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The Nutrition Society Spring Meeting was held at Abertay University, Scotland on 1–2 April 2019

Conference on ‘Inter-individual differences in the nutrition response: from research to
recommendations’

Symposium 1: The effects of ethnicity on nutrient availability and disease

A nutrigenetics approach to study the impact of genetic and lifestyle
factors on cardiometabolic traits in various ethnic groups: findings from

the GeNuIne Collaboration

Karani S. Vimaleswaran
Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular

and Metabolic Research, University of Reading, Reading, UK

Several studies on gene–diet interactions (nutrigenetics) have been performed in western
populations; however, there are only a few studies to date in lower middle-income countries
(LMIC). A large-scale collaborative project called gene–nutrient interactions (GeNuIne)
Collaboration, the main objective of which is to investigate the effect of GeNuIne on cardi-
ometabolic traits using population-based studies from various ethnic groups, has been
initiated at the University of Reading, UK. While South Asians with higher genetic risk
score (GRS) showed a higher risk of obesity in response to a high-carbohydrate diet,
South East and Western Asian populations with higher GRS showed an increased risk of
central obesity in response to a high-protein diet. The paper also provides a summary of
other gene–diet interaction analyses that were performed in LMIC as part of this collabora-
tive project and gives an overview of how these nutrigenetic findings can be translated to
personalised and public health approaches for the prevention of cardiometabolic diseases
such as obesity, type 2 diabetes and CVD.

Nutrigenetics: Cardiometabolic traits: Obesity: Diabetes: GeNuIne Collaboration

In the past decade, the prevalence of cardiometabolic
diseases such as obesity, diabetes and CVD have
increased dramatically in both industrialised countries
and developing countries with emerging economies(1–4).
Cardiometabolic diseases are caused generally by the
interaction of lifestyle factors and genetic susceptibil-
ity(5–7). Dietary factors play an important role in the
development of obesity, diabetes and CVD. Studies
have shown that under-nutrition during the perinatal
period can lead to an 85 % reduction in expression of
brown fat biomarkers and genes involved in the citric
acid cycle and fatty acid oxidation(8), providing evi-
dence for gene–diet interactions (i.e. nutrigenetics) on
cardiometabolic diseases. Although several studies
have examined the interactions between genes and

dietary intake on cardiometabolic traits, the findings
have been inconsistent because of two main challenges:
(i) genetic heterogeneity, which is the systematic differ-
ences in the allele frequencies across various ethnic
groups and (ii) insufficient sample size, and hence, it
is unable to develop a personalised diet for each ances-
tral population without reliable information on gene–
diet interactions.

Obesity can predispose individuals to several diseases
including type 2 diabetes and CVD(10–12). Furthermore,
central obesity has shown to be associated with
increased risk of mortality compared to common obes-
ity(13). Obesity is a multifactorial condition caused by a
complex interplay between environmental (unhealthy
diet and physical inactivity) and genetic factors (genetic
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susceptibility)(5). Candidate gene and genome-wide
association studies have identified several common
SNP associated with obesity(5,14–17). Of these, the fat
mass and obesity-associated gene (FTO) variants were
found to be consistently associated with obesity traits
in various populations and have been the strongest
common genetic predictor of obesity known so
far(5,14,18,19). To date, FTO has shown the strongest
association with BMI, where the FTO SNP increased
the risk of obesity 1·20–1·32-fold in Europeans(20) and
1·25-fold in Asians(21). A recent meta-analysis of data
from eight Indian studies showed that the FTO variant,
rs9939609, increased the risk of obesity 1·15 times,
which is equivalent to BMI increase by 0·30 kg/m2

per effect allele(19). Likewise, candidate gene and
genome-wide association studies have shown the tran-
scription factor 7-like 2 (TCF7L2) gene as the strongest
candidate for type 2 diabetes(22–24). Besides FTO and
TCF7L2, there are other genes/SNP, which have also
been shown to be associated with obesity and other car-
diometabolic diseases such as CVD and type 2 diabetes
in various populations(14,18,20,25).

Several studies in European populations have shown
that physical activity and dietary intake may modify
the association of SNP with cardiometabolic disease-
related traits(26–29). Increased physical activity levels
have been shown to attenuate the effect of genetic var-
iants (such as FTO and NOS3) on cardiometabolic traits
in several populations(27,28,30,31); however, gene–diet
interactions have shown conflicting results(29,32–34)

which could be attributed to genetic heterogeneity and
various dietary factors (macronutrients and micronutri-
ents). Given that the genetic make-up varies from one
ethnic group to another, it is important to explore
gene–diet interactions in multiple ethnicities, which
will enable us to personalise diet according to each eth-
nic group. To address all these issues, the Gene–Nutrient
Interactions (GeNuIne) Collaboration(9) has been
initiated to investigate the effect of GeNuIne on cardio-
metabolic disease-related traits using population-based
studies from various ethnic groups in in lower-middle
income countries (LMIC).

Role of the British Nutrition Foundation in GeNuIne
Collaboration

The British Nutrition Foundation provided the start-up
funds to initiate the GeNuIne Collaboration(9), where
the funds were used to undertake the pilot work
required to generate data that can be used for conduct-
ing a large-scale study. The British Council Researcher
Links travel grants obtained to establish collaborations
with researchers in LMIC such as India, Brazil,
Morocco, Turkey, Thailand, Sri Lanka, Indonesia and
Pakistan. Although GeNuIne have been examined
extensively in the western population, very few studies
have been carried out in the LMIC and, hence, the
GeNuIne Collaboration has been established to address
this missing gap in human subjects’ nutrition in these
countries.

Findings from GeNuIne Collaboration

Nutrigenetic studies in South Asia

After China, India has the highest number of people with
type 2 diabetes in the world and the Indian Council of
Medical Research–INdia DIABetes study has shown
that type 2 diabetes cases have reached 62·4 million and
77·2 million people are pre-diabetic(35). Asian Indians
have unique clinical and biochemical characteristics that
are collectively referred to as the South Asian phenotype
(higher waist circumference, higher levels of total and vis-
ceral fat, hyper-insulinaemia, insulin resistance, and a
greater predisposition to diabetes)(36,37), which confers
increased susceptibility to diabetes and premature CVD.

Given the increased prevalence of type 2 diabetes
among Asian Indians, the first study of GeNuIne
Collaboration examined the interaction between two
commonly studied FTO SNP and lifestyle factors such
as diet and physical activity on obesity traits and type
2 diabetes in 1618 Asian Indians(32). The participants
for this study were recruited from the urban component
of the Chennai Urban Rural Epidemiology Study, a
cross-sectional epidemiological study conducted on a
representative sample of the population of Chennai in
southern India(38). Dietary intakes were assessed using
a previously validated and published(39) interviewer
administered semi-quantitative FFQ containing 222
food items to estimate food intake over the past year.
Physical activity was estimated using a previously vali-
dated self-report questionnaire(40). The study identified
a significant interaction between FTO SNP rs8050136
(Table 1) and carbohydrate intake (% energy)
(Pinteraction = 0·04), where the high obesity risk A allele
carriers had 2·46 times increased risk of obesity than
those with low obesity risk CC genotype (P = 3·0 ×
10−5) among individuals in the highest tertile of carbohy-
drate intake (% energy, mean: 71 %). A significant inter-
action was also observed between FTO SNP rs11076023
and dietary fibre intake (Pinteraction = 0·0008), where
individuals with AA genotype in the third tertile of diet-
ary fibre intake had, on average, 1·62 cm lower waist
circumference than those with low obesity risk T allele
(P = 0·02) (Fig. 1). Furthermore, the A allele carriers
of the SNP rs8050136 had 1·89 times increased risk of
obesity than those with CC genotype (P = 4·0 × 10−5)
among those who were physically inactive. In summary,
these findings indicate that Asian Indians with at least
one copy of the FTO obesity-risk allele who consume a
high carbohydrate diet or are physically inactive are at
a particularly high risk of obesity, while high-fibre intake
may protect against obesity risk in this group. Given that
India leads the world in prevalence of type 2 diabetes and
28–44 % of Asian Indians carry at least one copy of the
FTO risk allele(21), our study highlights the need to dis-
courage consumption of foods high in sugars and
refined carbohydrate and encourage intake of high-fibre
foods and increased physical activity levels, as following
such advice could substantially reduce the genetic risk of
obesity and type 2 diabetes among Asian Indians.

The second study in Asian Indians examined
whether the association of the melanocortin 4 receptor
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(rs17782313) and TCF7L2 (rs12255372 and rs7903146)
SNP with cardio-metabolic traits is modified by dietary
factors and physical activity in a random sample of parti-
cipants who were normal glucose tolerant (n 821) and
those with type 2 diabetes (n 861) recruited from the
Chennai Urban Rural Epidemiology Study(22). The

study identified a significant interaction between the
TCF7L2 SNP rs12255372 (Table 1) and fat intake (g/d)
on HDL-cholesterol (Pinteraction = 0·0001), where the T
allele carriers of the SNP had 2·26 mg/dl higher
HDL-cholesterol level in the lowest tertile of fat intake
(mean: 41 g/d) than the GG homozygotes (P= 0·008)

Table 1. Minor allele frequencies (MAF) of the gene variants studies in the four ethnic groups

Gene name (gene symbol) Gene function
Genetic
variants

Minor
allele Ethnicity (MAF*)

Fat mass and obesity associated/
α-ketoglutarate-dependent
dioxygenase (FTO)

Perturbation of FTO enzymatic activity
dysregulates genes related to energy
metabolism, causing the malfunction of energy
and adipose tissue homeostasis in mice. FTO is
the first N6-methyl-adenosine RNA demethylase
that catalyses the N6-methyl-adenosine
demethylation in α-ketoglutarate- and Fe2
+-dependent manners

rs8050136
(C/A)

A Indian population
(12·4%), Sri Lankan
population (34%),
Indonesian population
(23)

rs9939609
(T/A)

A Sri Lankan population
(34%), Turkish
population (39·0%),
Indonesian population
(23%)

rs10163409
(A/T)

T Turkish population
(37·0%)

rs11076023
(A/T)

T Indian population (47·0%)

Melanocortin 4 receptor (MC4R) The MC4R, which is embedded in the leptin–
melanocortin pathway, is activated by
proopiomelanocortin-derived neuropeptides
such as α- and β-melanocyte-stimulating
hormone and plays an important role in
hypothalamic body-weight regulation

rs17782313
(T/C)

C Sri Lankan population
(33·0%), Indonesian
population (13·0%),
Indian population (30%)

rs2229616
(G/A)

A Sri Lankan population
(4·0%), Indonesian
population (0%)

Transcription factor 7-like 2 (TCF7L2) The TCF7L2 protein is a key transcriptional
effector of the Wnt/β-catenin signalling pathway,
which is an important developmental pathway
that negatively regulates adipogenesis.
Inactivation of TCF7L2 protein by removing the
high-mobility group-box DNA binding domain in
mature adipocytes in vivo leads to whole-body
glucose intolerance and hepatic insulin
resistance

rs12255372
(G/T)

T Indian population (25%),
Sri Lankan population
(27%), Indonesian
population (9%)

rs7903146
(C/T)

T Indian population (29%)
Sri Lankan population
(34%)
Indonesian population
(9%)

Potassium voltage-gated channel
subfamily J member 11 (KCNJ11)

The protein encoded by this gene is an integral
membrane protein and inward-rectifier type
potassium channel. In pancreatic β-cells,
ATP-potassium channels are crucial for the
regulation of glucose-induced insulin secretion
and are the target for the sulfonylureas, oral
hypoglycemic agents widely used in the
treatment of type 2 diabetes

rs5219 (C/T) T Sri Lankan population
(34%), Indonesian
population (33%)

Calpain 10 (CAPN10) The calpains are a family of Ca2+-dependent,
intracellular cysteine proteases. Calpains have
been shown to function as sensors of
glucose-induced calcium currents, which
culminate with insulin secretion. Due to the
significance of calpain-10 in insulin secretion,
factors altering its function might contribute to
the development of type 2 diabetes

rs3792267
(G/A)

A Sri Lankan population
(16·5%), Indonesian
population (5%)

rs2975760
(T/C)

C Sri Lankan population
(22%)

rs5030952
(C/T)

T Sri Lankan population
(3·7%), Indonesian
population (20%)

* MAF reported are from the studies investigated in the GeNuIne Collaboration.
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and in the highest tertile of fat intake (mean: 95 g/d),
HDL-cholesterol was 1·87 mg/dl lower in the risk T
allele carriers in comparison with the GG homozygotes
(P= 0·017) (Fig. 2). Further stratification to fat sub-
groups showed significant interactions between the
TCF7L2 SNP rs12255372 and PUFA (g/d) on
HDL-cholesterol (Pinteraction<0·0001), where the T allele
carriers had 1·96 mg/dl higher HDL-cholesterol (P=
0·024) in the low PUFA tertile (mean: 9 g/d) in compari-
son with the GG homozygotes and in the third tertile
(mean: 29 g/d), the HDL-cholesterol level of the T allele
carriers was 1·64 mg/dl lower than the ‘GG’ homozygotes
(P= 0·028) (Fig. 2). A similar interaction was also iden-
tified between the SNP rs12255372 and MUFA (g/d)
on HDL-cholesterol (Pinteraction = 0·0003), where the T
allele carriers had 1·77 (mg/dl) higher HDL-cholesterol
in the lowest MUFA tertile (mean: 12 g/d; P= 0·03)
and had 1·61 (mg/dl) higher HDL-cholesterol in the
second tertile (mean: 18 g/d; P= 0·045) than the GG
carriers, however in the highest MUFA tertile (mean:
29 g/d) the T allele carriers had 1·59 (mg/dl) decreased
HDL-cholesterol (P= 0·041) than individuals with the
GG genotype. PUFA was further stratified to linoleic
acid and α-linoleic acid to investigate whether n-3
and n-6 fatty acids modified the association between
the TCF7L2 SNP rs12255372 and HDL-cholesterol.
Significant interaction was found between the SNP and
α-linoleic acid on HDL-cholesterol (Pinteraction = 0·012),
where the T allele carriers had 2·42 (mg/dl) higher
HDL-cholesterol than the GG homozygotes (P= 0·004)
in the lowest tertile (mean: 0·38 g/d). A similar interaction
was also found between the SNP rs12255372 and linoleic
acid (g/d) on HDL-cholesterol (Pinteraction<0·0001) (Fig. 2).
These findings are of public health significance given that
Asian Indians tend to have low HDL-cholesterol, which
puts them at markedly increased risk for CVD(41,42).
The mechanism by which different fatty acids influence

HDL-cholesterol levels and whether/how high-fat and
high-PUFA intakes reduce HDL-cholesterol should
also be established before public health recommenda-
tions and personalised nutrition advice can be developed
for this Asian Indian population in order to reduce the
burden of cardiometabolic diseases.

Given that, in recent years, the incidence of obesity in
Sri Lanka has increased markedly(43), the third study of
GeNuIne Collaboration was carried out in the city of
Colombo, Sri Lanka. The Genetics of Obesity and
Diabetes study is a cross-sectional study that was con-
ducted in Colombo, Sri Lanka, between April and
August 2017 to explore the interaction between genes
and dietary intake on metabolic traits in 109 Sinhalese
adults(44). Dietary intakes were assessed using a previ-
ously validated and published(45) interviewer administered
FFQ containing 85 food items. The global physical
activity questionnaire, developed by the WHO, was
used to measure physical activity(46). A genetic risk
score (GRS) based on ten metabolic disease-related
SNP previously associated with obesity and diabetes
was constructed. The Genetics of Obesity and Diabetes
study identified a significant interaction between the
GRS and carbohydrate energy intake (%) on the waist:
hip ratio (Pinteraction = 0·015) (Fig. 3). Individuals who car-
ried eight or fewer risk alleles for the metabolic disease had
7·47 % lower waist:hip ratio measurements (cm) in the
highest tertile of carbohydrate energy intake (%) (mean:
78·00 (SD 7·90) %) compared to those with nine or more
risk alleles (P= 0·035). Interactions were also seen between
the metabolic-GRS and carbohydrate energy (%) on log
fasting insulin concentrations (P = 0·011) and log waist
circumference (P = 0·031), and the metabolic-GRS and
protein energy (%) on log fasting insulin levels and
(P = 0·032) and log waist circumference (P = 0·011).
Given that the total daily intake of carbohydrate is
high in Sri Lankan adults(47), our findings, if replicated

Fig. 1. Interaction of the FTO SNP rs11076023 with dietary fibre intake on waist
circumference in Asian Indians. The individuals with AA genotype are in the third tertile of
dietary fibre intake have a 1·62 cm decrease in waist circumference compared to those
with T allele carriers (P = 0·02).
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in future studies using larger cohorts, might carry sign-
ificant public health implications.

Nutrigenetic studies in South East Asia

Indonesia has the seventh largest number of diabetic
patients (7·6 million), despite relatively low prevalence
(4·8 %) in 2012(48). It is estimated that the Western
Pacific has more than 138·2 million people with diabetes
in 2013, and the number is expected to rise to 201·8 mil-
lion by 2035(49). In Indonesia, non-communicable dis-
eases are estimated to account for 63 % of the total
number of deaths(50). Of the total, CVD contributed
30 % followed by cancers (13 %), and diabetes (3 %)(50).
Indonesia is a multi-ethnic country with over 300 ethnic
groups. It has been reported that the West Sumatera
province, where most of the Minangkabau ethnic group
lives, had the highest proportion of inpatients with
CVD among thirty provinces in Indonesia(51). The
Minangkabau is a matrilineal society, where women
hold greater power in both family and society(52). Food
supply is centred around women and compelling evi-
dence suggests that adequate nutrition protects against
metabolic disorders related to obesity(53), as a result
understanding the dietary patterns of this sub-group of

women in relation to their genetic susceptibility is of
great importance.

The Minangkabau Indonesia Study on Nutrition and
Genetics is a cross-sectional pilot study that was con-
ducted in the city of Padang, West Sumatra, Indonesia,
between December 2017 and January 2018. This study
was conducted as part of the on-going GeNuIne
Collaboration. A total of 117 women were recruited
from community health centres in two sub-districts in
Padang City to represent both urban (50 % Padang
Timur) and rural (50 % Kuranji) areas of Padang popu-
lation. Dietary intakes were assessed using a previously
validated and published semi-quantitative FFQ contain-
ing 223 food items(54). The global physical activity ques-
tionnaire was used to measure physical activity(46). Nine
metabolic disease-related SNP (Table 1) were selected
for the Minangkabau Indonesia Study on Nutrition
and Genetics study based on the previously published
candidate gene and genome-wide association studies for
metabolic disease-related traits(22,55–62) and a GRS was
generated from these nine SNP. The study identified a
significant interaction between the GRS and protein
(energy %) on log-transformed waist circumference (P
= 0·032) (Fig. 4), where individuals who carried five or
more risk alleles for metabolic disease had 2·15 % lower

Fig. 2. Interaction of the TCF7L2 SNP rs12255372 with fat (g) intake, PUFA intake and α-linolenic acid (g)
intake on HDL-cholesterol in Asian Indians. Individuals carrying the XT genotype had 2·26 mg/dl higher
HDL-cholesterol in the lowest fat tertile (P = 0·008), while those in the highest tertile had 1·87 mg/dl lower
HDL-cholesterol (P = 0·017) than those who carry the GG allele. Carriers of the XT genotype had 1·96 mg/
dl higher HDL-cholesterol in the first tertile of PUFA intake (g) (P = 0·024), while those in the third tertile
had 1·64 mg/dl lower HDL-cholesterol in comparison with the carriers of the GG genotype (P = 0·028). In
the first tertile of α-linolenic acid intake (g), individuals with the XT genotype had 2·42 mg/dl higher
HDL-cholesterol than the GG homozygotes (P = 0·004).
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waist circumference measurements (cm) in the lowest ter-
tile of protein energy intake (mean: 1·91 (SD 0·06) %) com-
pared to those with four or less risk alleles (P= 0·027).
This finding was in accordance with a study in 711 indi-
viduals of Caucasian ancestry(36), which had also shown
an interaction between total protein intake and a GRS
of sixteen obesity/lipid metabolism polymorphisms on
body fat mass. Given that several SNP were analysed in
the study, correction for multiple testing was applied.
After Bonferroni correction, none of the interactions
were statistically significant; hence, further replication
studies utilising larger sample sizes are needed to
confirm these findings, before public health recommen-
dations and personalised nutrition advice can be devel-
oped for Minangkabau Indonesian women.

Nutrigenetic studies in Western Asia

In Turkey, a transcontinental country located mainly in
Western Asia, the prevalence of obesity has significantly
increased by 40 % from 1998 to 2010(63). In 2017, the
overall prevalence of overweight and obesity in Turkish
adults was 64·4 and 28·8 %, respectively(64). Turkish
adults have distinctive characteristics compared to
Europeans including low levels of total cholesterol and
HDL-cholesterol, which confer an increased risk of
CVD(65). In 2017, non-communicable diseases accounted
for 88 % of deaths in Turkey, with CVD being the first
cause of death accounting for about 48 % of all
deaths(64). Several health promotion campaigns have
been implemented in Turkey, including ‘move for health’

and ‘reducing portion sizes’, in order to reduce the preva-
lence of obesity which could eventually prevent
CVD-related deaths(66,67).

To date, no nutrigenetics studies have been conducted
in a Turkish population. Given that gene–environment
interactions might vary between populations because

Fig. 3. Interaction between the genetic risk score and carbohydrate energy intake (%) on
waist:hip ratio (cm) (Pinteraction = 0·015) in Sinhalese adults, where among those who
consumed a high-carbohydrate diet, individuals who carried nine or more risk alleles had
significantly higher levels of waist:hip ratios compared to individuals carrying eight or
fewer risk alleles (P = 0·035).

Fig. 4. Interaction between the metabolic-genetic risk score and
protein energy (%) on log waist circumference (Pinteraction = 0·032) in
Indonesian women, where among those who consumed a
low-protein diet, individuals who carried five or more risk alleles had
significantly lower waist circumference measurements compared to
individuals carrying four or fewer risk alleles (P= 0·027).
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of genetic heterogeneity, it is important to investigate
these interactions in different ethnicities to personalise
healthcare according to each ethnic group. Hence, a
total of 400 unrelated individuals (200 obese and 200
non-obese), aged 24–50 years, were recruited in
Ankara, Turkey to determine whether FTO SNP,
rs9939609 and rs10163409 (Table 1) were associated
with obesity traits and whether these SNP interact
with physical activity and dietary intake of macronutri-
ents on obesity traits. Dietary intake was assessed using
a 24-h dietary recall by trained research dietitians during
a face-to-face interview with each participant. The
Turkish version of the international physical activity
questionnaire was used to assess the physical activity
levels of the participants(68). The study identified a sign-
ificant interaction between FTO SNP rs10163409 and
protein intake (g) on the risk of increased waist circum-
ference (Pinteraction = 0·044), where among individuals in
the highest tertile of protein intake (mean: 138 (SD 38)
g/d), carriers of the minor allele T of the SNP
rs10163409 had a significantly higher risk of increased
waist circumference (OR = 3·3 (95% CI 1·149, 9·478),
P = 0·027) than those with AA genotype (Fig. 5).
There was also a significant interaction between
the FTO rs10163409 variant and dietary protein intake
on waist circumference as a continuous variable
(Pinteraction = 0·007). In addition, an interaction between
the FTO SNP rs9939609 and physical activity levels on
adiponectin concentrations were observed (Pinteraction =
0·027), where, among individuals with low-physical
activity levels, carriers of the risk allele A of this SNP
had significantly lower adiponectin concentrations than
homozygous individuals for TT genotype (P = 0·006).
These findings suggest that low levels of physical activity
and a high-protein diet could increase the genetic risk of
obesity in this Turkish population. Given that Turkish
adults have low levels of physical activity and a seden-
tary lifestyle(64), our findings will have significant public
health implications in terms of reducing the prevalence
of obesity and CVD mortality(69).

Nutrigenetic studies in South America

CVD has remained the leading cause of mortality in
Brazil since the latter part of the 1960s(70,71). Although
effective tobacco control policies and access to improved
healthcare have led to drastic improvements in cardio-
vascular health, an upward trend in unhealthy eating
habits and physical inactivity has been observed in the
Brazilian population(71). Epidemiological studies have
shown that hyperhomocysteinaemia is a well-known
independent risk factor for atherosclerotic vascular dis-
ease and hypercoagulability states(72). Studies have
shown significant interactions between SNP involved in
the C1 metabolism pathway and dietary factors on
homocysteine concentrations(73,74). However, no studies,
to date, have examined the interaction between C1
metabolism-related genes and lifestyle factors on vitamin
B12, folate and lipid concentrations.

A cross-sectional study was conducted in a public
school in the city of Goiânia, Goiás, Brazil, between

March and May 2014(75). A total of 113 adolescents
(aged 10–19 years) were selected to answer a food
frequency record and provided a blood sample for bio-
chemical and DNA analysis. The global physical activity
questionnaire was used to assess physical activity. Ten
common SNP involved in the C1 metabolism pathway
were selected based on the published reports(74,76–80).
The study identified significant interactions between the
catechol-o-methyl transferase SNP (rs4680 and rs4633)
and dietary carbohydrate intake on HDL-cholesterol
concentrations (P= 0·011 and 0·036, respectively). In
addition, an interaction was found between the
catechol-o-methyl transferase SNP (rs4680) and dietary
carbohydrate intake on oxidised-LDL concentrations
(P= 0·005). Given that oxidised-LDL and hyperhomo-
cysteinaemia are well-known independent risk factors
for atherosclerotic vascular disease(72,81), our findings
have significant implications for population health.
These findings warrant confirmation in larger, well char-
acterised and well-powered prospective studies/rando-
mised controlled trials, before any public health
recommendations and personalised nutrition advice can
be developed for the adolescent Brazilian population.

Nutrigenetic studies in other developing countries

In several LMIC, nutrigenetics studies have not been
carried out because expertise, infrastructure and funds
are limited. As part of the GeNuIne Collaboration,
nutrigenetics studies are currently being implemented
in other LMIC including India (rural component),
Peru, Ghana, Morocco, Thailand and Pakistan through
funds from the Medical Research Council, Global
Challenge Research Fund and the British Council
Newton Fund. In addition, workshops on nutrigenetics
and nutrigenomics are also being conducted supported by
funds from local organisations in LMIC, the British
Council and Newton funds to mediate knowledge- and
technology-transfer to the LMIC.

Fig. 5. Interaction between FTO SNP rs10163409 and protein
intake (g) on central obesity (increased waist circumference (WC))
in a Turkish population. Black bars indicate the T allele carriers
(TA + TT). OR are adjusted for age, sex, hypertension, CVD, total
energy intake and obesity status.

Nutrigenetics and cardiometabolic traits 7

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0029665119001186
Downloaded from https://www.cambridge.org/core. The University of Reading, on 28 Feb 2020 at 09:42:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0029665119001186
https://www.cambridge.org/core


Challenges and limitations in nutrigenetic research

Nutrigenetics is still quite a new research area and stan-
dardised protocols are not well-established in LMIC.
Most often, results are difficult to replicate among popu-
lations due to population stratification, making conclu-
sions difficult to draw. Furthermore, while most studies
only consider one SNP in a single gene, personalised nutri-
tion requires the knowledge of multiple GeNuIne to allow
a more complete understanding of nutrigenetics. To over-
come the challenges involved in examining single genes,
several studies have examined the combined effect of
genes/gene variants on metabolic outcomes in response
to dietary intake(44,82). Measurement accuracy is difficult
to obtain as diet and nutrition are very complex to meas-
ure and inaccuracies of exposure measurements may intro-
duce bias and make false conclusions about GeNuIne(83).
Furthermore, GeNuIne studies need very large sample
sizes; underpowered studies are responsible for poor
reproducibility of GeNuIne outcomes. Therefore, a larger
sample size is needed to find GeNuIne to identify an inter-
action effect of comparable magnitude.

We still do not fully understand the biological path-
ways between genes and cardiometabolic diseases,
given that the identified SNP account only for a small
proportion of the underlying metabolic variance, and
hence genome-wide gene–diet interaction studies are
required to identify novel loci(84,85). Another important
challenge is the lack of appropriate statistical tools to
accurately mine these ‘big data’, which represent enor-
mous datasets. Further advancement in the field of statis-
tics and bioinformatics is required to handle and
integrate all the data generated by various analytical
techniques. Developing such methods would significantly
expand the power of large-scale studies and improve the
possibility of discovering novel interactions. The next
step would be to translate the large datasets generated
by nutrigenetics studies into information that would
form the basis for the identification of novel markers,
which will lead to the development of personalised
diets to reduce the burden of cardiometabolic diseases.

From nutrigenetics to personalised nutrition

Nutrigenetics studies have shown that genes and dietary
factors can significantly influence the risk of developing
cardiometabolic diseases(5,86). Although several SNP
have been identified for cardiometabolic diseases using
candidate gene(86) and genome-wide association stud-
ies(14,18), it has been shown that these SNP contribute to
the development of the disease only under an obesogenic
environment(87). While advances in the field of high-
throughput genetic analysis have shown the contribution
of SNP to cardiometabolic diseases, the molecular and
pathophysiological mechanisms underlying these gene–
lifestyle interactions remain unexplored. Functional studies
are required to understand their biological significance and
their potential application in personalised medicine.
Besides genes and diet, the gut microbiota and gene–
diet–microbe interactions can also modify the risk of

developing cardiometabolic diseases(88,89). Diet and gut
microbiota are major components of the exposome
that interact together with a genetic make-up in a com-
plex interplay to result in an individual’s metabolic
phenotype. Given that gut microbiota also plays an
important role in metabolic homeostasis, it is crucial
to examine metagenome–hyperbolome–diet interac-
tions to understand how nutrients can alter the meta-
bolic phenotype and health outcome. Furthermore,
foodomics approaches (such as nutrigenomics, nutri-
metabolomics, nutritranscriptomics, nutriproteomics
and metagenomics) are essential tools to assess an indi-
vidual’s optimal metabolic space(82). Before this can
effectively translate into clinical practice, and become
available to health professionals, the data generated
by these ‘omics’ approaches must be integrated to pro-
vide a full understanding of the systemic metabolism
that results from these intricate relationships. The full
potential of personalised nutrition requires in-depth
knowledge of physiological pathways and several bio-
markers, delivering a comprehensive platform picture
of an individual’s metabolic status. Furthermore, by
taking into account the cultural and socio-economic
status of the ethnic group under study, nutrition-
specific interventions programmes can address the
immediate determinants of nutrition status (e.g. inad-
equate diet and disease burden) and are found in a
range of policy areas, such as health, humanitarian
relief, and food processing(90).

The use of an evidence-based approach is very import-
ant in nutrigenetics and in order to provide more scien-
tific evidence between gene–diet interactions, there is a
need for more studies and more variety in examined
populations. The investment in intervention studies
which will include more people from a diverse range of
ethnic groups and extensive genotyping along with dee-
per, standardised phenotyping will give more promising
results for the prevention and treatment of cardiometa-
bolic diseases. Consideration of multiple gene–nutrient–
environment interactions is important to provide accur-
ate personalised nutrition recommendations in the
future. Hence, the combined application of nutrigenetics
and nutrigenomics with molecular and metabolite profil-
ing to define an individuals’ metabotype will be required
to provide the basis for implementing personalised nutri-
tion for cardiometabolic disease prevention.
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