in the governing parameters,
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one is interested in analysing the resulting deviation from the steady state and, in some cases,
its relaxation to the new one.

We can express these ideas formally as follows. Let {φt }t≥0 be a dynamical system on a
compact domain X ⊂ R

d generated by the evolution equation ẋ = F(x). We take here the
continuous time point of view but one can equivalently formulate the problem for discrete
dynamics. Furthermore, let J : X −→ R denote a generic observable. Assuming that the
system is in a steady state, we want to analyse the how the values of the observable J change
when the dynamics are subject to a perturbation of the form:

ẋ = F(x) + εG(x), (1)

where ε ∈ R is the perturbation parameter and G is the perturbation vector-field, which is
assumed to generate (together with F) the perturbed dynamical system {φt

ε}t≥0. Thus, the
value of the observable J will change as a result of the perturbation in the following fashion:

d

dt
J (x) = F(x) · ∇J (x) + εG(x) · ∇J (x). (2)

This equation describes how the observable changes with time, but only upon integration of
the perturbed system can we know what its expected value is. The question we, thus, want to
address is that of understanding and predicting the mean behaviour of quantities of interest
upon modification of the governing dynamics.

In a complex system evolving with time, the mathematical object that accounts for the
statistical description of its asymptotic regime is the invariant measure [2]. This measure is
called invariant because it does not change under the action of the system. Roughly speaking,
it tells us how mass is distributed on phase-space in the far future. Thus, if a system is
undergoing perturbations, its invariant measure will change and consequently, the expected
value of the observables of interest. If the perturbation parameter ε is small enough, one can
ask about the effect of the perturbation on the system at a given order of nonlinearity, this is,
the response.

Let ρ and ρε denote the unperturbed and perturbed invariant measures respectively. If we
use the notation introduced earlier, we would like to compute the expectation value of the
observable J in the perturbed steady state 〈ρε,J 〉 in terms of its former expectation value
〈ρ,J 〉 and suitable linear and nonlinear correction terms:

〈ρε,J 〉 = 〈ρ,J 〉 +
∞∑

k=1

εkδ[J ]k . (3)

If one has access to δ[J ]k , one could effectively predict the expected value in the perturbed
system and describe its sensitivity to a certain perturbation.

The goal of this paper is to provide evidence of a practically applicable methodology for
computing the linear and nonlinear corrections to the invariant measure given in Eq. (3) in
the case of two simple yet important numerical models. Specifically, we want to achieve
predictive power: we want to predict the impact of the applied perturbation by using only
information available from the background, unperturbed simulations, i.e. without resorting
to additional simulations where the extra forcing is added. We will elaborate on this later in
the paper.
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1.1 Response Theory

In an isolated system in equilibrium governed by a Hamiltonian, Kubo [3] found a closed
set of formulas for the response describing δ[J ]k and establishing the connection with the
fluctuation-dissipation theorem (FDT). Such theorem can be seen as a dictionary allowing
for predicting the response of a system from its free fluctuations. However, the nature of
the problem tackled in Kubo’s work did not allow to extend it to a more general case of
nonequilibrium complex systems and the validity of the formulas was not fully addressed.
In fact, deterministic dynamical systems featuring contraction of the phase-space posses
invariant measures that are singular with respect to the Lebesgue measure. The absence of
a regular density is a major barrier that makes impossible the straightforward application of
the FDT, thus breaking the one-to-one connection between forced and free fluctuations of a
system.

In thework byRuelle [4,5], such frameworkwas clarified at amathematical level, allowing
to apply response theory in nonequilibrium systems. Ruelle’s results are based on the use of
Markov partitions and provide a rigorous response theory for AxiomA [6] systems. Essential
ingredients for the theory are the fact that the unperturbed system are structurally stable and
that one can split the response operator in two parts. One refers to the contribution coming
from the unstable and central manifolds and can be framed as an FDT result. The second
contribution comes from the stable manifold and gives an additional term that cannot be
described using the free fluctuations of the system.Hence, a suitable notion of differentiability
of singular measures was established allowing to consider perturbative expansions as in
Eq. (3) for a general class of deterministic dynamical systems.

The Ruelle response theory has provided a key framework for constructing algorithms
aimed at practically computing the response of nonequilibrium systems to perturbations, see
e.g. Ref. [7], and, specifically, for performing successfully climate change predictions using
simple, see e.g. Ref. [8], and comprehensive climate models, see e.g. Refs. [9,10].

Despite a good degree of success in the above mentioned studies, the presence of the two
distinct contributions described abovemakes the construction of accurate response algorithms
very challenging, see discussion in Ref. [8]. A different point of view, based on the study
of the evolution of probabilities rather than of individual trajectories, seems necessary; see
below.

1.2 The Transfer Operator Approach

Indeed, one can understand response theory by means of studying the effect of perturbations
on the evolution of measures on phase-space as opposed to trajectories. Formulating response
theory under this point of view uses essentially different machinery mostly hovering around
the so called transfer operator [11].

Let us suppose that F : X ⊆ R
d −→ R

d is a vector-field that generates the dynamical
system or flow {φt }t∈R, with φt : X −→ X . Then, the transfer operator semigroup {Lt }t≥0

can be defined as the solution of the Liouville equation [2]:

∂tρ(x, t) = −∇ · (Fρ(x, t)) , (4)

so that ρ(x, t) = Ltρ0(x) for some initial condition ρ0 ∈ L1(X). In the language of proba-
bility, the transfer operator is describing the pushforward of an integrable function under the
action of the dynamical system after t time-units. It turns out that Lt is a contraction and the
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set {Lt }t≥0 is a C0-semigroup or a group, if the dynamical system is defined globally in time
[12].

Equation (4) symbolises a processwheremass is only advected along the flow.However, in
many areas and applications, the governing dynamics are stochasticly perturbed introducing
uncertainty to the problem. This sort of perturbations can bemodelled by stochastic processes
of the form:

ẋ = F(x) + �(x)dWt , (5)

where we introduce here a standard d-dimensional Wiener process dWt and �(x) ∈ R
d×d

is the covariance matrix. In terms of measures, stochasticity can be translated into the fact
that their evolution is not only driven by advection, but diffusion is present. The Liouville is
thus transformed into the Fokker-Planck equation [13]:

∂tρ(x, t) = Aρ(x, t) := −∇ · (Fρ(x, t)) + 1

2

d∑

i=1

d∑

j=1

∂xi ,x j ��∗(x)ρ(x, t). (6)

We have defined the differential operatorAwhich can be shown to generate aC0-semigroup,
just as the Liouville equation does [12]. Notice that the differential operator on the right-
hand-side of Eq. (4) is the same as A if no noise is present.

The transfer operator is therefore a statistical tool rather than a dynamical one. It globally
describes how densities evolve with time as opposed of giving a trajectory-wise description
of the system. In fact, the spectral properties of the transfer operator carry information about
the statistical features of the system of interest. For instance, one observes that the fixed
points of Lt are nothing else than the measure that remains fixed under the action of the
dynamics, namely, the invariant measure. In fact, the ergodicity and mixing character of a
dynamical system can be characterised in terms of the nature of the leading eigenvalues of
Lt (e.g. Ref. [11]).

Introducing perturbations on the system affects not only the way trajectories evolve on
phase-space but also measures. This is reflected on the Fokker–Planck evolution equation
where by considering a perturbation on the vector-field of the kind F �→ F + ∑

k εkGk we
obtain a perturbed evolution law for the density:

∂tρ(x, t) = Aρ(x, t) +
n∑

k=1

εkBkρ(x, t), (7)

where Bk = −∇ · (Gk◦). Under some conditions [12] the previous equation also generates
a C0-semigroup with the same functional properties as the unperturbed one. One can also
introduce perturbations on the covariance matrix, which would lead to a similar equation as
the one above with different perturbation operators.

In this paper, we show how to compute the result of applying the operators Bk on the
right hand side of Eq. (7) via finite differencing, and then construct the invariant measure of
the perturbed system. The quality of such an estimate is then tested against direct numerical
simulation.

Projected Transfer Operators and Markov Chains

The transfer operator has been used to solve problems in different areas of science, see e.g.
examples in geosciences Refs. [14–16]. In these applications phase-space is not defined as a
continuum but as finite collection of regions. As a result, each time the transfer operator is
applied, a finite probability mass is shifted from one region to another one. For this reason, in
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applications, the transfer operator has to be understood in a finite dimensional setting. Here,
we follow such a route and take into account the Ulam’s method which is surveyed in e.g.
Refs. [17–19] and revisited in the next lines.

We consider a finite subdivision of phase-space X into N regions or boxes {Bi }Ni=1 and
define 1Bi as the characteristic function on box Bi ⊂ X . Thus, we define the projection
PN : L1 (X) −→ UN := Span

({1Bi }Ni=1

)
as

PNρ =
N∑

i=1

1Bi
η (Bi )

∫

Bi
ρ1Bi η(dx), (8)

where η indicates some notion of volume that can depend on the nature of the problem. It
follows that the operator PNLt : UN −→ UN admits a matrix representation:

Mt
i, j := (

PNLt )
i, j = 1

η(Bi )

∫

Bi
Lt1Bj η(dx), (9)

which happens to be a Markov or stochastic matrix. The way we practically construct Mt

depends on the choice ofmeasure η. Generally, if onewants to study the asymptotic properties
of the system one will take η as the invariant measure. On the other hand, if the focus is put on
the effects of the flowon thewhole domain X , and especially if one is interested in problems of
relaxation to the steady state, the correct choice would be to consider the Lebesgue measure
instead [20]. It is worth highlighting that the properties of the dynamical system φt are
described by Lt .

Perturbations on the dynamics lead to perturbations on the transfer operator Lt and, con-
sequently on the matrix Mt . This fact motivates the problem of reverting the question, i.e.,
by considering perturbations of Mt , what can we say about the dynamics? This question
has been tackled in previous work [21,22] by suitably constructing the response operators.
Alongside the development of the probabilistic theory, it was possible to establish a con-
nection between the perturbation theory of Markov chains and linear response theory for
dynamical systems, applying it to a number of low dimensional stochastic and deterministic
dynamical systems.

Constructing the operator that accounts for the linear response can be a difficult and costly
task [7]. Linear response can be inferred by examining how the system of interest responds
to small perturbations in the governing equations. However, this process can be an expensive
procedure if one deals with high-dimensional models with physical relevance. Therefore, one
desires to have predictive power. In this paper we demonstrate that it is possible to calculate,
by using finite representations of the transfer operator, the response of a system by sampling
its unperturbed dynamics and prior knowledge of the forcings applied to it. The overall goal
is to provide practically usable tools for studying the response of complex nonequilibrium
system, like the climate, to perturbations. It must be highlighted that climate models are high-
dimensional, making Ulam’s method intractable; see e.g. [23]. Still, previous work shows
that Markov modelling can be of use in reduced phase-space [15,24].

The structure of the rest of the document is as follows. In Sect. 2 we will present the
perturbation theory for Markov matrices, key to construct the response operator at a coarse-
grained level and will establish the link to the study of dynamical systems. In Sect. 3 we
gather our results, showing how numerically constructed perturbation operators can be used
to predict the response of the system of interest. Finally, in Sect. 4, we give a summary and
discuss future work along these lines.
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2 Perturbations of Finite Markov Chains

In this section, we consider amixing (therefore, ergodic)Markov processwith a finite number
of states N ∈ N; see e.g. the approaches taken in Refs. [21,22]. Then, a positive vector
u0 ∈ R

N with
∑N

i=1 (u0)i = 1 would indicate an initial ensemble of states. The finite
Markov processwould be determined by a stochasticmatrixM ∈ R

N×N so that the sequence
{Mnu0}∞n=0 would be a realisation of it.

The stochastic matrix M enjoys some properties worth highlighting. First, we note that
Mi, j is the probability of jumping into the i th state conditioned on being at the j th. Thus, it
follows that

N∑

i=1

Mi, j = 1, (10)

for any j = 1, . . . , N . Therefore, all the entries of M are greater than or equal to zero.
Further, since the process is mixing, it implies that there exists p ∈ N, so that the entries of
the matrixMp are strictly greater than zero [25]. Matrices satisfying this condition are called
irreducible and aperiodic [11] or primitive [25], although we shall refer to them as mixing
by analogy with the Markov process they determine. Consequently, the Perron-Frobenius
theorem [25] holds for this matrix, meaning that there exists a leading eigenvalue λ1 with
positive eigenvector u. By virtue of the spectral properties of stochastic matrices, it turns out
that λ1 = 1 and u solves

Mu = u. (11)

This means that u remains invariant under the action of M. The rest of the eigenvalues lie
within the unit circle. If, in addition, u is normalised so that its entries sum up to one, we
call u the invariant measure of the process and it follows that lim p→∞ Mpu0 = u, for any
normalised non-zero vector u0 ∈ R

N .
The next step now is to perturb the stochastic matrix and express the resulting perturbed

invariant measure as a perturbative expansion.
In what follows, we present a generalisation of what reported in Ref. [21]. For that, we
consider a perturbation of M of the form:

M −→ M +
n∑

i=1

εkmk, (12)

where ε1, . . . , εn ∈ R and m1, . . . ,mn ∈ R
N×N . The matrices mk are what we will call

the perturbation matrices. Note that the perturbed matrix M + ∑n
k=1 εkmk , must also be a

stochastic matrix if we want it to describe a Markov process. This requirement corresponds
to having

N∑

i=1

(mk)i, j = 0, (13)

for any k and j . This assures that the columns ofM+ ∑n
k=1 εkmk add up to one. Moreover,

non-negativity must be preserved, so not all choices of εk are valid. For this, we define

ε− = min{ε ∈ R : ∀i, j ∈ {1, . . . , N },Mi, j + ε

n∑

k=1

(mk)i, j ≥ 0}, (14)
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and

ε+ = max{ε ∈ R : ∀i, j ∈ {1, . . . , N },Mi, j + ε

n∑

k=1

(mk)i, j ≥ 0}. (15)

Hence, to ensure non-negativity of the perturbed Markov process, we must have that
maxk εk ∈ [

ε−, ε+]
. To guarantee that the latter interval is non-empty, we need to

be certain that ε− < 0 and ε+ > 0. Suppose that Mi1, j1 = Mi2, j2 = 0 and(∑
k mk

)
i1, j1

,
(∑

k mk
)
i2, j2

< 0. This would imply that ε− = ε+ = 0. In this case, we
have non-admissible perturbations.

Again, by virtue of the Perron-Frobenius theorem, such perturbed matrix will have a
dominant eigenvalue, whose value is 1 and its associated eigenvector v = v(ε1, . . . , εn) is
strictly positive. In other words, v solves:

(
M +

n∑

k=1

εkmk

)
v = v. (16)

The goal is to express the perturbed invariant measure v in terms ofM,m1, . . . ,mn, ε1, . . .

and εn . Not only do we want to calculate v but also describe how the unperturbed measure
u responds at a given power of εk .

Using multiindex notation, we suppose a formal expansion in powers of ε1, . . . , εn :

v = u +
∞∑

|α|=1

(ε1, . . . , εn)
αwα, (17)

where wα = 1
α!

(
∂ε1 , . . . , ∂εn

)α v. Substituting this expression in Eq. (16) we obtain:

(
M +

n∑

k=1

εkmk

) ⎛

⎝u +
∞∑

|α|=1

(ε1, . . . , εn)
αwα

⎞

⎠ = u +
∞∑

|α|=1

(ε1, . . . , εn)
αwα. (18)

Gathering the terms for |α| = 1 we get:

O(εk) : (1 − M) ∂εkv = mku,

for k = 1, . . . , n. The matrix 1 − M cannot be inverted since 1 is an eigenvalue of M; we
shall discuss this issue in the next section. At the moment, we directly apply the inverted
matrix to find that

∂εkv = (1 − M)−1 mku. (19)

Wedefine�k = (1 − M)−1 mk as linear response operator. Thismatrix has also been named
a differential matrix [26]. If we repeat the process for the second order terms (|α| = 2) we
get:

O (
ε2k

) : 1

2!∂
2
εk
v = (1 − M)−1 mk∂εkv = (�k)

2 u

O (εkεl) : ∂2εk ,εlv = (1 − M)−1 ml∂εkv + (1 − M)−1 mk∂εlv

= �k�lu + �l�ku.

Thus, we inductively construct the whole expansion as:

v = u +
∞∑

i=1

(
n∑

k=1

εk�k

)i

u =
(
1 −

n∑

k=1

εk�k

)−1

u. (20)
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This formula provides a tool to predict the perturbed invariant measure for as long as it
converges. Also, it generalises formulas previously found in the probability literature [26]
and later revisited when linking them to the study of the response of dynamical systems
[21,22].

Moreover, by simply considering the adjoint matrices, it is possible to develop a response
theory for observables. Indeed, let J ∈ R

N represent a generic coarse-grained observable.
Then, its expectation value with respect to the perturbed stationary vector v satisfies:

〈J , v〉 =
〈
J ,u +

∞∑

i=1

(
n∑

k=1

εk�k

)i

u

〉
=

〈⎛

⎝1 +
∞∑

i=1

(
n∑

k=1

εk�k

)i
⎞

⎠
�
J ,u

〉

=
〈
1 +

∞∑

i=1

(
n∑

k=1

εk�
�
k

)i

J ,u

〉
, (21)

where 〈·, ·〉 denotes the pairing betweenmeasures and observables. The advantage of formulas
(20) and (21) is that they allow us to identify the response to perturbations at an arbitrary
order of nonlinearity including the linear case, which has a special relevance in the physical
literature.As a consequence, if one is interested in calculating the sensitivity of the expectation
value of some observable J with respect to changes caused by εkmk , one has to truncate the
series expansion in the first order term. However, these formulas are still purely formal. We
need a deeper understanding of what we mean with (1 − M)−1 and for what values of εk
they are useful.

2.1 Well-Posedness and Invertibility of 1−M

In this sectionwewill clarify the framework for which the response formulas presented above
work. First of all, we will revisit the problem of the non-invertibility of 1 − M, which has
been previously discussed in e.g. Refs. [21,22,26]. Secondly, we will assess the convergence
of the power expansion in Eq. (20) and include a comment on the stability of the leading
eigenvalues of M.

The linear response operator is not well defined a priori as 1 is an eigenvalue of the matrix
M and hence 1−M is not invertible. However, we can define a more suitable normed space
for which the norm of M is less than one, making 1 − M invertible. The idea relies on the
fact that the vector space RN on which M is defined admits a splitting of the form:

R
N = Span (u) ⊕ V , (22)

where V is the invariant subspace generated by the generalised eigenvectors ofM associated
with the eigenvalues distinct to 1 and Span (u) is the vector subspace spanned by u. This
space can also be regarded as the kernel of the functional ι : RN −→ R given by ι (x) =∑

i (x)i . Indeed, one observes that if uk is a generalised eigenvector of M, the identity
(M − λk)

p uk = 0 holds for some p ∈ N. Hence,

ι
(
(M − λk)

p uk
) =

p∑

j=0

(
p
j

)
λ
j
k ι

(
Mp− juk

)

= (
1 − λ

p
k

)
ι(uk) = 0.

This implies that ι(uk) = 0, by means of the mixing hypothesis. Furhtermore, noting that
ι (mkx) = 0 for any x ∈ R

N , we can summarise the idea in the following statement:
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Proposition 1 Let M ∈ R
N×N be a mixing stochastic matrix with invariant measure u.

Then, for any x ∈ R
N , mkx ∈ V and 1 − M is invertible on V .

The proposition above is more general than the lemma presented in Ref. [21] because we do
not assume the existence of a complete set of eigenpairs.

Recall that the linear response operator in Eq. (19) only requires the evaluation of
(1 − M)−1 after having calculated mku, so writing the inverse explicitly is not that big
an abuse, by virtue of the previous proposition. However, we must underline that, numeri-
cally, we cannot directly invert 1−M. To overcome this problem, wemust deflate the matrix,
removing the dependence on the dominant eigenspace. Concretely, we have to consider the
group inverse [27] Z of a Markov chain, which is defined as follows:

Z = (
1 − M + M∞)−1

, (23)

where the matrix M∞ is defined as lim p→∞ Mp . This matrix can be shown to be equal to
the matrix whose columns are all equal to the invariant measure u. Intuitively, M∞ can be
seen as a rank-one projector onto Span (u). In fact, 1 is not an eigenvalue of M − M∞,
making 1 − M + M∞ invertible. The linear response operator is, thus, given by

∂εkv = �ku = (1 − M)−1 mku = Zmku. (24)

This way we find a practical way of computing the linear response operator.
To assess convergence, we want to be certain that the L1 norm of the series∑∞
k=1 (ε1�1 + . . . + εn�n)

k does not blow up. For this problem we introduce the matrix
norm ‖ · ‖1∗ which we define as the norm ‖ · ‖1 restricted to V . We are now in conditions of
applying the ratio test in Eq. (20):

∥∥∥
(∑

k εk�k
)i+1 u

∥∥∥
1∥∥∥

(∑
k εk�k

)i u
∥∥∥
1

=
∥∥∥
(∑

k εk�k
) (∑

k εk�k
)i u

∥∥∥
1∥∥∥

(∑
k εk�k

)i u
∥∥∥
1

≤
∥∥∥∥∥

n∑

k=1

εk�k

∥∥∥∥∥
1

=
∥∥∥∥∥(1 − M)−1

n∑

k=1

εkmk

∥∥∥∥∥
1

≤ ∥∥(1 − M)−1
∥∥
1∗

∥∥∥∥∥

n∑

k=1

εkmk

∥∥∥∥∥
1

≤ (1 − ‖M‖1∗)−1

∥∥∥∥∥

n∑

k=1

εkmk

∥∥∥∥∥
1

≤ (1 − ‖M‖1∗)−1 max
k

{εk}nmax
k

{‖mk‖1}.

Since we want that the ratio remains lower than 1 to ensure (absolute) convergence, we
choose ε1, . . . , εn so that

|max
k

{εk}| < εmax := 1 − ‖M‖1∗

nmaxk{‖mk‖1} . (25)

By referring to themixing character ofMwe conclude that εmax is finite and positive. Hence,
εmax establishes a tolerance on the size of the perturbation.Wewould like to underline that the
condition for these response formulas to work can be translated to the fact that one requires
that the system has to mix mass sufficiently quickly. In other words, the difference in the
magnitude of the first and second largest eigenvalues should be sufficiently large, i.e., there
should be a spectral gap.
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The number ‖M‖1∗ is known as the ergodicity coefficient [28] and can be used as a
condition number for the Markov chain in the sense that this quantity serves to estimate the
norm of the difference between a perturbed and the unperturbed invariant measures [29]. See
Ref. [30] for a practical use of the ergodicity coefficient. However, the ergodicity coefficient
does not tell us how perturbations affect the localisation of the eigenvalues of the matrix
M, something crucial if one wants to control the spectral gap. This problem is tackled by
means of analysing the stability of the leading non-unit eigenvalues and summarised in the
following result found in Ref. [31]:

Proposition 2 Let M ∈ R
N×N be a diagonalisable, irreducible and aperiodic stochastic

matrix. Let X ∈ R
N×N be a non-singular matrix such that M = X−1X with  being the

diagonal matrix containing the eigenvalues 1, λ2, . . . , . . . λN , of M. Suppose that

κ(X)max
k

{|εk |}nmax
k

{‖mk‖} <
1

2
min

1≤ j≤N
{1 − |λ j |}. (26)

Then, the perturbed chain M + ∑n
k=1 εkmk has a unique invariant measure.

The proof of this result relies on classical perturbation theory, in particular on the Bauer–Fike
theorem [32]. With a bit more work, one can deduce a bound on the rate of convergence to
equilibrium of the perturbed chain, also presented in the work cited above.

The condition shown in Eq. (26) can very restrictive if the process is governed by a highly
non-normalMarkovmatrix, as in this case, the condition number κ (X) can be very large [33].
However, in order to preserve the spectral gap, the only thing needed is a good conditioning
of the eigenvalues closest to the unit circle. Hence, in order to find a sharper stability bound
like in Eq. (26) the eigenvalue condition number [34] might be the object to look at.

2.2 Link to Continuous Time Dynamical Systems

In this section, wewill investigate how to obtainMarkov chains from continuous time dynam-
ical systems up to finite precision via focusing on the evolution of densities given by the
Fokker–Planck equation. The ultimate target will be to apply the theory for Markov chains
presented earlier to asses the response to perturbations of two simple dynamical systems
featuring different characteristics.

Let dt > 0, and let us express the Fokker–Planck equation (6) to first order as:

ρ(x, t + dt) = ρ(x, t) + dtAρ(x, t) + O(dt2). (27)

The idea is to view the right hand side of the previous equation as the pushforward of
the measure ρ(x, t) to ρ(x, t + dt), namely, Ldtρ(x, t). Therefore, when considering the
projection of Ldt we would be introducing finite Markov chains, as clarified earlier.

Furthermore, a perturbation of the driving vector-field F → F + ∑
k εkGk would incur a

modification on the Fokker-Planck equation. Again, to first order:

ρ(x, t + dt) = ρ(x, t) + dtAρ(x, t)

+ dt
∑

k

εkBkρ(x, t) + O(dt2).

It is natural then to regard Bk as the perturbation operators. In what follows we will frame
this perturbation problem in a finite-precision setting by means of the finite representation
of the transfer operator.
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We observed that matrices introduced in Eq. (9) can be understood as Markov processes
describing the probability of mass transitioning between regions of phase-space. We also
noted that the measure η employed in the projection of the transfer operator determines the
algorithms used. Generally, in dynamical systems, one is interested in the properties of the
system in its asymptotic regime. This means that the projection of the transfer operator in
this case has to be done with respect to the invariant measure.

In order to sample the invariant measure, long integrations of the system are needed
to explore the region of phase-space where the long-term dynamics occur. Due to finite
precision, integrations can be translated into time-series with equal time-step dt creating a
cloud of points on the domain. After transients have died, sample points will populate certain
region on phase-space, possibly shadowing [35] the dynamics on an attractor. Such region
can be subdivided into N boxes {Bi }Ni=1 with Lebesgue-zero measure intersections. If S
denotes all the sample points living in ∪i Bi , the matrix M in Eq. (9) is constructed as:

Mdt
i, j = #{S ∩ Bi ∩ φ−dt B j }

#{S ∩ Bj } , (28)

where # is the countingmeasure. Essentially, this formula is counting the transitions from box
to box that sample points of the time-series do after a lag of dt time-units. By construction, it
immediately follows thatMdt is a stochastic matrix. A matrix constructed this way is called
a transition matrix.

This representation of the transfer operator is what we are going to use to approximate the
right-hand-side of Eq. (27) to first order. If instead one is considering the perturbed problem
the Fokker-Planck equation is modified (see Eq. (7)), and a suitable matrix approximation of
the perturbation operator Bk = −∇ · (Gk◦) is needed. Given the discrete setting, we can use
finite difference schemes to approximate the differential operator Bk . Of course, the way we
do this depends on the particular problem. In the next sections we will put this methodology
into practise with two examples.

3 Results

Themain contribution of this paper is to elaborate amethod that allows to predict the statistics
of a system subject to forcing. In this section, by examining the Liouville/Fokker–Planck
equation of twodynamical systems (one stochastic andonedeterministic)we contruct suitable
perturbation operators using finite differences that permit calculating the response without
integrating the forced systems.These outputs are used to evaluate the statistics of the perturbed
system and tested against direct simulations.

3.1 A Stochastic Dynamical System

To illustrate the applicability of the methodology described above, we consider the Ornstein–
Uhlenbeck (O–U) process as a test case. The O–U process in R

d is a stochastic process
{X(t)}t≥0 of the form:

dX = AXdt + �dWt , (29)

where A ∈ R
d×d models the linear and deterministic component of the process. The stochas-

tic part of the process is given by �dWt , where � ∈ R
d×d indicates the correlations in the

d-dimensional Wiener process dWt . In order for this process to posses an invariant mea-
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sure, the matrix A is required to have eigenvalues with strictly negative real part [36]. If this
condition is met, the process will be stable and the statistics converge to a normal distribution.

The O–U process can also be investigated by considering its associated Fokker–Planck
equation:

∂tρ(x, t) =
2∑

k=1

∂xk

(
2∑

l=1

Ak,l xlρ(x, t)

)

+ 1

2

2∑

k=1

2∑

l=1

∂2xk ,xl

((
��∗)

k,l ρ(x, t)
)

,

where ρ ∈ L1(X) is a density for each value of time t .
We consider the two dimensional O–U process given by:

A =
[−1 0
0 −1

]
, and � =

[
1 0
0 1

]
. (30)

The variables in this process are uncorrelated and we shall investigate the response of the
systemwhen its mean is shifted and correlations are introduced in the noise. Thus, the process
we are going to study is given by:

dX ε1,ε2 = A
(
X ε1,ε2 − ε1μ

)
dt + √

��∗ + ε2EdWt , (31)

where

μ =
[
1
0

]
, and E =

[
0 1
1 0

]
, (32)

and ε1, ε2 ∈ R have to satisfy the conditions for the perturbed process to be well defined,
namely, ��∗ + ε2E has to be symmetric positive definite. The modified Fokker–Planck
equation therefore is,

∂tρ(x, t) = −
2∑

k=1

∂xk

(
2∑

l=1

Ak,l xlρ(x, t)

)

+ 1

2

2∑

k=1

2∑

l=1

∂2xk ,xl

((
��∗)

k,l ρ(x, t).
)

− ε1

2∑

k=1

∂xk

(
2∑

l=1

(Aμ)l ρ(x, t)

)

+ ε2

2

2∑

k=1

2∑

l=1

∂2xk ,xl

(
(E)k,l ρ(x, t)

)
.

In a concise manner, it can be written as

∂tρ(x, t) = Aρ(x, t) + ε1B1ρ(x, t) + ε2B2ρ(x, t), (33)

where the differential operators B1 and B2 are defined by analogy.
As observed in the previous section, by differencing the time-variable with a time-step

of dt > 0, we immediately obtain a discrete time evolution of densities to first order. Thus,
the right-hand-side of the evolution equation is pushing forward the measures at time t to
resulting measures at time t + dt . Recall that this is what the transfer operator Ldt precisely
does.
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Numerics: Transition and Perturbation Matrices

In order to construct a transition matrix, one has to have in hand a compact region of phase-
space where all the long-term dynamics occur. Unfortunately, in the case of the O–U process,
phase-space is unbounded because of the presence of white noise. However, one can practi-
cally restrict the phase-space to a compact rectangle that with high probability encloses the
whole integration of the process.

Let {Bi }2Ni=1 be a collection of boxes covering four standard deviations of the process
on each direction. In the experiments performed we have considered 2N boxes by means
of discretising each axis in 2N/2 equally sized segments. We have examined the values
N = 10, 12 and 14 trying to keep a balance between numerical tractability and precision.
The box subdivision of phase-space is done using theMatlab package GAIO [19]. We then
construct the transition matrix Mdt as in Eq. (28), where φ◦ is now replaced by the process
X(◦). To obtain the long time-series, we integrate it using an Euler–Maruyama scheme for
106 time-units with a time-step of dt = 10−2 time-units. X (−dt) Bj denotes the set of
points on phase-space that will end up in Bj after waiting dt time-units.

Regarding the perturbation operators present in Eq. (33), we examine how two implement
them so that they are compatible with the domain discretisation carried out for the transition
matrices. Suppose that the box Bi has center cik,l so that c

i
k±1,l = cik,l ±[δx1 , 0], where δx1 is

the distance between consecutive boxes along the x1-direction (the same for the x2-direction).
Then, the derivative of ρ with respect to x1 at cik,l is given by

∂x1ρ(cik,l) = ρ(cik+1,l) − ρ(cik−1,l)

2δx1
+ O (

δ2x1

)
. (34)

The same scheme is used for the x2-direction. For the second and cross derivatives, we
implemented the usual second order discretisation:

∂2x1ρ(cik,l) = ρ(cik+1,l) − 2ρ(cik,l) + ρ(cik−1,l)

2δ2x1
+ O(δ2x1), (35)

∂2x1,x2ρ(cik,l) = ρ(cik+1,l+1) − ρ(cik+1,l−1) − ρ(cik−1,l+1) + ρ(cik−1,l−1)

4δx1δx2
+ O(δx1δx2).

(36)

This stencil is completed with the same schemes in the x2-direction. These numerical deriva-
tives can be arranged into matrices so that their multiplication with vectors approximate their
respective differentiation. Thus we obtain matrix representations mk of the operators Bk .

Of course, the schemes presented above only work for the interior boxes of the domain.
We have not implemented explicit boundary conditions since the values of the derivatives of
the invariant measure at the boundary of the compact domain are almost zero. In any case,
boundary conditions should not inject/deplete mass so in other cases where the dynamics
populate the boundaries, Neumann boundary conditions are the ones to choose [37].

A good compromise was found provided that the resolution was high enough. On Fig. 1,
we see that the predicted response was well approximated. This is checked on Table 1 where
we show that the error of approximating the perturbed invariant measure using the response
formulas in Eq. (21) presented earlier is small. The linear response (see Fig. 2) is precisely
doing what one expects: mass is pumped to the right as a consequence of the mean being
shifted and the introduction of correlations inflicts a rotation. Higher order correction terms
(see Fig. 2) can also give an insight on how the measure is gradually modified. As a safety
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Fig. 1 Response of the O–U to the perturbations considered in Eq. (32). The left-hand figure shows the true
response calculated by subtracting the unperturbed invariant measure from the perturbed one. The figure on
the right is the predicted response calculated from Eq. (20)

Table 1 The first row refers to the values obtained from integrating the O–U process

〈x〉 δε1 [x]1 δε2 [x]1 Error1 Error2

O–U 0 1 0 0 0

N = 10 10−4 0.47 3 × 10−3 0.02 0.02

N = 12 10−4 0.77 2 × 10−3 7×10−3 5 × 10−3

N = 14 10−4 0.93 8 × 10−4 3×10−3 8 × 10−4

The rest of the rows are values obtained via discretisation of the transfer operator. We defined Error1 as the L2

norm of the difference between the coarse-grained perturbed invariant measure and the first order correction.
Error2 is the same but with higher order correction terms

check, the sum of the components of the response are checked to add up to (almost) zero,
meaning that mass is not introduced or depleted.

3.2 A Deterministic Dynamical System

A model of importance in dynamical systems and geophysical sciences is the Lorenz 63
system [38]. Such system is a low-dimensional model of atmospheric convection that, even
if it is far from being a realistic model, it possesses chaotic behaviour and exhibits different
regimes, just as in the atmosphere. This systems has been the toy-model to illustrate the
difficulty of calculating the sensitivity and response in dynamical systems and in the climate
system by extension (e.g. Refs. [39,40]).

From the point of view of the transfer operator, the response of the Lorenz 63 system
was computed in Ref. [21], by means of applying the perturbation theory for finite-state
space Markov chains. However, the perturbed dynamics needed to be sampled. In case of
low-dimensional models, this is not a major handicap, but in physically relevant systems this
can be an expensive procedure. Therefore, we need more predictive skill.

The Lorenz 63 system is a deterministic dynamical system that is given by the following
set of ordinary differential equations:
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Fig. 2 The top-left figure shows the linear response of the O–U process with respect to the perturbations
considered in Eq. (32) calculated by truncating Eq. (21) at the first order. The top-right and bottom-left show
the linear response to changes in ε1 and ε2 respectively. The bottom-right figure contains the second order
correction obtained via Eq. (21)

ẋ(t) = F(x) =

⎧
⎪⎨

⎪⎩

s(y − x)

x(r − z) − y

xy − bz

, (37)

for the classical parameter values s = 10, b = 8/3 and control parameter r = 28. For
such choice of parameters, the Lorenz 63 system displays chaotic dynamics in a singularly
hyperbolic attractor that supports an SRB measure [41]. The lack of uniform hyperbolicity
implies that the Lorenz 63 system is not Axiom A and therefore one cannot expect response
theory to hold.Nevertheless, numerical evidence supports the idea of linear [42] and nonlinear
[43] response to be valid in this system.

The perturbation problem we tackle here is that of changing the value of the control
parameter r → r + ε1 for ε1 ∈ R. This parameter is known as the Rayleigh number and
it is proportional to the temperature difference between the convecting layers. The bifurca-
tions associated to this parameter are numerically surveyed in Ref. [44]. We will also study
the additive perturbation on the z-variable by adding ε2 ∈ R. These perturbations incur a
modification on the vector field of the form:

ẋ(t) = F(x) + ε1G1(x) + ε2G2(x). (38)
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Fig. 3 Deviation of perturbed expected values of the observable z for ε1 ∈ [−5, 5] and ε2 ∈ [−1, 1]. The
expectation values were computed by integrating the equations for 103 time-units with 20 ensemble members
for each value of ε1 and ε2

where G1(x) = [0, x, 0]′ and G2(x) = [0, 0, 1]′. Consequently, the Liouville equation
changes as in Eq. (7), with perturbation operators:

B1ρ(x, t) = −∇ · (G1(x)ρ(x, t)) (39)

and

B2ρ(x, t) = −∇ · (G2(x)ρ(x, t)) . (40)

Introducing forcing leads to a change in the statistics of the system as shown on Fig. 3,
where we considered the example observable z and computed its mean value for equispaced
values of ε1 ∈ [−5, 5] and ε2 ∈ [−1, 1]. When ε1 ≈ −4, a bifurcation is traversed producing
a non-smooth change in the mean value of the observable. Far away from this bifurcation
point, the statistics changes smoothly with respect to ε1 and ε2. For the calculation of these
means, long integrations were considered so that the outcome is uniquely determined. This
is possible thanks to the existence of an SRB measure [39].

Notice that differentiating Eq. (7) with respect to εk (k = 1, 2) gives Bk . So a way of
obtaining a matrix representation of Bk is

εkmk = Mdt
εk

− Mdt . (41)

where Mdt
εk

is the transition matrix empirically constructed from the perturbed equations.
This approach was followed previously [21] and served to calculate the linear response of
the Lorenz 63 system, however, it involves two (or more) long integrations of the equations,
something wewant to avoid.We explain the methodology carried out here in the next section.

Numerics: Transition and Perturbation Matrices

The invariantmeasure of theLorenz63 system is supportedon an attractor,whichbydefinition
is compact. Since we know that the Lorenz attractor is contained in an absorbing closed
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Fig. 4 Coarse-grained Lorenz 63 invariant measure (left) and the discretised operator B1 applied onto the
invariant measure (right)

Table 2 Expectation values with respect to the unperturbed and perturbed (ε1 = 0.1 and ε2 = 0.1) invariant
measure

〈y2〉 〈z〉 〈y2〉ε1,ε2 〈z〉ε1,ε2 δε1

[
y2

]

1
δε1 [z]1 δε2

[
y2

]

1
δε2 [z]1

L-63 81.20 23.54 81.44 23.65 3.95 1.01 −1.47 0

N = 12 82.37 23.55 82.50 23.62 3.01 0.89 −1.65 −0.14

N = 15 81.48 23.55 81.70 23.65 3.97 1.08 −1.62 −0.11

N = 18 81.25 23.55 81.30 23.65 2.68 1.11 −1.57 −0.09

In the first row time averages were used whereas the rest indicate the expection values obtained by means of
evaluating Eq. (20) with a transition matrix of size N × N

ellipsoid on phase-space [44], we are certain that the square defined by the Cartesian product
[−20, 20] × [−30, 30] × [0, 50] will contain the attractor. Then, to obtain the box partition,
we divide into two each axis and repeat the procedure in each resulting segment. This way,
a total of 2N boxes {Bi }2Ni=1 were constructed for the values of N = 12, 15 and 18. As
mentioned earlier, the box discretisation was carried out using GAIO [19].

To obtain the sample points of the dynamics, we integrated the model for 105 time-units
with a time-step of dt = 10−3 time-units. After a spinup of ten percent of the points, we
count the transitions between the boxes with a time-lag of dt time-units. This gives the
transition matrix Mdt . Thus, a coarse-grained estimation of the invariant measure can be
readily obtained by solving the eigenvalue problem in Eq. (11) which is plotted on Fig. 4.

The quality of the approximation can depend on the choice of time-lag [14]. Indeed, a short
time-lag can make Ulam’s method introduce artificial diffusion by analogy to the upwind
scheme [37]. In our experiments, the approximation of the invariant measure was carried out
using a time-lag of dt , which served to estimate the expectation values of certain observables
consistently with the resolution, as shown in the first, second and third columns of Table 2.

Regarding the perturbation operators, the same techniques as in the O–U process where
employed. The difference here is that we are dealing with an invariant measure that is sin-
gular with respect to the Lebesgue measure and therefore is supported in a complicated set,
as illustrated by Fig. 4. Hence, one needs to take care of the boundary boxes by simply
considering forward/backward approximations of the derivatives at those boxes. Thus was
estimated B1 applied to the invariant measure, depicted on the right of Fig. 4.
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Fig. 5 Predictions for perturbations on r . Mean values of the observables indicated in the panels are predicted
using Eq. (21) and plotted against the true means observed empirically via integrations of the system

The results of applying this methodology are presented in Fig. 5, where we show that Eq.
(21) can indeed approximate the expectation values certain observables for a wide range of
values of ε1. We underline that these plots demonstrate the validity of the formulae not only
to compute the linear response but to predict the statistics of the system. As is natural, the
formulas cannot be expected to work for large values of the perturbation parameter, let alone
beyond the bifurcation point. When considering the simultaneous forcings ε1G1 and ε2G2,
we examine the efficiency of the formulas (Table 2). We calculate the expectation value of
certain observables and check that we can approximate their mean for small values of ε1 and
ε2. Also, the linear response is calculated. As we see in the last row, refining the resolution
does not always improve the results. This is due to the fact that the length of the integration
has to be severely extended in order to sample the boxes covering the domain. In general, the
skill of the methodology is shown in Fig. 6 where the expectation values of some observables
are predicted using the response formula Eq. (21). Of course, the validity was only tested
within the convergence interval.

TheUlammethod is prone to errorswhen estimating the invariantmeasure, and such errors
are larger (in relative terms)where the empirical occupation rate is smaller. This ismadeworse
when one considers finite differences. Nonetheless, we expect that the errors we introduce
are small in absolute terms and localised in the phase space. Therefore, if one considers
smooth observables, the overall contribution coming from those regions might end up being
small. The relevance of using smooth observables should not come as a surprise: Ruelle’s
[5] response theory only works for C3 observables. Considering less regular observables can
lead to fundamental modifications to the theory; see discussion in Ref. [45].
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Fig. 6 Relative error (%) of the prediction of the expected values of the observables indicated in the plots.
The prediction was done by evaluating Eq. (21) and the true values were obtained empirically by integrating
the equations for each value of ε1 and ε2

4 Discussion

In this work, we take the point of view of statistics to understand the effect of perturbations on
dynamical systems. Under this setting, the transfer operator is the essential object of study.
By means of projecting such operator onto a finite dimensional vector space, it is possible
to obtain empirically constructed matrix representations of the transfer operator via Markov
modelling. Further, the properties of thesematrices allow us to, up to finite precision, describe
the dynamical system of interest.

Exploiting the stochastic (or Markovian) structure of the projected transfer operator, we
consider multiple perturbations and express the resulting perturbed invariant measure as a
series expansion describing the response at all orders of nonlinearity. Alongside previous
work [21,22,26], it is possible to link the probabilistic concepts of finite Markov chains to
dynamical systems. Namely, the mixing rate of the unperturbed chain indicated by its second
eigenvalue or more generally its ergodicity coefficient determine the validity and control the
practical applicability of the perturbative expansions.

The linear component in the perturbative expansion is the so called linear response and
it is of physical interest [1]. This quantity is accessed by constructing suitable response
operators and indicates the sensitivity of a dynamical system to prescribed perturbations.
Here we emphasize the need of gaining predictive skill: given a perturbation to the vector
field (possibly induced by tuning several paramters), can we calculate the sensitivity of the
system a priori? For such purpose, we examined the Fokker–Planck/Liouville equation to
identify the operators that incur the perturbations on the evolution of densities. Then, by
considering simple finite difference methods, we were able to model (to finite-precision)
matrix perturbations that allowed to exploit the perturbative formulas giving us access to the
linear and nonlinear response of the systems. Notice that using this method, we only need
one integration of the (unforced) model to determine the response and sensitivity.

The two numerical experiments performed were intrinsically different. The Ornstein-
Uhlenbeck process is a stochastic dynamical system with an invariant measure with a density
(with respect to the Lebesgue measure) which is smooth. Therefore, differential operators
(discretised using finite differences) can work correctly. On the other hand, the Lorenz 63
model is a dissipative deterministic system with an attractor with Lebesgue-zero measure
that is singularly hyperbolic. This translates into the fact that linear response theory is not
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theoretically proved [5]. Moreover, the invariant measure of such system is not smooth,
so the usual notion of differentiation does not hold. In the experiments, we coarse-grained
the invariant measure to obtain a vector estimate. The corresponding differential operators
were applied giving a good compromise, suggesting that at a coarse-grained level, the usual
methods for numerical differentiation should work. Previous investigations [37] illustrate
that coarse-graining the domain inherently provokes the introduction numerical diffusion
thus smoothening the invariant measure.

The partitioning of phase-space is an arbitrary decision of the modeller. In these numerical
experiments, the partitioning is considered to be uniform: boxes are of equal size. This is
not optimal, since there might be regions of phase-space that need more refining than others
[18,46]. The reason for choosing equally sized boxes is that the invariant measures obtained
gave a good compromise when approximating the expectation value of observables. In any
case, comparing box discretisations is not the target of the paper.

The low dimensionality of the problems considered in this paper allows to perform the
box subdivision on the whole phase-space. Unfortunately, many physically relevant models
posses a domain which is high-dimensional not to say infinite-dimensional. In these cases, it
appears intractable to work on the complete domain. Because of this dimensionality barrier,
reduced phase-spaces are considered. Results along this line support the applicability of the
transfer operator methods in a climatological context, see, e.g., Refs. [14,15,24]. However,
the inherent loss of Markovianity in the dimensionality reduction requires control on the
memory effects introduced by the hidden variables (see, e.g., Ref. [47]), something that
complicates the study of the response, as pointed out in Ref. [48] where the robustness of
reduced systems with the presence of forcing is assessed. Further research should be oriented
on adapting this methodology based on the transfer operator in higher-dimensional systems
with vistas to assessing and predicting the sensitivity of physically relevant systems.
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