
Amyloid peptide mixtures: self-assembly, 
hydrogelation, nematic ordering and 
catalysts in aldol reactions 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Pelin, J., Gerbelli, B., Edwards-Gayle, C. J. C., Aguilar, A., 
Castelletto, V., Hamley, I. W. and Alves, W. A. (2020) Amyloid 
peptide mixtures: self-assembly, hydrogelation, nematic 
ordering and catalysts in aldol reactions. Langmuir, 36 (11). 
pp. 2767-2774. ISSN 1520-5827 doi: 
10.1021/acs.langmuir.0c00198 Available at 
https://centaur.reading.ac.uk/89355/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1021/acs.langmuir.0c00198 

Publisher: American Chemical Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic
Ordering, and Catalysts in Aldol Reactions
Juliane N. B. D. Pelin, Barbara B. Gerbelli, Charlotte J. C. Edwards-Gayle, Andrea M. Aguilar,
Valeria Castelletto, Ian W. Hamley,* and Wendel A. Alves*

Cite This: https://dx.doi.org/10.1021/acs.langmuir.0c00198 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Morphological, spectroscopic, and scattering studies
of the self-assembly and aggregation of mixtures of [RF]4 and
P[RF]4 peptides (where R = arginine; F = phenylalanine; P =
proline), in solution and as hydrogels, were performed to obtain
information about polymorphism. CD data confirmed a β-sheet
secondary structure in aqueous solution, and TEM images revealed
nanofibers with diameters of ∼10 nm and micrometer lengths.
SAXS curves were fitted using a mass fractal-component and a long
cylinder shell form factor for the liquid samples, and only a long
cylinder shell form factor for the gels. Increasing the P[RF]4
content in the systems leads to a reduction in cylinder radius and
core scattering density, suggesting an increase in packing of the peptide molecules; however, the opposite effect is observed for the
gels, where the scattering density is higher in the shell for the systems containing higher P[RF]4 content. These compounds show
potential as catalysts in the asymmetric aldol reactions, with cyclohexanone and p-nitrobenzaldehyde in aqueous media. A moderate
conversion (36.9%) and a good stereoselectivity (69:31) were observed for the system containing only [RF]4. With increasing
P[RF]4 content, a considerable decrease of the conversion was observed, suggesting differences in the self-assembly and packing
factor. Rheological measurements were performed to determine the shear moduli for the soft gels.

■ INTRODUCTION

Over the last years, self-assembled amphiphilic oligopeptides
systems have attracted strong interest due to their potential for
bionanotechnological applications for new materials and in the
development of diagnostic and therapeutic strategies, where
protein and peptide aggregation is associated with disease.1−4

Peptide amphiphiles (PAs) are structures based on hydro-
phobic blocks such as lipid chains, and bioactive peptides,
which correspond to the hydrophilic part.5,6 Among several
promising uses, we can highlight the development of sensing
devices,7 molecular carriers,8,9 and bioelectronics.10 Many
advantages, especially the fast synthesis, functionalization
capabilities, and relatively low cost, confirm the potential of
these systems.2,11−16

One of the significant advantages of peptide amphiphiles as
models for the aggregation process studies is their capability of
self-assembly into distinct polymorphs.11,12,17 Thus, these
systems are appropriate architectures to create biomimetic
materials and establish interfaces with biological systems. The
combination of amino acids with different molecular character-
istics leads to amphiphilic compounds which can produce
polymorphs depending on concentration and pH. Sequences
based on L-phenylalanine (F), L-arginine (R), and L-proline (P)
combine π-stacking interactions for the aromatic ring in the
phenylalanine side chain,18,19 electrostatic interactions of the

positively charged arginine side chain,20 and hydrophobic
properties of the compact proline residue, which is a motif
widely used in organocatalysis.21 Our group has observed that
the concentration of these arginine/phenylalanine-based
oligopeptides can influence the shape and morphology of the
particles formed.17 Also, we saw that the polymorphism is
fundamental for understanding the packing of these com-
pounds, in which the presence of proline promotes more rigid
and compact systems.22

Considering the amyloid oligopeptides [RF]4 and P[RF]4, in
our previous work,22 we found the same critical aggregation
concentration (cac) in aqueous media, at 25 °C, for both
systems (cac = 0.35 mmol·L−1) by steady-state fluorescence
spectroscopy, indicating that addition of the hydrophobic
proline residue does not affect the aggregation propensity. By
electron microscopy and small-angle scattering, we observed
that, depending on the peptide concentrations, spherical or
elongated aggregates are formed, which have radius dimen-
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sions of 9.5 and 7.5 nm for [RF]4 and P[RF]4, respectively.
These peptides were tested as catalysts in aldol reactions
involving p-nitrobenzaldehyde and cyclohexanone. Contrary to
expectation, better conversion and stereoselectivity were
observed for the systems containing [RF]4. This effect was
attributed to the higher packing factor of P[RF]4 self-assembly,
which hindered reagent attack on the substrate surface,
enhancing the enamine transition state.
To examine what happens in these systems if we mix both

arginine/phenylalanine peptides mainly in terms of the aldol
reaction efficiency, here we investigated the self-assembly and
aggregation state for mixtures of the amphiphilic amyloid
peptides [RF]4 and P[RF]4, using spectroscopy, microscopy,
and scattering techniques. The combination of these
amphiphilic oligopeptides has great potential to produce
novel biomaterials and enhance understanding of their self-
assembly and polymorphism. It may be possible to create
systems with different functional and structural properties
when compared to separate peptides.23

■ EXPERIMENTAL METHODS
Synthesis of Amyloid Peptides. [RF]4 and P[RF]4 sequences

were synthesized using a solid-phase Fmoc strategy.24 All chemicals
were of analytical or HPLC grades. The protected amino acids,
(Fmoc-F-OH), (Fmoc-R(Pbf)-OH), and (Fmoc-P-OH), 1,3-diiso-
propylcarbodiimide/N-hydroxybenzotriazole (DIC/HOBt), trifluoro-
acetic acid (TFA), anisole, thioanisole, dichloromethane (DCM),
dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP), and
1,2-ethanedithiol (EDT) were purchased from Sigma-Aldrich (St.
Louis, MO). Wang resin with 100−200 mesh size was purchased from
Advanced Chemtech (Louisville, KY), with a substitution degree of
0.55 mmol·g−1 and with the first amino acid coupled to the polymeric
support. The protecting group was removed by reaction with 20% of
4-methylpiperidine in dimethylformamide for 30 min. Coupling was
carried out in 5.0 fold excess of DIC/HOBt in DCM/DMF (1:1, v:v).
The reactions were monitored using the Kaiser ninhydrin test.25 The
dry-protected resin was exposed to 90% trifluoroacetic acid, 5.0%
thioanisole, 3.0% 1,2-ethanedithiol, and 2.0% anisole to remove all the
protecting groups. After this, the material was lyophilized and
analyzed on a liquid-chromatography electrospray ionization mass
spectrometer, LC-ESI-MS, yielding [RF]4 (MM + H) = 1232.6
(calculated = 1231.6) and P[RF]4 (MM + H) = 1328.7 (calculated =
1327.7).22 The molecular structures are showed in Figure 1.
Mixing Solutions Containing the Peptides P[RF]4 and [RF]4.

Solutions containing 0.5 wt % of each peptide were prepared and from
these solutions, five systems, with different proportions of P[RF]4:
[RF]4 (v/v) were made at native pH ∼ 4, i.e. 0:1 (1), 3:7 (2); 5:5 (3),
7:3 (4), and 1:0 (5). All solutions were prepared with purified water
from a Thermo Scientific Barnstead NANOpure system, with a
resistivity of 18.2 mΩ·cm−1 (at room temperature) and TOC below
10 ppb.
P[RF]4 and [RF]4 Hydrogels. Hydrogels of systems 1, 3, and 5

were prepared using 3 wt % of each peptide. The gelation of 3 was
observed after 10 min, while heating (60 °C, 5 min) followed by
cooling (−8 °C, 5 min) was performed for 1 and 5.
Spectroscopy Methods. Fourier transform infrared (FTIR)

assays were recorded in the amide band regions using a PerkinElmer
Spectrum 100 FTIR spectrometer. Aliquots (100 μL) of the sample
(0.5 wt % peptide solution in D2O) were sandwiched between two
CaF2 plate windows using a plastic spacer of 0.006 mm. The spectra
were scanned 16 times in absorbance mode over the range 1800−
1300 cm−1, with 4 cm−1 resolution and 1 cm−1 data interval. A D2O
spectrum was used as background and subtracted from the samples’
experimental data.
Circular dichroism (CD) measurements were performed using a

Chirascan spectropolarimeter (Applied Photophysics, UK). Solutions
containing 0.5 wt % of peptide were scanned at 25 °C in a quartz

cuvette with a thickness of 0.01 mm. The spectra were recorded with
absorbance A < 2 at any measured point, considering 0.5 nm step, 1
nm bandwidth, and 1 s collection time per step. A water background
CD signal was used to subtract the baseline from the experimental
data.

TEM Imaging. Transmission electron microscopy (TEM) was
performed on a JEOL 2100Plus instrument operating at 200 kV.
Copper grids (Agar Scientific, UK) 5.0 mm in diameter and 10 μm
thick, coated with carbon film, were used. The samples were stained
with 1 wt % uranyl acetate (Sigma-Aldrich, UK) and left to dry at
room temperature.

Small-Angle X-ray Scattering and X-ray Diffraction. Small-
angle X-ray scattering (SAXS) was performed on beamline B21,
Diamond Light Source, Didcot, UK. An EMBL BioSAXS robot
containing a 96-well plate was used, where 100 μL of the 0.5 wt %
peptide solutions was injected via an automated sample exchanger
into a quartz capillary, with 1.8 mm internal diameter, in a vacuum
chamber. For the hydrogels, 50 μL of each sample was placed in a
custom-designed holder and covered with Kapton. The SAXS
beamline was operated with a fixed camera length of 3.9 m and X-
ray energy of 12.4 keV, respectively, and the SAXS pattern was
recorded using a PILATUS 2 M detector, with 28 s per frame. Data
processing was performed using ScÅtter, and fitting was performed
using SASfit.26

Fiber diffraction patterns were recorded using an Oxford
Diffraction Gemini Ultra diffractometer with Cu Kα radiation. For
this, oriented stalks were made by suspending droplets of a 5 wt %
peptide solution between the ends of two wax-coated capillaries,
letting them dry at room temperature. The data were collected by
mounting the stalks vertically in the X-ray diffractometer and
collecting diffraction patterns with a Rigaku HyPix-6000HE Hybrid
Photon Counting detector, with a sample-to-detector distance of 140
mm, varying the beam angles.

Aldol Reactions. The catalytic efficiency of the peptide mixtures
was monitored by the direct aldol reaction using cyclohexanone and
p-nitrobenzaldehyde. The reactions were performed using different
catalyst amounts of 5, 10, and 20 mol %. Considering the 5 mol %
catalyst solutions, 20.2 μL of cyclohexanone (0.19 mmol), 1.0 mg of
catalyst (0.81 μmol), 2.45 mg of p-nitrobenzaldehyde (1.6 μmol), and
40.4 μL of water were used. The solutions were stirred at room
temperature for 3 days, and the mixtures were extracted with ethyl

Figure 1. [RF]4 and P[RF]4 molecular structures.
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acetate four times via centrifugation at 4000 rpm for 5 min. The
organic phase was then removed on a rotary evaporator, and the
samples were solubilized using deuterated chloroform. NMR
measurements using a (1H) Bruker Ultrashield Plus 400 instrument
were performed at 400 MHz. The yield and diastereomer anti:syn
ratio were calculated using the NMR spectra obtained, for which
tetramethylsilane (TMS) was used as a reference.
Rheology. Dynamic shear rheometry was performed using a TA

Instruments AR-2000 rheometer (TA Instruments). The shear
moduli of hydrogels 1, 3, and 5 were measured using a cone-and-
plate geometry (cone radius = 20 cm; cone angle = 1°). The linear
regime was first determined via stress sweep experiments in the range
of 0.1−500 Pa at a constant angular frequency of 6.28 rad/s and 20
°C. Oscillatory frequency sweep experiments were then performed at
constant stress within the linear regime and angular frequencies from
0.1 to 200 rad/s at 20 °C.

■ RESULTS

Characterization of the Mixtures of [RF]4 and P[RF]4.
Following our previous study comparing [RF]4 and P[RF]4,

22

we monitored the self-assembly of the mixtures of these
peptides in aqueous solution. Considering the critical
aggregation concentration (cac) of ∼0.35 mmol L−1 for both
[RF]4 and P[RF]4 at 25 °C,22 solutions above the cac (0.5 wt
%) of each peptide were prepared as stock solutions, and then
the v/v mixtures of peptides at native pH (∼6) were
characterized.
FTIR and CD measurements were performed to analyze

changes in the peptide secondary structure. The FTIR spectra
are shown in Figure 2a. Four bands were observed for both
samples. More details of the peaks are provided in Table S1.
All the solutions have a sharp peak at approximately 1672 cm−1

(peak 1), attributed to the vibrations from TFA counterions

bound to peptides molecules.27 Peak 2 at 1638−1646 cm−1 is
less pronounced but is correlated with unordered structures
present in the system.22 The vibrational bands of the arginine
side chain22,28,29 lead to peaks 3 and 4 (1607 and 1585 cm−1,
respectively). Also, peak 3 may be assigned to a contribution
from β-sheet.17

CD spectra presented in Figure 2b show two positive bands,
one located at ∼195 nm, correlated with antiparallel β-sheet
conformation,22 and the other at 219 nm, characteristic of
phenylalanine n−π* electronic transitions.30,31 Looking at the
CD absorption spectra in this region (Figure S1), a
hypsochromic effect and an enhancement of the absorption
band intensity can be observed as the amount of proline-
peptide increases in the mixtures. This effect can be correlated
to a more hydrophobic environment with a higher P[RF]4
content, due to the presence of the imino groups present in the
proline side chain. The decrease in the intensity of the CD
bands was attributed to the interacting ordered π-conjugated
systems, a common feature of the β-sheet structure, with a
contribution also from a β-turn-like conformation. Conse-
quently, a slight enhancement of the CD peak width was
observed for the systems containing more of the proline-
containing peptide, as can be seen in Figure 2b.
Fiber X-ray diffraction was performed to obtain structural

information and the influence of proline on the secondary
structure. The fiber XRD patterns were reduced to one-
dimensional intensity profiles, which show six peaks (Figure 3).
Table 1 summarizes the associated d-spacings.

The spacing d ∼ 4.7 Å (peak 5) can be associated with the
separation between adjacent peptide backbones organized into
β-strands,32 and the d ∼ 9.4 Å peak corresponds to the
antiparallel organization of the chains, which is characterized

Figure 2. Spectroscopic characterization of P[RF]4:[RF]4 mixtures
0:1 (1), 3:7 (2); 5:5 (3), 7:3 (4), and 1:0 (5), above the cac in water,
using (a) FTIR and (b) CD.

Figure 3. XRD results obtained of P[RF]4:[RF]4 mixtures 0:1 (1), 3:7
(2); 5:5 (3), 7:3 (4), and 1:0 (5), at native pH.

Table 1. Summary of theXRD Results of P[RF]4:[RF]4
Mixtures 0:1 (1), 3:7 (2); 5:5 (3), 7:3 (4), and 1:0 (5), at
Native pH

d (Å) ± 0.1 Å

sample 1 2 3 4 5 6

1 28.6 13.7 9.2 5.5 4.6 3.8
2 28.6 13.7 9.2 5.6 4.7 4.0
3 27.3 13.7 9.2 5.7 4.7 4.0
4 28.6 13.9 9.2 5.5 4.7 4.0
5 28.6 13.7 9.1 5.5 4.7 4.0
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by twice the β-strand separation.33,34 The peaks at approx-
imately 28.6 Å (1), 13.7 Å (2), and 9.2 Å (3) suggest the
presence of lamellar ordering.20,35 The peaks 5.5 Å (4) and 4.0
Å (6) correspond to a fraction of peptide in unordered
conformation.36 Thus, the peaks can be indexed to an
orthorhombic unit cell, with a = 28.6 Å, b ∼ 9.2 Å, and c ∼
9.2 Å.35 The spacings in Table 1 are the same for all systems
within estimated uncertainties. A representative illustration of
the packing of the peptide chain in the unit cell is shown in
Figure 4.

TEM was used to image self-assembled structures above cac
(at native pH). This revealed the presence of long fibers with
lengths on the micrometer scale. Figure 5a−e shows the

influence on the orientation and size of the structures with
changes in the composition of the mixtures. The system
containing [RF]4 (1) was characterized by thin fibers, with
diameters <10 nm, and the coexistence of globular fractal
aggregates. Adding P[RF]4, a predominance of fibers with
approximately 10 nm diameter was observed. For the mixtures,
the TEM images reveal for 2 the presence of short fibers, for 3
the coexistence of short and long fibers, and for 4 the
appearance of long fibers, similar to the system containing only
P[RF]4 (5).
SAXS measurements were performed to obtain more detail

about the nanoscale shape and dimensions in the mixtures. A
first analysis of the curves, considering the intensity decay in
the Guinier regime, provides information about the form
factor, as can be seen in Figure S2. Peptide P[RF]4 and the
mixtures show I ∼ q−n with n = 1.7 and 1.6 to 1.8, respectively,
which suggest a surface mass fractal form factor,26 while the
[RF]4 samples have n = 2.5, characteristic of a volumetric mass
fractal.26 Structure factor effects at low q were excluded (as
indicated by the green line regions in Figure 5f).37

The SAXS data were fitted using the software SASFit.26 The
red curves in Figure 2f represent adjusted form factors. System
1 was modeled by applying a mass fractal form factor. The
spectroscopy and microscopy results discussed above indicate
that the other systems (2−5) are characterized by an extended
β-sheet structure range. Consequently, a long cylindrical shell
model (with fixed cylinder length, 1000 nm) was used as a
second form factor, just adjusting the weighting of the two
contributions. Also, for both form factor models, a Gaussian
size distribution (σR) of the radius was included. Table 2
summarizes the fitted parameters.
The parameters in Table 2 indicate a gradual increase of the

fractal cluster radius (R’) with increasing P[RF]4 content in the
systems, from 0.65 nm for sample 1 to 1.0 nm for 5. However,
a decrease of fractal dimension (D) was observed as the
P[RF]4 content increases, suggesting the presence of more
compact clusters. Table 2 also shows a decrease in the cylinder
radius (R) and the shell thickness of the cylinders (ΔR) with
increasing P[RF]4 content. This effect suggests that the proline
helps molecular packing, leading to more compact structures.
The model fitting also reveals variations in the (electron)
scattering length density of the core (ηcore) and the shell
(ηshell). A considerable increase of ηcore was observed in the
samples with more P[RF]4, which also has a lower radius.
These results confirm the higher packing of the peptide
molecules in the core of the fibers.
On the basis of the observed fiber XRD modeling (Figure 3)

and the observed fibril structures from cryo-TEM and SAXS,
we propose that the β-sheets are arranged in a typical amyloid
fashion with the sheets parallel to the fiber axis and the β-

Figure 4. Schematic representation of the orthorhombic unit cell,
considering the dimensions obtained by fiber XRD for [RF]4.

Figure 5. TEM images of 0.5 wt % peptide aqueous solutions. (a) 1,
(b) 2, (c) 3, (d) 4, and (e) 5, at native pH. (f) SAXS data (gray
points) of peptide solutions above the cac and at native pH. Model
fits (red line) using the model described in the text and fitting
excluding data (green line), characteristic of the structure factor.

Table 2. Summary of the Model Parameters Obtained from the Fitting Procedure of SAXS Dataa

mass fractal Gaussian long cylindrical shell fit quality

sample N1 R′ (nm) σR (nm) D (nm) N2 R (nm) σR (nm) ΔR (nm) ηcore ηshell Rv χ2

1 0.95 0.65 0.002 2.0 0.05 21.4 0.33 1.55 4.6 × 10−9 2.2 × 10−9 0.19 0.17
2 0.30 0.91 0.04 2.6 0.70 9.4 1.85 0.42 8.0 × 10−9 4.0 × 10−8 0.16 0.18
3 0.10 0.98 0.05 2.2 0.90 4.2 0.90 0.75 3.4 × 10−8 1.8 × 10−7 0.22 0.57
4 0.20 1.03 0.005 1.6 0.80 3.0 1.00 0.90 6.5 × 10−8 2.5 × 10−7 0.27 1.81
5 0.10 1.03 0.005 1.5 0.90 2.8 1.00 0.91 7.0 × 10−8 2.7 × 10−7 0.29 2.62

aThe scattering length density of the solvent (ηsolv) was fixed at 9.7 × 10−9. N1 and N2 represent the fractional contribution of the two form factor
components to the total intensity. Fit quality is assessed via the R-factor (Rv) and the reduced chi square (χ2) value.
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strands perpendicular to it. The dispersity in the cylinder
radius points to differences in the number of β-sheet stacks.
In our previous work, we found that these peptides can be

used as organocatalysts in direct aldol reactions, involving
cyclohexanone and p-nitrobenzaldehyde in water. In this case,
a dependence on the reaction efficiency on peptide packing
was observed.22 We saw lower conversion and stereoselectivity
for P[RF]4 systems due to the formation of more elongated
structures, in which the neighboring aromatic rings may be
tightly packed, hindering the reactant’s interactions with the
active sites.38−42 Here, the efficiency of the P[RF]4:[RF]4
mixtures as catalysts was monitored considering the direct
aldol reactions using cyclohexanone and p-nitrobenzaldehyde,
examining whether it is possible to enhance the conversion in
the combinations.
The reactions were performed at room temperature for 3

days, varying the catalyst amount (5 mol % and 20 mol %) in
aqueous media and at native pH. The results are summarized
in Table 3. The NMR results can be seen in Figure S3, and the

HPLC results for the racemic aldol product are shown in
Figure S4. For the lowest catalyst concentration, homogeneous
solutions were observed, while with the increase of catalyst
concentration to 20 mol %, supramolecular gels were formed
during the reaction. Considering the results presented in Table
3, the best response is represented by entry 1, which used 5
mol % of [RF]4 peptides which led to moderate conversion
(36.9%) and a good stereoselectivity (69:31), with 58%
enantiomeric excess (ee). As the amount of P[RF]4 increases, a
considerable decrease of the conversion was observed,
especially for entry 4 compared to the other 5 mol % catalyzed
reactions. Entry 5, containing only P[RF]4 as catalyst,
presented a low conversion, but better than the system
characterized by entry 4 (70% P[RF]4 and 30% [RF]4), and
the lowest ee. This effect can be correlated with the packing
factor, because more compact systems can hinder the attack of
the reagents onto the catalytic surface, increasing the energetic

barrier to the enamine transition state formation and
consequently decreasing the efficiency of the aldol reactions.
As observed, for example by Diáz and co-workers,43 the
absence of the catalyst prevents conversion for the monitored
aldol reaction. Pioneering studies by Hajos and Parrish44 and
by Eder, Sauer, and Wiechert45 described the first organo-
catalyzed intramolecular aldol reaction by L-proline, resulting
in high yield and excellent enantioselectivity,45,46 proving the
importance of a proline-based catalyst. The reactions mediated
by proline feature high enantioselectivity, due to its ability to
promote the formation of highly organized transition states,
and its high nucleophilic reactivity with carbonyl compounds
compared with primary amino acids.47,48

The same effect was observed considering the 20 mol %
catalyst reactions, but in this case, the difference between the
reaction conversions and enantiomeric excess was lower,
except for Entry 10, which presents an increase of three
times the e.e. in comparison with the Entry 5. Also, the peptide
mixtures showed similar conversion and high diastereoselec-
tivity; Entry 9 corresponds to the best conditions with good
conversion (43.9%) and stereoselectivity (76:24).
Due to the presence of self-assembled extended fibrils, we

reasoned that at high concentrations, hydrogelation might be
observed.49,50 Even without pH adjustment, hydrogel for-
mation was observed at 3 wt % of each peptide, soft gels being
obtained, as can be seen in Figure 6a. To get information about

the viscoelastic properties of these materials, rheology
experiments were performed. Initially, the stress (σ) was
varied at a constant frequency (ω = 6.28 rad s−1) to determine
the linear viscoelastic regime. Then frequency sweeps were
performed at a stress value in the linear regime. Figure S5
shows the linear regime extends up to σ = 5 to 10 Pa,
depending on the mixture composition.

Table 3. Comparative Results of the Aldol Reactions
between p-Nitrobenzaldehyde and Cyclohexanone
Catalyzed by the Peptide Mixtures in the Water at Native
pHa

entryb sample
catalyst
(mol %)

H2O
c

(equiv)
convd

(%) anti:syne
ee
(%)

1 (s) 1 5 2 36.9 69:31 58
2 (s) 2 5 2 28.7 70:30 51
3 (s) 3 5 2 18.1 71:29 58
4 (s) 4 5 2 7.0 64:36 38
5 (s) 5 5 2 12.7 70:30 6.1
6 (g) 1 20 2 57.4 57:43 50
7 (g) 2 20 2 42.4 70:30 37
8 (g) 3 20 2 45.0 72:28 43
9 (g) 4 20 2 43.9 76:24 13
10 (g) 5 20 2 53.9 60:40 18
aThe reactions were promoted at room temperature under vigorous
stirring for 3 days, using 12 equiv of cyclohexanone, 1 equiv of p-
nitrobenzaldehyde, 5−20 mol % of catalyst, 2 × volume of
cyclohexanone for water. b(s) indicates molecules in solution; (g)
indicates supramolecular gels. cExcess water relative to cyclohexanone
(v/v). dConversion and diastereoselectivity were determined by 1H
NMR analysis of the crude product. eDiastereomeric anti:syn ratios
were determined by 1H NMR analysis of the crude product.
fDetermined by chiral HPLC analysis of the anti-isomer.

Figure 6. (a) Images of the hydrogels formed by 3 wt% peptide
samples, as indicated. (b) Storage and shear modulus obtained by
rheology experiments in frequency sweep mode, using σ = 3 Pa for 1,
1 Pa for 3, and 5 Pa for 5.

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c00198
Langmuir XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.0c00198/suppl_file/la0c00198_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.0c00198/suppl_file/la0c00198_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.0c00198/suppl_file/la0c00198_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00198?fig=fig6&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c00198?ref=pdf


Frequency sweep measurements were then performed.
Figure 6b shows a low-frequency Newtonian plateau in the
moduli with G′ > G″, for the systems 3 and 5, consistent with a
well-defined gel-like response.51−53 For 1, G′ and G″ are
similar in magnitude and have plateau values of G′ < 1 Pa,
which is characteristic of a soft gel.54

SAXS was used to characterize the structure within the gels.
The SAXS fitting curves of the 3 wt % hydrogels, shown in
Figure 7a, were obtained using a long cylindrical shell form

factor. Systems 1 and 3 presented less information at the low q
region, indicating more unordered structures. The fitted
parameters are shown in Table S2, and they show a gradual
decrease in fibril radius increasing the P[RF]4 content, from
2.5 nm for sample 1 to 0.7 nm for 5. The fibril core radius and
shell thickness values are lower than for the corresponding
SAXS patterns for solutions (Table 2) showing that the
hydrogels contain finer stranded fibril network structures. A
similar shell thickness of the cylinders was observed for all
systems, and considering scattering length density, samples 1
and 3 show higher core electron density. However, the
scattering density value difference between the core and the
shell for the system 1 is more significant than for 3. The
opposite was found for the system 5, which shows a
concentration of electron density in the shell.
Remarkably, the hydrogels were found to show birefrin-

gence, placing the 3 wt % hydrogels, contained in glass flasks,
between crossed polarizers (Figure 7b). An increase of the
anisotropy is seen for the sample containing only [RF]4, as can
be seen in Figure 7.

■ CONCLUSIONS
We have investigated the self-assembled morphology of the
[RF]4:P[RF]4 mixtures, SAXS showing that the peptides self-
assemble to form small fractal clusters coexisting with extended
elongated fibers. The fibers comprise peptides with a β-sheet
conformation, and the peptide chains pack in an orthorhombic
unit cell. By studying model stereoselective aldol reactions, we
showed that the concentration of the catalyst used can
influence the conversion and stereoselectivity of the aldol
reactions due to the polymorphism and availability of the
reagents on the catalyst surface. We demonstrated that the
[RF]4 peptide, which lacks a proline residue, unexpectedly has
a higher catalytic efficiency than P[RF]4. Also, stable and soft
hydrogels were observed, characterized by long cylinder
structures. However, in comparison with the liquid systems,
the fibrils in the hydrogels are significantly smaller in radius,
especially with increasing P[RF]4 content. Another significant
change was correlated with the electron density distribution in
the fibrils, with a concentration in the shell instead of the core,
as was observed for the solutions. The hydrogels are
birefringent, which along with SAXS data showing fibril form
factor features, indicates that they possess the character of
nematic hydrogels. Nematic hydrogels have rarely been
reported for peptide systems. Our study provides a wealth of
information on the polymorphism that can be accessed by
tuning mixture composition in these model peptide systems.
As the systems containing more P[RF]4 were characterized by
tight molecular packing, they do not have good aldol reaction
efficiency, due to the difficulty of access of the reagents to the
catalytic site of formation of the enamine transition state. Our
findings show that hydrogel stiffness can also be increased by
the addition of P[RF]4 in comparison to those formed by
[RF]4 alone. Our results indicate the scope that is available to
control peptide self-assembly, catalytic activity, and hydrogel
formation by mixing closely related peptide homologues.
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