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ABSTRACT: The self-assembly of the amphiphilic lipopeptide PAEPKI-C16
(P = proline, A = alanine, E = glutamic acid, K = lysine, I = isoleucine, and
C16 = hexadecyl) was investigated using a combination of microscopy,
spectroscopy, and scattering methods and compared to that of C16-IKPEAP
with the same (reversed) peptide sequence and the alkyl chain positioned at
the N-terminus and lacking a free N-terminal proline residue. The catalytic
activity of these peptides was then compared using a model aldol reaction
system. For PAEPKI-C16, the cryo-TEM images showed the formation of
micrometer-length fibers, which by small-angle X-ray scattering (SAXS) were
found to have radii of 2.5−2.6 nm. Spectroscopic analysis shows that these
fibers are built from β-sheets. This behavior is in complete contrast to that of
C16-IKPEAP, which forms spherical micelles with peptides in a disordered
conformation [Hutchinson et al. J. Phys. Chem. B 2019, 123, 613]. In
PAEPKI-C16, spontaneous alignment of fibers was observed upon increasing
pH, which was accompanied by observed birefringence and anisotropy of SAXS patterns. This shows the ability to form a nematic
phase, and unprecedented nematic hydrogel formation was also observed for these lipopeptides at sufficiently high concentrations.
SAXS shows retention of an ultrafine (1.7 nm core radius) fibrillar network within the hydrogel. PAEPKI-C16 with free N-terminal
proline shows enhanced anti:syn diastereoselectivity and better conversion compared to C16-IKPEAP. The cytotoxicity of PAEPKI-
C16 was also lower than that of C16-IKPEAP for both fibroblast and cancer cell lines. These results highlight the sensitivity of
lipopeptide properties to the presence of a free proline residue. The spontaneous nematic phase formation by PAEPKI-C16 points to
the high anisotropy of its ultrafine fibrillar structure, and the formation of such a phase at low concentrations in aqueous solution
may be valuable for future applications.

KEYWORDS: lipopeptides, self-assembly, fibers, hydrogel, nematic, biocatalysis

■ INTRODUCTION

Organocatalysts incorporating L-proline residues have been
employed in asymmetric catalysis for a wide range of synthetic
reactions.1 Proline-based organocatalysts containing long
hydrophobic chains have been found to catalyze aldol reactions
in reaction mixtures containing both water and organic
solvents.2 A lipidated peptide with a C16 (hexadecyl, palmitoyl)
chain attached at the C-terminus and a proline-based head
group (PRW-C16) was found to have high catalytic activity for
aldol reactions performed in water, with very good stereo-
selectivity and conversion rates.3 The lipidated peptide self-
assembles in the form of spherical micelles above a critical
aggregation concentration (cac), and the self-assembled
structures are responsible for catalytic properties, since poor
results were obtained in the absence of lipidated assembles. In
another example, Escuder et al. studied aldol reactions
catalyzed by L-proline-derived peptides that form organogels4

or hydrogels.5

Aldol reactions combine two carbonyl compounds to form a
new C−C bond, to produce a compound containing a β-
hydroxy carbonyl group,6,7 which is found in living organisms
and has exceptional pharmacological activities. Since the
1970s, it has been known that L-proline is a very efficient
organocatalyst for aldol reactions.8 Many aldol reactions
involving L-proline are performed in organic solvents such as
dimethyl sulfoxide (DMSO) and chloroform, which are
harmful and environmentally unfavorable.3 As a result, there
is a current drive to overcome this by replacing these solvents
with green solvents such as water. The use of water is also
attractive for promoting self-assembly via hydrophobic
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interactions and hydrogen bonding. Lipidation of peptides
commonly leads to self-assembly in aqueous solution into a
variety of nanostructures including micelles, nanotapes, and
nanofibrils.9−12 Lipopeptides are a type of peptide amphiphile
(PA).
Recently, our group studied the effect of the substitution of

an ester with an amide linkage between the hydrophobic lipid
chain and the hydrated peptide head group in the PRW-C16

lipopeptide.13 The linker group may influence the biocatalytic
activity because of differences in the local conformation around
the catalytic site and/or the polarization of the amide or ester
linkages. Aldol reactions using cyclohexanone and p-nitro-
benzaldehyde showed that PRW-NH-C16 has a high
enantiomeric excess (88−89%) and diastereoselectivity (93:7
anti:syn) compared to PRW-O-C16 (71−84%, 91:9). Both
lipopeptides self-assemble into spherical micelles. However,
the spherical micelles formed by PRW-NH-C16 are slightly
larger than those of PRW-O-C16, and this along with the
configuration of the tripeptide micellar corona leads to a higher
conversion.
Peptide hormones are attracting interest as targets for novel

therapeutics and diagnostics. Some of us have recently been
investigating the self-assembly of derivatives of the human gut
hormone PYY3‑36, which is one of the pancreatic peptides and
is a therapeutic target for obesity since it is a signal of satiety
following food intake.14−17 The self-assembly of lipidated and
PEGylated analogues, which were designed to have enhanced
stability and circulation time, was investigated. Lipidated
PYY3‑36 peptides can form spherical micelles or fibrils
depending on the nature of the lipid chain and the solution
pH.18,19 The PEGylated PYY3‑36 variants studied formed
irregular aggregates.19

Fragment peptides may retain significant activity of the
parent full-sequence peptide but with improved ease of
synthesis and cost-effectiveness. We therefore examined
lipopeptides containing PYY3‑36 fragments. We recently studied
the self-assembly of C16-IKPEAP and C16-IKPEAPGE, which
contain N-terminal hexameric and octameric sequences from
PYY3‑36.

20 Both these lipopeptides form spherical micelles that
are stable over a wide pH range, above defined critical
aggregation concentrations. Circular dichroism (CD) spec-
troscopy showed that the lipidated peptides have disordered
structures, in contrast to the polyproline II (PPII)
conformation of the peptides themselves. Notably, upon

drying these samples, β-sheet fibrillar (“amyloid-like”) fibrils
are observed.20

Here, we study a related variant of PYY3‑36, with a palmitoyl
chain (hexadecyl, C16) attached to the peptide head group at
the C-terminus. The peptide sequence is PAEPKI (Scheme 1),
which is the reverse of IKPEAP, the C-terminal hexapeptide
from PYY3‑36.
As shown in Scheme 1, PAEPKI-C16 differs from C16-

IKPEAP for two reasons: first, the P residue is free at the N
terminus (unlike C-terminal P-COOH in C16-IKPEAP), and
second, the palmitoyl chain is attached C terminally via
CONH rather than via the NHCO-C15H31 N-terminal linkage
in C16-IKPEAP.
PAEPKI-C16 was synthesized to have a free terminal P

residue in order to study its activity as a proline-based
organocatalyst of a model aldol reaction. Results from this
investigation are presented herein. In addition, we examine the
self-assembly of the lipopeptide by first determining the cac
using fluorescence probe assays. The conformation of the
peptide is then studied using CD spectroscopy and X-ray
diffraction, and the self-assembled structure is determined
using small-angle X-ray scattering. The results are compared to
those previously reported for C16-IKPEAP.

20 We unexpectedly
found that at a sufficiently high concentration, PAEPKI-C16
spontaneously forms a nematic phase in water, and this
lyotropic liquid crystal phase is a rarely reported structure for
lipopeptides;21−24 to the best of our knowledge, nematic
hydrogels have not been previously reported. We then
investigate the organocatalytic activity of PAEPKI-C16 using
a model aldol reaction of p-nitrobenzaldehyde and cyclo-
hexanone, and the results are compared to those for C16-
IKPEAP previously reported elsewhere.13

In addition, the cytotoxicity and anticancer activity of
PAEPKI-C16 are examined and compared to the corresponding
measurements for C16-IKPEAP. PYY3‑36 is an agonist for the Y2
receptor, which is a G-protein-coupled receptor. Y2 receptors
are known to play a role in tumor development and are
recognized as tumor markers overexpressed on the surface of
cancer cells.25 Therefore, PYY3‑36 derivatives may have
potential in cancer therapeutics. In addition, proline metabo-
lism plays a key role in cancer, with an important connection
to genes regulating the p53 tumor suppressor protein,26 and as
such, this pathway has emerged as a potential cancer therapy
target.27 Conjugation of a free proline to a short lipidated
peptide as in PAEPKI-C16 may provide a substrate with

Scheme 1. Molecular Structures of (Top) PAEPKI-C16 and (Bottom) C16-IKPEAP
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anticancer activity, which is investigated herein in an initial
study using breast cancer cells. Its cytotoxicity is compared to
that against fibroblasts.

■ MATERIALS AND METHODS
Materials. PAEPKI-C16 (TFA salt) was synthesized by Peptide

Synthetics, U.K. The molecular weight determined by mass
spectrometry was 877.20 g mol−1 (expected: 877.2 g mol−1), and
the purity by HPLC was >95.0%. C16-IKPEAP (ammonium acetate
salt) was synthesized by Peptide Synthetics, U.K. The molecular
weight determined by mass spectrometry was 892.18 g mol−1

(expected: 891.60 g mol−1), and the purity by HPLC was >95.0%.
Fluorescence Spectroscopy. Fluorescence spectra were re-

corded as described previously.28 ANS assays were performed using
3.25 × 10−4 to 0.13 wt % peptide in 2.1 × 10−3 wt % 8-anilino-1-
napthalenesulfonic acid (ANS) solution. Pyrene assays were
performed using 3.25 × 10−4 to 0.13 wt % peptide in 2.167 × 10−5

wt % pyrene solution.
Fourier-Transform Infrared Spectroscopy (FTIR). FTIR

spectra were recorded as described previously.28 Samples containing
1 and 2 wt % lipopeptides in D2O at pH native, 8, and 12 were
measured using CaF2 plate windows with a 6 μm spacer. The spectra
were scanned 118 times over the range of 4000 to 500 cm−1 and at a
resolution of 4 cm−1. An averaged D2O spectrum was used as the
background, and its signal was subtracted from the experimental data.
Circular Dichroism (CD). CD spectra were recorded as described

previously.29 Quartz plaques (0.1 and 0.01 mm thick) were used for
the experiments at native pH, pH 8 and pH 12.
Ellipticity is reported as the mean residue ellipticity ([θ], in degrees

cm2 dmol−1) and calculated as [θ] = [θ]obs MRW/10cl, where [θ]obs is
the ellipticity measured in millidegrees, MRW is the mean residue
molecular weight of the peptide (molecular weight divided by the
number of amino acid residues), c is the concentration of the sample
in mg/mL, and l is the optical path length of the cell in centimeters.
Cryogenic Transmission Electron Microscopy (Cryo-TEM).

Cryo-TEM images were obtained as described previously.28

Small-Angle X-ray Scattering (SAXS). SAXS experiments were
performed on the bioSAXS beamline B21 at Diamond Light Source,
U.K., as described previously.28

Aldol Reactions in Water. Cyclohexanone (0.9 mmol, 85 μL)
was added to the peptide catalysts (3.3 μmol, 3.0 mg), varying the
amount of water (170 μL, 85 μL, and in the absence). p-
Nitrobenzaldehyde (67.9 μmol, 10.3 mg) was added, and the reaction
mixture was stirred at room temperature for 3 days before being
extracted with ethyl acetate four times. For the experiment containing
no water, 0.5 mL of water was added to the system before extraction,
to help in the phase separation. NMR measurements using a (1H)
Bruker Ultrashield 300 were performed at 300 MHz with a deuterated
chloroform solvent. The yield and diastereomer anti:syn ratio were
calculated using the NMR spectrum obtained, where tetramethylsi-
lane (TMS) was used as a reference. 1H NMR (300 MHz, CDCl3): δ

8.22−8.18 (m, 2H, ArH); 7.51−7.47 (m, 2H, ArH); 5.47 (br s, 1H,
CHOH-syn); 4.89 (dd, J = 7.5 Hz, 3.0 Hz, 1H, CHOH-anti); 4.08 (d,
J = 3.0 Hz, 1H, CHOH-anti); 2.66−2.30 (m, 1H, CHCHOH); 2.66−
2.30 (m, 2H, CH2C(O)); 2.16−1.24 (m, 6H, chex-H).

Cytocompatibility Studies. In vitro cell culture was carried out
using HCT-116 (ECAAC human colorectal tumor cell line) and
HDFa (human dermal fibroblast cells). HCT-116 was cultured in
McCoys 5A modified medium with 10% fetal bovine serum (FBS)
and 1% antibiotic-antimycotic solution (ThermoScientific, 100×).
HDFa cells were cultured in DMEM F12 media supplemented with
5% FBS, 1% antibiotic-antimycotic solution, and 100 μg/mL insulin.
The cells were maintained in a humidified atmosphere of 5% CO2 at
37 °C.

The effect of C16-IKPEAP and PAEPKI-C16 on cell viability was
assessed using an MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide) assay. The cells were seeded into a 96-well plate
and incubated for 24 h, to allow the cells to adhere at a seeding
density of either 1 × 104 or 4 × 104 cells/mL for HCT-116 and
HDFa, respectively. After this, a total volume of 100 μL of the peptide
dissolved in complete medium was added, to yield final peptide
concentrations ranging from 0.06 to 4 × 10−4 wt %. Negative controls
containing 100 μL of complete medium were also included. After 67 h
of incubation, 20 μL of MTT (0.5 wt % in PBS) was added to each
well plate and allowed to incubate for 5 h (total of 72 h incubation).
After this, the solutions were removed from the wells and replaced
with 100 μL of DMSO and incubated for 30 min. The absorbance was
read using a microplate reader (λ = 570 nm). The absorbance
readings were compared against the negative control to obtain %
viability. Data are fitted with a sigmoidal line as a guide to the eye.
Statistical tests, ANOVA, and Bonferroni correction, were used to
assess significance.

Scanning Electron Microscopy (SEM). The 3 wt % pH 8
hydrogel was immersed in a fixative solution containing 2.5%
glutaraldehyde for 60 min at 5 °C. This was followed by gradual
dehydration from 10 to 100% ethanol (10, 30, 50, 70, 90, and 100%
ethanol), with 30 s time intervals between each step. The sample was
then extracted from the 100% ethanol solution and subjected to
critical point drying. The dried material was placed on a stub covered
with a carbon tab (Agar Scientific, U.K.), and then coated with gold.
An FEI Quanta FEG 600 environmental scanning electron micro-
scope (SEM) in high vacuum mode (20 kV high tension) was used to
study and record SEM images.

Electrospinning. Electrospinning was performed using a syringe
connected to a 25 kV voltage power supply (Glassman Inc.) and a
syringe pump (Kd Scientific Model 200 Series). An aliquot of 1 mL of
the 5 wt % hydrogel was used for electrospinning at a distance
between the needle and collector of 10 cm in a 1 mL/h flow. One
TEM grid was attached to the aluminum plate, and after drying at
room temperature, TEM images were obtained as described above.

Figure 1. (a) Comparison of the concentration dependence of PAEPKI-C16 and the pyrene fluorescence I (393 nm). The inflection point of the
curve intersection corresponds to the cac of each sample. (b) FTIR data of 2 wt % D2O solutions of the peptide, considering different
concentrations and pH.
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■ RESULTS AND DISCUSSION
The critical aggregation concentration (cac) for the peptide
PAEPKI-C16 at three different pH values (native, 8, and 12)
was determined using a 2.2 × 10−5 wt % pyrene solution as the
fluorescent probe. Considering the emission band located
approximately at 393 nm and comparing these results as a
function of the logarithm of the peptide concentration, it is
possible to determine the cac by break points in the
concentration dependent intensities (Figure 1 a). The
fluorescence spectra can be seen in Figure S1. A similar cac
was observed for the samples at native pH and pH 8, being
(3.3 ± 0.2) × 10−3 wt % and (3.2 ± 0.2) × 10−3 wt %,
respectively, suggesting that self-assembly occurs similarly for
both systems. In basic conditions (pH 12), a slight enhance-
ment of the cac to (4.0 ± 0.2) × 10−3 wt % was observed,
suggesting that hydrophobicity decreases as the pH is
increased. For comparison, C16-IKPEAP has a similar cac
(2.9 ± 0.2) × 10−3 wt % at native pH.20

In order to study the secondary structure under distinct
environmental conditions, including peptide concentration,
pH, and temperature variation, FTIR and CD experiments
were performed. The results are shown, respectively, in Figures
1b and 2. The FTIR spectra in the amide I′ and II′ regions are

presented in Figure 1b. For all samples, the characteristic
bands are located at 1628−1636 cm−1 (peaks 1 and 2) and at
1553−1554 cm−1 (peaks 3 and 4). The former are assigned to
β-sheet structure.30−32 Considering the first set of peaks, the
sample at native pH contains a peak at 1636 cm−1 (peak 1),
whereas the other samples show peak 2 located at 1628 cm−1.
This effect suggests a higher β-sheet content for the pH 8 and

pH 12 samples. The broad underlying peak shape, however,
indicates an inhomogeneous ensemble with possible contribu-
tions from other structures such as poly(proline II).33

Peaks 3 and 4 are in the range of the amide II band in H2O;
however, this is shifted to wavenumbers below 1500 cm−1 in
D2O.

34 Therefore, these peaks are assigned mainly to the side-
chain asymmetric stretch vibrations of the COO− groups in the
E residues, which give a peak at 1567 cm−1 in D2O.

31,32 A
fraction of residual H2O in the solutions may also lead to a
component of amide II features.
Figure 2 shows the CD spectra of 0.04 wt % solutions at 20

°C, which show a minimum at 207, 213, and 216 nm,
respectively, for native, pH 8, and pH 12, consistent with β-
sheet structures.35−37 The spectra do not contain the typical
maximum observed just below 200 nm for typical β-sheet
structures and in fact somewhat resemble the spectra observed
for poly(L-proline) at high temperatures.38 However, the
presence of β-sheet structures is independently confirmed both
by the FTIR spectra and the formation of fibril structures, as
will be discussed shortly. Upon increasing the concentration of
the peptide to 0.5 wt % at 20 °C, the location of the minima in
the spectra shifted to 232, 229, and 226 nm (Figure S2). The
red shift of the peak position may be due to increased twisting
of the β-sheets, along with potential light scattering from the
suspensions of highly extended fibers (vide infra).39 Upon
heating these systems from 20 to 80 °C, differences in the
negative band intensity were seen (Figure S2). At native
conditions, the increase of the temperature promoted a gradual
enhancement of the minimum. The opposite effect occurred at
pH 8, which showed a decrease in the minimum intensity with
the increasing temperature. A very large minimum was
observed for the sample at pH 12 at low temperatures,
which is due to the formation of highly extended fibrils, as will
be discussed shortly.
Cryo-TEM was used to image self-assembled structures, and

the images can be seen in Figure 3. These show the formation
of fibrils, with a population of oligomers at native pH. With the
increase of pH, more fibers are observed. The fibrils extend to
micrometers in length (Figure S3), especially at high pH. In
addition, an increase in fiber thickness can be observed at high
pH along with an increase in the alignment of the fibrils.
To further investigate the self-assembled fibril structure,

SAXS was performed. The SAXS intensity profiles were fitted
using the long cylinder shell form factor and Gaussian size
distribution from the SASfit40 package, producing fits shown as
red lines in Figure 4a. Table S1 summarizes the fitted
parameters. The length of the cylinders (L) was fixed at 1000

Figure 2. CD spectra for 0.04 wt % PAEPKI-C16 water solutions at
the pH conditions shown.

Figure 3. Cryo-TEM images of 1 wt % PAEPKI-C16 at (a) native, (b) pH 8, and (c) pH 12.
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nm (with L ≫ R, this parameter only represents a scaling
parameter), and the scattering length density of the solvent
(ηsolv) was fixed. The cylinder radius (R) was 2.15 ± 0.2 nm,
independent of pH. However, an increase of the shell thickness
(ΔR) from 0.3 to 0.5 nm is observed with increasing pH (this
corresponds to only the outer residues of the peptide, some of
which are part of the “core”). In the low q vector region, the
SAXS curves show differences for horizontal and vertical
scattering, especially at high pH, as can be seen in Figure S4.
This anisotropy in the low q SAXS patterns is due to the
formation of spontaneously aligned nematic liquid crystal
structures, as will be discussed shortly.
Another important effect monitored was the electron density

distribution in the self-assembled structures. Considering the
scattering length density of the core (ηcore) and shell (ηshell), it
was observed (Table S1) that the higher the pH, the higher is
the core density and the lower is the shell density, pointing to
the formation of more compact structures at high pH.
Since cryo-TEM shows the presence of aligned fibers and

SAXS in 1 wt % aqueous solutions also indicates significant
sample anisotropy, the macroscopic sample birefringence was
examined for samples placed in glass flasks between crossed
polarizers. An increase of the birefringence is observed with
increasing pH, as shown in Figure 4b. In this case, the native
system was the only system that did not present anisotropy.
We reasoned that since PAEPKI-C16 self-assembles into

highly extended fibrils, it might be possible to form hydrogels
at a sufficiently high concentration due to the formation of
(noncovalently) cross-linked fibrillar networks. Upon increas-
ing the peptide concentration to 5 wt %, only the pH 8 sample
(Figure 5) spontaneously formed a soft hydrogel at room
temperature. The other samples (native and pH 12) were
subjected to a heating−cooling process, and after this, the pH
12 sample formed a hydrogel, while the native remained in
solution, as can be seen in Figure 5. The tube inversion test
shows the existence of (finite yield stress) hydrogels.

The fibrillar structure of the hydrogels was confirmed
through a combination of SEM, SAXS, and TEM, as shown in
Figure 6. The SEM image in Figure 6a shows a fibrillar
network structure. SAXS data from gels showed form factor
features (Figure 6b), which could be fitted with the same
cylindrical shell form factor model as for solutions, with a
similar fibril core radius and shell thicknesses (Table S2). This
shows that the hydrogels are formed from a network of
ultrafine peptide fibrils, with a radius of approximately 2 nm.
As for solutions, the PAEPKI-C16 hydrogels also showed
birefringence, which was higher at pH 12, as can be seen in
Figure 6c, which shows gels suspended in liquid. We also
attempted to generate electrospun macroscopic fibers from
concentrated solutions of the lipopeptide, and although this
was not possible, we were able to image fibrils in the
electrospun droplets using TEM (Figure 6d).
The importance of the availability of the proline residue in

peptide sequences for aldol reactions has been highlighted.3

Also, in comparison with the recently studied C16-IKPEAP
lipopeptide, we monitored the efficiency of PAEPKI-C16 as a
catalyst in asymmetric aldol reactions using p-nitrobenzalde-
hyde, cyclohexanone, and water, presented in Scheme 2.
Table 1 summarizes the conversion and stereoselectivity of

the aldol products, with comparison of both peptides. The
NMR results for entries 1, 2, and 3 can be seen in Figure S5.
For these reactions, 5 mol % catalyst solutions were used, with
an excess of cyclohexanone (12 equiv), following the same
experimental methodology for C16-IKPEAP.

20 The assignment
of the stereoisomers obtained was based on the literature.41

The influence of water on the catalyzed aldol reaction was
evaluated, and entries 1−3 and 6 were stabilized in solution,
while entries 4 and 5 form hydrogels during the reaction
process. The best conditions presented for both peptides are
described in entries 3 and 6, which presented high conversion
(56 and 34% for PAEPKI-C16 and C16-IKPEAP, respectively)
and good diastereoselectivity (84:16 and 36:64). Based on this
result, it was possible to conclude that the absence of water in
the reaction medium favored the formation of the anti-aldol
product, which can be related to the access of the reagents to
the proline residues in the organic phase. PAEPKI-C16 shows
enhanced diastereoselectivity compared to C16-IKPEAP under
all conditions examined and conversion under conditions
except 1 equiv of H2O, when it was slightly lower than for C16-
IKPEAP. These results show that the molecular structure of
the peptide influences the conversion and diastereoselectivity
of the reactions. Depending on the mode of self-assembly, the
enamine transition state formed can favor the attack of the

Figure 4. (a) SAXS data (gray symbols) and fitted form factors using
a long cylindrical shell model (red lines) for 1 wt % PAEPKI-C16
water solutions, varying the pH. (b) Images of the birefringence of the
samples in vials placed between crossed polarizers.

Figure 5. Images of 5 wt % PAEPKI-C16 solutions at native, pH 8, and
pH 12.
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ketone and aldehyde at the catalytic surface, i.e., the proline-
functionalized surface of the self-assembled structures.
Cytocompatibility studies of C16-IKPEAP and PAEPKI-C16

were performed using an MTT assay on human breast cancer
(MCF-7) and human dermal fibroblast (HDFa) cells to
determine cell viability (Figure 7) and to examine whether
there was any selectivity toward cancer cells. HDFa was used as
a control cell line in order to observe whether there is a
preferential effect against the cancer cell line. The results are
summarized in Table 2.

A difference is noted in the IC50 values for C16-IKPEAP
against MCF-7 and HDFa cells, corresponding to 0.021 wt %
or 0.24 μM. However, PAEPKI-C16 exhibited a stronger
activity against HDFa than MCF-7. Generally, PAEPKI-C16 is
more toxic than C16-IKPEAP, which is presumably due to the
different modes of self-assembly. The peptide residues in
PAEPKI-C16 are present at a high density on the surface of
highly elongated fibers, whereas those in C16-IKPEAP are
present on the surface of micelles.
The difference in the catalytic behavior and cytotoxicity is

influenced by the very different self-assembly properties of
PAEPKI-C16 and C16-IKPEAP. The enhanced catalytic activity
is likely due to the high density of the free prolines present at
the surface of the fibrils of PAEPKI-C16. The higher
cytotoxicity of this lipopeptide is also likely due to the
formation of extended nanostructures. It is known for
polymeric and inorganic nanoparticles, for example, that the
shape of the nanostructure significantly influences cytotox-
icity.42−45 Among other effects, this can arise due to the
different modes of internalization of anisotropic particles. In a
series of papers, the Stupp group has highlighted that the
presence of peptide motifs on the surface of fibrils formed by
lipopeptides enhances bioactivity.46−48 The highly distinct
modes of self-assembly of the two lipopeptides studied here
lead to significant differences in biocatalytic activity and
cytotoxicity. At the molecular level, this must be due to the
configuration of the peptide forming the surface corona of the
nanostructures and the linker group. The electrostatic
repulsion of the C-terminal P-COOH units in C16-IKPEAP
is likely to favor the formation of micelles, whereas this
interaction is suppressed in PAEPKI-C16, and stacking of the
hydrophobic terminal P and A residues promotes β-sheet
formation. This may also be favored by the salt bridging
interactions between the E and K residues in PAEPKI-C16,
which are not hindered by the presence of the additional C-
terminal charge in C16-IKPEAP. It should be noted that the

Figure 6. (a) SEM image showing fiber structures in a pH 8 hydrogel. (b) SAXS data (gray) and fitted form factor (red) using a cylindrical shell
model for 3 wt % PAEPKI-C16 hydrogels, at two pH values indicated. (c) Images of the birefringence between crossed polarizers of the 3 wt %
samples. (d) Scheme of the electrospinning procedure and TEM images of the electrospun 5 wt % gel samples.

Scheme 2. Aldol Reaction Mechanism Using p-
Nitrobenzaldehyde and Cyclohexanone as Reagents,
Catalyzed by PAEPKI-C16 at Native pH

Table 1. Conversion and Diastereoselectivity of the Direct
Aldol Reaction of p-Nitrobenzaldehyde and Cyclohexanone
for PAEPKI-C16 Compared to the Peptide Derivative C16-
IKPEAP20

entrya peptide
catalyst
(mol %)

H2O
b

(equiv)
conversionc

(%) anti:sync

1 PAEPKI-C16 5 2.0 7.9 78:22
2 5 1.0 8.7 81:19
3 5 0.0 56 84:16
4 C16-IKPEAP 5 2.0 3.6 15:85
5 5 1.0 10 51:49
6 5 0.0 34 36:64

aThe reactions were performed at room temperature with vigorous
stirring for 72 h. bWater excess in relation to cyclohexanone (v/v).
cYield and diastereoselectivity were obtained by 1H NMR analysis of
the gross product.
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increase in the fibril alignment and nematic phase birefringence
observed upon increasing pH is ascribed to the likely
predominant effect of pH on the charge of the lysine residue,
the side chain of which has a pKa of 10.5, although this can be
modified by the presence of other residues (for example, the
nearby glutamic acid residue).49,50 Proline also has a reported
pKa of the amine group near pKa 11.

50 At high pH, the lysine
and proline residues will be deprotonated, leading to a loss of
the positive charges in the peptide, which may lead to
increased electrostatic interactions between the anionic
glutamic acid residues on peptides within the fibril, possibly
causing an increased fibril persistence length.

■ CONCLUSIONS
Our study shows many significant differences in the self-
assembly behavior and properties when comparing lipopeptide
homologues with reversed sequence and lipid chain attach-
ment. The results of PAEPKI-C16 presented here show that it
forms highly elongated β-sheet fibril structures, especially at
pH 8−12, in complete contrast to C16-IKPEAP, which has
previously been shown to form spherical micelles.20 The
critical aggregation concentrations for the two lipopeptides are
similar; however, the aggregated structure is very distinct. The
formation of a nematic phase is only possible with extended
structures such as fibrils; therefore, it is not surprising that this
is not observed for C16-IKPEAP, which forms micellar
aggregates. The ability of PAEPKI-C16 to form hydrogels (at
sufficiently high pH) is also notable (and may be contrasted
with C16-IKPEAP). To the best of our knowledge, nematic
hydrogels have not been previously reported for self-
assembling lipopeptides, although they are known for
amyloid-forming peptides.51−53 It is evident that the gelation
correlates with the formation of highly extended fibrils, the
presence of which within the hydrogels is confirmed by in situ
SAXS. The fibril network is based on ultrafine fibers with a
core radius of only 2 nm.

The catalytic activity of the two lipopeptides is also quite
different, as demonstrated by our model aldol reaction analysis.
PAEPKI-C16 shows a significant enhancement in diastereose-
lectivity compared to C16-IKPEAP under the same reaction
conditions. The conversion is also significantly higher for
PAEPKI-C16 under most conditions (with one exception,
Table 1). This is ascribed to the presence of a free proline
residue in PAEPKI-C16 in contrast to C16-IKPEAP with C-
terminal amide-linked proline.
Remarkable significant differences in the cytotoxicity of

PAEPKI-C16 and C16-IKPEAP were observed, the former being
substantially more cytotoxic (lower IC50) against both
fibroblast and MCF-7 breast cancer cell lines. This peptide
shows preferential activity against fibroblasts rather than MCF-
7 cells, in contrast to C16-IKPEAP, which has a lower IC50
against the cancer cell line compared to HDFa fibroblasts.
The formation of birefringent nematic structures in dilute

aqueous solution is a notable feature of PAEPKI-C16 self-
assembly. These lyotropic liquid crystal structures may be of
future use, for example, in the measurement of residual dipolar
couplings, which facilitates assignments in solution NMR of
biomacromolecules, as recently demonstrated,54 for example,
for the nematic phase of an amyloid peptide in methanol.55 A
water-based system such as PAEPKI-C16 may be highly
beneficial for this and applications such as tissue engineering
or responsive sensing.
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