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Abstract

The electricity sector is one of the largest sources of greenhouse gas emissions and the

study of electricity grid carbon intensity has a key role in meeting the Climate Change

targets. Evaluation of grid carbon intensity, typically measured in gCO2eq/kWh, is

fundamental to footprint calculation. The UK government (DEFRA) provides guidelines

and annual grid carbon intensity figures for companies to report their emissions, but the

use of a single annual value for grid carbon intensity introduces several key uncertainties

into carbon assessment. This study examines the uncertainties that arise from using single

annual values for carbon accounting and reporting purposes. Half-hourly UK grid carbon

intensity values have been calculated and analysed for the years 2009-2017. Additionally,

a power system (UC / ED) model of the GB power grid has been built. This model

is being used to explore the sensitivities of grid carbon intensity to variable renewable

energy and capacity assumptions. Grid carbon intensity is shown to widely vary not

only inter-annually and intra-annually but also from one hour of generation to the next.

Hence, the use of a single annual average figure raises doubts over the accuracy of the

estimations. Finally, high resolution grid carbon intensity is being used to inform demand

side management schemes and identify potential carbon benefits on the domestic and

business level.
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Chapter 1

Introduction

Decarbonising the electricity grid plays a pivotal role in most Climate Change mitigation

scenarios (Vijay et al., 2017) as the electricity and heat sector are together the largest

emitting activities globally (Bosch et al., 2017). National targets are also in place,

committed to reduce carbon dioxide emissions in an attempt to limit Climate Change

in the UK. The fifth carbon budget of Climate Change Committee (CCC, 2015) advises

that the emissions generated by the power sector should be reduced by 75% of their 2015

levels by 2030s and 95% by 2050s. Hence, it is important to monitor the electricity grid

carbon emissions.

In the business world, sustainability has started becoming a fundamental strategic goal

as Climate Change mitigation gets embedded in the corporate decision making; Large-

scale companies, driven by legislative measures, have become increasingly conscious of

carbon reporting, which is seen as a marker for good management and corporate ethics.

Those that perform well are demonstrating their good environmental management and

sustainability, their ability to manage risk, drive efficiencies, and offer the best value to

clients (Groening et al., 2014), (Groening et al., 2016). The insights gained from accurate

carbon accounting can be used as a baseline for strategy control to identify potential for

carbon savings.

The British government provides guidelines and grid intensity values for carbon

4



Section 1.0 Subsection 1.0.0

accounting and reporting purposes (DEFRA, 2016a). Here, grid carbon intensity refers to

greenhouse gas emissions for each kilowatt-hour of electricity generated and is typically

measured in CO2 eq. g/kWh. DEFRA updates these values annually as grid carbon

intensity is heavily dependent on the relative prices of coal and natural gas as well

as fluctuations in peak demand and renewables (DEFRA, 2016b). However, the grid

operation varies dramatically from hour to hour because of the just in time nature of

electricity production (Staffell, 2017).

Therefore, the problem statement can be summarised as follows:

Single annual figures of grid carbon intensity neither capture the uncertainty nor represent

the highly dynamic behaviour of the GB electricity grid, thus raise doubts over their

accuracy when used in carbon accounting and reporting schemes.

To investigate this uncertainty, the present study aspires to look further than just the

annual average figures and examine the dynamic behaviour of grid carbon intensity

in higher resolution. Furthermore, this study aims to make recommendations on how

this dynamic behaviour can be factored into control strategies and demand management

schemes that aim to achieve a carbon benefit. To address the above, the methodology that

was followed consists of three parts:

• (i) historic data analysis

• (ii) power system modelling

• (iii) case studies

The time sequence among the three begins with data analysis being carried out first,

followed by the model and then the case studies. The analysis part provided carbon

intensity datasets for the years 2009 to 2017. These datasets were then used to assess the

accuracy of a power system model that was designed for the purposes of this study. It is

noted that a first small-scale version of the MILP model was jointly designed with fellow

PhD researchers at the TSBE centre (Max Zangs and Alice Gunn). The updated version

of the model that was used throughout this study consisted of a higher number of units,

used different input parameters and optimised a different cost function. This model was

run in order to produce annual grid carbon intensity datasets under a variety of future,

5



Section 1.2 Subsection 1.2.0

and current feasible scenarios. Finally, both historic and simulated grid carbon intensity

datasets were utilised in the case studies.

Analysis of historic, real data provides useful insights on the varying nature of grid

intensity and identifies periodicity, intra-daily, seasonal and annual trends. Furthermore,

the power system model that reflects and simulates the GB electricity grid, examines

how grid carbon intensity would change under different weather and installed capacity

assumptions. Finally, the aim of the case studies is to make recommendations on how

carbon intensity datasets in high resolution can be utilised to inform charging strategies

for electric vehicles and control strategies of combined heat and power generation plants.

1.1 Project aim and objectives

The aim of the project is to assess the different sources of uncertainty in historic,

current and projected GB grid carbon intensity and make recommendations on

factoring its dynamic nature into real life applications, while the objectives of the

project can be described as follows:

• Objective 1: Explore historic grid carbon intensity variability and quantify

the numeric uncertainty arising from different power system carbon factor

assumptions;

• Objective 2: Apply power system model(s) to establish grid carbon intensity

uncertainty under varying renewable resource inputs and future power station

capacity projections;

• Objective 3: Investigate how time-varying carbon intensity influences carbon

assessment in real-life case studies.

• Objective 4: Draw on findings derived from real-life case studies in order to

establish implications of the dynamic behaviour of grid carbon intensity;
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1.2 Thesis and contribution to knowledge

While past studies have looked into the behaviour of grid intensity over the last years, the

historic analysis presented here is a comprehensive study for GB grid carbon intensity

in high resolution, examining a broad time-frame of nine years and achieving higher

resolution than previous studies. Furthermore, by utilising National Grid’s capacity

projections and re-analysis meteorological data in a power system model, this study is

believed to be the first to produce annual carbon intensity datasets in high resolution

under a range of weather and installed capacity assumptions. There is currently no robust

methodology on how to use time-varying grid carbon intensity in real-life applications.

A novel carbon-optimal strategy is designed for the charging of an electric vehicle and

recommendations are made for the control strategy of a combined heat and power plant

in University of Reading.

It is expected that this work will be relevant to anyone with an interest in the electricity

grid carbon emissions such as power system operators, policy-makers, planners and

even members of the public that are sensitive to the grid decarbonisation. Furthermore,

the case studies can inform the relevant interested parties, any electric vehicles

manufacturing or leasing company and the Energy team of University of Reading. This

work should help to improve the understanding of the grid carbon intensity’s dynamic

nature, its sensitivities to weather and power system assumptions, and the potential to

utilise this nature in real life applications to achieve carbon benefits.

1.3 Thesis outline

The structure of the present study consists of six chapters and is as follows

Chapter 2 reviews the academic literature in order to set the work of this study in context

by presenting an overview of the various types of grid carbon intensity, carbon reporting

procedures, relevant energy polices, future challenges for the grid and power system

modelling.
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Chapter 3 introduces the methodology for calculation of grid carbon intensity and then

tests the results against the relevant figures provided by the government. Furthermore,

different power plant carbon factors are used to establish the uncertainty ranges in half-

hourly grid carbon intensity. Historic data analysis for generation data is then carried out

for years 2009 to 2017.

Chapter 4 details the design of the GB power system model and examines how various

renewable inputs and installed capacity assumptions affect the grid carbon intensity

figures.

Chapter 5 introduces the electric vehicles and CHP case studies where annual datasets of

grid carbon intensity are utilised to inform control strategies and achieve a carbon benefit.

Chapter 6 brings together everything presented in the previous chapters, presents a

summary of the findings of this research and finally draws general conclusions about

the uncertainty in grid carbon intensity.
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1.4 Published work

Parts of the work presented in this thesis have also been published/presented as follows,

• School of Construction management and Engineering postgraduate conference,

University of Reading, 2016, “Electricity carbon intensity of the UK grid for years

2009-2015.”, (poster presentation)

• NPL postgraduate conference, London 2016,“Electricity carbon intensity of the

UK grid for years 2009-2015.”, (poster presentation) (second prize)

• School of Construction management and Engineering postgraduate conference,

University of Reading,“UK grid dynamic carbon intensity for years 2009-2016.”,

2017 (oral presentation)

• TSBE postgraduate conference, University of Reading, “Time-varying carbon

intensity of the UK grid for years 2009-2016.”, 2017 (poster presentation)

• WHOLESEM conference, London, “Time-varying carbon intensity of the UK grid

for years 2009-2016.”, 2017 (poster presentation) , ( http://www.wholesem.

ac.uk/events/annual-conference/annual-conf-2017/

Vasiliki_Papaioannou_wholeSEM_Poster.pdf)

• Energy 7 (International energy symposium) conference, Manchester, “Time-

varying carbon intensity of the UK grid for years 2009-2016.”, 2017 (oral

presentation)

• ESCC conference, Mykonos, “Variability in the UK grid carbon intensity and how

it can inform controlled charging strategies of EVs.” 2017 (oral presentation)

• Energy, Elsevier Variability in the UK grid carbon intensity and how it can inform

controlled charging strategies of EVs, Vicky Papaioannou, Anthony Simpson, Phil

Coker, Ben Potter, Valerie Livina (submitted journal paper)
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Chapter 2

Literature Review

2.1 Electricity grid carbon intensity

With Climate Change mitigation measures in place, the study of carbon emissions arising

from the electricity grid has lately been an area of academic focus. Electricity grid carbon

intensity is a metric commonly used to quantify carbon dioxide emissions that arise from

an amount of electricity that was generated or transmitted. An overview of the different

types of electricity carbon intensity was given by (Hitchin & Pout, 2002). These include

system average, marginal, and grid carbon intensity of plant built/avoided. Furthermore,

more recent studies (Khan, 2018), (Khan et al., 2018) have recognised the highly dynamic

behaviour of grid carbon intensity and another type named “temporal” or “time-varying”

was recognised. It is noted that the latter is the key focus of the present study.

Annual carbon intensity is not only used in carbon reporting schemes but also commonly

found in published research about the emissions from the grid (Ang & Su, 2016), (Ang &

Goh, 2016), (Goh et al., 2018). Ang & Su (2016) presents a study covering a time period

from 1990 to 2013 for 124 countries. In this case, the metric “aggregate carbon intensity”

is defined as the energy related carbon emissions divided by the produced electricity.

The aggregate carbon intensity for the United Kingdom for year 2013 is measured to

438g/kWh thus 5% and 8% lower than the DEFRA’s and this study’s annual average
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figures.

The simplest and most widely used type of electricity carbon intensity is the system

average. This is calculated by dividing the total carbon emissions (usually over a year)

by the total amount of electricity that was generated/transmitted/delivered. However, the

annual average metric is not appropriate in all cases as the relationship between carbon

intensity and electricity demand is far more complex. When a demand change occurs not

all power stations are equally affected. While the operation of the base load plants usually

remains unchanged, the change is typically met by a load-following plant (marginal). In

the United Kingdom this plant was typically coal-fired back in 2002 as explained by

Hitchin & Pout (2002). In more recent studies, Thomson et al. (2017) analysed the

marginal generation for years 2009 to 2014 and indicated that while for years 2009 and

2010 coal dominated the mix, closed cycle gas turbines were mostly the marginal plants

in years 2011 and 2012. Finally, gas, renewables and interconnected electricity were

included in the marginal mix for the period 2012 to 2014. Finally, based on this study’s

findings, in recent years (2015 to 2017) the dominant plant in the British marginal mix

is usually gas-fired (see section 3.5). Marginal generation and the relevant intensity are

discussed in greater detail in the following section.

2.1.1 Marginal electricity carbon intensity

All grid connected power stations in GB notify their dispatch profile to the System

Operator, National Grid on a half hourly basis. These notifications include their output

and availability and can be revised up to a period of 1 hour prior to each half hour

period (a Settlement Period), this period is termed ‘gate closure’. After ‘gate closure’

National Grid, balances supply and demand by varying power stations and large demand

units output in the Balancing Mechanism. BEIS (2016b) defines the marginal plant as

“the power generating unit dispatched in each settlement period with the highest SRMC

(Short Run Marginal Cost)” or “the power generating unit whose output in the relevant

settlement period followed system demand” or “the power generating unit which post
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gate closure in each settlement period paid the highest amount on £/MWH basis to

purchase power off the system and hence reduce its output or had the highest accepted

cost to increase generation.”

The importance of the accurate and active incorporation of the demand-side interventions

into the carbon emissions calculation and the policy making is emphasised by Hawkes

(2010). While marginal emissions play a role in the carbon reduction strategy

certain weaknesses have been identified by (Hawkes, 2010) in the existing calculation

methodologies. A certain fixed carbon reduction that “will occur” as a result of an

intervention is assumed, while there is no guarantee this will actually be achieved.

Furthermore, the impact of an intervention is often assessed against the carbon content

of either grid-average electricity or a speculative marginal emissions rate. However, a

change in demand does not affect all elements of the electricity system proportionally

and as such the use of a system-average emissions factor could be misleading, as could

a poorly chosen marginal rate. In reality, specific generators respond to system demand

changes, and it is the carbon intensity of these generators that dictates the actual carbon

reduction brought about.

In simpler terms, a small demand change would not affect equally all of the online plants

since the plant that will respond to this change is the plant that turned on last, usually

the most expensive (named the marginal plant). Thus, marginal emissions refer to the

emissions afforded by the plant that adjusted its generation output to deal with a small

demand intervention. Marginal emissions have gained increased interest in academic

works of the past years with a few studies claiming that system-average emissions fail

to reflect the operation of the grid “in the margin” (Siler-Evans et al., 2012), (Hawkes,

2010), (Thomson et al., 2017).

Hawkes (2010) calculated the reduction of carbon emissions caused by a demand side

intervention (marginal carbon emissions rates) for the UK performing regression analysis

on half-hourly data covering the period 2002 to 2009. The marginal factors (MEF)

was estimated as 690 g/kWh ±10%, a figure higher than the system average for the

same period (510 g/kWh). Technology specific MEFs for heat pumps and micro-CHP
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plants were also calculated but the discrepancies to the average MEF were found to

be small. Therefore, an average MEF is deemed adequate to assess all demand side

interventions, regardless of whether they generate or consume electricity. Uncertainty

in the future MEFs was recognised to arise from underlying economics, carbon prices,

increased renewable penetration, aggregated demand from the electrification of vehicles

and heating and new technologies in the generation mix. The same author also introduced

a model for calculating long-run carbon marginal emissions (Hawkes, 2014). The results

estimated the GB LR-MEF (Long-run marginal emissions factor) to vary from 260 to

530 g/kWh for the next decade, but is expected to reduce to nearly zero in 2030s while

the grid decarbonises.

Siler-Evans et al. (2012), carried out a regional assessment of the marginal emissions

factors for the USA based on the work by Hawkes (2010). Regression analysis was

performed on hourly generation and emissions data covering the period from 2006 to

2011 in order to compare marginal and average avoided emissions. Marginal factors

were shown to be either higher or lower than the average ones, depending on the location

and the timing of the intervention.

Another GB specific study by (Thomson et al., 2017), assessed the marginal greenhouse

gas emissions displacement of wind power, described as the marginal displacement factor

(MDF). In this case, it is shown that wind power affects the system similarly to a demand-

reduction intervention since the marginal plant has to curb its output in order for the grid

to accommodate the “must-take” wind generation. The analysis was carried out for the

period 2009 - 2014 and the results revealed high discrepancies in the estimated MDFs.

Notably, for years 2009 to 2010 when CCGT was being operated in preference to coal,

the MDF was found to be high. Between 2011 and 2012 when coal dominated the grid

while CCGT provided a greater proportion of the marginal mix the MDF decreased.

Finally, for years 2012 to 2014 the factor reduced too, as coal generation decreased and

renewables and low-carbon interconnected electricity met the balance.

Finally, the author in (Khan, 2018), (Khan et al., 2018), acknowledged marginal

emissions and identified the marginal plant to be hydro and oil in the electricity systems
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of New Zealand and Bangladesh respectively. However, the overall study was carried out

using system average emissions in high resolution.

The carbon intensity of a typical, marginal plant is appropriate for assessing the

instantaneous effect of small changes in the electricity demand that happen within a short

timeframe but fails to reflect more substantial and longer term mechanisms (Hitchin &

Pout, 2002). However, marginal emissions is an appropriate metric to calculate carbon

savings (Siler-Evans et al., 2012).

2.1.2 Carbon intensity of plant built or avoided

A change in electricity demand can affect the total carbon emissions by two different

mechanisms, directly and indirectly (Hitchin & Pout, 2002). The direct impact regards

the additional load that causes one or more of the load plants to operate for longer or

shorter hours, or/and adjust their power output. This applies to small demand changes

and, as explained in the above section, is referred as marginal generation.

The indirect impact that is typically caused by significant and persistent demand changes

reflects changes in investment decisions (costs, operating patterns). Such a change can

also influence the timing of the construction/type of the new plant. In the case of a

substantial demand reduction, this may amount to a decision about the retirement of an

existing plant. The emissions caused by such changes are given by the carbon intensity

of plant built/avoided as defined by (Hitchin & Pout, 2002).

2.1.3 Temporal or time-varying electricity carbon intensity

One very recent study by (Khan et al., 2018) looked into the impact of time-varying on

GHG emissions assessment in New Zealand. Assuming that the metric of annual average

masks the variability of carbon intensity caused by different fuel mixes (Khan et al.,

2018) argued that a more nuanced approach that takes into account time variability should

be followed. This could achieve better management of current generation infrastructure
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in order to minimise GHG emissions and provide insight on how to incorporate this

variability into future generation plans. Analysis of one year of data (2015) showed a

daily variation of ±10% and a seasonal variation of ±40%.

While New Zealand’s electricity sector has almost 80% renewable generation, the same

author (Khan, 2018) also applied the time-varying carbon intensity approach on the fossil

fuel oriented electricity system of Bangladesh. A time-varying carbon pricing scheme has

been also introduced in this study as a potential aid to policymakers. A linear relationship

between carbon intensity and demand was noticed in this study, which was not the case

for the renewable dominated New Zealand grid. Further findings regard potential demand

side management measures during peak-time as an act to reduce GHG emissions and

the need for improvement of the efficiencies of the power plants which were found

to be lower than the standard average. Although the carbon-pricing scheme may not

be appropriate or applicable in the near future to the developing electricity system of

Bangladesh the author (Khan, 2018) suggests that it could be used as a tool for future

policy making.

A different study carried out for the United Kingdom looked into grid carbon intensity

as part of the progress and impacts of decarbonising British electricity. According to

Staffell (2017), “the carbon intensity of electricity is an important metric, widely used

for assessing the impacts of electric vehicles, electric heating, microgeneration and

demand reduction on national emissions”. The grid carbon intensity of British electricity

peaked at 508 g/kWh in 2012, and has since fallen 30% until 2015. December, 2015

was found to have the lowest ever carbon intensity (150 g/kWh) as a result of warm

temperatures and high wind output (Staffell, 2017).

Electricity grid carbon intensity, as explained above, typically measured in

CO2 eq. g/kWh, seeks to quantify the amount of carbon dioxide emissions allocated to

each unit of electricity, generated, transmitted or consumed. The formula for the grid

carbon intensity calculation is given in eq. (2.1). This formula is consistent with the

methodology followed by the National Grid’s API forecast (N.G, 2017), other members
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of the scientific community (Staffell, 2017), (Lau et al., 2015) and the Grid Carbon

application (Rogers & Parson, 2017).

CI(t) =
∑N

n=1 cn · En(t)∑N
n=1 En(t)

(2.1)

where n is the fuel type index, N is the total number of fuels, cn is the carbon factor for

fuel n and En is the generated energy corresponding to fuel n at given time t.

As seen in the equation the individual power plant cn carbon factors have a great impact

on the calculation of grid emissions. Here, the term carbon factor is used to describe

the total amount of greenhouse gases that is emitted per kWh by a specific electricity

generating plant. Significant discrepancies were discovered in the carbon factors of

the same power plant type across the literature. These discrepancies are caused by the

different efficiency, age, whether life cycle assessment and which stages of LCA were

considered when the emissions were calculated. A review of literature sources is carried

out in detail in section 2.2.1.

2.2 Life cycle assessment of carbon emissions for

different generating plants

Life cycle assessment (LCA) is a technique for assessing and evaluating the

environmental consequences and impacts of products and services across all life stages

(from cradle to grave) (Asdrubali et al., 2015), (Varun et al., 2009). According to

(ISO4040, 2006) LCA is carried out by iterating four different phases, goal and scope

definition, LCA inventory, life cycle environmetal impact assessment and interpretation.

Regarding, energy LCA, there are several well established methodologies. Some of the

most used are: IPCC method which calculates the total CO2 emissions, the CED method

which evaluates the total energy that has been used and the Ecoindator that assesses

eleven different impact areas (Asdrubali et al., 2015). As all electricity generating

technologies emit some carbon emissions at some point in their life cycle, LCA is a

16



Section 2.2 Subsection 2.2.1

recognised tool to assess the overall sustainability of different electricity sources.

The life cycle of an electricity generation plant includes typically the construction, the

operational and the decommissioning phases. Fossil-fuel based power technologies are

more dependable and flexible than nuclear reactors and intermittent renewables plus they

are vital for the second-by-second balancing of supply and demand (Green & Staffell,

2016). However, they emit substantially more greenhouse gases during their operation

(Green & Staffell, 2016). Lave and Freeburg (Lave & Freeburg, 1973) highlighted that

coal power plants were responsible for more emissions not only from direct combustion

but also from mining and transport.

It has been argued that carbon emissions from renewable energy systems are not nil,

opposed to popular belief, (Varun et al., 2009). The low carbon electricity generation

technologies such as wind, solar and nuclear do not cause direct emissions during their

operational phase but they are still responsible for some emissions during the other phases

of their life such as construction, maintenance and decommissioning. However, all

renewable technologies have significantly lower LCA emissions compared to the fossil

ones (Varun et al., 2009), (Weisser, 2007).

In the majority of the existing studies, carbon factors consider only the emissions caused

directly at the point of electricity generation, such as when coal is burnt in a coal-fired

power station. To provide a more accurate picture of the emissions caused by generation

technologies, all stages of their life cycles must be considered; These include their

construction and maintenance; the extraction, processing and transport of their fuels (if

applicable); and their ultimate decommissioning and disposal. Inconsistencies are being

noticed when looking at the values of carbon factors for different electricity generating

technologies in different countries (Hondo, 2005), (Odeh & Cockerill, 2008), (Lau et al.,

2014a), (Staffell, 2017). The reasons behind this as explained by (Baldwin, 2006)

are differences between individual plants (some older and/or less efficient), different

technologies(e.g. run-of-river vs. reservoir storage), different life-cycle assessment input

(boundary definition) parameters and different studies (date).
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2.2.1 International carbon factor review of different generating

plants

To understand the noticed inconsistencies, a review of international literature was carried

out which points to a wide range of carbon factor values for different plant types (Turconi

et al., 2013), (Hondo, 2005), (Odeh & Cockerill, 2008), (Varun et al., 2009), (Staffell,

2017), (Rogers & Parson, 2017), (Lau et al., 2014a), (Lau et al., 2014b). This review

considers international studies alongside UK references and notes reasons underlying

some marked differences.

Turconi et al. (2013) conducted a wide review of 167 inernational case studies regarding

the life cycle assessment of different types of electricity generating plants. The

carbon emissions were then assessed against three life cycle stages that include: fuel

provision from the extraction of fuel to the gate of the plant, plant operation and

maintenance including residue disposal and infrastructure that includes commissioning

and decommissioning of the plant. Significant variations were found, even for the same

individual electricity generating technology. The identified discrepancies were shown to

originate from the energy recovery efficiency and the fuel gas cleaning system for fossil

fuel based plants and from the electricity mix used during both the manufacturing and

the installation phase for nuclear and renewable generation plants.

Hondo (2005) carried out life cycle assessment of carbon emissions for nine types

of electricity generating technologies in Japan. This study considered emissions

during the construction and operation phases for all technologies but nuclear where

decommissioning was also assessed. The results indicated that the vast majority of

LCA emissions of wind and solar electricity generation plants is associated with the

construction phase. For fossil fuel technologies the majority of emissions are direct and

occur during the operational phase from the combustion of the fuel.

Varun et al. (2009) looked into ten international case studies to evaluate the LCA

emissions for different types of electricity generating technologies and considered the

construction, operation and decommissioning phases. Fossil fuel plants were compared
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with renewable energy technologies and the results were clearly in favour of the second.

However, solar PV technologies were shown to be responsible for a significant amount

of emissions. It is noted that this study assigned the highest carbon factor to solar PV in

table 2.2.

Odeh & Cockerill (2008) examined life cycle emissions from UK coal power plants. This

study considered the emissions from the construction, operation and decommissioning

phases and specified that the operational phase includes the upstream (mining and

transport) and the downstream processes (waste disposal and recovery of land).

Consistently with previous studies, the results indicated that the majority of direct

emissions is due to fuel combustion during the operational phase. Furthermore, it was

shown that methane leakage during the mining phase is responsible for the majority of

indirect emissions.

Finally, the authors in (Staffell, 2017) and (Rogers & Parson, 2017) consider only

operational emissions in their work while the author in (Lau et al., 2014a) and (Lau

et al., 2014b) considers life cycle emissions without providing details about the stages

considered.

Examining separately each power station type and their corresponding carbon factors,

high discrepancies are observed for renewable power systems. The carbon factors for

wind turbines display a range of 38 g/kWh according to Turconi et al. (2013). Since

the greatest proportion of carbon emissions are produced during the manufacturing

process the total figure is heavily dependent on the grid carbon intensity for different

countries. Onshore and offshore turbines have similar carbon emissions, since the

higher efficiencies of offshore plants compensate for their heavier manufacturing process

(Arvesen & Hertwich, 2012). An even higher range up to 114 g/kWh is estimated by

Varun et al. (2009). The lowest limit of the range at 9.9 g/kWh is calculated for onshore

wind in Denmark while the highest one (123.7 g/kWh) is observed in a Japanese case

study (Varun et al., 2009). The findings of Turconi et al. (2013) agree with Varun et al.

(2009), the discrepancy noticed in emissions of onshore and offshore wind energy is only

2 g/kWh while the largest carbon contribution originates from material manufacturing.

19



Section 2.2 Subsection 2.2.1

For solar energy technologies, Hondo (2005) calculates the emissions of Japanese rooftop

type polycrystalline silicone solar pV of 3KV to 26 g/KWh while the calculated ranges

for the international studies by Varun et al. (2009) and Turconi et al. (2013) are 200

and 177 g/kWh respectively. The carbon emissions assigned to solar technologies

indicate this high variability due to different grid carbon intensity of the country during

manufacturing (Turconi et al., 2013), solar panel typology (Fthenakis & Chul, 2007) and

climate conditions during installation.

In the work by (Turconi et al., 2013) emission factors for nuclear power are shown to vary

greatly, with differences of up to one order of magnitude (3 to 35 g/kWh). For this type of

generation, the lowest range of 32 g/kWh is observed across the whole body of reviewed

literature. All studies agree on the majority of carbon emissions coming from the uranium

extraction (Turconi et al., 2013) and enrichment (Hondo, 2005) processes. Although

nuclear carbon factors are lower than coal and gas based technologies, the disposal of

radioactive materials has the potential to cause higher damage to the surroundings (Varun

et al., 2009).

Hydropower technologies such as reservoir dam schemes and run-of-river plants are

assigned carbon factor ranges of 203 g/kWh (Varun et al., 2009) to 338 (Turconi et al.,

2013). These variations are explained by the used technology type, different local climate

conditions, reservoir size, water depth, type and amount of flooded vegetation and soil

type (Weisser, 2007), (Gagnon & van de Vate, 1997), (Dones et al., 2004). Hydropower

plants in tropical climates produce more emissions, i.e 340 g/kWh in Brazil as opposed

to 0.3 to 35 g/kWh in Finland (Turconi et al., 2013). This is due to high quantities of

biomass mostly in the forest cover and warm conditions with decomposition process at

continuous work for twelve months per annum (Varun et al., 2009, pp 1071).

For coal-based power system types a more modest variation of 15 g/kWh Staffell (2017)

is noticed for plants located in the United Kingdom. In this case, this is due to the

net efficiency discrepancy that measures up to ±0.5%. As with other fuels, studies that

review international plants yield wider ranges of 390 g/kWh (Turconi et al., 2013) while

the remaining studies assign single values that vary from 910 to 989.7 g/kWh (Odeh et al.,
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2008), (Hondo, 2005). For coal-based technologies, the majority of carbon emissions is

produced during the operation phase, hence the variability is caused by different types of

technology, process efficiency and age of plant.

Finally, for gas based electricity generating technologies that include both open and

closed cycle gas turbines, the carbon factor ranges are shown to vary from 88 for Japan

(Hondo, 2005) to 620 g/kWh for international case studies (Turconi et al., 2013). It is

also noticed that discrepancies of 0.4% and 0.7% in the net efficiencies cause variation

of 10 and 6 g/kWh in the relevant carbon factors for open cycle gas turbine and closed

cycle gas turbine plants respectively (Staffell, 2017).

The carbon factors assigned to coal, oil, gas (including CCGT and OCGT technologies),

nuclear, hydro, solar and wind plants are presented in tables 2.1 and 2.2. High

discrepancies have been noticed in all types of generating plants. For renewable

technologies, climate conditions, material manufacturing, source and location of

electricity used and type of technology all impact the LCA carbon emissions. For

conventional coal and gas plants, the majority of emissions is being produced during

the operational phase, hence type of technology, efficiency and age of the plant are

the factors that create the variability. The uncertainty that is caused in the grid carbon

intensity calculation by different carbon factor assumptions needs to be recognised and

investigated. It is realised that the ranges of carbon factors in the international case studies

of the literature include climate conditions and grid intensity which are very dissimilar

to the United Kingdom. Thus, for the purposes of this study, the carbon factors from

two UK specific studies (Lau et al., 2014a) and (Staffell, 2017) were selected in order to

quantify the impact on annual and half-hourly grid carbon intensity values (section 3.6).
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Author(s) Country of study LCA Value (g/kWh)

Wind

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
3–41

(Hondo, 2005) Japan
construction,

operation,
29

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
9.7-123.7

(Staffell, 2017) UK operation only 0
(Rogers & Parson, 2017) UK operation only 0

(Lau et al., 2014a) UK not specified 96
(Lau et al., 2014b) UK not specified 20-94

Hydro

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
2–340

(Hondo, 2005) Japan
construction,

operation,
11

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
3.7-237

(Staffell, 2017) UK operation only 0
(Rogers & Parson, 2017) UK operation only 0

(Lau et al., 2014a) UK not specified 13
(Lau et al., 2014b) UK not specified 2–13

Solar

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
13-190

(Hondo, 2005) Japan
construction,

operation,
26

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
53.4-250

(Staffell, 2017) UK operation only 0
(Rogers & Parson, 2017) UK operation only 0

Table 2.1: Carbon factors for renewable power systems.
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Author(s) Country of study
LCA

specification
Value (g/kWh)

Coal (Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
660-1050

(Hondo, 2005) Japan
construction,

operation
975.2

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
975.3

(Staffell, 2017) UK operation only 922-952
(Rogers & Parson, 2017) UK operation only 910

(Odeh & Cockerill, 2008) UK
construction,

operation 1, decommissioning
989.7

(Lau et al., 2014a) UK not specified 990
(Lau et al., 2014b) UK not specified 788-899

Gas

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
380-1000

(Hondo, 2005) Japan
construction,

operation
518-606

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
607.6

(Staffell, 2017) UK operation only 388-661
(Rogers & Parson, 2017) UK operation only 360-480

(Lau et al., 2014a) UK not specified 488
(Lau et al., 2014b) UK not specified 367-586

Oil

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
530-900

(Hondo, 2005) Japan
construction,

operation
742

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
742.3

(Staffell, 2017) UK operation only 813-1057
(Rogers & Parson, 2017) UK operation only 610

(Lau et al., 2014a) UK not specified 700
(Lau et al., 2014b) UK not specified 600-699

Nuc.

(Turconi et al., 2013)
167 international

case studies
fuel provision, plant

operation, infrastructure
3–35

(Hondo, 2005) Japan
construction,

operation, decommissioning
24

(Varun et al., 2009)
10 international case

studies
construction,

operation, decommissioning
24.2

(Staffell, 2017) UK operation only 0
(Rogers & Parson, 2017) UK operation only 0

(Lau et al., 2014a) UK not specified 26
(Lau et al., 2014b) UK not specified 20-26

Table 2.2: Carbon factors for conventional power systems.

1including upstream and downstream processes
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2.3 A timeline of carbon policy in Great Britain and its

impact on grid carbon intensity

Energy policy area is among the most important drivers that have the potential to

drastically curb carbon emissions and change the electricity grid and the fuel mix

(Cairney et al., 2019). Must-follow legislative measures can successfully drive down

greenhouse gas emissions especially on the business level. Key processes that influence

the energy regime at the carbon-related policy level as explained by (Foxon et al., 2010)

include: “public awareness of climate change and willingness to accept and undertake

changes in response, government commitments to meet national and international targets

for emission reductions and the promotion of low carbon energy sources, ideological

commitments to liberalized energy markets, concerns over security of primary energy

supplies, external factors leading to high and/or volatile oil and gas prices, related

concerns over energy affordability and fuel poverty, factors which could lead to physical

disruption of external supplies (war, terrorism, foreign governments limiting supply),

changes in the international economic and financial situation, such as those associated

with the current credit crunch”. Below, an overview of the UK low-carbon energy policy

is being described as presented in the briefing paper on Energy Policy by the House of

Commons in 2016 (White & Hough, 2016):

Climate Change Act was introduced in 2008 and set a statutory target for the UK to

achieve an 80% reduction in greenhouse gases by 2050 against a 1990 baseline, by setting

five yearly carbon budgets.

The UK Carbon Plan in 2011 set the required measures to meet the first three carbon

budgets. The 4th carbon budget was agreed in 2011 with a target of a reduction of

emissions of 52% compared to 1990 levels while the 5th carbon budget was planned

by June 2016.The Climate Change Committee, the statutory body set up to monitor and

advice on progress towards the 2050 climate targets, has submitted its recommendation

to the Government that the budget should be set at 57% for the fifth budget.
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The UK is also legally bound to achieve a renewable energy target of 15% by 2020, as

part of the European Union’s overall target of 20% renewables by that date.

In addition, the Paris Climate Change conference was held in December 2015 following

up the Kyoto Protocol. According to this, an aim was set for emissions to peak “as soon

as possible” and for emissions from human activity and absorption by carbon sinks to

balance some time in the second half of the century (White & Hough, 2016), (UKCCC,

2016).

Electricity market reform was initiated in 2010, implemented in the Energy Act of 2013

and set targets such as decarbonisation of electricity generation and cost reduction of

electricity for the consumers (White & Hough, 2016).

The Carbon Plan, published in 2011 is a government wide action that brings together

the strategies to curb greenhouse gas emissions and deliver climate change targets.

Regarding the electricity sector, the three key parts of the portfolio are renewable power,

nuclear power, and coal and gas-fired power stations fitted with carbon capture and

storage (DECC, 2011a). By 2050, emissions from the power sector need to be close

to zero. With the imminent electrification of heating and transport, average electricity

demand may rise by between 30% and 60%. As a result, the grid might require as much

as the current capacity to deal with peak demand (DECC, 2011a). ”Electricity is likely to

be produced from three main low carbon sources: renewable energy, particularly onshore

and offshore wind farms; a new generation of nuclear power stations; and gas and coal-

fired power stations fitted with CCS technology. Fossil fuels without CCS will only be

usedas back-up electricity capacity at times of very high demand. The grid will need

to be larger, stronger and smarter to reflect the quantity, geography and intermittency of

power generation and be able to cope with the supply and demand fluctuations” (DECC,

2011b).

Alternative measures such as the Climate Change Levy (CCL) and Climate Change

Agreements (CCAs) are also in place in the United Kingdom. The CCL, introduced

in 2001, aims to reduce energy consumption on the non-domestic level by by taxing
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the supply of specified energy products such as electricity, gas and coal for use as fuels

(DECC, 2014b). Carbon taxes are generally considered to have a positive environmental

impact although concerns have been raised about the resulting increased utility costs

(Mclaughlin et al., 2019). CCAs are voluntary agreements giving a variety sectors a

discount on the Climate Change Levy in exchange for signing up to energy efficiency or

carbon reduction targets (DECC, 2014b).

Revewing the timeline of the UK energy policies and its impact on carbon emissions,

the decarbonisation progress in the power sector in 2016 is considered to be “good”

(White & Hough, 2016) as the total penetration of renewables in the grid has been steadily

increasing since 2009 (DECC, 2015) while the UK contains complex constantly evolving

mechanisms to promote energy efficiency with various authorities being involved in the

development, implementation and monitoring processes (Malinauskaite et al., 2019).

Nevertheless, criticism has been made on energy efficiency policies on the domestic

level regarding their limited scope, the consumer cost and the way of implementation

(Hinson et al., 2018). Finally, the Climate Change Committee did warn that achieving

the successively stringent targets will become increasingly challenging (White & Hough,

2016).

2.4 Grid carbon intensity in a UK carbon reporting

framework

Carbon accounting and reporting procedures are inherently dependent on the relevant

policies already in place. Baboukardos (2017) highlights the benefits of mandatory

carbon reporting while (Tauringana & Chithambo, 2015, p. 425) argue that “non-

mandatory guidance could increase disclosure as much as do mandatory requirements”.

Carbon accounting has the potential not only to monitor the overall decarbonisation

progress on a country level, but also to develop and inform Climate Change mitigation

policy (Barrett et al., 2013). The main carbon reporting schemes in the UK are ESOS,
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CRC (to be replace by SECR in the near future) and the regulatory requirement for

company reporting of greenhouse gas (GHG) emissions using DEFRA factors, which

is the scheme of greatest relevance to the present study. A brief outline of the schemes is

given below.

ESOS is a mandatory energy assessment scheme for organisations in the UK.

Organisations that qualify for ESOS must carry out ESOS assessments every 4 years.

These assessments are audits of the energy used by their buildings, industrial processes

and transport to identify cost-effective energy saving measures (DECC, 2014a). The type

of organisations that needs to report to ESOS is any UK company that either employs 250

or more people, or has an annual turnover in excess of 50 million euro (£38,937,777), and

an annual balance sheet total in excess of 43 million euro (£33,486,489).

The CRC energy efficiency scheme (Carbon Reduction Commitment) was announced

in 2007 and introduced in 2010. Under the scheme, organisations that consumed over

6,000 megawatt-hours (MWh) of electricity through settled half-hourly meters during

the year are required to monitor their energy use, report their energy supplies and buy

allowances for every tonne of carbon they emit (DECC, 2016). The Government proposes

that the Streamlined Energy and Carbon Reporting (SECR) scheme will be applied from

April 2019 to replace the expiring CRC phase (DECC, 2017b). The proposed means for

reporting is company accounts in line with other existing initiatives such as ESOS and

mandatory greenhouse gas (GHG) reporting.The new SECR reporting framework will

apply to all quoted companies and apply to large UK incorporated unquoted companies;

those with at least 250 employees, or annual turnover greater than £36m, and an

annual balance sheet total greater than £18m. (Two or more of the criteria apply to a

company within a financial year) (DECC, 2017b). The said companies would have to

disclose Scope 1&2 emissions according to the GHG methodology (Scope 3 will remain

voluntary) and publish an intensity metric in their annual reports, report on global energy

use and provide a narrative commentary on energy efficiency action taken in the financial

year (DECC, 2017b).

In April 2013, the UK government introduced a regulatory requirement for company
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reporting of greenhouse gas (GHG) emissions in their Director’s Annual Report and

Accounts (DECC, 2013a). This has undergone parliamentary clearance and came into

force in October 2013. Companies that are now required to report their Scope 1 (direct)

and Scope 2 (indirect) emissions. As defined by Section 385(2) of the 2006 Companies

Act, this applies to companies that are: UK quoted, UK incorporated and whose equity

share capital is officially listed on the main market of the London Stock Exchange or

in a European Economic Area or is admitted to dealing on either the New York Stock

Exchange or NASDAQ (DECC, 2013a). The three scopes of identifying and categorising

emissions are as follows (DECC, 2013a, p. 48):

• Scope 1 (Direct emissions): Activities owned or controlled by the organisation

that release emissions straight into the atmosphere. They are direct emissions.

Examples of scope 1 emissions include emissions from combustion in owned

or controlled boilers, furnaces, vehicles; emissions from chemical production in

owned or controlled process equipment.

• Scope 2 (Energy indirect): Emissions being released into the atmosphere associated

with the consumption of purchased electricity, heat, steam and cooling. These are

indirect emissions that are a consequence of the organisation’s activities but which

occur at sources the company does not own or control.

• Scope 3 (Other indirect): Emissions that are a consequence of the company’s

actions, which occur at sources which the company does not own or control and

which are not classed as scope 2 emissions. Examples of scope 3 emissions

are business travel by means not owned or controlled by the organisation, waste

disposal, or purchased materials or fuels.

To account for their electricity related emissions businesses are provided with a single

number of gird carbon intensity that is updated annually and represents the last calendar

year. Limited literature has been identified that reviews and critiques the robustness of the

GHG reporting scheme. While Haslam et al. (2014) questions the malleability associated

with the three scope classification and the soft boundaries of ownership of the reporting
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entity, Bebbington et al. (2019) argues for an additional “Scope 4” future emissions.

Since fossil fuel reserves are finite and known, there is scope to convert such data to

likely future electricity grid emissions. In such a case, interested parties and stakeholders

could “make their own judgements regarding risks associated with unburnt carbon in

the context of known carbon budgets” (Bebbington et al., 2019, p. 16). Although the

argument for accounting for future greenhouse emissions is certainly valid, another one

could be made about the time-varying nature of the grid emissions.

Power system management is a highly dynamic progress that involves balancing supply

and demand minute by minute. While dispatchable power plants have to adjust their

outputs, must-take renewables further amplify the continual fuel mix changes. It has

already been indicated that different plant types have carbon factors that range from

zero (for a wind or solar plant if just the operational emissions are considered) to

1050 g/kwh (for a coal plant) (tables 2.1, 2.2). Different fuels are expected to have a

significant effect on the figure that reflects the total grid emissions at any given time so

it can be argued that a single annual value does not fully represent the grid operation.

Tranberg et al. (2019) introduced a method of real time consumption-based carbon

accounting for the European electricity systems. This method traces the power flows from

production to consumption and significant differences were measured for the respective

carbon intensities. These differences are attributed to the variant fossil fuel share of

interconnected imported electricity. This power flow method could also be applied on

country level if data is available in high spatial resolution or to simulate electrification of

vehicles and heating. Finally, it has the potential to lay the foundation for time-varying

electricity taxes (Tranberg et al., 2019, 4).
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2.5 Future grid carbon intensity uncertainty

Driven by national and international Climate Change policies, the UK electricity sector

is undergoing a significant transition. Aging power plants are expected to retire and

affect the capacity margins (Sithole et al., 2020), new heating technologies (Lindberg

et al., 2019) and the electrification of vehicles will likely cause increased demand but at

the same time have the potential to provide storage solutions and ancillary services to

the system. Furthermore, although high renewable grid penetration will aid the system

defossilisation, it is anticipated to challenge the supply security and the system flexibility

(Child et al., 2019). All these factors constitute substantive sources of uncertainty for the

future of the electricity grid emissions.

In an attempt to explore this uncertainty National Grid has outlined different credible

pathways for the future of energy for the next 30 years and beyond. An overview of

those scenarios, Consumer Evolution, Community Renewables, System Progression and

Two Degrees for 2030 are given in tables 2.3 and 2.4 (N.G, 2018a, p. 3). Among the four

scenarios, only two of them, Community Renewables and Two Degrees achieve the 2050

decarbonisation target. Given the different conditions pertaining demand, transport, heat

and electricity supply carbon intensity is projected to develop differently (figure 2.1).

These values have been simulated with BID3, a generation dispatch model that optimises

total system cost and outputs total generation in hourly resolution (N.G, 2018a). Dispatch

models are discussed in greater detail in later sections of this study. Then, carbon

intensity is calculated according to the following formula (N.G, 2018a, p. 15):

Carbon intensity(g/kWh) = Carbon emissions from generation(g)
Electricity generation output(kW h)

According to BID3 projections grid carbon intensity decreases to 74, 48, 117 and 136

g/kWh under 2030 Community Renewables, Two Degrees, Steady Progression and

Consumer Evolution scenarios respectively. Furthermore it falls to 32, 20, 52 and 72

g/kWh under the 2050 scenario assumptions (N.G, 2018a, p. 97). Once more, it is noticed

that future emissions are “flattened” and described in total annual values. The challenges

of modelling a possible future grid are acknowledged but the need to further examine
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the system behaviour in a higher resolution remains. A dispatch model similar to the

one used by National Grid could be used to produce time-series of grid carbon intensity

in hourly or half-hourly resolution under the Future Energy Scenario installed capacity

assumptions (see section 4.6).

Exploring the potential transition pathways sheds light on the uncertainty of the system

capacity development. However, another substantive source of both current and future

uncertainty of electricity emissions is the variability of renewables.

Consumer
Evolution

Community
Renewables

electricity
demand

Moderate-high demand: high for (EVs)
and moderate efficiency gains

Highest demand: high for EVs,
high for heating, good efficiency gains

transport
Most cars are EVs by 2040;

some gas used in commercial vehicles
Most cars are EVs by 2033;

great use of gas in commercial vehicles

heat
Gas boilers dominate;

moderate levels of thermal efficiency
Heat pumps dominate;

high levels of thermal efficiency
electricity

supply
Small scale renewables and gas;

small modular reactors from 2030s
Highest solar and onshore wind

Table 2.3: Consumer Evolution and Community Renewables scenarios (based on (N.G,
2018a, p. 3)).

Steady
Progression

Two degrees

electricity
demand

Moderate-high demand: high for EVs
and moderate efficiency gains

Lowest demand: high for EVs, low for heating
and good efficiency gains

transport
Most cars are EVs by 2040;

some gas used in commercial vehicles
Most cars are EVs by 2033;

high level of gas used for commercial vehicles

heat
Gas boilers dominate; moderate levels

of thermal efficiency

Hydrogen from steam methane reforming from
2030s, and some district heat;

high levels of thermal efficiency

electricity
supply

Offshore wind, nuclear and gas; CCUS2

gas generation
from late 2030s

Offshore wind,
nuclear, largescale storage and interconnectors

CCUS gas generation from
2030

Table 2.4: Steady Progression and Two Degrees scenarios (based on (N.G, 2018a, p. 3)).
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Figure 2.1: Carbon intensity (CO2eq. Mt) for Future Energy Scenarios (based on data
workbook from N.G (2018a)).

2.5.1 Renewable variability and the arising uncertainty

As the United Kingdom is legally bound to reduce their greenhouse emissions grid

decarbonisation is already in process. Among other schemes such as the feed in tariff,

emissions performance standard and the carbon price floor an attempt to meet the national

energy demands with cleaner generation technologies is already in place. The majority

of renewables are likely to come from wind and solar as other types of non-fossil energy

solutions such as hydro and bioenergy are constrained by limited resource and higher

costs (Joos & Staffell, 2018). Although concerns were initially raised whether renewables

may not be available at sufficient quantities at competitive prices or even not acceptable

on social or political grounds (Weisser, 2007), generation by fuel type data from Elexon

show that wind generation has been successfully increasing since 2009 in the United

Kingdom at a rapid rate (see chapter 3). However, as further decarbonisation goals

become increasingly demanding, the way forward and the transition from a fossil fuel

based grid to a near zero-carbon is not trivial.

Seasonality, variability, limited predictability (Galvan et al., 2006), (Eltigani & Masri,

2015) and intermittency are the key characteristics that may hinder the introduction of

carbon-free energy sources into the grid (Connolly et al., 2010). Perry et al. (2008)

questions whether the non-reliable and intermittent nature of renewables will challenge

32



Section 2.5 Subsection 2.5.1

the stability of the supply mix while (Sharifzadeh et al., 2017, 385) argues that their

application will enhance the energy security by diversification of the supply. Coker

et al. (2013) have looked into the assessment of the variability of renewables; where

variability is considered as a combination of different characteristics instead of a single

parameter. To smooth the effects of this variability, energy supplied from the combination

of wind, solar and tidal instead of a single renewable source was shown to have a

more symmetrical distribution and lower spread (Coker et al., 2013). Furthermore,

“complementarity and substitutability of technologies” (Fais et al., 2016, 164) and

flexibility are the key enablers for successful renewable integration. Renewable resources

such as wind and solar provide unprecedented opportunities for defossilisation of the

power system and it is possible to integrate them into the existing grid infrastructure

and overcome the uncertainties in both supply and demand sides, provided that such

uncertainties inform the design of the grid while operational decisions are optimized in

real-time (Indra al Irsyad & Halog, 2019). Once more, the existing literature highlights

the need to take into account the “time” element of system operation to examine

the impact of renewable variability. Carbon emissions that arise from the electricity

generation are expected to reduce while zero-carbon energy sources dominate the mix.

Similar to the capacity projections of Future Energy Scenarios, renewable sources are

highly variable. Hence, a dispatch model could be used to simulate different wind and

solar outputs and investigate the behaviour of grid emissions from one hour to the next.

In this light, exploring the uncertainty regarding the system operation Staffell &

Pfenninger (2018) assessed the impact of increasing weather output under projected

demand and capacity assumptions. The most important qualitative finding of this study

was that the net zero demand and thus zero grid carbon intensity may occur as early

as 2021 and become a regular occurrence by 2030 (under the Two Degrees capacity

assumptions) due to the increasing wind and solar output. This finding, further supported

by the results of chapter 4, indicates that the amount of wind and solar in the mix will be

adequate so that no dispatchable plants would have to turn on in order to meet demand.

Although the infrastructure for such a grid operation, that runs solely on renewables, is
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yet to be realised (Indra al Irsyad & Halog, 2019), the theoretical foundations are already

in place.

2.5.2 Electrification of vehicles

Amidst global efforts to mitigate climate change there is widespread attention to

decarbonising electricity grids and increasing electrification of transport. This implies

a growing coupling between power system operation and reduction of carbon emissions

from transport, with accompanying concerns whether power systems have the capability

to meet the resulting load increase. Notwithstanding such concerns there is also some

optimism that flexible charging of electric vehicles could provide flexibility that actually

supports grid operation.

However, projected demand changes are expected due to electric vehicles. While

the national electricity demand profile follows a regular and predicable pattern, it is

projected to change in the future mostly due to de-industrialisation and new demand

side technologies (electric vehicles and heat pumps) (Boßmann & Staffell, 2015). While

previous studies assumed that the future demand profile would equally expand across

the day, Boßmann & Staffell (2015) showed that the impact of heat and transport

electrification is more pronounced during peak hours. Projections estimated that an

additional 30 GW of capacity would be required by 2050 in the UK to meet peak

demand. Regarding the demand side management on the electrification of transport,

smart charging strategies are strongly recommended for net load smoothing and efficient

integration of renewables.

A number of countries have now announced phase-out dates for new diesel/petrol cars

(2025 - Norway, 2030 - Ireland, Netherlands and Slovenia and an India aspiration, 2032 -

Scotland, 2040 UK and France) with many polluted cities setting more aggressive targets

including Oxford, Paris, Athens and Madrid (IEA, 2018). National Grid’s EV Project

Director is encouraging the UK to pull forward the UK Government 2040 target (for the

banning of the internal combustion engine only car) to 2030 target (HOC, 2018).
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There are many documented comparisons of diesel/petrol vs. electric cars, however

each has a different set of assumptions that can significantly impact the outcome.

These include: scope of study; carbon intensity of the electricity system; size and fuel

efficiency of cars assessed; nature of driving; life-time mileage assumptions; availability

of manufacturing bills of materials and methods. The carbon intensity of the grid is

the greatest of these factors – as it contributes to all of the in-life emissions of electric

vehicles, as well as a significant proportion of vehicle manufacturing emissions.

In 2010 it was estimated that in China, life-cycle emissions of EVs were actually 6.7%

greater than internal combustion vehicles (ICE), due to the heavy weighting towards coal

powered generation of the electricity system. This is projected to change to 10.4% lower

than ICE by 2020 and will continue to improve as the Chinese grid decarbonises (Wu

et al., 2018). From a European standpoint the numbers look much more favourable for

electric vehicles. Vrije Universiteit Brussel (Van Mierlo et al., 2017) developed a tool

based on multiple life-cycle studies and estimated that the life-cycle emissions for a fully

electric vehicle are currently around a third of a comparable diesel vehicle – assuming an

electricity system carbon intensity of around 250g/kWh, similar to the UK 2017 carbon

intensity (see figure 3.8). Around two-thirds of the EV emissions come from the fuel, and

due to the annual improvements in global electricity carbon intensities, the emissions per

mile will drop for EVs throughout their life. This estimate was backed up in the IEA

Global EV Outlook report (IEA, 2017) which presents a “well to wheels” comparison,

suggesting emissions for fully electric cars are less than 50% of diesel cars in Europe, and

this should be replicated across the world as global policies to reduce carbon emissions

continue to be implemented.

Electrification of vehicles effectively links the environmental performance of vehicles

to the environmental performance of the electricity grid. Clear, timely and accurate

estimation of carbon emissions to vehicles is needed to ensure effective progress. By

utilising grid intensity values in high resolution, different emissions scenarios can be

calculated depending on the charging profiles for different times of the day while carbon

savings can be calculated in projected grid conditions.
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2.5.3 Future heating solutions and their potential carbon savings in

the immediate and long-term future

Since space heating in the United Kingdom is predominantly provided by fossil fuels,

without policy intervention the risk of a gas lock-in that hinders the policy goal of

decarbonisation is real (Eyre & Baruah, 2015). Cogeneration plants and heat pumps

are found amongst the most discussed heating technologies of the current and future UK

electricity grid. While cogeneration uses a fuel with a set carbon factor in the case of

this study, heat pumps use electricity provided by the grid. Thus, their resulting carbon

emissions are directly related to the value of grid carbon intensity at time-of-use.

Cogeneration is considered a more efficient form of power generation due to the limited

transmission losses and greater fuel efficiency. Combined Heat & Power (CHP) converts

a single fuel into both electricity and heat in a single process. In the case that this fuel is

gas, CHP has the significant potential to reduce carbon emissions and to improve energy

efficiency only in the immediate and near future grid conditions (Kelly et al., 2014).

In the early years of the CHP introduction in the UK heating landscape, criticism has been

made that the liberalised electricity market effectively discriminates against small-scale

CHP plants as opposed to the Danish system of feed-in tariffs that would facilitate the

absorption of high levels of renewables (Toke & Fragaki, 2008). Since then, substantial

progress has been noted on the policy level and the British government published

guidance on combined heat and power in 2013 in an attempt to promote this low carbon

technology and advocate its potential benefits that include energy bills savings, carbon

emissions savings, reduced transmission and distribution losses and increased energy

supply security (DECC, 2013b). These measures that aim to incentivise the installation

of CHP include among others (DECC, 2018b, p. 200):

• “exemption from the Climate Change Levy (CCL) of all fuel inputs to, and

electricity outputs from, Good Quality CHP;

• exemption from Carbon Price Support (CPS) on fuel to CHP consumed for the
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generation of heat;

• exemption from Carbon Price Support (CPS) on fuel to CHP consumed for the

generation of Good Quality CHP electricity which is consumed on site

• Eligibility to Enhanced Capital Allowances for Good Quality CHP plant and

machinery

• Business Rates exemption for CHP power generation plant and machinery;

• Reduction of VAT (from 20 to 5 per cent) on domestic micro-CHP installations;

• Extension of the eligibility for Renewable Obligation Certificates (ROCs) to energy

from waste plants that utilise CHP”;

Regarding the potential carbon savings, the figures from the latest DUKES report (DECC,

2018b) compare CHP with the UK fossil fuel basket carbon intensity and the UK total

basket carbon intensity, which includes low carbon sources such as nuclear and renewable

generation. According to the report, the carbon emission savings from CHP in 2017 as

compared to the National Grid basket were 10.70 Mt CO2, which equates to 1.83 Mt

CO2 per 1,000 MWe installed capacity. Against the total basket, CHP savings reached

4.91 Mt CO2 which equates to 0.84 Mt CO2 per 1,000 MWe installed capacity.

Heat pumps are a promising and relatively new heating/cooling technology that provides

high efficiencies compared with fossil fuel combustion. “The underlying principle of

their operation is the reverse of a heat engine: using mechanical work to move heat

against its natural gradient from a cold location to a hotter one, e.g. from outdoors into

the home” (Staffell et al., 2012, p. 9293). They are classified as air source and ground

source where the heat is derived from the surrounding air or the ground respectively.

The operational carbon emissions allocated to a heat pump are directly linked to the

carbon intensity of the electricity to power it. Research has indicated that the potential

carbon savings on domestic level range from 50% when displacing oil, solid fuel or

electric heating to 10% when displacing low-carbon gas boilers (Staffell et al., 2012).

In summation, gas CHP plants when displacing grid electricity are expected to provide a
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carbon benefit only as long as their total emissions are lower than the grid carbon intensity

at time-of-use while heat pumps provide obvious benefits in a future decarbonised

electricity system. While previous studies (Kelly et al., 2014) have highlighted the

fact that CHP benefits are certain only in the immediate and near term there is need to

quantify these benefits under the current and feasible future grid conditions and against

the respective grid carbon intensity time-series.

2.6 Simulating the carbon intensity of the Great Britain

electricity grid

2.6.1 The GB electricity system

The literature review has shown the need to understand high resolution temporal

variability in grid carbon intensity behaviour. It has also shown that dispatch models

offer the means to do this. High resolution generation output values can be used in order

to explore the uncertainty associated with grid carbon emissions under different installed

capacity and renewable input scenarios and assess the benefits of gas operated CHP and

electric vehicles in current and future grid conditions. To design such a model the requires

an understanding of the GB electricity system operation.

An electric power system is usually comprised of four main elements: power generation,

power transmission, power distribution and power consumption (Mohsenian-Rad, 2012).

Great Britain has a liberalised electricity market and on the generation side, electricity

is being produced from coal, gas, oil and nuclear power plants, hydroelectric plants and

wind farms. Their basic operational principles are summarised in table 2.5.

Suppliers (such as British Gas, Eon, SSE, EDF, Npower and Scottish Power) purchase

electricity in the wholesale market and then sell it to the customers. Bilateral contracts

are traded between suppliers, generators, traders and consumers in half-hourly blocks up

to one hour before real-time (gate closure).
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Type of generating unit Operational principle

CCGT

Combined cycle plants use exhaust gases in
high temperature to generate steam in heat recovery steam generators that is
used to drive a steam turbine generator. Their operational advantage is their

high efficiency.

OCGT
In the simple cycle inlet air is

compressed and then mixed and burned with fuel oil or gas in a combustion
chamber.

NUCLEAR
Light-water nuclear units use

either pressurised water or boiling water reactors with enriched uranium
which is fabricated into fuel assemblies before use.

HYDRO
Hydroelectric units have input-output characteristics similar to the

steam turbine ones and work transforming the kinetic energy of moving water
to electric.

PUMPED STORAGE

Pumped hydroelectricity storage stores energy in the form of water in an
upper reservoir, pumped from another reservoir at a lower elevation. During

periods of high electricity demand, power is generated by releasing the
stored water through turbines in the same manner as a conventional hydropower

station. During periods of low demand (when electricity is also lower cost)
the upper reservoir is recharged by using lower-cost electricity from the

grid to pump the water back to the upper reservoir.

WIND

Wind generators use the torque exerted by the wind to rotate the turbine
blades and generate electrical power. The minimum wind speed required to get

the blades to rotate and generate power is called cut-in speed while the
maximum wind speed, above which there is risk of damage to the rotor, is

called cut-out speed.

SOLAR

Solar power plants are divided in photovoltaic and concentrated power
generation. While photovoltaic sources

capture and covert indirect sunlight into direct current concentrated plans
use mirrors or lenses to concentrate large amounts of solar thermal energy

onto a small area.

Table 2.5: Generation unit types (Wood et al., 2013).

While the distribution network is owned and operated by a a number of companies

(Electricity North West, ESB Networks, Northern Ireland Electricity Networks, Northern

Power grid, SP Energy Networks, Scottish & Southern Electricity Networks, UK Power

Networks, Western Power Distribution) National Grid owns and manages the national

transmission network. National Grid is also responsible for implementing the balancing

mechanism (BM) in order to balance demand and supply at half-hourly intervals.

Balancing is performed in half-hourly blocks and comprises of a variety of technologies

and services (ancillary services). These include (DRAX, 2018):

• Frequency response: where flexible (usually thermal) generations adjust their

outputs in order for the high voltage network frequency to be maintained at
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50Hz ± 1%;

• Reactive power and voltage management: which has to be at 400kV ;

• System inertia: Inertia of a spinning plant is effectively stored energy and can be

used to smooth sudden changes in frequency;

• Reserve power is delivered via spinning reserve (2 minutes response time, mostly

thermal, hydro plants and pumped storage), short-term operating reserve (STOR)

(20 minutes response time, delivered by plants with high marginal cost that cannot

survive on the market such as diesel engines and aeroderivative turbines) and

demand turn-up where excess generation is addressed by commercial or industrial

users increasing their consumption or turning off their own generation;

However, the balancing will be required to adapt to the rapidly transforming electricity

system. Since the 1990s dash for gas UK had moved to a mix of coal, gas and nuclear.

While some nuclear plants were decommissioned in the 2000s the system was kept by

gas, steady demand and the slow renewable penetration (Grubb & Newbery, 2018). The

transition that is taking place expects the gas to change from the backbone of the current

grid and adopt a flexible, supportive role in a renewable dominated electricity system

(Facchini et al., 2019).

In the future GB electricity grid, grid-scale batteries are expected not only to provide

reserve but also aid the voltage control of the system by absorbing or releasing reactive

power while smart PV inverters are expected to support the reactive power and voltage

control mostly on the distribution network. Furthermore, current academic research

explores the inertial response emulation that will enable wind turbines to offer faster

frequency response (DRAX, 2018). Finally, thermal generators can also se configured to

provide benefits to the system stability without contributing to the actual fuel mix. By

running in synchronous compensation mode, they will be able to produce or consume

reactive power.
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2.6.2 Modelling the GB electricity system

Understanding the real-life operation of the electricity system to be simulated is only

the first step of the process. While power system modelling functions digress from

real-life operation the selection of the appropriate model/modelling approach should be

carried out considering the research problem and the desired output. A wide range of

GB power system models have been developed and are currently used under a variety of

schemes. Hall & Buckley (2016) reviewed and classified 22 GB power system models

under their underlying methodology. The classification includes econometric, macro-

economic, economic equilibrium, optimisation, simulation, back-casting, multi-criteria

and accounting models.

Optimisation models entail the use of mathematical optimisation to find a preferred mix

of technologies, given certain constraints. An objective function to be minimised is

defined and this function usually involves cost as it assumes that real world decisions

are made only on the basis of least cost principle (Hall & Buckley, 2016).

Another dichotomy in model classification is explained by Pfenninger et al. (2014)

where, while most power system models are used for planning purposes (capacity

expansion models), the importance of high-resolution analysis of varying demand and

renewable energy leads to an increased need for operational (or dispatch) models.The

most widely used operational models are identified as WASP and PLEXOS (Pfenninger

et al., 2014).

The desired model output for the present research is a set of grid carbon intensity

values in high resolution. In order to calculate this, generation by fuel type data similar

to Elexon (2017) is needed. Reviewing the existing literature on the utilisation of

optimisation/dispatch models it is realised that a model similar to PLEXOS would be

suitable for the purposes of this study.

In academic research, PLEXOS is widely used to explore how renewable variability

will affect any component of the electricity system. In specific, Edmunds et al. (2015)

examines the changes in thermal plant operation schedules with varying renewable

41



Section 2.6 Subsection 2.6.2

input while Johnson et al. (2019) investigates the system inertia with high renewable

penetration and Cleary et al. (2020) estimates the electricity prices and carbon emissions

of large scale wind exports from Ireland to Great Britain. Furthermore, PLEXOS is

also used to appraise the future primary energy consumption in the Italian thermoelectric

sector (Bianco et al., 2015), investigate the benefits of heat electrification in a wind

dominated Irish electricity market (Vorushylo et al., 2018), study cost-optimal and zero-

carbon European electricity system operation in 2050 (Zuijlen et al., 2019) and evaluate

the value of GB-France interconnectors in 2030 generation mix scenarios (Pean et al.,

2016).

All of the aforementioned studies share the common feature of using a dispatch model,

in this case PLEXOS, to simulate capacity scenarios and renewable inputs and estimate

electricity prices, generation mix and carbon emissions of potential future electricity

system conditions. In simpler terms, dispatch models are widely used by the academic

community to answer to questions similar to the ones set by this study. However, while

the literature review indicated that PLEXOS is a fitting model to simulate installed

capacity scenarios and various renewable inputs, the design of a new dispatch power

system model was ultimately decided since it offers increased flexibility and better

visibility of the input-output flow. In order to achieve this, the basic functions of dispatch

models were studied and appropriate modelling techniques were selected.

The two basic functions/problems of a dispatch model are economic dispatch (ED) and

unit commitment (UC). Both ED and UC are short-term cost-optimising functions and

are described in detail below. Economic dispatch regards the optimum power outpout

allocation among the units at minimum cost (Wood et al., 2013). In mathematical terms,

Economic Dispatch is an optimisation problem with constraints:

Ct =
N∑

i=1
Ci(Pi) (2.2)

N∑
i=1

Pi = Pdemand (2.3)
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Pi,min ≤ Pi ≤ Pi,max (2.4)

where Ct is the total cost of the system that needs to be optimised (equation 2.2)and pi

is the power output of i unit. The constraints of this optimisation problem are given by

equations 2.3 and 2.4 and can be described as follows; The power output of a unit has to

be within the operating limits of the unit and the sum of the outputs of all units has to

meet the total demand of the system.

ED can be solved with the lamda iteration method, dynamic programming and genetic

algorithms (Wood et al., 2013) (Dogra et al., 2014) (Kazarlis et al., 1996). Unit

commitment (UC) regards the turn-on and turn-off schedules of the available units at

minimum cost fullfiling several operational constraints of the system. Such constraints

are (Wood et al., 2013): spinning reserve, min up time, min down time, crew constraints,

start up cost, hydro, must-run constraints and fuel constraints.

UC has a similar formulation with ED (extensively covered in chapter 4). However,

the main difference between ED and UC is that while the ED algorithm optimises

the power output of N specific units, the UC algorithm has to “select” the number of

units that are going to turn on. This sort of problem is called a “binary decision” and

its simulation is more complex. UC solution methods include priority list, dynamic

programming, Lagrange relaxation, integer programming, Benders decomposition and

genetic algorithm (Carrión & Arroyo, 2006), (Fontes et al., 2012), (Salam, 2007), (Senjyu

et al., 2003).

The mixed-integer linear programming (MILP) solution, used for the Unit Commitment,

gained interest approximately a decade ago due to the drastic improvement in numerical

solution times of commercial solvers (B. Hobbs, 2001). Furthermore, this method has

been put in use by ISO’s in several markets including the PJM energy market in United

States (Streiffert et al., 2005). Delarue and his team (Delarue & D’haeseleer, 2007)

contrasted the heuristic approach of priority list and a mixed-integer solution for the

UC problem and found out that the MILP method always reached a proven optimal

solution although the computational times for the priority list method were significantly
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lower. Finally, the widely used large-scale dispatch model PLEXOS utilises a mixed-

integer linear programming approach with detailed modules for various power plants,

the transmission grid, and for market planning or capacity expansion (Pfenninger et al.,

2014). It is finally noted, that in this study the ED function has been simulated with the

built in Matlab non-linear solver since there was no need for non-integer constraints. The

priority list was used for the UC function in a benchmark model to set a baseline while

the MILP approach was implemented in the core and final version of the model.

2.7 Summary

Grid carbon intensity has already been investigated by a variety of national and

international studies. However, limited literature was identified that focuses on the time-

varying behaviour of grid carbon intensity (Khan, 2018), (Khan et al., 2018) and in most

cases, emissions arising from the grid are described in a single annual either aggregate

(Ang & Su, 2016) or average (Goh et al., 2018), (Ang & Goh, 2016) figure. While

the minute by minute operation of the electricity grid is overlooked, the subsequent

emissions cannot be adequately and accurately represented in single values. A metric

for quantifying grid emissions, marginal grid carbon intensity, introduced by Hawkes

(2010) describes the effect of demand side interventions to the British electricity grid and

is shown to digress up to 10% from the system average for years 2009 and 2010. While

claims have been made by Hitchin & Pout (2002) that this metric is only appropriate to

describe the short term but fails to capture the system operation in longer time spans,

taking into account marginal emissions further advances our understanding of the system

operation and highlights the dynamic behaviour of grid carbon emissions.

Analysing the grid carbon intensity formula used by (N.G, 2017), (Staffell, 2017), (Lau

et al., 2015) and (Rogers & Parson, 2017) it is noticed that the fuel mix hence the

relevant carbon factors of the different fuels affect the total figure of grid emissions.

An international literature review indicated high discrepancies in the carbon factors for

different generating technologies. For renewable sources it is shown that the variation
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is caused by different topology and climate conditions, source of electricity and material

manufacturing. For conventional generating plants, the net efficiency and the type of

technology used in the operational process are the factors that cause the discrepancies.

To investigate the uncertainty in intensity calculations by carbon factor assumptions, this

study uses a range instead of a single number to quantify the impact on annual and half-

hourly values.

The areas of carbon policy and carbon accounting and reporting are intrinsically related

and have significant roles in achieving the national decarbonisation goals. Although the

benefits of mandatory carbon reporting are evident (Baboukardos, 2017), (Tauringana

& Chithambo, 2015) in the good progress of the British grid decarbonisation of latest

years (White & Hough, 2016), criticism has been made on the UK DEFRA carbon

reporting scheme. Malleability associated with the scope classification (Haslam et al.,

2014) and the lack of future emissions accounting (Bebbington et al., 2019) introduce

key uncertainties in the carbon reporting process. Noting that the annual average grid

intensity values provided by DEFRA do not accurately represent the dynamic balancing

of the system, recent studies (Tranberg et al., 2019) highlight the importance of real time

electricity carbon accounting and lay the foundation for time-varying electricity taxes.

Future projections regarding changing capacity margins (Sithole et al., 2020), renewable

penetration (Staffell & Pfenninger, 2018), electrification of vehicles and new heating

technologies (Lindberg et al., 2019) are expected to amplify the uncertainty pertaining

the grid behaviour and its resulting emissions. Future Energy Scenarios by National Grid

outline potential energy transition pathways for the UK grid and a dispatch model is

being used to simulate potential future grid carbon intensity values. However, once more

it is noticed that the depiction of feasible grid scenarios is flattened to annual values of

emissions. Hence, it is realised that a suitable dispatch generation model such as the

one used by National Grid could be designed to produce grid carbon intensity datasets in

high resolution under different capacity and renewable input assumptions. Furthermore,

those datasets could also be utilised to explore the efficiency of heating systems in a

decarbonised future and inform controlled charging strategies for electric vehicles.
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Dispatch power system models are extensively used to simulate, amongst others,

operational schedules (Edmunds et al., 2015), high renewable penetration (Johnson

et al., 2019), carbon emissions (Cleary et al., 2020) and are ultimately considered an

appropriate tool for the scope of this study. Researching the power system model

functions and their potential algorithmic solution methods, the mixed integer linear

programming (MILP) approach is selected for the Unit Commitment problem. The MILP

method is not only used within the widely used PLEXOS model but is also found to

always reach a proven optimal solution (Delarue & D’haeseleer, 2007) when compared

to heuristic methods such as priority list.
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Chapter 3

Historic data analysis of GB grid

carbon intensity for years 2009 to 2017

3.1 Introduction

The present chapter addresses objective 1: “Explore historic grid carbon intensity

variability and quantify the numeric uncertainty arising from different power system

carbon factor assumptions.”

The DEFRA approach for annual average figures of grid carbon intensity, where annual

fuel consumption is known across all UK power stations cannot be used for time varying

values, as power station fuel input is not available at this temporal resolution. To achieve

half-hourly figures, the known output of GB power stations with an assumed carbon

factor for each power station type are combined. While the annual average figures of

grid carbon intensity are more straightforward to use in company reporting schemes and

useful under certain circumstances, grid carbon intensity values in half-hourly resolution

provide insights on the dynamic nature of the electricity grid and uncover patterns of

behaviour.

Analysis of half-hourly grid carbon intensity data has been carried out for years 2009-

2017 in order to identify half-hourly, daily, monthly and annual trends. Different plant
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carbon factors (due to different assumed efficiency and age of the plant) have also been

used to assess uncertainty ranges and impact on the annual grid intensity values. The

evolution of the GB fuel mix and the type of marginal plant have also been studied.

3.2 Method

In the present study, the methodology that has been followed in order to derive grid

carbon intensity values in half-hourly resolution is widely used and consistent with the

methodology followed by the National Grid’s API forecast (N.G, 2017), other members

of the scientific community (Staffell, 2017), (Lau et al., 2015) and the Grid Carbon

application (Rogers & Parson, 2017).

The figures for grid carbon intensity have been calculated using equation (2.1):

CI(t) =
∑N

n=1 cn·En(t)∑N

n=1 En(t)

where n is the fuel type index, N is the total number of fuels, cn is the carbon factor

for fuel n and En is the generated energy corresponding to fuel n at given time t. The

range of En values was derived using half-hourly generation by fuel type data (available

on Elexon (2017)).

Embedded solar and wind generation data from National Grid (NG, 2017) were also

considered. Due to Elexon data gaps, linear interpolation was applied. In specific, the

zero grid carbon intensity values were replaced by the average of the previous and next

element: CI(t) = CI(t−1)+CI(t+1)
2 .

From eq. (2.1) it is noticed that different carbon factor assumptions (cn) are expected to

have an impact on grid carbon intensity calculations. Hence, three GB specific studies

(Staffell, 2017), (Rogers & Parson, 2017), (Lau et al., 2014b) have been selected and table

3.1 presents the carbon factors of different power systems, as listed in these sources. It

should be noted that although the work by (Lau et al., 2014b) focused on the GB grid,

the range of carbon factors in this study is derived from international literature (presented
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in tables 2.1 and 2.2). As explained in section 2.2.1 international carbon factors assume

climate and topology conditions that are dissimilar to the United Kingdom. This explains

the high discrepancies that are noticed in column C in table 3.1 as opposed to UK specific

column A of the same table. It is also noted that carbon factors from (Staffell, 2017)

and (Rogers & Parson, 2017) do not consider life cycle emissions and assess only the

operational phase. Regarding the factors from (Lau et al., 2014b), it is not specified

whether life cycle assessment was considered. However, since non-zero carbon factors

are assigned to nuclear and wind generation, it can be assumed that other phases apart

from operation were considered.

Staffell (2017) also presents the respective efficiencies for different plant types (presented

in table 3.2). It is noticed that discrepancies of 0.5%, 3.6%, 0.4% and 0.7% in the net

efficiencies cause variation of 15, 122, 10 and 6 g/kWh in the relevant carbon factors for

coal, oil, open cycle gas turbine and closed cycle gas turbine plants respectively. Finally

the interconnected electricity carbon factors assume a fuel mix of 76% nuclear, 12%

hydro, 6% fossil for France, 58% gas, 26% coal, 5% each of biomass, nuclear and wind

for Netherlands and 50% gas, 26% coal and lignite, 20% wind for Ireland.

The majority of this analysis has been carried out using the carbon factors as listed in the

work by (Staffell, 2017). These factors have also been used by the grid carbon intensity

forecast of National Grid (N.G, 2017) and they have been selected for the purposes of

this study as they are the most recent and GB specific. However, separate calculations

have been carried out using the whole range of carbon factors from table 3.1 in section

3.6 in order to examine how they affect the figures of grid carbon intensity and establish

uncertainty ranges.
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(g/kWh) (A) Staffell (B) GridCarbon (C) Lau
Coal 937± 15 910 788–899

Nuclear 0 0 20–26
Oil 935± 122 610 600–699

Wind 0 0 20–94
Hydro 0 0 2–13

Closed cycle gas turbine 394± 6 360 367–487
Open cycle gas turbine 651± 10 480 466–586

French imports 53± 14 90 –
Dutch imports 474± 25 550 –
Irish imports 458± 15 450 –

Table 3.1: Carbon factors for different plant types and interconnected electricity (A)
(Staffell, 2017), (B) (Rogers & Parson, 2017), (C) (Lau et al., 2014b)

.

Efficiency net % Efficiency gross %
Coal 34.3 ± 0.5 36.1 ± 0.6
Oil 28.6 ± 3.6 32 ± 4.2

OCGT 28.3 ± 0.4 28.8 ±0.5
CCGT 46.7 ± 0.7 47.7 ± 0.8

Table 3.2: Efficiency figures for different plant types (Staffell, 2017).

3.3 Validation against DEFRA annual averages

The Department for Environment, Food & Rural Affairs (DEFRA) publishes annual

electricity carbon values for company reporting reasons. As explained in the 2017

company reporting methodology information (DECC, 2018a), the figures of grid carbon

intensity are calculated through a model that uses fuel and emissions data from the power

stations and autogenerators sectors in the UK. In an attempt to replicate the DEFRA

numbers personal communication was held with the Higher Scientific Officer of the

Greenhouse Gas Inventory Team. However, the model and the input data are not available

to the public as they contain commercially sensitive information.

Table 3.3 presents the percentage errors of this analysis’ annual averages against the

DEFRA values. It should also be noted that DEFRA publishes the factor (annual

average of the UK grid carbon intensity) with a two-year delay, meaning that the 2014

DEFRA factor corresponds to 2012 data. For this reason, the comparison was performed

accordingly and 2017 was omitted since the 2017 data will be published by DEFRA in
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2019. The percentage error ranges from 0.5 to 3%. The noticed discrepancies can be

explained if the different methodology and the omission of pumped storage from this

study, is taken into account. It should also be noted, that the use of a fuel carbon factor

assumes the same efficiency for all same fuel plants.

Year Present
Analysis (g/kWh)

DEFRA (data
year (g/kWh)) Error (%)

2017 239.1
2016 274.1 283.1 3.2
2015 360.6 351.6 -2.6
2014 419.9 412.1 -1.9
2013 475.0 462.2 -2.8
2012 505.4 494.3 -2.2
2011 448.8 445.5 -0.8
2010 457.9 460.0 0.5
2009 443.8 452.1 1.8

Table 3.3: Error percentage of grid carbon intensity annual averages against DEFRA
values.

3.4 Fuel mix for years 2009 to 2017

Electricity grid carbon intensity at a certain time is directly dependent on the fuel mix

that was used at this time (equation 2.1). Hence, before attempting to interpret the results

of grid carbon intensity it is important to examine how the fuel mix has evolved over

these years.

Figures 3.1, 3.2 and 3.3 present the half-hourly Elexon generation by fuel type while table

3.4 presents the total annual generation in GW and the standard deviation for each fuel

type for years 2009 to 2017. In the space of nine years the GB fuel mix has drastically

changed but the two most interesting features regard coal and wind generation. Coal

is the most carbon intensive fuel in the GB fuel basket with a factor of 937 g/kWh

(for the present analysis). DECC reports that the past nine years have seen the closure,

capacity reduction,full/partial mothballing or conversion to biomass of several large coal

power stations under the European Union Large Combustion Plant Directive, (LCPD,

2001/80/EC) (DECC, 2017a). In figures 3.1a and 3.3c coal generation (in yellow) has
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decreased from a max of 25 GW in 2009 to a max of less than 10 GW in 2017. The total

annual generation by coal reached a maximum of 274408 GW in 2012 and since then it

has decreased to barely over 41000 GW in 2017.

Wind generation is virtually non existent in the first two years, 2009 and 2010 and

gradually increases during the period of 2011 to 2016. In 2017 it is noticed that the

half-hourly wind generation reaches 10 GW. The highest standard deviation for wind

generation was noticed in 2017 when it reached a value (2169) similar to the one

pertaining coal generation (2629) (table 3.4).

These two significant changes of the fuel mix, the reduction of the most carbon intensive

fuel and the increased zero-carbon wind generation, are expected to decrease grid carbon

intensity figures for the relevant years.

Finally, annual generation by closed cycle gas turbines has fluctuated from 160410 to

294275 GW throughout the years, but has steadily provided a higher baseload than coal

in all years except for 2012 (table 3.4).
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Fuel 2009 2010 2011
Total (GW) Std Total (GW) Std Total (GW) Std

CCGT 294275 2963 313717 3120 253916 3533
Oil 935 218 185 86 23 25

Coal 198097 6196 205899 5681 206918 5366
Nuclear 129776 1039 116882 1124 129466 1130

Wind 6639 303 7366 399 19432 784
OCGT 7106 219 4273 167 7387 216

2012 2013 2014
Total (GW) Std Total (GW) Std Total (GW) Std

CCGT 166112 3821 160410 4722 173393 4596
Oil 40 38 15 24 11 15

Coal 274408 4198 251473 3336 193263 4051
Nuclear 131970 834 131869 969 119450 1038

Wind 25212 1053 37240 1394 42293 1661
OCGT 6549 221 5828 236 7849 274

2015 2016 2017
Total (GW) Std Total (GW) Std Total (GW) Std

CCGT 168686 4170 254482 4653 238503 5261
Oil 5 11 0 0 0 0

Coal 148903 3684 55985 2737 41223 2629
Nuclear 131357 613 133496 663 131084 623

Wind 46752 1642 42377 1579 64669 2169
OCGT 8189 258 6759 257 7921 286

Table 3.4: Total annual generation (GW) and variation per fuel type.
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(a) 2009

(b) 2010

(c) 2011

Figure 3.1: Generation by Elexon fuel type for years 2009-2010-2011 (GW)

54



Section 3.4 Subsection 3.4.0

(a) 2012

(b) 2013

(c) 2014

Figure 3.2: Generation by Elexon fuel type 2012-2013-2014 (GW)

55



Section 3.4 Subsection 3.4.0

(a) 2015

(b) 2016

(c) 2017

Figure 3.3: Generation by Elexon fuel type 2015-2016-2017 (GW)
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3.5 Marginal generation

As discussed in section 2.1.1, a demand side intervention does not symmetrically affect

all of the online plants at the time the said intervention occurs. The marginal plant(s) are

the plants that will “load-follow” and adjust their output(s) (shrink in the case of a demand

reduction or expand in the case of a demand increase). An investigation following the

published methodology by (Khan, 2018) was conducted for different fuels that were used

to generate electricity, to identify the marginal fuel(s) in the electricity system. The

correlation coefficient has been calculated between the change in half-hourly generations

from each type of fuel against half-hourly change in the total generation. Table 3.5

presents the results for the years 2009 to 2017.

To calculate the correlations, the Spearman correlation coefficient ρ has been used:

ρ = 1− 6 ∑
d2

i

n(n2 − 1) (3.1)

where d is the pairwise distances of the ranks of the variables xi and yi and n is the

number of samples. Spearman’s ρ is a rank-based version of Pearson’s correlation

coefficient, which can be used for variables that are not normal-distributed, more volatile

and have a non-linear relationship.

Strong to very strong positive correlation, ranging from 0.87 to 0.92, was found for

CCGT plants in all cases. Moderate to strong correlation, ranging from 0.64 to 0.89,

was found for coal.

Table 3.5 presents an overview of the marginal mix in each year of the analysis, in all

cases except 2009 where the same correlation was found for the two fuels, CCGT is

shown to be the dominant fuel in the marginal mix. However, the proportion of the two

fuels that comprise the marginal mix is shown to fluctuate. CCGT is shown to have a

stronger correlation (0.91 and 0.92), compared to coal (0.69 and 0.64) in years 2013 and

2017.
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CCGT COAL
2017 0.92 0.64
2016 0.9 0.72
2015 0.91 0.82
2014 0.91 0.78
2013 0.91 0.69
2012 0.87 0.82
2011 0.9 0.88
2010 0.91 0.89
2009 0.89 0.89

Table 3.5: Correlation coefficient table for marginal generation.

3.6 Uncertainty from power station carbon factors

assumptions on grid carbon intensity

3.6.1 Impact on annual average grid garbon intensity

Figure 3.4: Percentage change of annual average of grid carbon intensity calculated with
different carbon factors to DEFRA annual corresponding values.

Figure 3.4 shows the percentage of difference of annual average values of grid carbon

intensity to DEFRA corresponding values using the variety of carbon factors from table

3.1. The average figures from (Staffell, 2017) and the maximum and minimum values

from (Lau et al., 2014b) have been used. The year 2017 is omitted from this comparison.

As previously mentioned, DEFRA publishes the grid carbon intensity annual figures with

a two year delay, meaning that 2017 data will be published in 2019. It is noted that
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interconnected electricity was considered only for the calculations carried out with the

carbon factors by (Staffell, 2017) and pumped storage was omitted in all cases.

The annual average value of grid carbon intensity can vary by more than 10% depending

on the carbon factor of different plant types. It is noticed that, as expected, the factors by

(Staffell, 2017) yield the lowest errors ranging from 0.4% to 3.1%. Gridcarbon factors

gave the second best results with errors ranging from 0.5% to 8%. Finally, the maximum

from the carbon factors range in (Lau et al., 2014b) caused the highest discrepancies that

varied from 7% to almost 18%.
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3.6.2 Impact on half-hourly grid garbon intensity

While, figure 3.4 showed the impact of different carbon factors on annual average grid

carbon intensity values, this section aims to establish uncertainty ranges on half-hourly

grid carbon intensity using different plant carbon factors. Two separate approaches have

been implemented using the carbon factor ranges from table 3.1.

3.6.2.1 Uncertainty range using a uniform distribution of plant carbon factors

Drawing on the methodology as described in Lau et al. (2014b), for each plant type, a

uniform distribution of a hundred points (instead of the Monte Carlo method as carried

out in the original study) was generated within the ranges (g/kWh) shown below:

• Coal: 788-899

• Nuclear: 20-26

• Oil: 600-699

• Wind: 20-94

• CCGT: 367-487

• OCGT: 466-487

It is noted that, consistent with the original study by Lau et al. (2014b), interconnected

electricity was omitted from the calculations. Using 2016 generation by fuel type data

(Elexon, 2017), a hundred different grid carbon intensity values were calculated for

each half-hour using the uniformly distributed plant carbon factors. The average figure

alongside the standard deviation were also calculated for each half-hour. The uncertainty

range is defined: (CImean − std) - (CImean + std) and is presented in the grey area in

figure 3.5. Figure 3.5 shows that half-hourly uncertainty range is by average ± 25%.
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Figure 3.5: Average half-hourly grid carbon intensity and uncertainty range using
different carbon factors (2016).

3.6.2.2 Uncertainty range using an upper and lower bound of plant carbon factors

In this case, the minimum, average and maximum values of the carbon factor ranges

g/kWh as listed in (Staffell, 2017) have been used:

• Coal: 937 ± 15

• Oil: 935 ± 122

• CCGT: 394 ± 6

• OCGT: 651 ± 10

• French imports:53 ± 14

• Dutch imports: 474 ± 25

• Irish imports: 458 ± 15

In this case, using 2017 generation by fuel type data (Elexon, 2017) three values of

grid carbon intensity were calculated for each half hour calculated with the minimum,

average and maximum carbon factor for each fuel type. Figure 3.6 presents the %

change compared to the grid carbon intensity calculated with the average values of carbon

factors. In this case, the half-hourly change is noticed to be by average ± 2%.
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Figure 3.6: % change to half-hourly grid carbon intensity using different carbon factors
(2017).

The results indicate that depending on the methodology and the range of factors, the

discrepancies in the uncertainty ranges of half-hourly grid carbon intensity are high

ranging from 2 to 25%.

3.7 GB grid carbon intensity for years 2009 to 2017

Figure 3.7 presents the frequency of half-hourly grid carbon intensity values for years

2009 to 2017. Carbon intensity was at its highest with a maximum of 647 g/kWh during

2012 where coal generation surpassed that of gas (also shown in figure 3.2a). Since

then, grid carbon intensity has steadily declined by reaching a new low maximum of 445

g/kWh in the latest year of the data analysis. This drastic decrease of 202 g/kWh in

the maximum values of grid carbon intensity can be explained by the significant energy

generation and supply changes that have taken place in the recent years. Fossils fuels’

supply has dropped from 83% in 2009 to 45% in 2015 and the increased renewable

capacity reached a record of 25% in generation share (DECC, 2017a). However, Staffell

(2017) highlights that the reasons behind such changes are more complex as the grid

behaviour is affected by international events. An example as explained by Staffell

(2017), regards the decrease in gas usage that happened in 2012; The Fukushima disaster
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Figure 3.7: Half-hourly grid carbon intensity for years 2009 to 2017.

aftermath led Japan to import more gas at the same time when gas supplies were reduced

due to the Arab Spring while American coal provided a cheap alternative. As a result,

the fuel mix used in 2012, heavier in carbon due to the increased amounts of coal, drove

the grid intensity figures higher than the previous three years. Figure 3.8 shows that the

average grid carbon intensity does not follow a consistent intra-annual pattern although a

drop can be noticed during warm months (June, July, August) in all cases. In figure 3.12

that presents the half-hourly grid carbon intensity for years 2009 to 2017, the colourmap

ranges from 0 to 600 g/kWh where warm colours (yellow to red) represent half-hours of

high grid carbon intensity greater than 400 g/kWh. Consintently with figure 3.8 it can be

seen that in all cases half-hourly grid carbon intensity is generally higher in January and

December and lower in the period July to September.

While there is great variability for each year in Figure 3.8, in Figure 3.9 daily mean

grid carbon intensity follows a relatively consistent pattern. The minimum values of grid

carbon intensity occur from 04:00 to 05:00 for all years. In all cases, grid carbon intensity

starts increasing from 06:00 to reach its peak around 12.00, remains relatively high during

the afternoon and the evening and begins to drop close to midnight. This pattern seems to

be in accordance with a typical, daily energy use profile including the lunchtime energy

peak, a smaller peak during the evening after the end of working hours and finally the

drop during night hours. Moreover, in Figure 3.9 the variation from one half-hour to the
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Figure 3.8: Monthly average grid carbon intensity for years 2009 to 2017.

Figure 3.9: Half-hourly average grid carbon intensity within a day for years 2009 to 2017.

next is more evident. Examining the in-day variability of grid carbon intensity in high

resolution, figure 3.12 agrees with the profile of figure 3.9 which is more evident in the

first few years of the analysis (2009 to 2012) where the fuel mix was dominated by coal

(seen in table 3.4).

Figure 3.10 shows the grid carbon intensity’s half-hourly profiles for the first of June

and December in 2009 and 2017 respectively while figure 3.11 presents the half-hourly

generation by fuel type for the same days. These figure contrast summer and winter in

the earliest (2009) and most recent year (2017) of this study in order to examine the

behaviour of grid carbon intensity in a narrower timeframe.
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(a) Half-hourly grid carbon intensity on the first of June 2009 and 2017.

(b) Half-hourly grid carbon intensity on the first of December 2009 and 2017.

Figure 3.10: Half-hourly grid carbon intensity in a day in June and December, comparing
2009 and 2017.

As expected due to the lower demand, grid carbon intensity remained relatively low,

compared to December for the same years, across the first day of June in both cases,

varying up to 59 g/kWh in 2009 and 75 g/kWh in 2017 (figure 3.10a). Examining now

the relevant generation profiles in figures 3.11a and 3.11b it is noticed that they are very

similar. On both figures, a steady baseload of CCGT and nuclear are observed while the

main difference is the elimination of coal and presence of wind in figure 3.11b which can

explain the 100 g/kWh discrepancy in the respective grid intensity values.

Although higher grid carbon intensity values are noticed in December for both years the
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(a) Generation by fuel type on 1/06/2009. (b) Generation by fuel type on 1/06/2017.

(c) Generation by fuel type on 1/12/2009. (d) Generation by fuel type on 1/12/2017.

Figure 3.11: Half-hourly generation by fuel type in a day in June and December,
comparing 2009 and 2017.

profiles in figure 3.10b are very different. While grid carbon intensity varied only by 85

g/kWh in December 2017, the highest intra-day variability is seen in December 2009. In

this case the grid carbon intensity fluctuated up to 220 g/kWh within the same day. It is

noted that DEFRA listed 443 g/kWh as the annual grid carbon intensity for year 2009

(table 3.3) whereas it is shown that the variability of grid carbon intensity can amount to

50% of its annual average figure during a single day.

Finally, contrasting the generation profiles across the two years (figures 3.11c and 3.11d),

the progress of decarbonisation is evident. While both demand profiles are quite similar,

the fuel mix that meets demand is not. In the case of December 2009, a baseload of CCGT

is noticed but coal occupies the majority of the baseload whilst in the mix of December

2017, CCGT adopts a load following role. This limits the fluctuation and results in a

flatter grid carbon intensity daily profile.
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(a) 2009 (b) 2010

(c) 2011 (d) 2012

(e) 2013 (f) 2014

(g) 2015 (h) 2016

(i) 2017

Figure 3.12: Half-hourly grid carbon intensity (g/kWh) for years 2009 to 2017.
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3.8 The relationship between grid carbon intensity and

transmission system demand

To understand the relationship between transmission system demand and grid carbon

intensity the Spearman correlation coefficient ρ (equation (3.1)) has been used and a

linear fit was applied. Furthermore, the linear relationship between the independent

variable x electricity demand and the dependent variable y grid carbon intensity was

examined for all years in table 3.6. The linear relationship that is examined is y =

a · x+ b where x is electricity demand (independent variable), y is grid carbon intensity

(dependent variable), a is the gradient and b is the intercept.

a b ρ

2009 0.009 90 0.87
2010 0.006 216 0.85
2011 0.007 172 0.77
2012 0.003 390 0.52
2013 0.002 371 0.38
2014 0.0048 251 0.5
2015 0.0062 152 0.61
2016 0.007 20 0.78
2017 0.008 -27 0.78

Table 3.6: Parameters of linear relationship and Spearman correlation coefficient for
electricity demand against grid carbon intensity for years 2009 to 2017.

blueThe linear fit between grid carbon intensity and demand is more clear in years 2009

and 2016 (figures 3.13a and 3.15b) where the scatter plots indicate a positive linear

relationship with some variation around it.
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(a) 2009

(b) 2010

(c) 2011

Figure 3.13: Transmission system demand against grid carbon intensity for years 2009
to 2011.
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(a) 2012

(b) 2013

(c) 2014

Figure 3.14: Transmission system demand against grid carbon intensity for years 2012
to 2014.
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(a) 2015

(b) 2016

(c) 2017

Figure 3.15: Transmission system demand against grid carbon intensity for years 2015
to 2017.
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3.9 Summary of findings

Mean CI Median CI Standard
deviation Max CI

2009 443.8 448.6 87.4 626.1
2010 457.9 468.5 69.1 590.0
2011 448.8 453.9 71.9 611.5
2012 505.4 512.5 56.8 647.6
2013 475.0 478.1 50.3 625.6
2014 419.9 431.7 65.4 567.7
2015 360.6 361.2 69.7 538.5
2016 274.1 269.5 66.2 482.0
2017 239.1 229.3 73.7 445.7

Table 3.7: Statistical characteristics for half-hourly grid carbon intensity for years 2009
to 2017 (g/Kwh).

With the drastic decrease of coal generation by 79% and the increased wind penetration

by 162% the progress of the GB grid decarbonisation achieved in the space of nine years

is evident in table 3.7 and figure 3.16 with a sharp drop of average, annual grid carbon

intensity by almost 47% from 443 g/kWh in 2009 to 239 g/kWh in 2017.

Furthermore, the intra-annual variability (measured by the standard deviation in table

3.7) was shown to begin at its highest in 2009, decrease until 2013 following the coal

plant closures and then started increasing again from 2014 until 2017 due to increased

renewable penetration.

Different plant type carbon factors cause a discrepancy of more than 10% in annual

average figures of grid carbon intensity when compared to the DEFRA respective figures.

The use of plant carbon factors derived from international literature caused uncertainties

of 25% on the half-hourly grid carbon intensity. By contrast, using GB specific carbon

factors the noticed discrepancy in half-hourly grid carbon intensity varied from 2% to

3%.

Average half-hourly grid carbon intensity follows a consistent pattern of energy use

profile throughout the day in all years but the same does not apply for the average monthly

intensity. Although it generally is lower in warm months (spring and summer) than in

colder ones (autumn and winter), there is not a consistent intra-annual trend.
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Finally, the half-hourly change of grid carbon intensity is shown to be significant,

reaching 50% of the total annual average in certain cases. Hence, the results of this

analysis indicate that grid carbon intensity widely varies not only during the year but also

during the day. Thus, the use of a single carbon electricity factor for annual calculations

is shown to fail to capture the true behaviour of grid carbon intensity and ends up to

under-represent the reality.
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(a) 2009 (b) 2010

(c) 2011 (d) 2012

(e) 2013 (f) 2014

(g) 2015 (h) 2016

(i) 2017

Figure 3.16: Distribution of grid carbon intensity for years 2009-2017
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Chapter 4

A GB power system model: the mixed

integer linear programming approach

4.1 Introduction

This chapter addresses objectives 2 “Apply power system model(s) to establish grid

carbon intensity uncertainty under varying renewable resource inputs and future power

station capacity projections”.

This chapter introduces and describes the Unit Commitment and Economic Dispatch

power system model functions and then illustrates how they have been simulated with

two different modelling approaches. Mixed integer linear programming approach is

the selected solution method for the Unit Commitment problem (see section 2.6.2).

The Economic Dispatch problem has been simulated with a non-linear optimisation

method. Additionally, a benchmark version of the model has been built utilising the

heuristic method of Priority list for the Unit Commitment part and the same non-linear

optimisation for the Economic Dispatch part.

These two algorithms are combined to reflect and simulate the operation of Great Britain

electricity grid. The input dataset of the model comprises of total demand, power

unit operational characteristics and wind and solar generation data while the output is
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electricity grid carbon intensity in either hourly (sections 4.5 and 4.7) or half-hourly

resolution (sections 4.6 and 4.8).

The aim of this chapter is to examine the behaviour of grid carbon intensity under

different weather, capacity and demand assumptions, or in modelling terms, when

different input parameters are adjusted. Table 4.1 summarises which model parameters

remain unchanged and which get adjusted across each section of the chapter.

Installed
capacities Demand Wind &

Solar generation
Section 4.5 fixed fixed variant
Section 4.6 variant fixed fixed
Section 4.7 fixed fixed variant
Section 4.8 fixed variant fixed

Table 4.1: Fixed and variant parameters in model runs for each chapter section.

4.2 Method

In order to create time-series of grid carbon intensity in half-hourly resolution a GB

power system model was designed. The core model comprises of two algorithms

that simulate the basic energy modelling functions, unit commitment and economic

dispatch. While both functions are implemented in MATLAB the UC algorithm uses

an external solver (CPLEX by IBM1) to improve computational times. All simulations

were conducted on an Intel Core i7-5600U @ 2.60GHz processor.

The UC algorithm uses as inputs the system demand that has to be met and the operational

characteristics of the units and produces as output which units are going to be used in

each half-hour at minimum system cost. The ED algorithm uses as input UC’s output

and allocates generating power among the selected units.

Following the runs of the UC and ED algorithm, the output is time-series of generated

power for each power station in half-hourly resolution. Consistently with the applied

method in chapter 3, grid carbon intensity can now be calculated using equation 2.1.
1https://www.ibm.com/uk-en/analytics/cplex-optimizer
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The following sections detail the formulation of the algorithms for the Unit Commitment

and the Economic Dispatch functions.

4.2.1 The Unit Commitment solution

The literature research indicated that mixed integer linear programming (MILP) is an ISO

certified (Streiffert et al., 2005), suitable (Pfenninger et al., 2014) and computationally

efficient (Delarue & D’haeseleer, 2007) approach for the problem of Unit Commitment.

To form the UC problem as an algorithm, a binary choice of “on” and “off” commitments

for each generator at every time-step needs to be computed, where the following

requirements must be met. The committed generators:

• must meet at least the forecasted demand (plus reserve) when operated at

minimum;

• must be “on” for a minimum amount of time, and

• must be “off” for a minimum amount of time.

The mathematical formulation is as follows:

min
x
fT (x) subject to



x(t) ∈ Z

Pmax(i) · x(t) ≥ −(Dfor(t) +R(t))

Pmin(i) · x(t) ≥ D(t)

x(t) ∈ {0, 1}

(4.1)

where:

• fT (x) = (Ni · Caverage(i)) + (Nstart−ups · Cstart−up(i)) + (Nshut−downs ·

Cshut−down(i)): cost function that includes an average running cost for each unit

and all costs associated with start-up and shut-down events

• x(t): integer variable taking values 0 or 1
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• Pmax(i): the maximum operating capacity of unit i

• Pmin(i): the minimum operating capacity of unit i

• Dfor(t): forecasted demand at every time-step

• R(t): fixed reserve at every time-step

MATLAB’s integer programming solver requires the following formulation:

min
x
fT · x subject to



A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(4.2)

The assigned parameters are:

• x: the search vector

• f : the cost function that includes running and start-up/shut-down costs

• A: inequality constraint matrix

• b: inequality constraint vector

• Aeq: equality constraint matrix

• beq: equality constraint vector

• lb and ub: lower bound and upper bound for x

The x vector is a concatenation of three equal sized vectors: the first contains the binary

“on” and “off” commitment, the second contains the flags indicating generator “start-

ups”, and the third contains the flags indicating generator “shut-downs”

x = [cT uT dT ]

where:

• c : vector containing binary commitment choice (“on” or “off”)
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• u : vector containing powering up flags (from “off” to “on”)

• d : vector containing powering down flags (from “on” to “off”)

After the population of the vectors, the algorithm is set to use an external solver (CPLEX

by IBM). This selection was made to achieve more efficient computational times. The

output is a matrix containing only 0s and 1s for each time-step indicating which units are

going to turn on (1) and which units are to remain off (0).

4.2.2 The Economic Dispatch solution

Using the UC’s output, the ED part regards the allocation of power outputs among the

available units at minimum cost fulfilling the following constraints:

• the sum of the power outputs must meet the real demand (plus reseve) for every

time-step;

• the power output of each generator should not be below the minimum generation

characteristic of the unit;

• the power output of each generator should not be above the maximum generation

characteristic of the unit.

The mathematical formulation is as follows:

min
x
fT (x) subject to


∑N

i=1 Pi = Dreal(t) +R(t)

Pmin(i) ≤ P (i) ≤ Pmax(i)
(4.3)

where:

• fT (x) = (Ni · Crunning(i)): the cost function that includes only the running cost

for each unit

• Pi: the power output of unit i

• Dreal(t): real demand at every time-step
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• R(t): fixed reserve at every time-step

• Pmin(i): the minimum operating capacity of unit i

• Pmax(i): the maximum operating capacity of unit i

MATLAB’s nonlinear optimisation solver requires the formulation:

min
x
fT · x subject to



A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(4.4)

where the assigned parameters are:

• x: the search vector

• f : the cost function that includes the variable running cost

• A: inequality constraint matrix

• b: inequality constraint vector

• Aeq: equality constraint matrix

• beq: equality constraint vector

• lb and ub: lower bound and upper bound for x

The ED algorithm optimising over the cost function produces a matrix that contains

power output for each generator for every time-step.

The UC was run first for each day of the year, and then ED runs for all available-to-

commit units for each half-hour separately. Figure 4.1 illustrates the input and output

datasets for the UC and ED optimisation algorithms. UC input datasets are matrix A

[N×a] where N is the number of units and a is the number of operational characteristics

for the units (see table 4.2) and array D [d× 1] where d is the length of the demand array.

After the MILP optimisation is complete, the UC output is the binary matrix B [N × d]

where each unit is shown to be on (1) or off (0) for each time-step. This matrix B is then
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used as the ED input where the second optimisation takes place and the output is matrix

P [N × d] where each unit has been allocated with a power output for every time-step.

Finally, it is reminded that in order to obtain grid carbon intensity datasets, power gets

converted to energy and then equation 2.1 is used to calculate grid carbon intensity CI at

time t:

CIt =
∑N

n=1 cn · En,t∑N
n=1 En,t

where n is the fuel type index, Nn is the total number of fuels, cn is the carbon factor for

different fuels and En is the generated energy corresponding to each fuel type n at time t.

The following carbon factors (g/kWh) for each plant type (Staffell, 2017) (found in table

3.1) have been used:

• Coal: 937

• CCGT: 394

• OCGT: 651

• Nuclear: 0

• Wind: 0

• Solar: 0

Figure 4.1: Input and output datasets in UC and ED.
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4.3 Design of the input datasets

4.3.1 Operational characteristics for different fuel type units

Table 4.2 presents the operational characteristics for each type of unit that was used

in the model. The process of constructing a dataset that realistically reflects the Great

Britain electricity grid was challenging as such kind of data (i.e efficiencies of each plant

type) is usually commercially sensitive and thus not available to public. For this reason,

communication was held with expert team-members of the National Control team of

National Grid who advised and provided estimates for efficiency and minimum off-time

figures.

The figures for the total installed capacities for different fuels were retrieved from the

Digest of UK Energy Statistics, 2017 report (DECC, 2017a) and were cross-checked

with the Elexon generation by fuel type data for 2017 (Elexon, 2017). The running cost

figures that regard the operational cost of a units when it is online, were obtained from the

levelised cost data in the BEIS Electricity generation costs report (BEIS, 2016a). Finally,

the start-up cost figures that reflect the required costs to bring a unit online, were based

on the work of Bruce (2015), which detailed a GB electricity grid model in 2015.

Fuel Type Total installed
capacity
(MW) (DECC,
2017a),
(Elexon, 2017)

Efficiency (%) Running
cost (£/Mwh)
(BEIS, 2016a)

Start-up
cost (£)
(Bruce,
2015)

Min
off
time
(h)

CCGT 31000 50-60 66 10000 6
NUCLEAR 9500 35-50 93 100000 48
COAL 9000 40-50 148 11000 12
OCGT 1000 35-40 162 5000 1

Table 4.2: Operational characteristics for different plant types.
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4.3.2 Number of units

In reality, table 4.2 ’s capacities are allocated among more than 300 generating power

stations in GB from which 40 are CCGT, 9 are coal-based, 8 are nuclear and 2 are OCGT

(other types are gas/oil, biomass, wind, waste, hydro, tidal and solar) (DECC, 2017a).

For the model runs, the installed capacities of table 4.2 were allocated according to

the following scenarios as described in table 4.3. It is noted that an upgrade to a 30-

unit version was attempted but was ultimately aborted due to hardware constraints and

excessive running time.

Total CCGT Coal Nuclear OCGT
10 5 2 2 1
20 11 3 4 2
25 14 4 5 2

Table 4.3: Different number of units scenarios.

4.4 Model validation: Benchmarking and mean absolute

percentage error as a metric for forecast accuracy

assessment

In order to assess and validate the MILP model, the benchmarking approach has been

used. Benchmarking is the process of comparing the model’s results to existing methods.

A benchmarking process can compare the results to the best naive solution or another

very simple model (Stein, 2007).

4.4.1 Benchmark model: The priority list approach

To build the benchmark model, the method of priority list has been selected to solve the

Unit commitment problem. Priority list is a heuristic solution method where the order

of the working units is pre-assigned by the user (Senjyu et al., 2003). The units are
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classified as baseload (units that are always on), mid-merit or load following (units that

turn on when the demand exceeds the baseload) and peak (units that turn on when the

demand is high). The list was structured in descending order of the maximum operating

limits of the units. For the demand of every half-hourly time step the algorithm “checks”

whether the demand can be met with the units that are already on. In this case, the ED

optimization function runs for the N units that are working. Otherwise, the next unit

in the priority list turns on and the ED optimization function runs for N+1 units. As

expected the pre-assigned baseload units are always working while the load-following

and peak units turn on when there is need.

Unit no. Fuel type Min (MW) Max (MW)
1 CCGT 1000 9000
2 CCGT 1000 9000
3 NUC 1000 9000
4 COAL 1000 8000
5 COAL 1000 6000
6 CCGT 2000 6000
7 CCGT 3000 4000
8 CCGT 2000 4000
9 COAL 1000 2000

10 OCGT 1000 2000

Table 4.4: Benchmark model input units.

4.4.2 Mean absolute percentage error

Mean absolute percentage error (MAPE) is a measure of prediction accuracy of a

forecasting method in statistics and is given by the following formula

MAPE% = 100
n

n∑
t=1

|At − Ft|
At

(4.5)

where At and Ft are the actual and forecasted value at time t. It should be noted that

although MAPE is a widely used metric for forecast accuracy assessment, it has inherent

flaws especially when it concerns volatile data (i.e double peak punishment). For the

purpose of validation of the MILP model, the MAPEs of each month and the total
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average MAPE, have been calculated for the grid carbon intensity datasets generated

by the benchmark model and the MILP model with 10, 20 and 25 units and compared

them with real data (Elexon grid carbon intensity 2017- see Data Analysis chapter). It

is noted that all simulations have been carried out National Grid’s transmission system

demand data netting off the Elexon 2017 wind generation.

(a) Benchmark (b) MILP 10

(c) MILP 20 (d) MILP 25

Figure 4.2: Monthly mean absolute percentage errors of model grid carbon intensity
versus Elexon grid carbon intensity 2017.

MAPE % JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean
Benchmark 38.4 62.7 90.8 91.4 84.1 92.7 80.7 86.0 83.9 118.3 62.7 74.5 72.3
MILP - 10
units

12.8 22.3 33.6 49.8 56.2 73.2 62.9 71.2 46.6 57.0 20.8 36.4 41.4

MILP - 20
units

14.7 28.4 40.1 38.4 42.3 53.4 46.3 53.6 38.9 55.9 25.0 39.2 34.8

MILP - 25
units

12.7 23.7 35.2 38.4 40.6 52.4 43.6 51.1 38.7 55.4 21.6 36.6 32.7

Table 4.5: Mean absolute percentage error for benchmark and MILP model.

Table 4.5 shows that the total annual mean absolute percentage error for the 25 unit

MILP model reduced to less than half of the error for the benchmark model. Table 4.5

also indicates that the model gives higher error percentage errors for some months (i.e
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Jun-Aug-Oct) compared to others. These sensitivities and drawbacks of the forecast can

be explained if the omissions and limitations of the model are considered.

4.4.3 Limitations of the MILP model

Figure 4.3: Grid carbon intensity of MILP model against Elexon data (2017).

Due to computational efficiency reasons a few parameters have been altogether omitted

from the model; Ramping operational constraints, interconnectors and pumped storage

have not been simulated and while minimum off time constraints have been built within

the model all runs have been carried out without time constraints. The reasons for this

are the limited number of units and computational time efficiency.

Figure 4.3 shows the 2017 grid carbon intensity time series for the three MILP versions

(10, 20 and 25 units versus Elexon). The model achieves the real-life seasonality of

grid carbon intensity as it runs on real demand data. Thus, the decreased variability of

the model grid carbon intensity is caused by the small number of units and the lack of

seasonality in fuel prices, which results in a less variable fuel mix.

Although there is space for improvement, the MILP’S model performance is shown to be

significantly better (40%) than the benchmark’s.
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4.5 The impact of different weather years on grid carbon

intensity

4.5.1 The impact of wind generation on grid carbon intensity

Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset

(Drew et al., 2019a), (Drew et al., 2019b) provides GB-aggregated wind and solar

capacity factors in hourly resolution from 1985 to 2015. The annual average figures

for both are shown in figure 4.4. For the purpose of this study, three wind “years” have

been selected to represent a low, average and high scenario of wind. In specific, 1986 was

selected as the high wind, 2011 as the average wind and 2010 as the low wind scenario.

These wind capacity factors datasets have been converted to wind generation datasets

using the current wind capacities (see table 4.2) and runs of the 25 unit MILP have been

carried out with 2017 National Grid transmission system demand data. It is noted that

as the MERRA data is in hourly resolution, grid carbon intensity datasets are in hourly

resolution too (as opposed to half-hourly in the remaining sections). Wind and solar have

been considered separately in the calculations in order to assess how solely wind and then

solar variability affects grid carbon intensity.

Figure 4.4: Annual average wind and solar capacity factor (MERRA dataset).

To understand the relationship between wind generation and grid carbon intensity the
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(a) Carbon intensity (g/kWh) - Low wind
year

(b) Normalised wind generation - Low wind
year

(c) Carbon intensity (g/kWh)- Average
wind year

(d) Normalised wind generation- Average
wind year

(e) Carbon intensity (g/kWh)- High wind
year

(f) Normalised wind generation - High wind
year

Figure 4.5: Grid carbon intensity and wind generation for different wind years.

Spearman correlation coefficient ρ has been used:

ρ = 1− 6 ∑
d2

i

n(n2 − 1)

where d is the pairwise distances of the ranks of the variables xi and yi and n is the

number of samples. Spearman’s ρ is a rank-based version of Pearson’s correlation
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coefficient, which can be used for variables that are not normal-distributed, more volatile

and have a non-linear relationship. Moderate, negative correlation has been noticed in all

wind years ranging from −53% to −47% which can also be observed in figure 4.6. This,

as expected, means that when wind generation increases grid carbon intensity deceases.

Figure 4.6: Linear fit for wind generation against grid carbon intensity (three MERRA
weather years).

Figure 4.5 depicts the normalised wind generation with the respective grid carbon

intensity for the three wind years in coloured array plots while table 4.6 presents some of

the statistical characteristics for the three time series. The average grid carbon intensity

is shown to range only from 318 g/kWh for the high wind scenario to 331 g/kWh for

the low wind scenario, while all time series are shown to be similarly “spread” (similar

standard deviation 30-33). This difference of 13 g/kWh between the annual averages for

the different wind years appears to be negligible and can be misleading about the real

impact of wind on grid carbon intensity. The annual average as a metric to understand

grid carbon intensity masks the patterns of behaviour that can be noticed only if the whole

time series is assessed in higher resolution.

A significant feature can be noticed among the different wind years in figure 4.5; In

the low and average wind years, it can be noticed that grid carbon intensity was higher

(orange to red-coloured half-hours) for bigger parts of the total year. In specific, it was

measured to be higher than 350 g/kWh 2494 times (28% of the year) for the low wind
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scenario, 2006 times (23% of the year) for the average wind scenario and 1279 times

(14% of the year) times for the high wind scenario (table 4.6).

Figures 4.7 and 4.8a present the average grid carbon intensity per hour and per month.

Figure 4.7 indicates that different wind generation does not affect the general pattern

of average hourly grid carbon intensity which is consistent with the demand pattern

(figure 4.11a). Different wind generation is shown to cause an average fluctuation of

13 g/kWh to average hourly grid carbon intensity. On the contrary, average monthly

grid carbon intensity does not follow a consistent pattern for all years and the effect

of the various wind generation is more evident. Since all three grid carbon intensity

datasets have been built using the same demand profile, it is safe to assume that all

visible variability between the three profiles on figure 4.8a is caused by the different

wind output. For instance, although 1986 (yellow line) was selected as the year with

the highest average wind generation, September of the same year displays the highest

average grid carbon intensity compared to the other two years. Looking now at figure

4.8b ,which presents the average monthly wind generation, September indeed had the

lowest average wind generation across the three scenarios. It is also noticed that the

average monthly grid carbon intensity follows the same pattern with the average wind

generation in all three wind years. For example, in the case of January, it is seen that an

increase of approximately 2000 MW in average wind generation (5000 MW for the high

wind year versus 3000 MW for the low wind year) results in a decrease of approximately

30 g/kWh for the corresponding average monthly grid carbon intensity (360 g/kWh for

the high wind year versus 330 g/kWh for the low wind year).

Mean CI Median CI Standard
deviation Min CI Max CI % of the year

CI ≥ 350
Low wind 331 330 33 206 430 28

Average wind 326 325 31 211 417 23
High wind 318 317 30 207 423 15

Table 4.6: Weather years results (wind only).

90



Section 4.5 Subsection 4.5.2

Figure 4.7: Average hourly grid carbon intensity (g/kWh) for MERRA weather years.

4.5.2 The impact of embedded solar generation on grid carbon

intensity

While the total installed solar capacity in the UK is 12,493 MW (BEIS, 2017), roughly

a total of 574 MW corresponds to major power producers. The remaining capacity

represents embedded generators (DECC, 2018c). Embedded generation refers to units

connected to the low voltage distribution system as opposed to typically larger sites that

are connected directly to the high voltage transmission system (N.G, 2012). Embedded

solar generators do not suffer transmission losses, do not participate in the Balancing

mechanism and do not require to submit final physical notification (FPN). In simulation

terms, this means that this generation is not considered during the plant scheduling and

output allocation phases (unit commitment and economic dispatch). Since solar energy is

assumed to have zero carbon factor, this type of embedded generation is just added to the

total generated energy
∑N

n=1 En,t of equation 2.1. In mathematical terms, the relationship

between total generated energy
∑N

n=1 En,t and grid carbon intensity CIt is negative linear

and as the first increases the second is expected to decrease.

For the purpose of this study, the solar generation profiles of the MERRA 2011, 2010

and 1986 years were included (low wind, average wind and high wind) as embedded

generation and grid carbon intensity in hourly resolution was re-calculated.
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(a) Average monthly grid carbon intensity (g/kWh) for MERRA weather years.

(b) Average monthly wind generation (MW)

Figure 4.8: Average monthly grid carbon intensity and wind generation for MERRA
weather years.

Solar generation unlike wind, follows a regular pattern throughout the day peaking from

noon to early afternoon when the sun is at it highest point and radiation is most intense

(figure 4.9). This solar generation peak causes a drop of 40 to 50 g/kWh in average

grid carbon intensity around noon hours, which can be seen in figures 4.10b, 4.10d and

4.10f. For the remaining hours solar generation has little or no impact on average hourly

grid carbon intensity. Figures 4.10a, 4.10c and 4.10e present the average monthly grid

carbon intensity calculated with and without solar generation for the three MERRA years.

Although there is not a consistent monthly pattern, sunnier spring and summer months

(especially May and June in all cases) show a decrease of up to 30g/kWh.
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(a) Low wind weather year (b) Average wind weather year

(c) High wind weather year

Figure 4.9: Normalised solar generation for MERRA weather years.

Mean CI Median CI Standard
deviation Min CI Max CI % of the year

CI ≥ 350
Low wind 316 318 37 205 415 19

Average wind 311 311 40 205 421 18
High wind 305 306 37 178 423 12

Table 4.7: Weather years results (wind and solar)

The impact of solar generation to grid carbon intensity is also evident in table 4.7.

Comparing it with table 4.6, the mean annual figure decreased approximately by

20g/Kwh and the standard deviations increased in all scenarios.
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(a) Average monthly grid carbon intensity
(g/kWh) - Low wind MERRA year

(b) Average hourly grid carbon intensity
(g/kWh) - Low wind MERRA year

(c) Average monthly grid carbon intensity
(g/kWh) - Average wind MERRA year

(d) Average hourly grid carbon intensity
(g/kWh) - Average wind MERRA year

(e) Average monthly grid carbon intensity
(g/kWh) - High wind MERRA year

(f) Average hourly grid carbon intensity
(g/kWh) - High wind MERRA year

Figure 4.10: Average monthly and hourly grid carbon intensity for MERRA weather
years (wind and embedded solar)
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(a) Normalised electricity demand 2017. (b) Normalised wind generation 2017.

(c) Normalised solar generation 2017.

Figure 4.11: Normalised electricity demand, wind and solar generation in 2017.

4.6 The impact of different installed capacities on grid

carbon intensity

4.6.1 Baseline input parameters

A baseline grid carbon intensity dataset has been created by running the MILP-25 unit

model with adjusted 2017 National Grid transmission system demand data (see figure

4.11a), 2017 Elexon wind data and 2017 National Grid solar data (see figures 4.11b and

4.11c). Figure 4.12 shows that the baseline grid carbon intensity has a range varying

from 220 to 400 g/kWh and the median is a little below 300 g/kWh for all months.

The future installed capacity scenarios have been designed on the Future Energy

Scenarios’ assumptions by National Grid (N.G, 2018a). The same, adjusted 2017

National Grid demand profile has been used for all installed capacity scenarios in order

to examine the behaviour of grid carbon intensity. Furthermore, the 2017 Elexon wind
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profile has been used for all scenarios. For each scenario, a wind generation profile has

been created using the 2017 Elexon wind capacity factors and the corresponding to each

scenario wind capacities (see table 4.8). It is also noted that the remaining operational

characteristics of the units (see table 4.2) remain the same in all capacity scenarios.

The future capacities that have been selected and simulated correspond to year 2030.

2030 was selected as an interesting year to examine because coal is eliminated across all

scenarios and major changes occur in the installed capacities of renewables.

Figure 4.12: Half-hourly grid carbon intensity (g/kWh) for baseline scenario.

4.6.2 National Grid future energy scenarios

National Grid has published documentation on different, credible, energy pathways for

the next 30 years and beyond (N.G, 2018a). The four scenarios, namely Community

Renewables (CR), Consumer Evolution (CE), Steady Progression (SP) and Two Degrees

(TD) have different characteristics and only CR and TD scenarios achieve the 2050

carbon reduction target.

4.6.3 2030 Community Renewables (CR)

The CR scenario achieves the 2050 carbon reduction target through a a more

decentralised energy landscape with renewables dominating the picture (N.G, 2018b).
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Current CR 2030 CE 2030 SP 2030 TD 2030
Coal 9000 0 0 0 0
Gas 31000 31656 43194 41422 30666

Nuclear 9500 2886 1216 2886 9026
Offshore Wind 5098 23585 16835 24805 29935
Onshore Wind 3873 23439 20448 15491 19536

Solar 12493 33037 19773 16429 24275
Storage 2744 9003 6837 5920 8925

Table 4.8: Future Energy Scenarios capacities (MW).

Regarding the installed capacities of interest to this study, coal is eliminated, gas remains

at the same levels and nuclear is reduced to roughly a third of its current capacity. Finally,

the added onshore and offshore wind capacity increased from 8.9 GW to 46.9 GW while

solar increases to 33 GW (table 4.8).

Looking at figure 4.13, the wider range of values is immediately noticed (compared to

4.12) as now there is a lot more of variable wind and solar in the fuel mix. The median

has significantly reduced by 150g/kWh and for 18% of the year the model runs entirely

on carbon free fuels (nuclear, wind and solar) and thus grid carbon intensity is zero (table

4.9). Some seasonality caused by solar can also be seen in the distribution as the median

drops in spring and summer months.

Figure 4.13: Half-hourly grid carbon intensity (g/kWh) for Community Renewables
scenario.
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4.6.4 2030 Consumer Evolution (CE)

This is a more decentralised scenario which makes progress towards the decarbonisation

target but fails to achieve the 2050 target. Generation is focused on smaller scale

renewables, with gas and some new large scale nuclear plants providing most of the

system flexibility (N.G, 2018b). In this scenario coal is also eliminated from the grid

while the gas installed capacity increases from 31 to 43 GW and nuclear decreases to just

1.2 GW. Finally, the total wind capacity also increases to 19.2 GW and solar capacity

increases to 19.7 GW. (table 4.8)

In the Consumer Evolution scenario grid carbon intensity has a narrower range compared

to Community Renewables, since the renewable capacities are smaller, but still higher

than the baseline scenario. The median grid carbon intensity decreased by 130g/kWh

while grid carbon intensity was zero for 7% of the total year (table 4.9).

Figure 4.14: Half-hourly grid carbon intensity (g/kWh) for Consumer Evolution scenario.

4.6.5 2030 Steady Progression (SP)

This scenario is more centralised but does not meet the 2050 target. There is greater

emphasis on large scale, rather than local, generation. There is development of offshore

wind with gas playing an important role in providing system flexibility (N.G, 2018b).
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In the SP scenario coal is eliminated from the grid, gas increases to 41.4 GW, nuclear

decreases to almost one third of its current capacity, total wind increases to almost 40

GW and solar increases to 16.4 GW (table 4.8).

In this case, the median grid carbon intensity of the year drops to 157g/kWh, similar

to the Consumer evolution scenario and remains at this level across all months. Carbon

intensity was measured to be zero for only 7% of the year.

Figure 4.15: Half-hourly grid carbon intensity (g/kWh) for Steady Progression scenario.

4.6.6 2030 Two Degrees (TD)

In this scenario, the decarbonisation target is achieved using larger and more centralised

technologies. Generation, such as offshore wind and nuclear, is based more on the

transmission network (N.G, 2018b). Lastly, in this scenario while the gas and nuclear

capacity remain at the same levels, the total wind capacity increases to, the highest

across all scenarios, almost 50 GW while solar increases to 24.2 GW (table 4.8). Under

the Two Degrees scenario assumption,grid carbon intensity was found to be the lowest.

The increased nuclear capacity in combination with the growth in renewable capacities,

caused the median grid carbon intensity of the year to drop to almost 1/3 of its value in

the baseline scenario. Furthermore, the frequency of zero grid carbon intensity figures

across the year was the highest (21% of the year).
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Figure 4.16: Half-hourly grid carbon intensity (g/kWh) for Two Degrees scenario.

4.6.7 Discussion on FES results

In order to understand how the different installed capacities affect the electricity grid

carbon intensity, the fuel mix changes under the assumptions of each future energy

scenario needs to be examined.

It is reminded that throughout this study the following carbon factors have been used

(g/kWh) for each plant type: 937 for coal, 394 for CCGT and 0 for nuclear, wind and

solar (Staffell, 2017). Furthermore, grid carbon intensity has been calculated with the

following formula: CIt =
∑N

n=1 cn·En,t∑N

n=1 En,t
(equation 2.1).

Since coal is eliminated in all scenarios, the maximum grid carbon intensity is expected

not to exceed 394g/kWh which is the carbon factor of CCGT (now, the carbon heaviest

fuel in the mix). Furthermore, it is also expected for the grid carbon intensity to drop

to zero for some time of the year since there is now enough renewable plant capacity to

meet demand.

Table 4.9 summarises some of the statistical characteristics for the grid carbon intensity

in each scenario. Maximum grid carbon intensity indeed, does not exceed 394g/kWh

in all future energy scenarios. Standard deviation, a metric of “spread” is highest in

the Community Renewables scenario due to the large amounts of wind and solar in the

mix. Consumer Evolution and Steady Progression bore similar results in terms of data
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distribution and are the less efficient scenarios carbon-wise. Two Degrees assumptions’

brought about the most significant reduction in grid carbon intensity with the lowest

annual average and the highest frequency of zero values.

Finally, figures 4.17a and 4.17b present the average monthly and average hourly grid

carbon intensity respectively. Since all scenario simulations have been carried out with

the same demand and the same weather data, the unchanged annual and intra-daily

pattern is anticipated. Average monthly grid carbon intensity has the highest range

in Community Renewables scenario and the lowest one in Two Degrees. The drop

in average hourly grid carbon intensity around noon is more evident in Community

Renewables (blue line in figure 4.17a) where the highest installed solar capacity occurs.

Mean CI Median CI Standard deviation Max CI % the year CI=O
Baseline 290 287 42 424 0

CR 149 132 119 382 18
CE 163 157 102 382 7
SP 155 152 102 381 11
TD 105 91 91 355 21

Table 4.9: Future Energy Scenarios results.

In order to perform a just comparison of grid carbon intensities under various installed

capacity assumptions, the exact same demand profile had to be used. The problem with

using the 2017 transmission system demand data was that in some scenarios and without

storage in the model, the total installed plant capacity was not enough to meet demand.

Thus, a maximum demand value of 43 GW (as opposed to the real maximum of 51

GW) was selected in order to permit the model to run smoothly across the year in all

scenarios. The first approach to solution was to re-scale the real demand profile between

the real minimum and the new-found maximum of 43GW but the problem that occurred

was that the new demand profile was overall, unrealistically low. For this reason, an

adjusted demand profile was used where the upper floor of values was always 43 GW.

Hence, some seasonality in grid carbon intensity is expected to be lost due to the trimmed

demand data.

The lack of simulated storage system in the model, raises another concern that regards
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(a) Average monthly grid carbon intensity (g/kWh)

(b) Average hourly grid carbon intensity (g/kWh)

Figure 4.17: Average monthly and hourly grid carbon intensity for Future Energy
Scenarios.

wind curtailment. In reality, National Grid has forecasted installed storage varying from

6 GW to 9 GW depending on the scenario. In the scenarios with the highest installed

wind capacities (Community Renewables and Two Degrees) the curtailed wind power

reached 20 GW at certain hours. Even if storage systems’ function is generally restricted

by spacial and time constraints, a simulated storage in the model would at least limit the

amount of curtailed wind power.
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4.7 The impact of different weather years on grid carbon

intensity under future grid assumptions

In a possible future grid where coal has been eliminated and renewable capacities have

been vastly increased, the impact of a large amount of wind and solar in the mix on

grid carbon intensity is anticipated to be even more evident. As previously discussed,

the highest renewable installed capacities occur in Two Degrees across all Future Energy

Scenarios. Hence, in this section the installed capacities of the Two Degrees scenario

have been simulated alongside the three MERRA weather years.

Figure 4.18 presents the distribution of hourly grid carbon intensity for the three weather

years. The medians are 204, 175 and 143 g/kWh for the low, average and high wind

years respectively (table 4.10). Since the solar generation profiles are very similar across

the three years (figure 4.9), the noticed difference of 60 g/kWh in the median figure can

be attributed to the different wind generation. Consistent with previous observations, the

range of the grid carbon intensity values increases with the amount of wind in the mix.

It is reminded that for the Two Degrees scenario, the total wind and solar capacities are

49.5 GW and 24.2 GW as opposed to the current capacities of 8.9 and 12.4 GW. As a

result, under the TD assumptions the same wind capacity factor profile would result in a

much higher wind generation profile. For this reason, in figure 4.19, the negative linear

relationship between wind generation and grid carbon intensity is much clearer where

the Spearman’s correlation coefficient was calculated to vary from −89% to −88% for

all years.

Figures 4.20 presents the average hourly and monthly grid carbon intensity for the three

weather years under the TD capacity assumptions. Since the used weather data is the

same as in section 4.5 a symmetry can be noticed between figures 4.7 and 4.20b and

figures 4.8a and 4.20a. Average monthly grid carbon intensity 4.20a seems to follow the

pattern of wind generation in figure 4.8b.The cumulative effect of high wind and solar

generation is translated as sharper drops and peaks of grid carbon intensity in figure 4.20a
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Figure 4.18: Half-hourly grid carbon intensity (g/kWh) for Two Degrees installed
capacities and MERRA weather years.

in comparison with figure 4.8a.

Figure 4.19: Linear fit for wind generation against grid carbon intensity (TD capacities
and three MERRA weather years).

Same as before, the effect of the large amount of solar is amplified and can be observed

in the pattern of average hourly grid carbon intensity which sharply drops around noon

in figure 4.20a.

Finally, table 4.10 presents some statistical characteristics for the three grid carbon

intensity time series. Once more, windier years cause an increase to the standard

deviation of the grid carbon intensity values, which varies from 88 to 96. Carbon intensity
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(a) Average monthly grid carbon intensity (g/kWh)

(b) Average hourly grid carbon intensity (g/kWh)

Figure 4.20: Average monthly and hourly grid carbon intensity for Two Degrees installed
capacities and MERRA weather years.

was measured to be zero (there was enough wind on the system to meet demand) for 6%,

13% and 16% of the year for the low, average and high wind scenarios respectively.

Mean CI Median CI Standard
deviation Max CI % of the year

CI =0
Low wind 183 204 88 355 6

Average wind 159 176 98 361 13
High wind 137 143 96 354 16

Table 4.10: Weather years results for Two Degrees scenario.
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4.8 The impact of different demand profiles on grid

carbon intensity

In order to examine how different demand profiles affect grid carbon intensity, two runs

of the 25 unit MILP model with the transmission system demand of 2017 and 2018

were carried out. It is noted that all other model parameters (wind and solar generation)

remained unchanged. Spearman’s correlation was measured for half-hourly grid carbon

intensity. Moderate, positive correlation ranged from 43% for 2018 to 50% for 2017,

thus when demand increases grid carbon intensity is expected to increase too. Figures

4.21 and 4.22 show the average hourly and monthly, demand and grid carbon intensity

for the demand years 2017 and 2018. In figure 4.21a it can be noticed that average hourly

demand in 2018 (red line) demand was slightly lower (by average 200MW ) than in 2017.

This difference can also be seen in average hourly grid carbon intensity in figure 4.21b.

Carbon intensity was also lower by average 2g/kWh across the day in 2018.

(a) Average hourly demand 2017 and 2018
(GW)

(b) Average hourly grid carbon intensity
2017 and 2018 (g/kWh)

Figure 4.21: Average hourly demand and grid carbon intensity (demand data 2017 &
2018).

Regarding monthly grid carbon intensity, the same pattern of average monthly demand

in figure 4.22a can also be seen in figure 4.22b. Average demand was equal or lower in

2018 than 2017, with the exception of February, March and April. The same applies for

average monthly grid carbon intensity in the respective years.

However, the relationship between grid carbon intensity and demand is more complex,
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grid carbon intensity is more dependent on the fuel mix that is being used to meet demand

than the value of demand itself. While more renewables penetrate the grid and the fuel

mix gets lighter in carbon, an increase in demand would not necessarily cause a higher

grid carbon intensity figure.

(a) Average monthly demand 2017 and
2018 (GW)

(b) Average monthly grid carbon intensity
2017 and 2018 (g/kWh)

Figure 4.22: Average monthly demand and grid carbon intensity (demand data 2017 &
2018).
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4.9 Summary of findings

This chapter illustrated the modelling process of two basic power system model

functions, unit commitment and economic dispatch. The mixed integer linear

programming method was applied for the unit commitment function while economic

dispatch was solved via non-linear optimisation. This model was simulated with a

varying number of units, 12, 20 and 25. Furthermore, using a simple, heuristic solution

approach a benchmark model was also built. Monthly average and total annual mean

absolute percentage errors were calculated for the resulting grid carbon intensity datasets.

The total annual mean absolute percentage error dropped from 72% for the benchmark

model to 32% for the 25-unit MILP model which was the version used throughout the

rest of the chapter.

Using meteorological, re-analysis data, grid carbon intensity was assessed under the

assumptions of different weather years. Although different wind generation was shown

to cause minimal difference to the average figures of grid carbon intensity, the frequency

of high values of hourly grid carbon intensity during the year widely varied depending on

the amount of wind generation. The impact of adding embedded, solar generation to the

calculation of average half-hourly grid carbon intensity was more evident around noon

hours with a decrease of 40 to 50g/kWh.

Applying the 2030 National Grid’s forecasted plant capacities to the 25-unit MILP model,

the behaviour of grid carbon intensity under future energy assumptions was examined.

Generally, the elimination of coal from the grid caused a drastic drop to grid intensity

while the increased renewable capacities resulted in a more variable annual grid carbon

intensity dataset. The scenario that achieved the best carbon benefit was shown to be the

Two Degrees scenario where the average grid carbon intensity decreased to 1/3 of its

baseline value and half-hourly grid carbon intensity was zero for 21% of the year.

Furthermore, the Two Degrees installed capacities were ran with the three MERRA

weather years in order to investigate the impact of different weather on a renewable

dominated grid. The noticed effect of a high wind output year on grid carbon intensity in
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section 4.5 was shown to be amplified. The same weather years that caused the annual

average grid carbon intensity to fluctuate by 10 g/kWh in the current grid, were now

shown to result in a discrepancy of up to 50 g/kWh. As expected, stronger anti-correlation

was also measured for wind generation against grid carbon intensity.

Finally, different demand profiles were simulated within the model in order to provide

insight on how system demand affects grid carbon intensity. The results indicated that a

higher demand figure generally causes a higher grid carbon intensity figure, and moderate

positive correlation was found between the two. However, grid carbon intensity is more

dependent on the fuel mix used to meet demand rather than the demand figure itself.

While the grid decarbonises and the fuel mix comprises progressively more of zero-

carbon energy sources (wind, solar, nuclear), a higher demand profile would cause a

small to none at all increase in grid carbon intensity figures.
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Chapter 5

The use of high resolution carbon

intensity datasets in real life case studies

5.1 Introduction

This chapter addresses objectives 3 and 4: “Investigate how time-varying carbon

intensity influences carbon assessment in real-life case studies” and “Draw on findings

derived from real-life case studies in order to establish implications of the dynamic

behaviour of grid carbon intensity”.

With National Grid’s initiative of grid carbon intensity API forecast (N.G, 2017), figures

of carbon intensity in high resolution have become available to the general public. In this

chapter two examples of how to use high resolution carbon intensity datasets (instead of

annual averages) and their potential carbon benefits are demonstrated.

The case studies that have been selected represent rapidly-evolving energy areas in

the UK. While the electrification of transport is taking place both on national and

international level, the future of heating systems in a low-carbon power system is raising

several questions.

Although EVs are often referred to as Zero Emissions Vehicles, the electricity used to

charge these vehicles still results in carbon emissions from power stations and a carbon
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intensity that remains significant when allocated to distance driven. With the number

of electric vehicles (EVs) set to grow significantly, carbon benefits can be achieved if

charging strategy reflects the time varying nature of grid carbon intensity. For this reason,

the first case study in this chapter details the design of a carbon optimised charging

strategy, compares it with an immediate charge case and then estimates the potential

carbon benefits. Liaising with DriveElectric 1, an EV leasing specialists and partners in

the WPD EV smart charging project “Electric Nation” 2, provided technical counsel on

the selection of characteristics for a typical electric vehicle (charging power, monthly

changing needs). The potential carbon benefits are first, estimated using recent, historic

grid carbon intensity data from 2017 (section 3.7) and then with simulated 2030 Future

Energy annual datasets from section 4.6.

As the British grid decarbonises, the potential carbon benefits of heating systems such as

heatpumps and cogeneration/combined heat and power plants (CHP) become uncertain.

As discussed in section 2.5.3 the CHP operates with gas while the forecasted fuel mix

in some of the National Grid FES is dominated by nuclear, wind and solar (section

4.6). Hence, a scenario where CHP generation displaces grid electricity with a nearly

zero carbon content is certainly not favourable from a carbon emissions perspective.

For this reason, the second case study uses data from the CHP plant in Whiteknights

campus, University of Reading in order to identify a grid carbon intensity threshold where

the CHP operation becomes favourable over the grid for a heat demand-led strategy.

Similarly to the first case study, the CHP control strategy is first, assessed against recent,

historic grid carbon intensity data from 2017 (section 3.7) and then against simulated

2030 Future Energy annual datasets from section 4.6.

The findings of this section are expected to be of interest to DriveElectric and the Estates

team at University of Reading to use accordingly in their relevant carbon management

plans.

1http://www.drivelectric.com/
2http://www.electricnation.org.uk/
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5.2 Use of high resolution grid carbon intensity datasets

to inform carbon optimising strategy for electric

vehicles

5.2.1 Design of carbon optimal charging strategy for electric vehicles

The aim of this section is to examine how the dynamic behaviour of grid carbon intensity

can be used to inform controlled charging strategies. It is noted that the present analysis

focuses on dominant in-use emissions, thus attributing power grid emissions to a charging

electric vehicle.

The figures of grid carbon intensity for year 2017 from section 3.7 have been used. It

is reminded that the equation for grid carbon intensity is eq. (2.1) while the range of cn

values was derived from column A in table 3.1.

In this case, half-hourly average carbon intensity is allocated to all instantaneous loads.

This is a common approach, consistent with encouragement by various advocates to move

load to low carbon periods, as for example, would follow from National Grid’s published

real time carbon intensity forecast (N.G, 2017). It can be argued that vehicle charging

represents an additional load and should be accounted for at the marginal intensity.

Currently, the marginal plant for much of the year is gas fired (see table 3.5), so a marginal

basis would only show small changes in carbon allocation.

The key input parameters are daily mile case, average charge power (kW) and battery

size (kWh). In our scenarios a car was modelled with the following representative

characteristics, derived from current UK operational practice. In specific, charging

power is assumed to be 6kW (typical UK home chargers can achieve 7kW for a fully

electric car, however power drawn is not always constant across entire charge cycles, so

a representative average is adopted). Finally, the vehicle is assumed to be connected to

the charger from 6pm to 7am daily (13 hours per day, 54% of the time). All electricity

required is assumed to be taken from the home charger, rather than public or workplace
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chargers and the vehicle is required to be fully charged on completion of each charge

cycle.

Table 5.1 summarises the input parameters for the daily mile case scenarios. The monthly

m/kWh values were taken from actual data from 500 Nissan Leaf cars (EVstatus, 2019).

Assuming a different daily mile case (20, 40, 60, 80 and 100 miles per day) and a charging

power of 6 kW, the daily energy needs in kWh and the number of charging hours have

been calculated. The following charging scenarios were devised and modelled using grid

Daily
mile case 100 80 60 40 20

m/kWh

Energy
need
(kWh)

Charg.
time
(h)

Energy
need
(kWh)

Charg.
time
(h)

Energy
need
(kWh)

Charg.
time
(h)

Energy
need
(kWh)

Charg.
time
(h)

Energy
need
(kWh)

Charg.
time
(h)

Jan 2.9 34.5 5.7 27.6 4.6 20.7 3.4 13.8 2.3 6.9 1.1
Feb 3.1 32.3 5.4 25.8 4.3 19.4 3.2 12.9 2.2 6.5 1.1
Mar 3.2 31.3 5.2 25.0 4.2 18.8 3.1 12.5 2.1 6.3 1.0
Apr 3.3 30.3 5.1 24.2 4.0 18.2 3.0 12.1 2.0 6.1 1.0
May 3.4 29.4 4.9 23.5 3.9 17.6 2.9 11.8 2.0 5.9 1.0
Jun 3.4 29.4 4.9 23.5 3.9 17.6 2.9 11.8 2.0 5.9 1.0
Jul 3.4 29.4 4.9 23.5 3.9 17.6 2.9 11.8 2.0 5.9 1.0
Aug 3.5 28.6 4.8 22.9 3.8 17.1 2.9 11.4 1.9 5.7 1.0
Sep 3.3 30.3 5.1 24.2 4.0 18.2 3.0 12.1 2.0 6.1 1.0
Oct 3.2 31.3 5.2 25.0 4.2 18.8 3.1 12.5 2.1 6.3 1.0
Nov 3.0 33.3 5.6 26.7 4.4 20.0 3.3 13.3 2.2 6.7 1.1
Dec 3.0 33.3 5.6 26.7 4.4 20.0 3.3 13.3 2.2 6.7 1.1

Table 5.1: Daily charging needs by month (kWh) and number of charging hours for daily
mile case assumptions.

carbon intensity data for 1st January to 31st December 2017:

• Immediate charge (the base case): This scenario captures carbon if charged as

soon as the car plugs in (at 6pm). This the base line case as for many drivers

the most popular time to charge is when returning from work early evening as

identified during the Electric Nation project. Total annual emissions in this scenario

are calculated using equation 5.1 where i is the day index, j is the hour index

running within the 13-hour charging window, CIij is hourly carbon intensity and

F is the charging factor that represents the charging needs in kWh per hour.

Ctotal =
365∑
i=1

13∑
j=1

CIij · F (5.1)
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• Carbon optimal: Structured charging by grid carbon intensity (gCO2eq./kWh) by

hour, this scenario charges the EV during the least carbon intensive hour first, then

the second lowest etc. This is calculated for 365 days as the CO2 intensity varies.

Total annual emissions in this scenario are calculated using equation 5.2:

Ctotal =
365∑
i=1

13∑
j=1

min(CIij) · F (5.2)

5.2.2 Potential carbon savings for carbon optimal charging strategy

against immediate charge under different daily mile case

assumptions

Figure 5.1: Hourly grid carbon intensity during the allowed charging hours.

Figure 5.2: Median grid carbon intensity during the allowed charging hours.

In order to comprehend the potential carbon saving results under different mile case

assumptions it is crucial to comprehend how carbon intensity fluctuates within the

allowed charging window. Figure 5.1 shows the hourly grid carbon intensity distribution

for the allowed charging window while figure 5.2 shows the values of median carbon

intensity for the same hours; it is immediately noticed that the hours between 18.00 and
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21.00 are, carbon-wise, the worst to charge as carbon intensity tends to reach its highest

values then. The immediate charge scenario assumes the vehicle to begin charging

as soon as it gets plugged in at 18.00 for 1 to 6 hours (depending on the mile case

assumption). Thus, charging occurs between 18.00 and, at most, 23.00, a time window

that includes the most carbon intensive hours. By contrast, the carbon optimal charging

scenario selects and allows the vehicle to charge when the carbon intensity is at its lowest

(possibly between 23.00 and 04.00 according to the median values in figure 5.2).

Figure 5.3: Annual carbon emissions for different daily mile case.

Figure 5.3 presents the total, annual carbon emissions for the immediate charge and

carbon optimal scenarios. The potential, total, annual % carbon saving ranges from 21%

for the 100 mile case, 24% for the 40 mile case, 26% for the 60, 28% for the 80, to 29%

for the 20 mile case. The discrepancy between the potential carbon savings for different

mile cases can be explained if the number of charging hours and then, the high variability

of carbon intensity during these hours are taken into account.

Figure 5.4 shows the total carbon emissions per month for the daily mile case and the

charging scenarios which follows the intra-annual carbon intensity trend for 2017. The

trend of higher values at winter months should come as no surprise as it has been shown

that carbon intensity tends to peak during colder months (section 3.7).

Figure 5.5 shows the potential % carbon saving per month for all daily mile case

assumptions if carbon optimal strategy was applied instead of the immediate charge.

What immediately stands out in this graph is that the bests carbon savings are achieved in
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October, ranging from 35% to 47% while the lowest savings are being noticed in January

ranging from 12% to 19%. The level of savings is directly dependent on the variability

of grid carbon intensity within the charging hours.

Figure 5.4: Carbon emissions per month for different daily mile case.

Figure 5.5: % carbon saving per month for carbon optimal scenario against immediate
charge scenario.

Finally, figure 5.6 presents the gCO2/mile figures for the two charging strategies. Here,

it can be seen that different mile case assumptions do not cause a large discrepancy in the

figures while the potential carbon saving if the carbon optimal strategy is implemented

modulates between 17 and 25 gCO2/mile.
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Figure 5.6: Carbon emissions per mile for different daily mile case.

5.2.3 Potential carbon savings for carbon optimal charging strategy

against immediate charge for future grid assumptions

As discussed in section 2.5.2 a number of countries have announced phase-out dates for

conventional diesel/petrol vehicles in the next ten to twenty years. Furthermore, National

Grid’s EV Project Director is encouraging the UK to pull forward the UK Government

2040 target (for the banning of the internal combustion engine only car) to 2030 target

(HOC, 2018). For this reason, it would be fitting to examine different EV charging

strategies under future grid assumptions. The four Future Energy Scenarios by National

Grid, Community Renewables (CR), Consumer Evolution (CE), Steady Progression (SP)

and Two Degrees (TD) assume different gas, nuclear and renewable installed capacities

while across all, coal capacity is utterly eliminated (N.G, 2018a).

Hence, the carbon intensity datasets from section 4.6 have been used in order to assess

the potential annual carbon savings under the different installed capacity scenarios for

National’s Grid Future Energy Scenarios. It is noted that as it has achieved the best

carbon benefit in section 5.2.2 the 20 daily mile case assumptions have been selected and

used in the present section.

In figure 5.7 it can be noticed that the carbon savings are significantly higher than the ones

achieved under the current capacities. The potential future savings are estimated to be

37%, 40%, 43% and 48% for the Consumer Evolution, Steady Progression, Community
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Figure 5.7: Annual carbon emissions for different Future Energy Scenarios.

Renewables and Two Degrees scenarios respectively. The increase in carbon benefit

can be as high as 15% compared to the current 29% (figure 5.3) if the Two Degrees

scenario materialises. As shown in section 4.6 the increased renewable capacities of

all Future Energy Scenarios cause a more variable fuel mix and thus a more variable

grid carbon intensity time series. This heightened variability can then be translated in a

bigger carbon benefit; Hence, in figure 5.7 the highest carbon savings are observed in the

scenarios with the highest wind and solar capacities (Two Degrees/TD and Community

Renewables/CR).

Finally, consistently with the results in figure 5.7 a sharper decrease occurs in all cases in

figure 5.8 if the carbon optimal strategy is applied. However, it can also be noticed that

the gram per mile values for the CR, CE and SP capacity scenarios under the immediate

charge charging strategy (63 to 66 g/m) are comparable to the values under the carbon

optimal strategy (62 to 64 g/m) seen in figure 5.6. This finding highlights the projected

progress of the GB grid decarbonisation. In a little more than 10 years, the grid carbon

intensity is forecasted to be so low across the year that an immediate charge strategy is

expected to cause similar carbon emissions to a carbon optimal charging strategy that is

implemented under the current grid assumptions.
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Figure 5.8: Carbon emissions per mile for different Future Energy Scenarios.

5.3 Use of high resolution grid carbon intensity datasets

to assess current CHP control strategy - University

of Reading

5.3.1 Energy analysis for University of Reading- Whiteknights

campus

This section documents the information gathered during a meeting with a member of the

Facilities team of the University of Reading regarding the energy generation and carbon

reporting procedures the University follows. In terms of company reporting procedures,

the University of Reading accounts for their carbon emissions in three main reports:

• Internal annual carbon targets: emissions are being calculated using Carbon Trust

methodology and the DEFRA carbon factors;

• The report to Carbon Reduction Commitment (CRC) (for electricity and carbon)

is submitted between April and March, and the University pays the fees for the

amount of carbon that has been produced (17 pounds per ton);

• The report to Estates Management Record (higher education funding council which

collects data from all universities).
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To fulfill their reporting obligations the University of Reading gathers the necessary data

regarding:

• Electricity: utility bills provide all the information about the demand data (split

between generation and transmission/distribution);

• Gas: metering of the CHP unit provide the necessary data;

• Refrigerant gases: Appliances like fridges and air conditioning units may have

occasional leaks. Although they do not emit carbon, they still contribute to the

global warming;

• Water: Water bills provide the necessary data;

• Business travel: Emissions are being accounted when the University of Reading is

covering the expenses of the travel. 25% of the carbon footprint of the university

is due to the business travel. Data gathering for travel is the most challenging;

University credit cards, travel companies’ checks and expense claim forms are used

for this purpose.

For the purpose of the analysis, the following have been used: the 2016 campus’

electricity demand dataset in half-hourly resolution, the 2016 Elexon carbon intensity

dataset also in half-hourly resolution and the 2016 DEFRA carbon factor (412 g/kWh).

Figure 5.9 shows the carbon emissions for the campus calculated using the single DEFRA

annual factor and the annual dataset of Elexon carbon intensity. As expected, the time-

varying emissions (line in blue) are generally lower than the DEFRA ones since the 2016

Elexon carbon intensity ranges from 150 to 480 g/kWh.

Figures 5.10a and 5.10b show the average carbon emissions calculated with time-varying

grid carbon intensity values per weekday and for an aggregated weekday and weekend

day for the Whiteknights campus. As anticipated, the emissions significantly drop during

the weekend. The weekday profile of emissions in figure 5.10b is a mix of commercial

with domestic energy use profile while the weekend day resembles a typical domestic

energy use profile.
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Figure 5.9: Carbon emissions of electricity in Whiteknights campus.

(a) Average carbon emissions per weekday.

(b) Average carbon emissions for typical weekday and weekend day.

Figure 5.10: Average carbon emissions per weekday and for weekday and weekend day
for the Whiteknights campus, University of Reading.
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5.3.2 Discussion of current CHP control strategy

In October, 2014 The University of Reading installed an 1.1 MWe ICE CHP plant on

their Whiteknights campus as part of their carbon management plan and in an attempt to

reduce utilities costs. The CHP engine installed is an ENER-G E1160 natural gas driven,

internal combustion engine (ICE), which provides an output of hot water and electricity.

As seen in table 5.2, the use of CHP for electricity generation in 2016 has led to total cost

savings of £235,661 for the university.

With CHP
Cost of gas to run CHP £268,601

Without CHP
Cost of gas to provide

equivalent heat in boilers £105,775

Cost of equivalent electricity
from National Grid £398,487

Annual cost saving £235,661

Table 5.2: CHP savings for 2016 (source: internal report of UoR).

Although it is unrealistic to expect for the CHP to meet the total energy needs of the

campus, the offsetting of some of the electricity grid consumption can potentially lead to

significant carbon savings. As (Kelly et al., 2014) highlighted, the preferred use of CHP

instead of the grid fuel mix for electricity generation has the potential for carbon savings

only in the immediate future. As the electricity grid further decarbonises, the benefits of

using gas become less certain.

The University of Reading energy team collects datasets of electricity imported from the

grid and electricity generated by the CHP in half-hourly resolution in the Whiteknights

campus. These datasets alongside with the 2017 Elexon carbon intensity have been used

in this section. The analysis carried out in this section covers a period of 252 days due

to missing data in the CHP generation dataset. The missing data are from the following

dates: 14 Feb 2018,26 March to 01 April, 19 May to 23 May, 20 August to 27 August,

25 November, 03 December and 16 December to 31 December. Since the biggest part of
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the data gaps corresponds to holiday periods where the demand is low it is assumed that

the effect of this omission on the results is limited. For effective comparison, grid carbon

intensity for the missing dates was also omitted from the analysis.

5.3.3 Grid carbon intensity threshold for preferred CHP operation

Two different scenarios have been considered to meet heat demand Dh and electric

demand De in Whiteknights campus; One pertains a typical gas boiler and importing

grid electricity while the second includes solely CHP generation. The electricity carbon

emissions in g for the campus at a certain time t are calculated as follows for the two

scenarios:

Egrid(t) = (De(t)× CI(t)) + (Dh(t)× 185
0.9 ) (5.3)

ECHP (t) = Dh(t)× 185
0.46 (5.4)

where De(t) is the electricity demand at time t, Dh(t) is the heat demand at time t, CI(t)

is the grid carbon intensity in g/kWh at time t, 185 is the carbon factor for natural gas in

g/kWh, a representative efficiency of a typical gas boiled is assumed to be 90% (0.9) and

the CHP electrical efficiency is 41% while its heat effiency is 46%. It is noted that the

carbon factor for gas is not time dependent. Since only in cogeneration plants electrical

and heat efficiency can be summed up to provide a total efficiency figure which would

equal 87%

ECHP (t) = (De(t) +Dh(t))× 185
0.87 (5.5)

In order to identify the threshold of grid carbon intensity when CHP operation achieves

a carbon benefit eq. (5.3) must equal eq. (5.5):

(De(t)× CI(t) + (Dh(t)× 185
0.9 ) = Dh(t)× 185

0.46 (5.6)
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The solution to formula (5.6) is:

CI(t) = 196.6× Dh

De

(5.7)

However, assuming a steady heat to power output and since the relevant efficiencies are

known:
Dh

De

= 0.46
0.41 ≈ 1.122 (5.8)

From equations (5.7) and (5.8):

CI(t) ≈ 220(g/kWh) (5.9)

5.3.3.1 Potential carbon saving for heat-demand led CHP control strategy

Subsequently from equality (5.5), the carbon savings in grams at time t can be quantified

if the CHP part of each equality is subtracted from the grid part. For the heat led strategy:

Sc(t) ≈ (CI(t)− 220)×De(t) (5.10)

Since the ratio of heat and electric output is known for the CHP, eq. (5.8), it is noted that

the carbon savings in eq. (5.10) can be also written as function of the heat demandDh(t).

5.3.4 CHP operational window under current and future grid

assumptions

Taking into account the drastic changes that the National Grid forecasts for the GB

grid and consequently for the grid carbon intensity annual profile, this section seeks to

examine how the CHP preferred operational window would change across the year under

different installed capacity assumptions compare to the current conditions.

For this reason, the Future Energy Scenarios carbon intensity datasets from section 4.6

and historic Elexon values have been used and examined against the grid carbon intensity
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(a) 2017 (b) Community Renewables

(c) Consumer Evolution (d) Steady Progession

(e) Two Degrees

Figure 5.11: Half-hourly binary heatmap of grid carbon intensity when it exceeds the
CHP threshold (220 g/kWh) for 2017 and 2030 Future Energy Scenarios.

threshold for the heat-led strategy. Figure 5.11 presents in black the half-hours when

the grid carbon intensity exceeds the threshold for 2017 and the simulated 2030 Future

Energy Scenarios, Community Renewables (CR), Consumer Evolution (CE), Steady

Progression (SP) and Two Degrees (TD) scenarios.

In figure 5.11a, for 55% of the year 2017, grid carbon intensity was measured to exceed

the threshold thus allowing a quite wide annual CHP operating window that can achieve a
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carbon benefit. It is seen that in winter months, particularly January and December, grid

carbon intensity remained higher than the threshold across the whole day thus allowing

CHP operating opportunity during working hours. For spring and summer months, the

effect of solar generation is more evident, although grid carbon intensity is still seen to

exceed the threshold for peak demand early morning and early evening hours.

Compared to figure 5.11a, the common feature that immediately stands out in figures

5.11b, 5.11c, 5.11d and 5.11e is the effect of high solar generation. It is reminded that

compared to the current 12 GW, the installed solar capacity is projected to increase to

33, 19, 16 and 24 GW for the CR, CE, SP, TD scenarios respectively (table 4.8). As

discussed in section 4.6, the high installed solar capacity causes a drastic drop during

the hours where solar radiation is at its highest. As a result, grid carbon intensity rarely

exceeds the 220 g/kWh threshold during these hours and causes the CHP operational

window to significantly narrow during spring and summer months when the sunny hours

are extended. However, small differences can be noticed across the four scenarios.

The CHP window across the year was measured to be 32%, 31%, 29% and 14% for the

CR, CE, SP and TD scenarios respectively. It is noticed that the Community Renewables

scenario offer the longest CHP window across the year while the Two Degrees offers the

narrowest. Drawing on table 4.9, the TD scenario was anticipated to provide the least

time for CHP operation since the grid carbon intensity takes the lowest values, due to

large amount of nuclear and renewables in the mix, compared to the other FES scenarios.
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5.3.5 Real and potential annual carbon benefits from CHP operation

in 2017, University of Reading

Using real CHP generation data in half-hourly resolution for 2017, its current control

strategy was examined against the dynamic behaviour grid carbon intensity for the same

year. Figure 5.12 indicates whether CHP was operating when grid carbon intensity was

higher and lower than the threshold. The areas in black represent the half-hours when

the plant was operating while the areas in white represent the off-time. Of the total

operational time across the year, 60% of it was carried out while grid carbon intensity

was higher than 220 g/kWh, thus providing a carbon benefit, while the remaining 40%

occurred at half-hours when grid carbon intensity was lower than the threshold.

(a) CHP operation when carbon intensity is
higher than the threshold.

(b) CHP operation when carbon intensity is
lower than the threshold.

Figure 5.12: Half-hourly binary heatmaps of CHP operation against the heat-led strategy
grid carbon intensity threshold.

Figure 5.13 presents the real half-hourly carbon savings in kilograms across the year.

From eq. (5.10), it is noticed that the half-hourly carbon saving is dependent on the grid

carbon intensity and the CHP generation at each time-step. For this reason, figure 5.14

also presents the half-hourly generation output of the CHP in kWh for the same time. In

figure 5.13 it is noticed that January, February, November and December achieved the

highest carbon savings. Since the CHP generation remains relatively steady across the

year with the exception of June, August and September the high savings can be attributed

to the high grid carbon intensity values during these months (figure 3.12i). The average

carbon saving was measured to be 36.4 kg, while the maximum was 147 kg and was
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Figure 5.13: Half-hourly grid carbon intensity and carbon saving for CHP operation in
2017.

Figure 5.14: Half-hourly CHP generation (kWh) in 2017.

Figure 5.15: Half-hourly grid carbon intensity, carbon saving and CHP generation in
2017.

measured in December. The total annual carbon saving was measured to be 182.7 tonnes.

Furthermore, the half-hours where grid carbon intensity exceeded the threshold but the

CHP was not operating were identified. An average CHP generation output of 418

kWh was assumed and figure 5.16 presents the potential half-hourly carbon savings

in kilograms across the year. Since a steady generation output was assumed, the carbon

saving profile (blue line in figure 5.16) develops like the grid carbon intensity for the

same hours (red line in figure 5.16). Consistently with figure 5.13, the highest carbon
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benefits are being observed in January, November and December. The total potential

annual carbon saving was measured to be 100.88 tonnes. Hence, it is shown that if CHP

was operating during the whole time when grid carbon intensity exceeded the threshold,

the total annual carbon saving could increase by 94.8%.

Figure 5.16: Half-hourly carbon intensity and potential half-hourly carbon saving
assuming average CHP generation in 2017.
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5.4 Summary of findings

This chapter illustrated how carbon intensity datasets in half-hourly resolution can be

used to inform real-life applications and point to potential carbon benefits. Two different

case studies have been selected in order to represent evolving and interesting energy

areas.

In the first case study that concerns the electrification of vehicles, a carbon optimal

strategy that allowed a single vehicle to charge during low carbon intensity hours was

designed. This strategy was then compared with an immediate charge case when the

vehicle charged immediately after being plugged in at 6 pm. Under different daily

mile case assumptions the total carbon saving for a year ranges from 21% to 29%. It

is noted though that the different daily mile case assumptions did not seem to cause

large discrepancies on the gCO2/mile values for each charging strategy. The ranges

were calculated to 81 to 87 gCO2/mile for the immediate charge strategy and 62 to

64 gCO2/mile for the carbon optimal strategy. Furthermore, the same carbon optimal

strategy was simulated under the 2030 National Grid’s Future Energy Scenarios using

the simulated carbon intensity datasets from section 4.6. In this case, the carbon savings

were much higher ranging from 37% to 48%. The results showed that the higher the

installed renewable capacity on the system the higher the carbon benefit. The capacity

assumptions for the Two Degrees and Community Renewables scenarios yielded 48%

and 43% carbon saving respectively. This was anticipated as the fuel mix that is rich in

variable renewables results in a more variant carbon intensity time-series, as shown in

chapter 4.

Finally, the second case study looked into the current control strategy of a combined heat

and generation plant in the Whiteknights campus, University of Reading. A threshold

of carbon intensity was established for a heat-demand control strategy against which the

CHP operation was deemed favourable to provide a carbon benefit. In order to explore

favourable conditions for CHP operation under current and future grid assumptions, 2017

historic and National Grid’s FES grid carbon intensity values were used. Again, all
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grid carbon intensity time-series including 2017, Community Renewables, Consumer

Evolution, Steady Progression and Two Degrees scenarios were assessed against the grid

carbon intensity threshold. In 2017, the CHP window was measured to equal 55% of the

year, mostly occurring during autumn and winter months and high demand hours. Among

the scenarios, Community Renewables offered the widest intra-annual CHP window,

measured to be 32% of the year. By contrast, the Two Degrees scenario due to the very

low grid carbon intensity values, provided the least time for CHP operation, amounting

only to 14%. The University’s CHP follows a heat-led strategy so its current schedule

was assessed against the 220 g/kWh threshold. The particular CHP was shown to be

generating for 60% of its total operational time providing a carbon benefit, while the

remaining 40% was carried out when grid carbon intensity was below the threshold.The

total annual carbon savings were estimated to be 183 tonnes. However, if the CHP also

operated at an average output during the remaining hours, when grid carbon intensity was

higher than 220 g/kWh, this amount could increase by 94.8%.
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Chapter 6

Discussion and Conclusions

6.1 Thesis summary

This study was designed to investigate the uncertainties in grid carbon intensity

introduced by the use of single annual average figures and the arising implications.

Although grid carbon intensity has already been investigated by a variety of national and

international studies, limited literature was identified that focuses on the time-varying

behaviour of grid carbon intensity (Khan, 2018), (Khan et al., 2018). In most cases

emissions arising from the grid are described in a single annual either aggregate (Ang &

Su, 2016) or average (Goh et al., 2018), (Ang & Goh, 2016) figure. Hence, this study

combined historic data analysis, power system modelling and real life case studies aiming

to provide insights on the time-varying behaviour of the GB grid carbon intensity that is

obscured by the use of a single annual average figure and explore the uncertainties that

arise from it.

Although historic data analysis provides useful insights on the “past” of grid carbon

intensity, it does not contribute anything to uncover the uncertainties regarding the future

and the even plausible present. In equation 2.1 it has already been shown that carbon

intensity is largely determined by the fuel mix. Subsequently, the fuel mix is dependent

on two factors, the installed plant capacities and the amount of renewables in the mix.
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Interestingly, these two factors partly overlap as the amount of renewable energy in

the grid is clearly regulated by the installed relevant capacity and the meteorological

conditions. In summation, grid carbon intensity is susceptible to changes of the

installed capacities and the weather. Therefore, the plausible present regards feasible

weather scenarios with the current installed capacities while the future regards capacity

projections. In order to address the aforementioned uncertainties, a power system model

similar to the one used by National Grid was designed to reflect and simulate the GB

electricity grid. The aim was to produce annual carbon intensity datasets under different

installed capacity and weather assumptions. Thus, a power system model was built

simulating the basic functions of unit commitment and economic dispatch, and then

compared with a simple benchmark model.

This far, this study has focused on identifying the historic, current and future uncertainties

that affect the grid carbon intensity. Since these uncertainties have been acknowledged,

the use of solely a single annual average figure is shown to mask a significant inherent

feature of grid carbon intensity, time-variability. Instead, a more nuanced approach

such as historic annual datasets in high resolution, can be a more appropriate carbon

accounting tool. Therefore, the subsequent question that occurs regards the possible ways

high resolution grid carbon intensity can be used. To address the above, two case studies

that represent the fast-changing and challenging energy areas of vehicle electrification

and cogeneration heating have been selected. While the electrification of vehicles is

slowly becoming a reality both on national and international level, the evolution and

selection of suitable heating systems in a carbon optimal future is still uncertain.
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6.2 Uncertainties in grid carbon intensity and carbon

reporting

6.2.1 Data uncertainties

For the historic data analysis, the method that is followed by DEFRA to calculate

the annual, average figures of grid carbon intensity using fuel input and power output

could not be replicated as generating data is not available in higher resolution. The

implemented method, which is consistent with the one followed in the National Grid’s

grid carbon intensity forecast (N.G, 2017), unveiled the first source of uncertainty in grid

carbon intensity calculation. This source regards the assumed carbon factors of different

generation plants.

These carbon factors were shown to be inconsistent across the relevant bibliography

as they are dependent on whether life cycle emissions were considered, the age and

more importantly the efficiency of the relevant plant (tables 2.1 and 2.2). Ideally, in

order to estimate grid carbon intensity, the fuel input and power output (alternatively,

the efficiency) should be known in half-hourly resolution at a power station level. The

carbon factors this study has used are representative of the power station type. In tables

3.1 and 3.2 it can be noticed that a discrepancy of 0.5%, 3.6 %, 0.4% and 0.7% in net

efficiency causes fluctuations of 15, 122, 6 and 10 g/kWh in the carbon factors of coal,

oil, OCGT and CCGT plants respectively. A range of factors was used to establish an

uncertainty range in half-hourly grid carbon intensity, which was shown to vary from 2%

to 5% when the factors were GB specific (figure 3.6). The uncertainty range was shown

to be significantly higher reaching 25% when wider, international carbon factor ranges

and a different methodology were used (figure 3.5). Large discrepancies up to 18% were

also noticed in the annual figures that were calculated with different plant carbon factors

(figure 3.4) when compared with the DEFRA figures for the same years.

The assumed power station efficiencies were shown to introduce uncertainties ranging

from 2% to 25% in grid carbon intensity calculations depending on the range of carbon
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factors. However, the greatest underlying uncertainty in carbon accounting and reporting,

when using annual averages, is the inherent variable behaviour of grid carbon intensity.

6.2.2 Grid carbon intensity variability

Grid carbon intensity is shown to be highly dependent on a number of factors including:

the assumed efficiencies/carbon factors and installed capacities for different plant types,

demand changes, the weather that dictated the wind and solar output and finally the

amount of fossil fuel generation in the mix. All these factors cause high variation, not

only on an inter-annual and intra-annual level but also, from one half-hour of generation

to next.

Inter-annual variability

The first part of this study, historic data analysis of generation in GB for years 2009 to

2017 demonstrated the progress of the grid decarbonisation that has been achieved in the

space of these nine years. Reduced demand, coal plant closures and more renewables

on the grid are the main reasons behind this. However, grid carbon intensity displayed a

highly dynamic behaviour, not only inter-annually, but also intra-annually and intra-daily.

Furthermore, this study showed that the intra-annual variability in grid carbon intensity

changes differs from one year to the next, depending on the fossil generation and total

annual wind output in the fuel basket. Table 3.7 shows that annual grid carbon intensity

variability was at its highest in 2009 (standard deviation was measured at 87.4), reached

a low in 2012 (56.8), following the coal plant closures and then started to increase again

as renewables penetrated the grid to reach a high of 73.7 in 2017.

Intra-annual variability

Examining the intra-annual pattern of grid carbon intensity, it was shown that there is

not a consistent trajectory for the analysed years (figure 3.8). The different weather,

fuel mix and demand of each month caused various fluctuations in grid carbon intensity

for each year of the analysis. However seasonal trends were detected as warmer

months were observed to have lower grid carbon intensity in all cases (figure 3.12).
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Furthermore, average monthly wind generation was shown to affect the average figure of

grid carbon intensity. Under the current installed capacity assumptions a discrepancy of

40% in average wind generation causes a 10% difference in average monthly grid carbon

intensity (figures 4.8a and 4.8b). Finally, high wind generation was shown to affect the

frequency of values of low hourly carbon intensity during the year, varying from 15%

to 28%, although no significant impact on the annual average figures was detected (table

4.6).

In-day variability

Grid carbon intensity was shown to follow an expected trend during the day, peaking

around afternoon, remaining relatively high until midnight and dropping again until 6

a.m. (figure 3.12). Half-hourly grid carbon intensity was also shown to fluctuate by 50%,

compared within the same day, to the listed DEFRA annual average in December, 2009

(figure 3.11). However, the reduction of coal and the increased CCGT baseload noticed

in the fuel mix of the latest years are shown to limit the in-day variation of grid carbon

intensity to 35.5% of the annual average (figures 3.10 and 3.11). Furthermore, the effect

of solar generation, even with the current installed renewable capacities was evident in

the daily profile of average grid carbon intensity by causing a decrease of approximately

15% around noon hours (figure 4.10).

One could argue that the coal elimination from the grid, as projected by the Future Energy

Scenarios (table 4.8) would limit the inter-annual variability. However, the projected

renewable expansion is expected to cause a highly variable fuel mix that will amplify the

dynamic behaviour of grid carbon intensity. The inter-annual variability of grid carbon

intensity under the Future Energy Scenarios assumptions is shown to increase up to 300%

when compared to current grid conditions (table 4.9).

Projected variability

Under the National Grid’s FES 2030 assumptions, the elimination of coal from the

grid caused a drastic drop to grid intensity while the increased renewable capacities

created a more variable annual carbon intensity dataset. Notably, the intra-annual grid

carbon intensity variablity (measured by standard deviation in table 4.9) was shown to
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increase by 283%, 242%, 242% and 216% for the Community Renewables, Consumer

Evolution, Steady Progression and Two Degrees scenarios respectively when compared

with a current capacity scenario.

Furthermore, in many cases, especially for the scenarios with the highest wind and solar

capacities, namely the Community Renewables and Two Degrees scenarios (table 4.8),

the renewable generation was enough to meet the system demand causing the half-hourly

grid carbon intensity to be zero for 18% and 21% of the year respectively. Furthermore,

under the Two Degrees capacity assumptions, different weather assumptions were shown

to have an even greater impact both on the in-year variability and the frequency of zero

values of grid carbon intensity. Both the standard deviation and the frequency of zero

values within the year were shown to vary by 10% depending on the wind output (figure

4.10). Hence, the findings imply that while previously the greatest grid carbon intensity

fluctuations were caused mostly by major coal plants going online and offline, the future

fluctuations are expected to be caused by the fuel mix transitioning from solely renewable

generation (with a zero carbon factor) to a solely gas generation (now the heaviest in

carbon fuel) and vice versa.

6.3 Implications for carbon accounting and reporting

6.3.1 Recent developments in high-resolution carbon accounting

The findings so far show that the highly dynamic nature of grid carbon intensity and

the underlying uncertainties need to be acknowledged. This study proposes that this

variability needs not only to be recognised but it should also be used to inform domestic

and business energy consumption decision-making. While in the beginning of the project,

this time-varying feature was only discussed in a limited number of academic studies,

recent years have seen great changes. Two initiatives launched in the last year of the

project regard the dynamic nature of electricity generation. While the National Grid
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forecast1 provides an indicative trend of high resolution grid carbon intensity up to 48

hours ahead of real-time, Octopus2 introduced dynamic time of use tariffs in half-hourly

resolution a day ahead. Both schemes seek to inform energy consumption behaviour by

sharing high-resolution energy data with the public, but a key difference is also detected.

Grid carbon intensity forecast makes the information available to any interested party but

without any incentive. By contrast, Octopus provides a solid financial incentive and pays

domestic customers (it is noted that the company is open to expand to non-domestic level

as well) to shift their energy consumption outside peak demand hours. Furthermore,

Octopus reports some very interesting findings that can be extrapolated to support the

rationale of this study. These findings are (Octopus, 2018):

Energy users engage with their energy and alter their energy consumption

behaviour if they are given the appropriate tools. In the case of Octopus, 28% of

the domestic customers dropped peak usage from 16% to 11.5% of their total daily

consumption (Octopus, 2018). Although no study has been conducted to assess the

impact the grid carbon intensity forecast had on altering energy use behaviours, the

finding itself is very promising since energy consumers are shown to alter their decisions

if armed with adequate and accurate information.

Cost savings are achieved simultaneously with carbon savings. Although the

decarbonisation progress of the GB electricity grid has been demonstrated, there is still

a significant amount of fossil fuels in the mix. For this reason, peak demand hours,

when the wholesale electricity price is high, coincide with the hours of peak grid carbon

intensity when fossil plants have to be online to meet demand in the current electricity

grid. Thus, if energy consumption gets moved outside the peak window, savings both

in cost and carbon terms occur. This finding is further supported by the work in

(Papaioannou et al., 2019). Four different charging strategies for electric vehicles were

assessed and the results indicated that high cost and carbon savings can be realised if a

carbon optimal charging strategy is implemented.

1https://carbonintensity.org.uk/
2https://octopus.energy/agile/
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6.3.2 Proposed demand side management schemes that make use of

the time-varying grid carbon intensity

Building up on these two findings, this study seeks to explore ways to respond to the

variability of grid carbon intensity, inform energy consumer behaviour and achieve a

carbon benefit via two case studies. While the electric vehicles case study regards demand

side management on the domestic level, the CHP control strategy represents the business

level customers where the implementation gets more complicated on a policy level.

For the electric vehicles, a carbon optimal charging strategy for a single vehicle was

designed and then compared with an immediate charge case where the vehicle starts

charging at 6 p.m. For the carbon optimal strategy, the lowest carbon intensity hours

within a time window were selected as the preferred charging hours for the electric

vehicle. Depending on the daily mile case assumptions the potential, annual carbon

savings varied from 21% for the 100 mile case, 24% for the 40 mile case, 26% for the

60, 28% for the 80, to 29% for the 20 mile case (figure 5.3). It is shown then that if grid

carbon intensity is known in a high resolution, any electric vehicle owner that wishes to

contribute to Climate Change mitigation can decide to charge during hours when the fuel

mix is cleaner. Insights derived from the National Grid’s forecast in combination with a

simple charging strategy like the one demonstrated in this study should suffice to achieve

annual savings that equate to 0.18, 0.35, 0.49, 0.59, 0.62 tonnes of carbon for the 20, 40,

60, 80 and 100 daily mile case respectively.

The same strategy was also simulated under the National Grid’s future energy scenarios

2030’s capacities for the 20 daily mile case assumptions. In this case, where renewables

dominate the fuel mix, the grid carbon intensity varies even more within the day.

Fortunately, the charging strategy can capitalise this amplified variability and achieve

higher percentage savings. The projected savings are estimated to be 37%, 40%, 43% and

48% that equate to 0.20, 0.18, 0.18, 0.16 tonnes of carbon for the Consumer Evolution,

Steady Progression, Community Renewables and Two Degrees scenarios respectively

(figure 5.7). Hence, it is realised that a demand side management measure that includes
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moving energy consumption from a charging electric vehicle outside peak hours of grid

carbon intensity can achieve substantial carbon benefits not only in the current electricity

grid but also in forecasted power system conditions.

A different demand side management scheme was explored in the second case study.

In this case, the current control strategy of a cogeneration (CHP) plant in Whiteknights

campus, University of Reading was assessed. A threshold of grid carbon intensity was

established against which, the CHP operation was assessed as favourable or not, in order

to achieve a carbon benefit. In contrast with the electic vehicles case study, in this

instance the carbon benefit occurs if the highest carbon intensity hours within a time

window are selected as the preferred CHP operational hours. Therefore, this demand side

management scheme entails the moving of energy generation not consumption, inside

and not outside a time window when grid carbon intensity exceeds a threshold. The

results of the assessment showed that under the current control strategy, 60% of the total

operational time was carried out within the window, thus providing a carbon benefit and

resulting in annual savings that reached 183 tonnes of carbon (figure 5.13). However, it

was also shown that if the whole extent of the CHP annual window was used, the savings

would increase by almost 95% even with an average CHP generation output (figure 5.16).

6.3.3 Recommendations

Two examples of demand side management practices were investigated to factor the

variability of grid carbon intensity into energy consumer behaviour and infrastructure

planning. However, there is still scope to explore ways to aid the factoring of time-

varying grid carbon intensity into such practices.

As previously mentioned, demand side management on the domestic level is more

straightforward. Access to high resolution grid carbon intensity data is available on the

National Grid’s forecast, while a financial incentive is now provided by the Octopus agile

tariff. All the essential means are currently in place and available to i.e an electric vehicle

owner that wants to avoid charging during carbon intensive hours. However, there is still
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the uncertainty whether peak demand hours will keep coinciding with peak grid carbon

intensity. Although this study showed that even higher percentage savings can occur in

the variable future mix if consumption during peak demand hourd is avoided, there is

further scope for refinement and introduction of financial incentives that target carbon

instead of cost benefits.

By contrast, carbon accounting and reporting on a large business level such as the

University of Reading is inherently governed by the national policies and guidelines

already in place. Malleability associated with the scope classification (Haslam et al.,

2014) and the lack of future emissions accounting (Bebbington et al., 2019) introduce

key uncertainties in the carbon reporting process on the business level in the United

Kingdom. Noting that the annual average grid intensity values provided by DEFRA do

not accurately represent the dynamic balancing of the system, Tranberg et al. (2019)

highlight the importance of real time electricity carbon accounting. Thus, a demand

side management measure, such as the suggested one, will not be implemented even if

all the required tools and relevant information are already available. Namely, the CHP

case study identified an operational time window that can achieve a carbon benefit whilst

forecasted grid carbon intensity in high-resolution is available and sufficient for short-

term CHP planning. However, an incentive is absent since the Estates and Facilities team

of the University is legally bound to use the annual average carbon figures provided by

DEFRA. Hence, it becomes quite clear that to move things forward on large-business

demand side management the national policies have to acknowledge the dynamic feature

of grid carbon intensity and the great untapped potential of utilising this feature to set and

achieve carbon targets. Should high resolution historic grid carbon intensity data become

available to large-scale businesses that are legally required to report their Scope 1 and 2

emissions, the carbon accounting process would result in less uncertain insights, more

accurate reporting and higher cost and carbon benefits.
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6.4 Limitations and future work pathways

Marginal grid carbon intensity

There is a strong argument that marginal emissions have to be recognised and assessed

(Hawkes, 2010), (Siler-Evans et al., 2012), (Hawkes, 2014), (Thomson et al., 2017)

since using solely system average numbers ignores a key feature of the electricity market

function. The remaining uncertainty regards which metric, system average or marginal,

should be used in carbon accounting schemes. While it can be argued that marginal

intensity is appropriate for assessing small demand interventions in a short-time and

system average can successfully reflect longer term substantial mechanisms (Hitchin &

Pout, 2002), determination of the marginal mix/plant should also be considered.

This study has focused on system average grid carbon intensity in half-hourly resolution,

but also acknowledged the significance of marginal emissions and identified the marginal

plant(s) for each year of the historic analysis, covering a period of nine years. In the case

of Great Britain the marginal operation has been determined by the prioritisation of coal

against gas (CCGT) and vice-versa. The results in table 3.5 indicate that in the earlier

years of the analysis (2009-2012) both fuels are in the marginal mix. Coal is seen to

dominate the marginal mix in 2012 and since then CCGT is shown to provide the greater

proportion of the marginal mix for the remaining years. It is also noted that the last year

of the analysis, 2017, had the highest CCGT to coal ratio in the marginal mix. As the

carbon factor of coal is twice as high (900 g/kWh) as the CCGT (394 g/kWh) (table 3.1)

substantial discrepancies are expected in the marginal emissions for the said years.

The case studies demonstrated in this thesis assessed potential carbon savings from an

electric vehicle charging and a CHP control strategy. Both of them could be treated

as small demand side intervention and there is argument for the marginal intensity as

an additional metric to be examined. At the time of the study, the marginal mix was

dominated by gas, thus, marginal emissions are expected to be invariant. However, there

is scope for additional calculations using marginal intensity and comparison with the

existing results.
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Dynamic fuel prices

Although the design of a model from the very beginning is time-consuming, ultimately

it was preferred over the use of a ready one already on the market. Acknowledging its

limitations, the constructed model would still offer increased flexibility and a deeper

understanding of its functions since most purchasable power system models operate

by the “black box” principle for commercial reasons. However, due to hardware and

computational time constraints, high resolution fuel prices were replaced with a fixed

fuel price in the model.

In a similar way to marginal emissions the prioritisation of plant operation has been

long dictated by the relationship of gas against coal price. An example to demonstrate

the impacts of this relationship is as follows. UK grid carbon intensity peaked in 2012

(figure 3.8) because USA-imported coal provided a cheaper alternative than gas at the

time (Staffell, 2017). Furthermore, (Thomson et al., 2017, p. 207) attributes the surge in

coal generation in 2012 to an interaction between the Large Combustion Plant Directive

and carbon price floor, as generators that were due to be decommissioned rushed to

use their allocated hours before the carbon support price rates rose. Although access

to historic fuel prices in high resolution is limited and coal elimination from the grid is

projected in the next decade, there is scope for refinement of the MILP model and the

addition of dynamic fuel prices in order to assess the impact on grid carbon intensity

values.

Storage requirements

Although storage technologies do not create carbon emissions by themselves, the stored

electricity does not have a zero carbon-factor. The currently used technology of pumped

storage has the effect of “time-shifting” carbon emissions. The emissions intensity of

storage can be accounted for either with a weighted-average “stock accounting” method

(Thomson et al., 2017) or is attributed to the technologies that generated the electricity

in the first place (Staffell, 2017).

Furthermore, due to the aforementioned constraints, the simulation of storage was
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also omitted from the MILP model. National Grid’s Future Energy Scenarios project

increased storage capacities in order to accommodate the increased renewable share of

generation. Incorporating the relevant storage capacities both into the analysis and the

model parts would provide more accurate grid carbon intensity estimates and thus, is left

for future work.

Future changes in demand

Due to the lack of access to high resolution future demand data, an altered 2017 demand

dataset was used to simulate the variety of weather and capacity scenarios. Future

grid projections like the electrification of heat and vehicles are anticipated to cause the

demand to significantly increase. Access and simulation of relevant demand data would

produce more accurate grid carbon intensity figures. However, recent studies have also

highlighted the problem of large amount of renewables in the grid without smart system

element enabling demand to adapt to supply (Staffell & Pfenninger, 2018). Similarly

to the findings of this study (section 4.6.7) net zero demand was shown to regularly

occur when the renewable output was high under the Two Degrees capacity assumptions.

Recommended measures to avoid a “dumb” operation of the system, shift demand,

balance renewables and reduce peak demand include: interconnection, storage and load-

shifting from zero-carbon energy, demand-side management schemes ranging from small

to large-scale, fleets of electric vehicles with managed and co-ordinated charging and

increased electricity and thermal storage capacities (Staffell & Pfenninger, 2018).

144



Section 6.5 Subsection 6.5.0

6.5 Conclusions

The aim of this study was to “to assess the different sources of uncertainty in historic,

current and projected GB grid carbon intensity and make recommendations on factoring

its dynamic nature into real life applications”. Historic data analysis has shown that the

use of a single annual figure of grid carbon intensity masks the high intra-daily variability

that occurs. Therefore, it introduces several uncertainties when it is used for carbon

accounting and reporting purposes. While a GB grid model was built to simulate various

weather outputs and projected capacities, two case studies that used high resolution grid

carbon intensity datasets were investigated to estimate the potential carbon benefits. This

study’s key findings can be summarised as follows.

The historic grid carbon intensity was shown to vary by up to 50% of the annual average

figure within the same day in early years of the historic analysis. This variation has

dropped to 35% in recent years due to the constantly shrinking amount of coal in the fuel

mix (figure 3.10).

The intra-annual variability of grid carbon intensity reached a low in 2013 following the

coal plant closures and then started to expand with the increasing renewable penetration

(table 3.7).

The intra-annual variability of grid carbon intensity is expected to further expand as the

UK power generation mix changes. High installed solar and wind capacities cause the

intra-annual variability of grid carbon intensity to significantly increase by 216% to 283%

when compared with a current capacity scenario.(table 4.9).

Annual average grid carbon intensity is shown to be a metric that masks the impact of

the weather of the year. The effect of different wind outputs is not evident in the annual

average figures of grid carbon intensity (table 4.6). However, it is shown to cause high

discrepancies in the intra-annual frequency of high/low values that varies from 15% to

28%.

An EV controlled charging strategy that is informed by time-varying grid carbon intensity
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could achieve 21% to 29% carbon savings under the current grid capacities for daily mile

case ranging from 20 to 100 miles. Furthermore, the same controlled strategy under the

Future Energy Scenarios assumptions is shown to achieve carbon benefits from 37% to

48%. In this case, the large amounts of renewables in the system cause large in-day

fluctuations and many occurrences of zero grid carbon intensity.

A CHP control strategy that factors in the time-varying behaviour of grid carbon intensity

could double its carbon benefits if it uses the full extent of the “allowed” operational

window. However, the CHP carbon benefit becomes less certain in future capacity

assumptions, as the grid decarbonises and grid carbon intensity decrases.

This study has presented strong evidence that high variability, in a time frame that

ranges from annual to half-hourly, is a significant feature of the GB grid carbon intensity

behaviour. Therefore, the use of single annual average figures for carbon accounting

and reporting purposes raises doubts over the accuracy of the estimations. Instead, it

is recommended that historic grid carbon intensity should be made available in high

resolution to inform demand side management schemes both on domestic and business

level.
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electricity load forecasting : Current and future trends. Utilities Policy, 58(April),

102–119.

Malinauskaite, J, Jouhara, H, Ahmad, L, Milani, M, Montorsi, L, & Venturelli, M. 2019.

Energy efficiency in industry : EU and national policies in Italy and the UK. Energy,

172, 255–269.

Mclaughlin, Craig, Elamer, Ahmed A, Glen, Thomas, Alhares, Aws, & Gaber,

Hazem Rasheed. 2019. Accounting society ’ s acceptability of carbon taxes :

Expectations and reality. Energy Policy, 131(April), 302–311.

Mohsenian-Rad, H. 2012. Smart Grid Topic 1 Power Systems.pdf. http://www.

ee.ucr.edu/˜hamed/Smart_Grid_Topic_1_Power_Systems.pdf.

(Accessed on 04/05/2017).

N.G. 2012. National Grid operational metering data and renewables.

https://assets.publishing.service.gov.uk/government/

uploads/system/uploads/attachment_data/file/65923/

6487-nat-grid-metering-data-et-article-sep12.pdf. (Accessed

on 02/06/2019).

N.G. 2017. National Grid : Carbon Intensity API forecast. https://www.

carbonintensity.org.uk/. (Accessed on 02/12/2019).

NG. 2017. National Grid: Data Explorer: Demand data 2009-2016.

http://www2.nationalgrid.com/UK/Industry-information/

Electricity-transmission-operational-data/Data-Explorer/.

156

http://www.ee.ucr.edu/~hamed/Smart_Grid_Topic_1_Power_Systems.pdf
http://www.ee.ucr.edu/~hamed/Smart_Grid_Topic_1_Power_Systems.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/65923/6487-nat-grid-metering-data-et-article-sep12.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/65923/6487-nat-grid-metering-data-et-article-sep12.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/65923/6487-nat-grid-metering-data-et-article-sep12.pdf
https://www.carbonintensity.org.uk/
https://www.carbonintensity.org.uk/
http://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-Explorer/
http://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-Explorer/


Section 6.5 Subsection 6.5.0

N.G. 2018a. National Grid - Future Energy Scenarios.

http://fes.nationalgrid.com/media/1357/

fes-2018-in-5-minutes-web-version.pdf. (Accessed on 01/27/2019).

N.G. 2018b. National Grid - Future Energy Scenarios main

document. http://fes.nationalgrid.com/media/1363/

fes-interactive-version-final.pdf. (Accessed on 01/27/2019).

Octopus. 2018. Agile Octopus: A consumer-led shift to a low carbon

future. https://octopus.energy/static/consumer/documents/

agile-report.pdf. (Accessed on 03/18/2019).

Odeh, N., Cockerill, A., & Timothy, T. 2008. Life cycle analysis of UK coal fired power

plants. Energy Conversion and Management, 49(2), 212–220.

Odeh, Naser A., & Cockerill, Timothy T. 2008. Life cycle analysis of UK coal fired

power plants. Energy Conversion and Management, 49(2), 212–220.

Papaioannou, V., Simpson, A., Coker, P., Potter, B., & Livina, V. 2019. Submitted:

Variability in the UK grid carbon intensity and how it can inform controlled charging

strategies of EVs.

Pean, Emmanuel, Pirouti, Marouf, & Qadrdan, Meysam. 2016. Role of the GB-France

electricity interconnectors in integration of variable renewable generation. Renewable

Energy, 99, 307–314.
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