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Abstract 15 

Over recent years the summer feeding distribution of Northeast Atlantic mackerel (NEAM, 16 
Scomber scombrus) has expanded from its traditional core in the Norwegian Sea, northwards 17 

towards Svalbard, and westward as far as Greenland. Food availability, temperature and an 18 
increase in spawning stock biomass (SSB) are reported to be possible drivers of the 19 

distribution, but quantifying the relative contributions of these factors is difficult. Previously 20 
we developed a bioenergetics individual-based model (IBM) that uses satellite-derived maps 21 
of food availability and temperature to predict NEAM population dynamics. Here, we extend 22 

the model to explore the ways in which individuals move in search of food in the summer. 23 

We construct models of four possible search mechanisms differing in 1) the extent of the area 24 
over which individuals can perceive the environment; and 2) whether or not individuals 25 
respond to the local density of conspecifics by avoiding areas in which competition is more 26 

intense. We report that the best matches to available data over 2007 to 2015 are obtained 27 
when the local density of competitors is taken into account, and individuals move in response 28 
to local gradients in feeding opportunities. To determine whether the IBM is able to 29 

reproduce the observed north and westward expansion, we record total distribution area, and 30 
predicted centre of gravity in terms of latitude and longitude, over 2005 to 2015. The IBM 31 

successfully predicts an increase in distribution area, and a northward shift in centre of 32 
gravity, over the time series. It also predicts a westward shift in centre of gravity, but to a 33 
much lesser extent than has been observed in surveys and the fishery. The inability of our 34 

IBM to capture the full extent of the westward expansion suggests that it does not account for 35 
all relevant drivers of the NEAM summer distribution.  Going forward we hope that our 36 

model can be: 1) extended to explore additional drivers of the summer distribution (e.g. 37 
currents); and 2) used in a strategic capacity to predict how the NEAM stock may respond to 38 

future climate and management scenarios. 39 
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1. Introduction 43 

Changes in the spatial distribution of fish stocks in relation to jurisdictional boundaries can 44 
complicate the division of catch quotas among nations (Fernö et al. 1998, ICES 2016). One 45 
recent example is that of Northeast Atlantic mackerel (Scomber scombrus, NEAM), a stock 46 
with high economic and ecological importance (Trenkel et al. 2014). The majority of the 47 

NEAM stock spawns to the west of the British Isles in spring, before migrating northwards to 48 
feed in the Nordic seas over summer (Walsh et al. 1995, Uriarte and Luciob 2001). Over 49 
recent years the spawning distribution has shifted gradually northwards, likely in response to 50 
increasing temperature (Hughes et al. 2014, Bruge et al. 2016). The most extreme change in 51 
the NEAM distribution, however, has occurred in the feeding period over summer. 52 

Traditionally, the summer feeding distribution was largely restricted to the Norwegian Sea, 53 
but in recent years it has expanded northwards as far as Svalbard, and westwards as far as 54 
Greenland (Berge et al. 2015, Jansen et al. 2016). This geographical expansion has resulted in 55 
a mismatch between the stock distribution and the historical allocation of catching 56 
opportunities, causing 1) political disputes among coastal states in the region (e.g. 57 

https://www.bbc.co.uk/news/uk-scotland-north-east-orkney-shetland-21385888); and 2) a 58 
lack of agreement on overall catch limits such that exploitation has been significantly in 59 

excess of scientific advice. Better understanding of the mechanisms driving the NEAM 60 
summer expansion would be beneficial from both a scientific and management perspective.  61 

Previous studies have shown that the availability of food is likely a driver of the NEAM 62 
summer distribution (Pacariz et al. 2016, Nikolioudakis et al. 2018, Olafsdottir et al. 2018). 63 
The geographical expansion coincided with roughly a 100% increase in NEAM spawning 64 

stock biomass (SSB) (ICES 2017a), which may have intensified intraspecific competition for 65 
the available food in the traditional feeding area. It has been suggested that the resulting food 66 

limitation may have provided an incentive for the stock to expand north and westwards in 67 
search of better feeding opportunities (Olafsdottir et al. 2018). This hypothesis is supported 68 
by a reduction in growth rate over recent years, as reflected in the metrics weight- and length-69 

at-age (Olafsdottir et al. 2016), likely as a result of competition for food among NEAM 70 

(Jansen and Burns 2015). Another possibility is that there has been a shift in the locations of 71 
the most profitable feeding areas independent of mackerel SSB, i.e. from the bottom-up 72 
(Pacariz et al. 2016). In the latter case the shift in the NEAM distribution may simply reflect 73 

a similar shift in the distribution of the prey field. The relative contributions of these density 74 
dependent and bottom-up drivers to the NEAM geographical expansion are not fully clear. 75 

Recent attempts to investigate the spatial distribution of  NEAM have explored the use of 76 
correlative species distribution models (SDMs, sometimes called habitat suitability models) 77 

(Hughes et al. 2014, Bruge et al. 2016, Nikolioudakis et al. 2018, Olafsdottir et al. 2018). 78 
Correlative SDMs are widely-used for establishing relationships between the environment 79 
and fish distribution (Robinson et al. 2017), but typically provide limited insight into the 80 
underlying mechanisms. It is possible to obtain some mechanistic information using SDMs. 81 
For example, Bruge et al. (2016) fitted two separate SDMs to data on NEAM spawning 82 

distribution. The first model is based on geographical predictors, and the second is used to 83 

determine a thermal niche for spawning activity. By comparing changes in the distribution as 84 

predicted by the first model with changes in the location of the thermal niche, the authors 85 
were able to show that NEAM spawning activity has shifted northwards at least in part due to 86 

ocean warming. There have also been attempts to incorporate mechanisms that underpin 87 
species’ distributions in SDMs, such as dispersal capacities, i.e. the rates at which animals 88 
can move (Holloway et al. 2016), and physiological constraints (Teal et al. 2012, Evans et al. 89 
2015). Despite these advances, however, SDMs are fundamentally correlative and it would 90 
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therefore be useful to develop mechanistic models with which hypotheses can be tested about 91 

how various drivers affect the distribution of fish stocks.  92 

One mechanistic approach that is becoming increasingly popular as a way to predict fish 93 

distribution is with individual-based models (IBMs, also called agent-based models) (e.g. Tu 94 
et al. 2012, Utne and Huse 2012, Utne et al. 2012, Watkins and Rose 2017, Heinänen et al. 95 
2018). In IBMs animal populations are represented by their constituent individuals in real-96 
world mapped landscapes (Uchmanski and Grimm 1996, McLane et al. 2011). The 97 
individuals each have a unique set of characteristics (e.g. size, location), and the landscapes 98 

are characterised by environmental drivers. Detailed models are constructed that describe 99 
how the individuals respond to each other and their local environment, and it is from 100 
simulation of all the individuals that population measures emerge (van der Vaart et al. 2016). 101 
Previously we developed a bioenergetics IBM that predicts NEAM population dynamics 102 
based on the rates at which individuals can acquire and use energy from food in the 103 

environment (Boyd et al. 2018). This IBM is able to predict temporal variation in population 104 

measures (e.g. SSB), but the spatial distribution of the population was largely imposed. For 105 
spatial distribution to become an emergent feature of the IBM, algorithms must be 106 

incorporated that describe how individuals move in response to their environment (Politikos 107 
et al. 2015b, 2015a, Watkins and Rose 2017, Scutt Phillips et al. 2018). 108 

To assess potential mechanisms for the NEAM geographical expansion, we extend our 109 
existing IBM (Boyd et al. 2018) to include four alternative models describing how 110 

individuals move in search of food during summer. Generally, the profitability of an area in 111 
terms of potential feeding opportunities is calculated from sea surface temperature (SST) and 112 
surface phytoplankton biomass, both are which are derived from satellite remote-sensing. The 113 

movement models represent four search mechanisms which differ in: 1) whether or not the 114 
local density of mackerel, and hence competition for food, affects the perceived profitability 115 

of an area; and 2) extent of the area over which individuals can detect the environment. 116 
Competition for food is central to these movement models, so we start by testing whether or 117 
not they can simultaneously fit data on spawning stock biomass (SSB) and weight-at-age. If a 118 

model matches these data, we suggest that, at a given stock size, competition for food is  119 
realistic as reflected in the individual body weights of the fish. We then use data on the 120 
presence/ absence of mackerel in the Nordic seas in July/ August to gauge the relative 121 

abilities of each of the four search mechanisms to reproduce the distribution. Finally, we test 122 
whether the IBM is able to reproduce the observed north and westward expansion. To do this, 123 
we assess how predicted distribution area and the stock’s centre of gravity in terms of latitude 124 
and longitude change over 2005 to 2015.  125 

2. Methods 126 

2.1. Model overview 127 

In this section we first give a brief overview of the previous IBM (Boyd et al. 2018) on which 128 
we build here, followed by the additions made for this paper. For the IBM’s full technical 129 

specification see the “TRAnsparent and Comprehensive model Evauldation” (TRACE) 130 
document in the supplementary material. In section 2 of the TRACE we provide a full model 131 
description in the standard Overview Design concepts and Details (ODD) format (Grimm et 132 
al. 2006).  133 

In broad terms, the model landscape consists of dynamic maps of sea surface temperature 134 
SST and surface phytoplankton density, which we use to represent baseline food availability 135 
(Fig. 1). Both variables are derived from satellite remote-sensing. The modelled fish 136 

population represents the western spawning component of the North East Atlantic mackerel 137 
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stock as defined by the International Council for the Exploration of the Seas (ICES). It should 138 

be noted that, while ICES treat NEAM as comprising isolated spawning units, there is 139 
evidence of straying between the western and North Sea spawning components (Jansen and 140 
Gislason 2013). Before its collapse in the 1970s the North Sea component was substantial 141 
(Jansen 2014). However, over the time period considered in this study, there has been limited 142 

spawning in the North Sea (typically < 5% of spawners) whereas the western component has 143 
remained stable at around 80% of the stock’s total biomass (ICES 2014a, 2014b, 2017b). Fish 144 
are grouped into super-individuals (SI), which comprise a number of individuals with 145 
identical variables (Scheffer et al. 1995). SIs move around the landscape according to their 146 
life cycles (e.g. to spawn, feed and overwinter). Each SI has an energy budget which 147 

determines how its characteristics (e.g. body size, life stage, energy reserves) change in 148 
response to local food availability and SST. Time- and age-varying fishing pressure 149 
determines the rate of mortality from exploitation. Each year a constant number (ncohort) of SIs 150 
are introduced as eggs at spawning time, but the abundance that they represent is determined 151 
by the amount of energy the spawning stock has put into egg production. The amount of 152 

energy that can be allocated to egg production is an emergent feature of the energy budget 153 
and reflects the feeding opportunities available to adults prior to spawning. Abundance 154 

reduces as mortality is applied throughout life. Population measures such as SSB and 155 
recruitment are obtained by summarising the characteristics of all the SIs including their 156 

abundances.  157 

In this paper we focus on the adult feeding period, specifically July and August, so as to 158 

match the available data. After spawning, adults enter the feeding area and begin to actively 159 
seek out the most profitable locations. Profitability is defined as potential ingestion rate in 160 
that area, based on food availability and SST. We further divide this into two assumptions 161 

about what defines a profitable area: one including an effect of competition for food among 162 
the mackerel; and a second that is independent of mackerel density (see section 2.3.3). The 163 

ways in which SIs are directed towards the most profitable areas are modelled with one of a 164 
gradient area search (GAS) or ideal free distribution (IFD) feeding strategy (see section 165 

2.3.4), which contain different assumptions about how much environmental information they 166 
have access to. We combine the assumptions about feeding strategy and density dependence 167 

to generate four possible search mechanisms: a density-dependent (includes competition for 168 
food) gradient area search (GASdd); a density-independent (does not include competition for 169 
food) gradient area search (GASdi); a density-dependent ideal free distribution (IFDdd); and a 170 

density-independent ideal free distribution (IFDdi). See Table 1 for a summary of the 171 
characteristics of each search mechanism and section 2.3 for full details. We then test which 172 

model best matches various mackerel population data.  173 

Table 1. Summary of the characteristics of each search mechanism (movement model). 174 
Competition effect indicates whether or not individuals take conspecific density into account 175 

when assessing a patch’s profitability. Temporal resolution is the frequency at which 176 
individuals’ positions are updated. Environmental information accessible indicates the extent 177 

of the area over which individuals can detect the environment. Space indicates whether the 178 

model works in the continuous or discrete (patch by patch) space of the model grid. 179 

Search 

mechanism 

Competition 

effect? 

Temporal 

resolution 

Environmental 

information 

accessible 

Space 

IFDdd Yes Five-day Area reachable 

in five days 

Discrete 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



IFDdi No Five-day Area reachable 

in five days 

Discrete 

GASdd Yes One-day Neighbouring 

cells 

Continuous 

GASdi No One-day Neighbouring 

cells 

Continuous 

 180 

 181 

Figure 1. Snapshot of the IBM interface on August 1st 2011. Grey patches denote the shelf 182 
edge (cells to the North and West of the British Isles on which 50m < depth < 550m and 183 
latitude < 60.5°N). The red point shows the entrance to the feeding area in the Norwegian Sea 184 
(61.5°N, -4.8°W). Large white fish in the Nordic sea are adults, and the smaller fish to the 185 

west of the British Isles are juveniles. The colour of the landscape corresponds to 186 

phytoplankton density: blue represents low density, then green, yellow and red which 187 

indicates high density. The colour bins are arbitrary.   188 

2.2. State variables and scales 189 

The model landscape comprises a two-dimensional grid of patches of sea surface (Fig. 1). 190 
The spatial extent spans from 47 to 77°N, and from -45° to 20°E. Each patch represents 60 x 191 
60 km (Lambert Azimuthal equal area projection) and is characterised by food density, sea 192 
surface temperature (SST) and mackerel density (g patch-1), from which profitability indices 193 
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are calculated (section 2.3.3). The mackerel population is represented by a constant 4000 SIs; 194 

as ncohort new SIs enter the model at spawning time each year an equal number reach terminal 195 
age (>15 years) and are removed from the model. Each SI is characterised by age, gender, life 196 
stage (egg, yolk-sac larvae, larvae, juvenile or adult), length, mass (structural, lipid and 197 
gonad), abundance and location (see TRACE section 2 for details of initialisation). The 198 

temporal extent spans from January 1st 2005 to December 31st 2015. The model proceeds in 199 
discrete five-day time-steps. 200 

2.3. Model description 201 

For the purposes of this study, key aspects of the model are: 1) the bioenergetics; 2) the 202 
migrations of adult mackerel into and out of the feeding area; 3) the cues used to determine 203 
how profitable each patch is; 4) the feeding strategies used to direct adults to the most 204 

profitable patches; and 5) the coupling of the movement and the bioenergetics. See TRACE 205 
section 2 for a full description of the IBM including the bioenergetics and the pre-adult 206 
phases of the life cycle.  207 

2.3.1. Bioenergetics 208 
Individuals obtain energy from phytoplankton which is used as a proxy for prey availability. 209 
Size-based cannibalism is possible in the IBM, but adults do not overlap with sufficiently 210 

small individuals over summer so it is not relevant here. Ingestion rate is a function of food 211 

density, body surface area, SST and local mackerel density. A proportion of the energy 212 
ingested from food is assimilated and made available to the vital processes maintenance 213 

(metabolic rate), growth, reproduction and energy storage. The rates at which energy is 214 
allocated to these processes depend on temperature and body size. The effect of temperature 215 
on energy acquisition and expenditure is generally given relative to a reference temperature 216 

Tref using an exponential Arrhenius function A(SST), as: 217 

 

𝐴(𝑆𝑆𝑇) = 𝑒

−𝐸𝑎
𝐾

((
1

𝑆𝑆𝑇
)−(

1
𝑇𝑟𝑒𝑓

))

 

(1) 

where Ea is the activation energy, K is Boltzmann’s constant (see TRACE section 2 for a full 218 
list of parameters and section 7 for a local sensitivity analysis). The partitioning of energy to 219 
vital processes depends on an individual’s life stage and time of year. See Sibly et al. 220 
(2013)for an overview, and TRACE section 2 for full details.   221 

2.3.2. Migrations in to and out of the feeding area 222 
The feeding migration of mackerel into the Norwegian Sea coincides with spawning, and 223 
occurs primarily along the European shelf edge to the west of the British Isles (Brunel et al. 224 
2017). We represent the shelf edge with a corridor around the British Isles in which -550m < 225 

depth < -50m and latitude < 60.5⁰ N (Fig. 1). Each patch on the shelf edge is characterised by 226 
its distance D (patches) from the target destination at the entrance to the Norwegian Sea 227 
(61.5°N 4.8°W, red circle in Fig. 1). After spawning (see TRACE section 2 for details), SIs 228 
move north and east along the shelf edge to the patch with the lowest D within their possible 229 
swimming range. An individual’s possible swimming range is calculated from its minimum 230 

swimming velocity Vmin (km hr-1), given as a function of standard body length Ls and the 231 
caudal fin aspect ratio Ar (Sambilay Jr 1990): 232 

 𝑉𝑚𝑖𝑛 = 𝑉0 𝐿𝑠
𝑎𝑣𝐴𝑟

𝑏𝑣 (2) 

where V0 is a normalizing constant, and av and bv are scaling exponents. Velocities are 233 
converted to distance using the appropriate time period, here one time-step of five days. This 234 
algorithm fulfils the needs to: 1) direct SIs from the spawning to feeding areas north and 235 
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eastward along the shelf edge; and 2) for migration rate to increase with body length (Jansen 236 

and Gislason 2011). To prevent all individuals congregating at the same destination patch as 237 
they enter the Norwegian Sea, each individual is forced to stop migrating at a randomly-238 
selected distance from the destination in which D < 5 patches (at this point one of the four 239 
search mechanisms in Table 1 start to direct movement). The return overwintering migration 240 

is simply the reverse of the feeding migration (back towards the entrance to the Norwegian 241 
Sea) and begins on October 1st (see TRACE section 2 for details). 242 

2.3.3. Profitability cues 243 
After reaching their destination in the feeding area, SIs begin to seek out the most profitable 244 
patches on which to feed. The profitability of a patch is defined using one of two cues, each 245 
representing possible ingestion rate with a different assumption about density dependence. 246 
The first cue cdi represents the bottom-up effect of phytoplankton density as a proxy for food 247 
availability, and the effect of SST (Kelvins), in the form of a Holling type 2 functional 248 

response: 249 

 
𝑐𝑑𝑖 = 𝐴(𝑆𝑆𝑇) 

𝑋

𝑋 + ℎ
 

(3) 

where X is phytoplankton density (g m-2) and h is a half saturation constant and A(SST) is an 250 
Arrhenius function (eq. 1). The second cue cdd is similar to cdi but also includes a density-251 

dependent effect of competition for food among the mackerel, according to a Beddington-252 
DeAngelis functional response: 253 

 
𝑐𝑑𝑑 = 𝐴(𝑆𝑆𝑇) 

𝑋

𝑋 + ℎ + 𝑐𝐷
 

(4) 

where D is mackerel density and c determines the strength of the density dependence. It is 254 

important to note that although cdi does not include an effect of mackerel density, an 255 
individual’s ingestion rate is always affected by the competition term, cD, in eq. 4. 256 

Studies using sonar have shown that the prevailing swimming direction of NEAM in summer 257 
is northwards (Nottestad et al. 2016). One possible explanation for this is photoperiod; 258 
mackerel are visual feeders (Pepin et al. 1988) so moving to higher latitudes in summer 259 

would permit extended feeding periods, which is not captured by equations 3 and 4. To 260 
reflect this, we up-weight the values of cdi and cdd on patches north of an individual’s current 261 
position by a factor photoeffect (i.e. we include an implicit effect of photoperiod on patch 262 
profitability). For each search mechanism we test three values of photoeffect: 1 (i.e. no effect 263 
of photoperiod), 1.25 and 1.5. We adopt the value for each search mechanism that maximises 264 

its ability to match the occurrence data in Fig. 4. See TRACE section 7 for full details and for 265 
the sensitivities of predicted distribution to photoeffect. 266 

2.3.4. Feeding strategies 267 
The ways in which SIs seek out the most profitable feeding patches are modelled with one of 268 
an ideal free distribution (IFD) or gradient area search (GAS) feeding strategy, outlined 269 
below. 270 

Ideal free distribution: in the IFD feeding strategy we assume that SIs can detect the 271 
environment in all patches within their five-day search area. This implies the use of 272 
predictive orientation, i.e. where individuals orientate towards areas that are predicted to be 273 
optimal, without necessarily using information in the near-field (Fernö et al. 1998). A five-274 
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day search area was chosen to match the model time-step. The radius of an individual’s 275 

search area is calculated from its realised swimming velocity Vr, given as Vr = Vmin + (Vmin 276 
ε), where ε is drawn randomly from a uniform distribution over the range 0 to 1, and Vmin is 277 
minimum swimming velocity (eq. 2). This algorithm produces realised swimming velocities 278 
in the range 1.85 to 4.42 km hour-1 (assuming body lengths in the range 30 to 40 cm). This is 279 

similar to swimming speeds observed in the Norwegian Sea over summer using sonar. Godø 280 
et al. (2004) observed the majority of NEAM schools to be swimming between 0 and 3.6 km 281 
hour-1, but with many swimming considerably faster. In a laboratory setting a maximum 282 
sustained speed of 4.41 km hour-1 was observed for a 35 cm fish (He and Wardle 1988, cited 283 
by Walsh et al. 1995). The IFD sub-model works in discrete space on a patch by patch basis: 284 

SIs simply move each time-step to the most profitable patch within their search area and on 285 
which SST ≥ the lower boundary (7⁰ C) below which mackerel avoid (Olafsdottir et al. 286 
2018). 287 

Gradient area search: the GAS feeding strategy is broadly similar to that presented by 288 

Politikos et al. (2015) and Tu et al. (2012). It differs from the IFD in three keys ways: 1) SIs 289 
can detect the profitability of the four neighbouring patches in x and y dimensions only, 290 

meaning they have access to considerably less environmental information than in the IFD; 2) 291 
the GAS model works in the continuous space of the model grid; and 3) SI’s locations are 292 
updated more frequently at five times per time-step (i.e. once per day), to ensure that they 293 
cannot overshoot the neighbouring patch. Positions in x and y dimensions are updated by: 294 

 𝑥𝑡+1 = 𝑥𝑡 + (𝐷𝑥 + 𝑅𝑥)  

𝑦𝑡+1 = 𝑦𝑡 + (𝐷𝑦 + 𝑅𝑦)  

 

(5) 

where Dx and Dy are the directed search part of the equation, and Rx and Ry are the random 295 
components. 296 

In the orientated part of eq. (5) Dx, Dy, SIs compare the profitability at their current location 297 
with that of the day before. If it has become more profitable, they will continue to swim in the 298 
same direction as the oriented part of their movement the day before. If a SI’s current 299 

environment is less profitable than the day before, they follow a gradient search towards what 300 
is perceived to be the most profitable patch based on information in x and y dimensions, at 301 

velocity Vr (see ideal free distribution in section 2.3.4), given by: 302 

 𝐷𝑥 = 𝑉𝑟   
𝑐𝑥

√𝑐𝑥
2 + 𝑐𝑦

2
 

𝐷𝑦 = 𝑉𝑟   
𝑐𝑦

√𝑐𝑥
2 + 𝑐𝑦

2
 

 

(6) 

where cx and cy are the gradients of the profitability cues (eq. 3, 4) in x and y dimensions. 303 

This amounts to what is called a state-location orientation mechanism (basing new orientation 304 
on a comparison of the current and previous environment), and there is some indication that 305 

herring follow a similar strategy in the Norwegian sea (Fernö et al. 1998). Following 306 
Politikos et al. (2015a) we assume that movement is directed (Dx, Dy) for 12 hours day-1, and 307 
movement in the other 12 hours follows the random component of eq. 5 Rx, Ry, which we 308 
give as swimming at velocity Vmin in a random direction. This assumption introduces 309 
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stochasticity into the GAS models and prevents unrealistic overcrowding on optimal patches 310 

(particularly in the GASdi model in which competition is not accounted for). 311 

As with the IFD, we prevent SIs from moving into patches with intolerably low temperature. 312 

In the oriented part of eq. 5, we repel individuals from patches with SST < 7°C by setting 313 
profitability cues in those areas to 0. For the random component of eq. 5, if a SI’s orientation 314 
would direct it on to a patch with SST < 7°C, its heading is reversed.    315 

2.3.5. Movement-bioenergetics coupling  316 
The energy cost of searching for food is subsumed into an individual’s active metabolic rate 317 
AMR. AMR is given as a function of SST, body mass M and swimming velocity V as: 318 

 𝐴𝑀𝑅 = 𝑎𝐴𝑀𝑅 𝑀𝑏𝐴𝑀𝑅  𝑉𝑐𝐴𝑀𝑅  𝐴(𝑆𝑆𝑇) (7) 

where aAMR is a normalizing constant, bAMR and cAMR are scaling exponents, and V is given 319 
by V = (Vr + Vmin) / 2, i.e. assuming that half of each day is spent at Vmin, and half at Vr.  320 

2.4. Model simulations 321 

The model simulates the full life cycle of the mackerel population from January 1st 2005 to 322 
December 31st 2015. In this paper we focus on the summer feeding period in each year, and 323 
model the ways in which individual adults move in search of the best feeding opportunities. 324 

This is represented by one of four search mechanisms spanning each combination of 325 
profitability cue and feeding strategy (e.g. IFDdd, IFDdi, GASdd, GASdi). Simulations are 326 
forced by fishing mortality F at age, phytoplankton density X and SST. F is updated every 327 

year. Maps of X and SST represent ten-day composites and are updated accordingly.  328 

For the purposes of this paper, outputs that are recorded annually include: SSB at spawning 329 
time (May 1st), mean weight-at-age in summer (August 1st), whether or not mackerel were 330 

present on each patch in July or August, and mean mackerel density on each patch over July/ 331 

August. From these measures we calculate total summer distribution area as the sum of the 332 

areas of patches on which mackerel was present, and the centre of gravity of the stock in 333 
terms of latitude (COGy) and longitude (COGx). As we have changed our IBM structurally 334 

since Boyd et al. (2018), we provide updated model fits to separate data on various aspects of 335 
the population structure in TRACE section 9. The times at which outputs are recorded were 336 
chosen to match the available data as closely as possible. 337 

2.5. Data 338 

Input data includes F (day-1), and maps of phytoplankton density X (g m-2) and SST (kelvins). 339 

F comes from the stock assessment as age-specific rates that vary annually, and are applied 340 
each day to the appropriate age group. X and SST were derived from data from the MODIS 341 
sensor on NASA’s Aqua satellite (NASA OBPG 2017a, 2017b). Ten-day composites are used 342 
at a spatial resolution of 60 x 60 km. The satellite remote-sensing data required processing for 343 

use as model input (e.g. re-gridding and interpolations), the details of which can be found in 344 
TRACE section 3. 345 

The model was calibrated with estimates of SSB (spawning time) from the 2017 NEA 346 

mackerel stock assessment, and mean weight-at-ages 3 and 13 in the summers of 2007 and 347 
2010-2015 from the International ecosystem survey in the Nordic Seas (IESSNS) (see 348 
Nøttestad et al (2015) for full details of the data). We scale the SSB data by a factor of 0.8 to 349 
reflect the fact that we only represent the stock’s western spawning component which 350 
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comprises ~ 80% of its total biomass. We calibrated the IBM with data on SSB and weight-351 

at-age because its ability to fit them simultaneously would indicate that competition for food 352 
at a given stock size is realistic as reflected in the body weights of the fish. This is important 353 
because density dependence is a key feature of the movement sub-models. Full details of the 354 
data are provided in TRACE section 3. 355 

To validate the model we used data from the IESSNS on the presence/ absence of mackerel in 356 
the Nordic seas in July/ August of 2007 and 2010 to 2015 (see Nøttestad et al. (2015) for 357 
details). We approximated these data from Fig. 2 of Olafsdottir et al. (2018) using Java’s 358 

PlotDigitizer (http://plotdigitizer.sourceforge.net/).  359 

2.6. Model calibration 360 

For each search mechanism (IFDdd etc.) we calibrated three parameters: background early 361 
mortality Me (natural mortality rate for eggs and larvae excluding explicit cannibalism in the 362 
IBM), strength of the density dependence (c) and the half saturation constant (h). We 363 
estimated the parameters by fitting the model to the calibration data (see data) using rejection 364 

approximate Bayesian computation (ABC) (van der Vaart et al. 2015). In broad terms, we ran 365 
1000 simulations for each search mechanism, while randomly sampling values of the three 366 
parameters from uniform prior distributions. We then “accepted” the parameters that 367 

minimised the sum of the squared deviations of the model outputs from the data. See TRACE 368 

section 3 for full details. 369 

2.7. Search mechanism model selection 370 

To determine which search mechanism was best able to reproduce the mackerel summer 371 

distribution, we compared their predictions of presence/ absence to the data in Fig. 4. First, 372 
we assessed the fits of each model by testing for an association between their predictions and 373 

the data with a chi square test. We then further quantified the performance of each sub-model 374 
using standard statistics for binary data: sensitivity, i.e. the proportion of observed presences 375 
correctly classified; specificity, i.e. the proportion of observed absences correctly classified; 376 

and the distance to the top left corner on a plot of sensitivity as a function of 1 – specificity 377 

(Fig. 5), d(0, 1), chosen because this point (0, 1) corresponds to a perfectly classified model 378 

(sensitivity and specificity of 1) (Cantor et al. 1999, Liu et al. 2005). We include the measure 379 
d(0, 1) instead of, for example, an overall accuracy rate, because it is robust to disparity in the 380 

prevalence of presences and absences which is high in these data (~82% presences). When 381 
comparing predictions of a continuous distribution (here density) to data on presence/ 382 
absence it is useful to determine a threshold representing the minimum density that should be 383 
considered a presence, with everything below this density being classified as an absence. We 384 

optimised a threshold density for each search mechanism using the measure d(0,1) as a cost 385 
function (Cantor et al. 1999, Liu et al. 2005). See TRACE section 7 for full details and 386 
presence thresholds. By pooling the data for all years in our analysis we give extra weight to 387 
years with greater sampling effort, which we consider appropriate.    388 

2.8. Change in predicted distribution over 2005 to 2015 389 

To test whether our IBM can reproduce the observed north and westward expansion of 390 

NEAM over summer, we record total distribution area, COGx (⁰ W) and COGy (⁰ N) over 391 
July/ August of 2005 to 2015. We regress each summary statistic on simulation year and if 392 

the slopes are positive significant, then we consider the search mechanism able to reproduce 393 
the expansion. 394 
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3. Results 395 

3.1. Model calibration 396 

In order to test each model’s ability to represent the effects of competition for food, we fitted 397 
them to available data on SSB and weight-at-ages 3-13 over 2005 to 2015 (Figs. 2, 3; see 398 
TRACE section 3 for estimated parameter values). We suggest that if a sub-model can 399 

simultaneously match these data, then competition for food at a given SSB is sufficiently 400 
realistic. SSB generally shows an increasing trend over the calibration period (Fig. 2), so we 401 
also present model predictions in 2016 and 2017 to show that the IBM predictions do not 402 
simply continue to rise. To quantify the goodness of fits to the data (including 2016 and 403 
2017), we used three commonly-used diagnostics for each variable: the correlation coefficient 404 

r; the root mean square error (RMSE); and the bias (Edwards et al. 2012, Formenti et al. 405 
2015). Overall we suggest that each model can fit data on both SSB and weight-at-age 406 
reasonably well. The search mechanisms produce similar trajectories for SSB. From 2011 the 407 
IFDdd model diverges slightly from the other models because individuals have better feeding 408 

opportunities which is reflected in higher SSB. SSB is generally matched well, with r being ≥ 409 
0.84 (p < 0.0003) and RMSE < 0.51 million tonnes in all cases (Table 1). For weight-at-age 410 

the correlations are lower than for SSB (0.36 to 0.50), but the overall biases are small at ≤ 411 
10.81 g (Table 1). With all search mechanisms the IBM is able to capture the general 412 
downward trend in weight-at-age (Fig. 3). However, for ages seven and below, the IFD 413 
models are unable to predict the increase in weight-at-age observed near the end of the time 414 

series.  415 
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Figure 2. Predicted SSB from each feeding sub-model compared with estimates from the 418 

stock assessment. Values represent means over ten simulations. Note that the IBM was fitted 419 
to the data over the period 2005 to 2015 (red circles) and not to the data in 2016 or 2017 (red 420 
crosses). 421 

 422 

 423 

Figure 3. Predicted mean weight-at-ages 3-13 in summer from each feeding sub-model 424 
compared with data from the International Ecosystem Survey in the Nordic Seas (IESSNS). 425 
Values represent means over five simulations. Note that the model was fitted the data over 426 
2007 to 2015, and not to the data in 2016 or 2017 (red crosses). 427 

Table 1. The goodness of fit between predicted and observed SSB and weight-at-age for each 428 
sub-model. For weight at age we present the mean r over all age groups, and RMSE and bias 429 

are aggregated over all age groups. All diagnostics are based on means over ten simulations. 430 
Units are in millions of tonnes for SSB, and grams for weight-at-age. 431 

Model SSB  Weight-at-age 

r RMSE Bias  Mean r RMSE Bias 

GASdd 0.87 0.46 -0.03 0.46 40.32 -1.75 

GASdi 0.84 0.46 0.14 0.36 43.48 -10.81 

IFDdd 0.91 0.51 -0.15 0.50 55.30 -0.67 

IFDdi 0.89 0.35 0.13 0.54 48.57 -4.70 

 432 

 433 

3.2. Search mechanism model selection 434 

To determine which search mechanism is best able to reproduce the NEAM summer 435 

distribution we compared their predictions to data on presence/ absence in the Nordic Seas. A 436 
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threshold was optimised for each search mechanism representing the minimum density that 437 

should be classed as a presence (see TRACE section 7). Predictions obtained from all search 438 
mechanisms are all significantly related to the data (Chi square, p < 0.01). The GAS models 439 
produce similar results in terms of sensitivity, specificity and hence d(0,1) (Table 2, Fig. 5). 440 
The IFD models, on the hand, produce very different results. The IFDdd shows reasonably 441 

good sensitivity and specificity (0.61 and 0.67, respectively). The IFDdi search mechanism 442 
has a high specificity, but a very low sensitivity (discussed in section 4). The measure d(0,1) 443 
suggests that the GAS models, in particular the GASdd, are best able to reproduce the NEAM 444 
summer distribution and should be used in future work. 445 

 446 

 447 

Figure 4. Data from the IESSNS survey (approximated from Olafsdottir et al. (2018)) on 448 
presence (obs. presence) and absence (obs. absence) of mackerel in the Nordic seas over July/ 449 
August. We also show simulated presence (pred. presence) and absence (pred. absence) as 450 
predicted by the GASdd search mechanism. It should be noted that predicted presence is 451 

obtained after optimising a threshold density below which an area is classed as an absence. 452 
This means that the areas of low density on the fringes of the distribution (e.g. in the western 453 
area) are not shown as presences here. The numbers on each panel indicate the proportion of 454 
data points in each year for which the model correctly predicted whether or not mackerel was 455 

present.  456 
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 458 

Figure 5. Sensitivity plotted against 1- specificity (loss of specificity) for each search 459 
mechanism’s predictions of mackerel presence/ absence in July/ August. Curves represent 460 

varying density thresholds (above which an area is classed as a presence) over the range 0 to 461 

30% of maximum predicted density in each search mechanism. A model at point 0, 1 (black 462 
cross) would have perfect sensitivity and specificity. Values are derived from means over10 463 
simulations. 464 

Table 2. Statistics indicating the ability of each sub-model to reproduce the data on presence/ 465 
absence of mackerel in Fig. 4. d(0,1) is the distance of each model to point 0,1 466 
(corresponding to a perfectly sensitive and specific model) on Fig. 5. Better models achieve 467 
lower values of d(0,1). Values are derived from means over ten simulations after optimising 468 
the threshold density for what defines a presence.  469 

Model Sensitivity Specificity d(0,1) 

GASdd
 0.69 0.70 0.44 

GASdi
 0.67 0.70 0.45 

IFDdd
 0.61 0.67 0.52 

IFDdi 0.15 0.95 0.85 

 470 

3.3. Predicted expansion 471 

To test how predicted mackerel summer distribution changes through time, we recorded three 472 
summary statistics in each year: total distribution area, COGx, and COGy. For these 473 
simulations we used the best-performing GASdd search mechanism (Fig. 5), but also the 474 
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IFDdd as inspection of the outputs suggested that the latter was better able to capture the 475 

western extent of the distribution (the IFDdi and GASdi models were not). For both search 476 
mechanisms we regressed distribution area, COGx and COGy on simulation year, and all of 477 
the slopes were positive and significant (p < 0.05). This shows that the models are in 478 
agreement with the general consensus that the stock’s distribution area increases through 479 

time, and that its centre of gravity shifts north and westwards (Fig. 6).  480 

To explore possible differences in the distribution changes predicted by the GASdd and IFDdd 481 
search mechanisms, we compared their predictions of distribution area, COGx and COGy. For 482 

each summary statistic, the rates of change are similar between search mechanisms (Fig. 6). 483 
This is indicated by a lack of interaction effects between search mechanism and simulation 484 
year (i.e. the slopes are not significantly different; ANCOVA, p > 0.05). There is an effect of 485 
search mechanism on COGy (p < 0.05) which indicates that, although the slopes are similar, 486 
there is a significant difference in y intercepts between models (Fig. 6c). This can be 487 

explained by the fact that, while the cores of the distributions predicted by the two models are 488 

similar (Norwegian Sea and around Iceland; Figs 7 and 8), the GASdd model generally 489 
predicts a more northerly distribution than the IFDdd. It should be noted that an increase in 490 

distribution area with stock size is expected due the competition term, cD, in equation 4. 491 

  492 

Figure 6. Comparisons of a) distribution area, b) centre of gravity in terms of longitude COGx 493 
and c) centre of gravity in terms of latitude COGy as predicted by the GASdd (grey circles) 494 
and IFDdd (black circles) search mechanisms. 495 

NEAM density in in July/ August of each year is presented for the GASdd and IFDdd search 496 
mechanisms in figs 7 and 8, respectively. Generally the models agree on the areas of highest 497 
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density such as the Norwegian Sea and around Iceland. The models also both produce a 498 

similar boundary at the northern limit of the distribution around the position of the 7⁰ C 499 
isotherm (north of which mackerel avoid). This boundary is particularly evident to the 500 
northwest of Iceland where the cool East Greenland Current flows south. The key differences 501 
between the models are that the IFDdd produces a patchier distribution, but is better able to 502 

capture the western extent of the distribution as observed in the IESSNS (e.g. high densities 503 
west of Iceland; fig. 4; discussed in section 4).  504 

 505 

Figure 7. Mackerel density (g patch-1) in the summer of each year on a log10 scale as 506 
predicted by the GASdd search mechanism. Values represent means over July/ August, and 507 
over ten simulations. Note that predictions here do not correspond exactly to those in fig. 4 508 

where areas of low density (e.g. the fringes of the distribution here) are classed as absences.  509 
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 510 

Figure 8. Mackerel density (g patch-1) in the summer of each year on a log10 scale as 511 
predicted by the IFDdd search mechanism. Values represent means over July/ August, and 512 

over ten simulations.  513 

4. Discussion 514 

We have coupled an existing bioenergetics IBM to models describing how mackerel move in 515 
search of food during summer. The models contain alternative assumptions about: 1) whether 516 

or not mackerel density, and hence competition for food, affect the perceived profitability of 517 

an area; and 2) the extent of the area over which individuals can detect the environment. 518 
After comparing the outputs of each sub-model to data on SSB, weight-at-age and mackerel 519 
occurrence, we suggest that a gradient area search feeding strategy, in which competition for 520 
food affects the perceived profitability of an area, and SIs can detect the environment in the 521 
near field only, performs best. We then tested whether or not the IBM is able to reproduce the 522 

observed north and westward expansion. With the best-performing search mechanism the 523 
IBM is able to reproduce the change in distribution, as indicated by an increase in distribution 524 
area and a north and westward shift in centre of gravity. However, the IBM is not able to 525 
capture the full extent of the expansion in the western direction. 526 

Selecting the best search mechanism based on the occurrence data was not straightforward. 527 

Initially we looked at the sensitivities and specificities of each search mechanism while 528 

assuming that patches with mean density > 0 represent a presence. The GAS models 529 
performed poorly under this assumption because, due to inclusion of stochastic movements, 530 
they predict that a small number of individuals end up on sub-optimal patches. This was 531 
reflected by high “false positive” rates and specificities of < 40%. However, when the 532 
threshold defining the minimum density that constitutes a presence is optimised, the GAS 533 
feeding strategy performs best. This is because patches with very low density (but > 0) no 534 
longer count as presences a hence the false positive rates of the GAS models are reduced. 535 
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Once the density thresholds are optimised we suggest that the GAS models are best and 536 

should be used in future work.  537 

In Table 2 it can be seen that the GAS models perform similarly in terms of sensitivity and 538 

specificity, but the IFD models are very different. This reflects the different assumptions 539 
made in the feeding strategies. In the GAS models individuals can only detect the 540 
environment in neighbouring patches, and there is a stochastic component to their movement. 541 
As such under this feeding strategy individuals are less likely to locate optimal patches, and if 542 
they do it is possible that the random movement will displace them. On the other hand, in the 543 

IFD feeding strategy individuals can detect the environment over a much larger area, and 544 
there is less stochasticity in their movements. As a result, individuals are more likely to locate 545 
and move to optimal patches and are less likely to leave. This means that density dependence 546 
becomes very important in the IFD search mechanism. In the IFDdd patches become 547 
increasingly unattractive as mackerel density increases, causing individuals to spread out. In 548 

the IFDdi, however, individuals do not account for local mackerel density; they congregate on 549 

patches with high phytoplankton density and of suitable temperature regardless of 550 
competition for the food. This is reflected in a very patch distribution, high “miss rates” and 551 

hence low specificity.  552 

The relative abilities of the GAS and IFD search mechanisms to match data on NEAM 553 

presence/ absence give insight into the possible ways in which mackerel seek out the best 554 
feeding opportunities. In the GAS search mechanism, the directed search component of 555 

movement is based solely on a reactive mechanism, i.e. a near-field response to gradients in 556 
the profitability cues. In this feeding strategy, individuals are directed to locally-optimal 557 
areas, but often do not reach the most profitable areas which can be further afield (e.g. in the 558 

western expansion area). On the other hand, in our IFD sub-model individuals can access 559 
information about the environment over a much larger area, and, at least in the IFDdd 560 

formulation, tend to reach more profitable areas. The IFD implies at least some use of a 561 
predictive orientation mechanisms, i.e. where individuals orientate towards areas in which the 562 
environment is predicted to be optimal, without following gradients in the near-field (Fernö et 563 

al. 1998). Our results suggest that a simple gradient search based on reactive as opposed to 564 
predictive orientation is best able to reproduce the mackerel distribution (Table 2, Fig. 5). 565 
This is supported by observations using sonar which indicate that NEAM swimming direction 566 

over summer is variable, suggesting reactions to food in the near field (Nottestad et al. 2016).  567 

Our use of two feeding strategies with distinct assumptions about knowledge of the 568 

environment does not account for the possibility that NEAM may use a combination of both 569 
predictive and reactive orientation mechanisms. Nottestad et al. (2016) suggest that mackerel 570 

may use some directional cue to reach areas where feeding is predicted to be best, but react to 571 
local feeding opportunities along the way. An interesting possibility is that currents provide a 572 
directional cue (Nottestad et al. 2016). The North Atlantic Current enters the Nordic seas 573 

from the south. It branches into the Norwegian current, which flows Northwards into the 574 
Norwegian Sea, and the Irminger Current, which generally flows North and Westwards from 575 

the south of Iceland towards Greenland (Wanamaker et al.2012; 576 

https://oceancurrents.rsmas.miami.edu/atlantic/north-atlantic.html). These currents are 577 

generally in line with the prevailing direction of the mackerel feeding migration, and could be 578 
used as a cue on which to base predictive orientation until they arrive at suitable feeding 579 
locations (i.e. areas of high prey density). In addition to the feeding migration, it has been 580 
suggested that S.scombrus use currents for navigation at other times of year. For example, in 581 
the Northwest Atlantic mackerel may use tidal streams to reach their spawning grounds 582 
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(Castonguay and Gilbert 1995). In future it may be possible to extend our IBM and include 583 

currents explicitly (see e.g. Scutt Phillips et al. (2018)). 584 

Our GASdd model is in general agreement with the consensus that the summer distribution of 585 

Northeast Atlantic mackerel has shown a recent north and westward expansion (Berge et al. 586 
2015, Nøttestad et al. 2015, Pacariz et al. 2016, Olafsdottir et al. 2018) (Fig. 6). It does, 587 
however, considerably under-predict the extent of the expansion in the western direction (Fig. 588 
4). This could be explained by several factors. First, there is the possibility that NEAM use 589 
both reactive and predictive orientation (possibly based on currents) in order to navigate 590 

towards the most productive feeding grounds. In the IFDdd search mechanism, which is based 591 
on predictive orientation, individuals inhabit areas west of Iceland in large densities (Fig. 8). 592 
Second, our IBM does not include any competing species. It would be difficult to extend our 593 
highly detailed approach from a single to multiple species (e.g. specifying bioenergetics and 594 
movement models for the full ontogeny of multiple species). Omission of competing species 595 

may be problematic, however, as it is not possible to account for the food limitation arising 596 

from interspecific competition which could force the mackerel into fringe areas. Indeed, there 597 
is high diet overlap between herring and mackerel in the Nordic seas (Bachiller et al. 2016), 598 

although species distribution modelling suggests that the two species can successfully cohabit 599 
(Nikolioudakis et al. 2018). Third, we use chlorophyll as a proxy for food availability. We 600 
use this data because it is available with greater coverage, spatial and temporal resolutions 601 
than that available for zooplankton. This does, however, leave our model vulnerable to the 602 

usual assumptions associated with extrapolating from primary to secondary production such 603 
as possible lag times between peaks of phyto- and zooplankton. In all, due to data and 604 

technical constraints, our results are limited to the effect of mackerel SSB, temperature and a 605 
proxy for food availability, and should be viewed as such.    606 

Much of the variation in the summer distribution of mackerel appears to be explained by 607 

three main factors: a bottom-up effect of prey distribution; a density-dependent effect of 608 
mackerel stock size; and the effects of temperature (Pacariz et al. 2016, Nikolioudakis et al. 609 
2018, Olafsdottir et al. 2018). We have incorporated these drivers into a mechanistic IBM 610 

which also explicitly accounts for movement behaviour. The IBM is able to match data on 611 
NEAM occurrence in the Nordic Seas over 2007 to 2015 reasonably well (Fig. 4). It is also 612 
able to produce a north and westward expansion (Fig. 6), although, interestingly, it fails to 613 

capture the extent of the observed expansion in the western direction. Despite performing 614 
reasonably well, it should be kept in mind that our IBM has only been validated using 615 
presence/ absence data. Moreover, the IESSNS survey in which this data was collected has 616 
variable spatial coverage between years, with greater coverage in more recent years 617 
(Nøttestad et al. 2015). The time-series is also relatively short at present as data are not 618 

available for the years 2008 and 2009 (Olafsdottir et al. 2018). As more data become 619 
available (in particular catch per unit effort) we plan to further validate our IBM.   620 

The inclusion of environmentally-driven movement represents a significant improvement to 621 
the initial version of our IBM (Boyd et al. 2018). The model is now able to make predictions 622 

about both the spatial distribution of the mackerel stock and its population dynamics (though 623 

further validation, testing, and possibly development, is needed to ensure its predictive 624 

power). Other bioenergetics IBMs have been applied to the summer feeding distribution of 625 
Atlantic mackerel (Utne and Huse 2012, Heinänen et al. 2018). However, our model differs 626 
in that it is multi-generational and includes the full life cycle, i.e. what happens outside of the 627 
feeding period. This is important because distribution at one point in time is affected by both 628 
what has gone before and the need to close the life cycle (Payne et al. 2017). For example, in 629 
our model the production of a very strong year class could lead to an increase in SSB, which 630 
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would then have knock-on effects for the stock’s distribution. It should be noted, however, 631 

that in our model movement outside of the feeding period is still to some extent hard-wired. 632 
In future the model could be extended to predict NEAM distribution at other times of year. 633 
For example, it may be possible to use the GAS model presented here to predict NEAM 634 
spawning distribution. The only difference would be that profitability would be some 635 

measure of habitat suitability for egg development as opposed to adult feeding opportunities. 636 
Data on egg distribution from the mackerel and horse mackerel egg survey (ICES 2013) 637 
could be used to validate the model. By modifying the movement models presented here and 638 
validating them with data on NEAM distribution outside of the feeding period, spatial 639 
distribution at other times of year could become a fully-emergent feature of the IBM.  640 

Going forward we plan to use our IBM in a strategic capacity. For example, it could be used 641 
to project possible consequences of different environmental and management scenarios for 642 
NEAM. Forecasts of SST and chlorophyll, the environmental inputs needed for our model, 643 

are available under different anthropogenic emissions scenarios from several earth system 644 

models (ESMs). The outputs of ESMs are already being used as forcing for ecosystem and 645 
fisheries models as part of the fisheries and marine ecosystem model inter-comparison project 646 

(Lotze et al. 2018, Tittensor et al. 2018). As for management scenarios, our model is able to 647 
look at the effects of both spatial and temporal measures. Projections of how temporal 648 
management measures (e.g. catch limits) will affect fish stocks are already commonplace in 649 
tactical management (see ICES 2018 for NEAM catch scenarios). Predicting the likely effects 650 

of spatial management measures is, however, more difficult. Because our model is spatially-651 
explicit, and predicts the geographical distribution of the mackerel population, it should be 652 

able to capture the local effects of spatial measures on the appropriate subset of the 653 
population. For these reasons we think that our model could be used to make predictions 654 
about how changes in environmental and spatial harvesting scenarios may affect the stock. 655 
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