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I. Introduction

DATA in our social society, scientific research, and other fields, are 
generating at an unprecedented rate and being widely collected 

and stored. To further exploring the information or knowledge hiding 
in the datasets, intelligent technologies-based data processing has 
been developed and becomes the consensus of the current academic 
and industrial circles. However, the lack of labeled data has become 
increasingly prominent with the accumulation of many new data-sets. 
While not every field will spend as much manual labeling to produce 
some data like ImageNet [1], supervised learning can solve many 
important problems. Transfer Learning (TL) plays a very important 
role for processing the unlabeled datasets. In traditional classification 
learning models, there are two basic assumptions to guarantee  the 
accuracy and reliability of the classification model; the first is that how 
the training samples for learning to the new test samples satisfying the 
same distribution independently; the second is that there must be enough 
available training samples to learn a good classification model [2]–[3]. 

In practice however, these two conditions are often unsatisfactory. 
Over time, the previously available labeled sample data may become 
unavailable resulting in semantic and distribution barriers with new 
testing samples. Reliable labeled sample data are often scarce and hard 
to be obtained. This resulted in a very important problem in Machine 
Learning (ML), how to use insufficient labeled samples or source 
domain data to predict target domains with different data distribution 
of reliable models. Recently, TL has attracted extensive attention 
and research [4]. Transfer learning uses existing knowledge to solve 
problems in different but related fields; it aims to solve the learning 
problem in the target region by transferring the existing knowledge, 
thus relaxing the two basic assumptions in traditional machine learning, 
while only a small amount of labeled sample data is available in the 
target region. The more factors shared by two different fields then the 
easier it will be. Otherwise, it will be more difficult, and even “negative 
transfer” will occur, which has side effects in practice [5].

Scholars have carried out extensive research on TL recently; 
and many of them have focused on different technologies to study 
TL algorithms. TL arises from the mining technology of incomplete 
or insufficient data-sets; and as one of the Deep Learning (DL) 
technologies, it has been used in various fields to solve problems. 
The target accuracy of more than 90% was easily achieved by 
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previous studies [6]– [7]. However, DL is a data-hungry technology 
that requires many annotated samples to work with. In practice, there 
are many problems due to the lack of labeled data, and the cost of 
obtaining labeled data is also very large, such as in the field of medical 
treatment and information security. Therefore, this inevitably leads to 
the well-known small sample problem, with new classes in the training 
process that have never been seen before. It can only use a few labeled 
samples of each class without changing the trained model [8]. Taking 
image classification data as an example, the traditional method is to 
obtain a model based on the training set, and then annotate the test set 
automatically. The small sample problem is that many classified data-
sets can be processed using a few labeled data-sets. When the amount 
of tagged data-set is relatively small, these rare categories need to be 
generalized without additional training. Few-shot, one-shot [9]– [11], 
and Zero-Shot Learning (ZSL) models are widely used to address 
this issue. TL is highly related to the few-shot and one-shot learning 
models [12]. Abderrahmane et al. [13] introduced a zero-shot haptic 
recognition algorithm for robots in interacting with their environment. 
Ji et al. [14]-[15] introduced a Manifold-regularized Cross Modal 
Embedding (MCME) approach for ZSL. Combining ontology and 
reinforcement learning for Zero-Shot Classification (ZSC) [16]–[17], 
Kernelized Linear Discriminant Analysis (KLDA), Central-Loss based 
Network (CLN) and Kernelized Ridge Regression (KRR) for ZSL 
[18] has also been developed subsequently. Yu et al. [19] introduced a 
regularized cross-modality ranking (ReCMR) to capture the semantic 
information from heterogeneous sources by using intra/intermodals.

In ZSL, intuitive decision-making is more reliable based on costs 
and benefits [20]. Some remarkable classification results deployed 
plenty of new class by using fast prototype-based learning algorithms 
[21]-[24]. From a TL aspect, the distribution of labeled source domain 
data is generally different from that of unlabeled target domain data, so 
the labeled sample data is not necessarily useful [25]. Therefore, the 
selection of the training samples which are most beneficial to target 
domain classification is of utmost importance. The TL algorithms 
can be divided into those applied to single-source domains and those 
applied to multiple source domains. TL has been widely applied in 
text classification and clustering, emotional classification, image 
classification and collaborative filtering. Soudani and Barhoumi 
[26] extracted features from the convolutional part to improve the 
segmentation performance using two pre-trained architectures (VGG16 
and ResNet50).

Plantar pressure test and gait analysis is an internationally 
advanced technology based on the principle of biomechanics to detect 
the structure of the lower limbs of the human body, to assess and 
predict future foot diseases, and to provide scientific rehabilitation 
methods. The reaction force of the ground can be divided into static 
and dynamic foot pressure, which respectively represent the ground 
reaction force that the human body receives when standing statically 
and dynamically walking and running and jumping. Most of the foot 
diseases are related to normal pressure changes in the soles of the feet, 
and the two usually affect each other. Therefore, understanding the 
distribution of normal foot pressure is not only an effective tool for 
the diagnosis and evaluation of foot diseases but also is an important 
guider in restoring the normal or near-normal distribution of the foot 
pressure and restoring the function of the foot. 

The pressure distribution of the human foot can directly reflect the 
pressure value of the various parts of the foot when standing or running 
and can also indirectly reflect the structure and function of the foot and 
the control of the knee, hip, spine and even the entire body posture. 
Testing and analyzing the plantar pressure can obtain the pressure 
information of the normal and abnormal soles of the human body in 
various postures. Through the dynamic collection of the pressure data 
of the sole, the biomechanical properties of the plantar pressure can 

be determined for the early prediction, diagnosis and treatment of 
deformed foot, various types of foot diseases and diabetic foot ulcers; 
quantitative assessment of the degree of joint disease and postoperative 
efficacy in orthopedics and orthopedic surgery; Walking training 
and designing intelligent prosthetics and other fields. Therefore, a 
comprehensive understanding of the changes in plantar pressure 
facilitates the understanding of the biomechanics and function of 
normal feet, clinical medical diagnosis, disease degree determination, 
postoperative efficacy evaluation, rehabilitation research and the 
design of various types of orthopedic shoes and sports shoes, which are 
of great significance.

Deschamps et al. [27] proposed a high-resolution pixel-level 
analysis and 12 of the standardized foot-pressure barometers in 
the original experimental data-set (including 97 diabetic patients 
and 33 non-diabetic patients). The new cohort of diabetic patients 
determines the classification recognition rate and its sensitivity and 
specificity to assess the classification effect. Ramirez-Bautista et al. 
[28] used plantar pressure data to detect disease progression and the 
use of different electronic measurement systems for corresponding 
analysis suggests a hybrid algorithm for classifying plantar images. 
Sommerset et al. [29] combined other physiological signals to study 
the effects of plantar pressure on compressible atherosclerosis. Xia 
et al. [30] analyzed the background plantar pressure image (PPI) 
of high temporal and spatial resolution and experimental results 
perform higher effectiveness in terms of mean square error (MSE), 
exclusive OR (XOR) and mutual information (MI). Plantar pressure 
imaging is different from the general image. Pressure images are 
formed by discrete values of pressure. Colors are used to reflect 
different pressure and pressure values. These pressure values will be 
applied to the image intelligent classification method in this paper. 
Therefore, we screened the current popular deep learning method to 
process the image, thus transforming the data set of discrete pressure 
values into image processing problems. The research motivation of 
our work is to find an effective transfer learning method applied for 
such insufficient datasets, including lack of labelled datasets. The 
finding of the research is that we used the images forms of the sensor 
generated dataset for training and classification by using an improved 
convolutional neural network, and the significance of the network 
models performs high efficiency by comparing with VGG, ResNet, 
AlexNet and pre-trained CNN, etc., in the classification indices. 

The structure of the rest of the paper is: Section 2 introduces 
the basic models for plantar pressure image classification, and 
improved models are described in Section 3. Section 4 deploys the 
results and discussion, while Section 5 includes concluding remarks 
and future works. 

II. Methods

A. Finetune-Based Modeling
DL requires a large amount of data and computing resources 

and takes a lot of time to train the model, but it is difficult to meet 
these requirements in practice. The use of TL can effectively reduce 
the amount of data, calculations, and calculation time, and can be 
customized in the new business needs of the scenario. Transfer learning 
is not an algorithm but a machine learning idea, and its application to 
deep learning is fine-tune. By modifying the structure of the pre-trained 
network model (such as modifying the number of sample category 
outputs), selectively load the weight of the pre-trained network model 
(usually loading all the previous layers except the last fully connected 
layer, also called the bottleneck layer), and then use it retraining the 
model on the dataset is the basic step of fine-tuning. Fine-tuning can 
quickly train a model with relatively small amount of data achieving 
good results.
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Finetune-based models have been widely used in the field of 
DL. By obtaining a certain amount of tagging data, a basic network 
can be established for fine-tuning. This basic network is acquired 
through large-scale data sets with rich tags, such as ImageNet, or 
e-commerce data, known as universal data domains. Then, training 
is performed on specific data domains. While the parameters of the 
basic network will be fixed in the process, and the domain-specific 
network parameters will be trained, including to set the fixed layer 
and learning rate, etc. This model method can be relatively fast and 
does not significantly depend on the amount of data. Fig. 1 shows the 
framework of a finetune-based model for the plantar pressure image 
specified data-set. 

B. Siamese Neural Networks
Siamese Neural Networks (SNN) measure how similar the 

two inputs are. The twin neural network has two inputs (Input1 and 
Input2), and the two input feeds into two neural networks (network1 
and network2). These two neural networks map the inputs to the new 
space respectively, forming the input in the new space. Trough the 
calculation of Loss, the similarity of the two inputs is evaluated. This 
method restricts the input structure and automatically discovers features 
that can be generalized from new samples. Supervised metric learning 
based on twin networks is trained, and then one/few-shot learning is 
performed by reusing the features extracted from that network [31] – 
[34]. It is a two-way neural network. It combines samples of different 
classes into pairs for the network training. At the top level, it calculates 
loss through a distance cross-entropy. In forecasting, taking 5 way-
5 shot as an example, five samples are randomly selected from five 
classes, and the data with 25 mini-batch is input into the network. 
Finally, 25 values are obtained. The category with the highest score is 
taken as the forecasting result, as shown in Fig. 2.

The network structure is shown in Fig. 3, it is an eight-layer 
deep convolution twin network. The graph shows only one of the 
calculations. After the 4096-dimensional full-connection layers of the 
network, the component-wise L1 distance calculation is performed 
to generate a 4096-dimensional eigenvector, a probability of 0 to 1 
is obtained by sigmoidal activation as the result of whether two input 
samples are similar.

Fig. 2. Typical Siamese Neural Networks for plantar pressure image data-set 
training using distance layer and shared weights.

C. Matching Networks
Without changing the network model, matching networks can 

generate labels for unknown categories. Its main innovation lies in the 
process of modeling and training. For the innovation of the modeling 
process, a matching network based on memory and attention is 
proposed, which makes it possible to learn quickly. For the innovation 
of the training process, this work is based on a principle of traditional 
ML, that is training and testing are to be carried out under the same 
conditions [35]-[36]. It is proposed that the network should constantly 
look at the insufficient samples of each type during training, which 
will be consistent with the testing process. Specifically, it attempts to 
obtain a mapping from support set S (composed of K samples and tags) 
to classifier , which is a network of . It gives the label 
for each unknown test sample  based on the current S, and the label 
maximizes P. This model is described as follows,

 (1)

 (2)

where, a is an attention (i.e. the distribution of classes on S) being a 

Fig. 1.  Pre-trained convolutional neural network for shared weights finetune specified data-set using general image database- ImageNet.

Fig. 3.  Eight deep convolutional Siamese neural network using feature maps and max-pooling.
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linear combination of class attentions on S; for xi which is farthest from 
, its attentions under a certain measure is 0, and its value is the weight 

fusion of the corresponding labels corresponding to xi which is similar 
to . The attentions mentioned above are embedding the training 
sample xi and the test sample  separately; and then are inputed by 
software-max transforms, such as:

 (3)

where, c is the cosine distance. Two of the embedding models are 
shared, such as CNN. a is related to metric learning. For the sample x 
to be classified, it needs to be aligned with those labeled y, and other 
misalignments. Furthermore, the support set sample embedding model 
g can continue to be optimized, and the support set sample should be 
used to modify the embedding model f of the test sample. This can 
be solved in the following two aspects: i) embedding based on two-
way LSTM learning training set, so that embedding of each training 
sample is the function of other training samples; ii) embedding of test 
samples based on attention-LSTM, so that embedding of each test 
sample is the function of embedding of training set. This work calls 
Full-Conditional Embedding (FCE). Although the above classification 
is done on the whole sample of support set, the embedding used for 
cosine distance calculation is independent of each other. Therefore, this 
work changes the embedding of support set samples to g(xi, S), which is 
useful when xj is very close to xi. This model uses Bidirectional LSTM 
(BiLSTM), forward LSTM and the backward LSTM are combined into 
a BiLSTM. By doing so, we can effectively use past features (through 
forward state) and future features (through backward state) within a 
specified time frame. We use back-propagation through time (BPTT) 
to train a bidirectional LSTM network. Over time, the forward and 
backward transfers on the expanded network are similar to the forward 
and backward transfers in conventional networks, except that we need 
to expand the hidden state for all time steps. We also need special 
processing at the beginning and end of the data points. Supposed that S 
is a random sequence, and then codes each xi:

 (4)

 (5) 

 (6)

where, g'(xi) is originally only dependent on its own embedding, 
xi is for information exchange by BiLSTM. On the optimization of f, 
support set samples can be used to modify the embedding model of the 
test samples. This can be solved by a fixed-step LSTM and attention 
model of support set as: 

 (7)

 (8)

 (9)

 (10)

 (11)

where, f'(x) is only dependent on the characteristics of the test 

sample itself; as the input of LSTM (unchanged at each step), K is the 
step of LSTM, g(S) is the embedding of support set. As a result, the 
model ignores some samples in support set S. The embedding functions 
f and g optimize the feature space to improve the accuracy.

D. Insufficient Data-set Transfer Learning Modeling
For the convenience of introducing our zero-sample problem, here 

we first briefly introduce the recognition problem which is usually 
referred to in computer vision. We can summarize a simple pattern. 
First, we choose a suitable learning machine: convolutional neural 
network (CNN), prepare enough training data and corresponding 
labels for the learning machine, and use training data to train the 
learning machine. The main feature of the Convolutional neural 
network (CNN) is the use of convolutional layers. This is actually 
a simulation of the human visual neuron. A single neuron can only 
respond to certain specific image features, such as horizontal or 
vertical edges. It is very simple in itself, but these simple neurons 
form a layer. After the number of layers is enough, the system can 
obtain sufficient features. CNN is the most popular neural network 
model for image classification problems. An important idea behind 
CNN is the local understanding of the image. Its parameters will 
greatly reduce the time required for learning and reduce the amount 
of data required to train the model. The CNN has enough weights to 
see small patches of the image, rather than a fully connected network 
of weights from each pixel.

     In practical use, the test data is input into the trained learner, 
and the learner can output the corresponding label of the test data. It is 
worth mentioning here that in this general pattern, the learner can only 
predict the existing categories in the training set when testing.

1. Basic Modeling
The concept of zero-shot learning and the initial solution, called 

attribute migration between classes, are given. We need to create a 
table to record the values of attributes of each category. We can map 
these pictures to the classification attribute table by looking up the 
table. These attribute descriptions can be summarized in advance 
because it is difficult to collect many pictures of unknown categories, 
but it is feasible to summarize the corresponding attributes of each 
category only. The core idea of attribute transfer between classes is 
that although objects have different categories, they have the same 
attributes, extract the attributes corresponding to each category and use 
several learners to learn. In the process of testing, the attributes of test 
data are predicted, and then the predicted attributes are combined with 
corresponding categories to realize the category prediction of test data. 
A simple model of zero sample learning can be summarized as shown in 
Fig. 4. The image space and label space are the initial image space and 
label space respectively. In zero-sample learning, images are usually 
mapped into feature space by some methods, which is called feature 
embedding. The same label is mapped into a label embedding, learning 
the linear or non-linear relationship between feature embedding and 
label embedding. Predictive transformation during testing replaces 
previous direct learning from images space to label space.

Fig. 4.  Zero-shot learning using word vector and attributes.
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2. Discriminative Learning of Latent Feature
Compared with the inter-class attribute migration method, it 

mainly adds two ideas: designs a special network to find the main part 
of the target in the picture; and designs the attributes using manual 
annotation, and adds label embed to search potential attributes from the 
original picture. The model diagram is shown in Fig. 5.

Fig. 5. Discriminative learning of latent feature-based modeling.

3. Improved Framework for the Proposed Model
 Universal Zero Sample Learning (ZSL) requires accurate 

prediction of categories that have been seen (WS) and have not been 
seen (WU) (ZSL only requires prediction of categories that have not 
been seen). The main idea of this method is to train a WS first by 
using training data and training categories [37]–[39]. Then WS trains 
a graph convolution network using word vectors as input, and uses the 
graph convolution network to input the word vectors of test categories 
to get the WU. WS and WU together form a learner W to predict all 
categories, as shown in Fig. 6.

Fig. 6.  Semantic (word embeddings) classifiers for plantar pressure image 

III. Semantic Classification of Plantar Pressure Image 
Results 

A. Semantic Classification of Plantar Pressure Image Results
Training a good CNN model for image classification requires 

not only computational resources but also a long time, especially 
when the model is complex and the amount of data is large. Standard 
desktop computers typically need to be trained for a few days if they 
are immobile. In order to train our plantar pressure image classifier 
quickly, we can use the model parameters that others have trained, and 
train our model on this basis. This belongs to transfer learning. Images 
from the basic data-set obtained are shown in Fig. 7.

Fig. 7.  Basic data-set acquired from the pressure sensors.

B. Pre-trained CNN using AlexNet for Classifiers
The data are divided into a training data set and a validation data 

set. 70% of the images were used for training, 15% for testing and 
15% for verification. In the AlexNet system, SplitEachLabel divides 
image data stored into two new data storage areas, i.e. [imdsTrain, 
imdsValidation] = splitEachLabel (imds, 0.7,’randomized’); this small 
data set contains 55 training images and 20 validation images. AlexNet 
was trained on more than a million images, which can be grouped into 
1,000 object categories. Therefore, the model has learned a rich feature 
representation based on many images. Let Net=alexnet and by using 
“analyzeNetwork”, the network architecture and detailed information 
about the network layer can be presented visually and interactively. 
The steps are as follows:

Step 1: The first layer (image input layer) requires an input image 
of 277×277×3 in size, where 3 is the number of color channels.

Step 2: Replace the final layer. The last three layers of the pre-
training network net are configured for 1000 classes. These three layers 
must be fine-tuned for the new classification problem. All layers except 
the last three layers are extracted from the pre-training network. By 
replacing the last three layers with a full connection layer, soft Max 
layer and classification output layer, the layer is migrated to the new 
classification task. -The options for a new full connection layer are 
specified based on the new data. To make learning faster in the new 
layer than in the migrating layer, the full connection layer Weight 
Learn Rate Factor (WLRF) and Bias Learn Rate Factor (BLRF) values 
are increased.

Step 3 Training the network. The network requires the size of the 
input image to be 277×277×3, but the images stored in image data 
have different sizes. The size of training image can be automatically 
adjusted by using enhanced image data storage. The training image 
in both horizontal and vertical directions is up to 30 pixels. Data 
enhancement helps to prevent network over-fitting and memorizes 
the details of training images. Specify training options. For migration 
learning, the shallow features of the pre-training network (migration 
layer weight) need to be retained. This combination of learning rate 
settings only accelerates the learning speed in the new layer, but slows 



- 56 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 1

down the learning speed in other layers. When implementing transfer 
learning, the number of training rounds required is relatively small. A 
round of training is a complete training cycle for the whole training 
data set. Small batch sizes and validation data are specified. The 
software verifies the network every Validation Frequency iteration in 
the training process.

Step 4: Training the network consisting of migration layer and new 
layer.

Step 5: Calculate the classification accuracy for the verification 
sets.

Fig. 8 and Fig. 9 present the accuracy and loss of 25 layers of the 
CNN in AlexNet.

Fig. 8. Accuracy as a function of iteration in 25 layers of the CNN in AlexNete 
pressure sensors.

Fig. 9. Loss as a function of iteration in 25 layers of the CNN in AlexNet.

C. CNN based Transfer Modeling
The CNN model has two parts, the convolution layer in front and 

the full connection layer in the back. The function of the convolution 
layer is to extract image features while the function of the full 
connection layer is to classify features. Our method is to modify the full 
connection layer and retain the convolution layer on the inception-v3 
network model. The parameters of convolution layer are trained by 
others. The parameters of the full connection layer require to initialize 
and use our own data to train and learn, as shown in Fig. 10.

Fig. 10. Loss as a function of iteration in 25 layers of the CNN in AlexNet.

The front part of the red arrow in the inception-v3 model in Fig. 
10 is the convolution layer, and the back part is the full connection 
layer. We need to modify the full connection layer and change the final 
output of the model to 5. Because the TensorFlow framework is used 
here, we need to get the tensor BOTTLENECK_TENSOR_NAME 
(output value of the last convolution activation function, number 2048) 
and the tensor JPEG_DATA_TENSOR_NAME of the initial input 
data of the model. The purpose of acquiring these two tensors is to 
obtain the image trained data through JPEG_DATA_TENSOR_NAME 
tensor input model and BOTTLENECK_TENSOR_NAME tensor 
after the convolution layer. By inception-v3 model including pre-

trained parameters, the 2 tensors above mentioned are acquired. For 
the classification issue, the full connected layers need to be adjusted 
and here only one layer is added; the input data is BOTTLENECK_
TENSOR_NAME; finally, the cross-entropy loss function is defined. 
Because the training data set is relatively small, all pictures are input 
into the model through JPEG_DATA_TENSOR_NAME tensor, and 
then the values of BOTTLENECK_TENSOR_NAME tensor are 
obtained and saved to the hard disk. During model training, the value 
of the saved BOTTLENECK_TENSOR_NAME tensor is read from 
the hard disk as the input data of the full connection layer, the value 
of tensor of BOTTLENECK _TENSOR_NAME is acquired by the 
inputting images. The final accuracy of the test was found to be 93.5% 
over 4180 steps.

D. Discussion
As a result, the pre-trained CNN to assess the required level 

achieves performance improvements in plantar pressure image data-
set, and the classification was also incrementally fine-tuned. Detection 
and characterization of plantar pressure image data-set by using deep 
learning with indices of Training-Testing Data Splitting (TTDS), 
Class Type (CT), Area Under the Curve (AUC), Average Precision 
Score (APS), recall, precision, f1 score (an index used to measure the 
accuracy of binary classification model in statistics -it considers both 
the accuracy and recall of the classification model), N, UN, Ave are 
compared and summarized in Table I [37],[40]-[42]. Table II shows the 
details of the public test database of SUN, CUB, AWA1, WAW2, and 
aPY [37]. Scaling and shifting (SS) is the known partitioning method 
while plain slot (PS) is the unknown partitioning method, tr is precision 
on known classification, ts is precision on unknown classification. The 
training and evaluation time for SS and PS are shown in Table III. The 
performance of the proposed method for public data-set of SUN CUB 
AWA1, AWA2, aPY [25] are shown in Table IV. By using inception-v3, 
the proposed model was also compared by using a public test database 
which H is a comprehensive index of “ts” and “tr”, as shown in Table V.  
Therefore, the proposed CNNTM has better performance on primary 
databases on known classification.

IV. Conclusion

Large-scale methods are currently used to process most of the 
labeled data, but existing problems include lack of knowledge and 
many training samples. In practice, it is difficult to accumulate data 
for most categories and large-scale methods are not fully applicable. 
Therefore, learning many data-sets for a certain category is not 
feasible. While in each situation, a new category can be learned quickly 
with only a small number of samples. There are two main solutions 
under consideration at present: the first is that an object has not been 
seen before which is named as zero sample learning; and the second 
is to learn knowledge from existing tasks and apply it to future model 
training, which can be considered as a problem of Transfer Learning 
(TL). The method of the transfer-based learning refers to the use of 
these auxiliary data sets for transfer learning when there are other data 
sources. The idea is to learn a generalized representation from the data 
which can be directly used in the target data and small sample category 
learning process. Sample-based transfer learning is an attempt to give 
new weight to each sample in the source data so that it can better 
serve the new learning task. Samples that are more like the target data 
are selected from the source data to participate in the training, while 
samples that are not like the target data are excluded. The insufficient 
data-set learning methods are introduced, and an improved framework 
of transfer learning model is proposed and compared by other typical 
methods. The plantar pressure image data-set semantical classification 
issue performs high effectiveness with indices that were defined by 
current researchers.
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TABLE I. Classifiers of VGG, ResNet, AlexNet and Pre-trained CNN for Plantar Pressure Image Data-set

Classifier
Training-

Testing Data 
Splitting

Class Type Precision Recall F1 Score Accuracy AUC APS

VGG16+LR

90-10%

N 0.910 0.912 0.920

92.21 93.12 90.50UN 0.910 0.914 0.920

Avg/Total 0.910 0.908 0.920

80-20%

N 0.915 0.914 0.919

91.12 92.10 90.72UN 0.915 0.918 0.918

Avg/Total 0.915 0.917 0.918

70-30%

N 0.915 0.912 0.907

91.34 91.21 93.12M 0.912 0.909 0.907

Avg/Total 0.905 0.908 0.911

VGG19+LR

90-10%

N 0.910 0.909 0.911

90.52 92.50 92.64UN 0.905 0.909 0.911

Avg/Total 0.910 0.909 0.912

80-20%

N 0.875 0.912 0.901

91.28 91.34 91.12UN 0.872 0.909 0.902

Avg/Total 0.875 0.904 0.912

70-30%

N 0.870 0.880 0.899

92.10 86.12 90.45UN 0.912 0.889 0.892

Avg/Total 0.910 0.878 0.878

ResNet50+LR

90-10%

N 0.835 0.812 0.832

80.32 86.22 91.25UN 0.890 0.831 0.823

Avg/Total 0.850 0.835 0.825

80-20%

N 0.835 0.848 0.845

80.15 83.24 86.25UN 0.869 0.879 0.889

Avg/Total 0.889 0.877 0.887

70-30%

N 0.825 0.808 0.832

80.25 81.25 86.75UN 0.824 0.811 0.821

Avg/Total 0.829 0.812 0.821

Pre CNN25+AlexNet

90-10%

N 0.908 0.870 0.899

92.32 93.07 92.65UN 0.908 0.914 0.883

Avg/Total 0.909 0.921 0.883

80-20%

N 0.912 0.919 0.876

92.66 90.07 92.12UN 0.908 0.909 0.912

Avg/Total 0.909 0.908 0.912

70-30%

N 0.914 0.911 0.921

92.65 93.01 93.11UN 0.889 0.900 0.919

Avg/Total 0.917 0.911 0.919

inception-v3-
CNN+TM (+)

90-10%

N 0.925 0.938 0.943

91.75 92.66 94.21UN 0.929 0.940 0.942

Avg/Total 0.930 0.935 0.940

80-20%

N 0.927 0.937 0.922

92.75 91.25 94.36UN 0.921 0.931 0.921

Avg/Total 0.919 0.923 0.921

70-30%

N 0.915 0.912 0.922

93.50 94.22 95.55UN 0.912 0.913 0.910

Avg/Total 0.907 0.907 0.910

+ proposed method, Normal(N) and Unnormal (UN)
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TABLE II. Number of Classes (Y(ts): test classes, Y(tr): training classes)

Data-set Size Detail Attributes Y Y(tr) Y(ts)

SUN M F 102 717 580+65 72

CUB M F 312 200 100+50 50

AWA1 M C 85 50 27+13 10

AWA2 M C 85 50 27+13 10

aPY S C 64 32 15+5 12

TABLE III. Number of Images, Training Time and Evaluation Time of TR and TS 

At Training Time At Evaluation Time

SS PS SS PS

Data-set Total Y(tr) Y(ts) Y(tr) Y(ts) Y(tr) Y(ts) Y(tr) Y(ts)

SUN [43] 14340 12900 0 10320 0 0 1440 2580 1440

CUB [44] 11788 8855 0 7057 0 0 2933 1764 2967

AWA1 [45] 30475 24295 0 19832 0 0 6180 4958 5685

AWA2 [45] 37322 30337 0 23527 0 0 6985 5882 7913

aPY [46] 15339 12695 0 5932 0 0 2644 1483 7924

TABLE IV. Classification Precision on Public Data-Set Comparing with Current Methods

SUN CUB AWA1 AWA2 aPY

Methods SS PS SS PS SS PS SS PS SS PS

DAP [45] 38.9 39.9 37.5 40.0 57.1 44.1 58.7 46.1 35.2 33.8

IAP [45] 17.4 19.4 27.1 24.0 48.1 35.9 46.9 35.9 22.4 36.6

CONSE [47] 44.2 38.8 36.7 34.3 63.6 45.6 67.9 44.5 25.9 36.6

CMT [48] 41.9 39.9 37.3 34.6 58.9 39.5 66.3 37.9 26.9 28.0

SSE [49] 54.5 51.5 43.7 43.9 68.8 60.1 67.5 61.0 31.1 34.0

LATEM [50] 56.9 55.3 49.4 49.3 74.8 55.1 68.7 55.8 34.5 35.2

ALE [50] 59.1 58.1 53.2 54.9 78.6 59.9 80.3 62.5 30.9 39.7

DEVISE [47] 57.5 56.5 53.2 52.0 72.9 54.2 68.6 59.7 35.4 39.8

SJE [51] 57.1 53.7 55.3 53.9 76.7 65.6 69.5 61.9 32.0 32.9

ESZSL [52] 57.3 54.5 55.1 53.9 74.7 58.2 75.6 58.6 34.4 38.3

SYNC [53] 59.1 56.3 54.1 55.6 72.2 54.0 71.2 46.6 39.7 23.9

SAE [54] 42.4 40.3 33.4 33.3 80.6 53.0 80.7 54.1 8.3 8.3

GFZSL [55] 62.9 60.6 53.0 49.3 80.5 68.3 79.3 63.8 51.3 38.4

CNNTM(+) 63.9 59.6 55.12 49.9 79.2 70.7 80.5 67.2 52.4 39.9
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Current TL algorithms mainly want to improve the performance 
of the same probability y in the feature space at different times. In 
the plantar pressure image data-set, the morphological changes of 
the anterolateral prefrontal cortex and the medial prefrontal cortex, 
which belong to the visceral motor network system are found to be 
effective by plantar pressure structural imaging studies. The improved 
insufficient data-set learning method proposed in this work can solve 
the problem of insufficient training and accomplish excellent automatic 
recognition. While TL is mainly applied to small and volatile data sets 
(such as sensor data, text categorization, image categorization, etc.) in 
future research it is needed to consider how to use the TL method in a 
wider range of data scenarios.
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