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Abstract

Equations used to describe the main biological processes determine the dynamics of biogeochemical

models. From previous studies, altering the form of these process ‘structure functions’ has been shown

to produce larger differences than changing the values of the parameters used in the models. This study

explores the effect of this structural sensitivity in a marine biogeochemical model by generating an en-

semble of runs. We use a 1-D Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration, and

Acidification (MEDUSA) ensemble, where each member has a different combination of key biogeo-

chemical process equations, each of which tuned to be as similar as possible to the default functions.

The model is run at five oceanographic stations spanning three different biogeochemical regimes or

provinces: oligotrophic, coastal, and abyssal plain. Marine biogeochemical models are also sensitive

to the physical environment, so we also explore the relative impact of altering the physical input and

biogeochemical process equations, separately and together.

The impacts of perturbing the biogeochemistry and physics are quantified using statistical metrics,

chlorophyll depth distributions, and phytoplankton bloom phenology. We explored the signature charac-

teristics of the different ensembles by examining the anomaly correlations between different ensemble

members and also the nitrogen fraction in phytoplankton across different ensemble members.

We found that even small perturbations in model structure can produce a large ensemble spread in many

metrics that then mostly easily encompasses the in situ observations. This perturbed biogeochemistry

ensemble (PBE) also has an improved RMSE between observations and the ensemble mean, compared

to a single deterministic model default run. Perturbing the physics does not generate as large an ensemble

range in many of the metrics studied, and cannot always encompass the in situ chlorophyll observations.

From exploring the signature characteristics of the different ensembles, very different characteristics are

produced from the two ensembles. Perturbing biogeochemistry alters exchange fluxes between biogeo-

chemical compartments, whereas perturbing the physics only alters the nutrient supply to the biological

compartments. Therefore, the perturbed biogeochemistry ensemble provides better representations of

uncertainty. We discuss how this might be useful for interpreting discrepancies against observational

data.
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Chapter 1

Introduction

1.1 Observing the Marine Environments

Human life depends on the ocean ecosystem for food, jobs, medicine, and recreation. The ocean also

acts as a carbon sink, and therefore modulates the atmospheric CO2, which are controlled by the mi-

crobial communities (Follows and Dutkiewicz, 2011). In order to understand how the ocean ecosystem

works, empirical observations of the physics, chemistry, and biology have been made since the 19th

century, pioneered by the Challenger Expedition between 1872-1876 (Hawkins et al., 2013). This was

followed recently by other oceanographic expeditions such as the North Atlantic Bloom Experiment

(NABE, 1989), Atlantic Meridional Transect (AMT, 1995-present), and Worldwide Marine Radioactiv-

ity Studies (WOMARS, 1995-2000). Following the growing realisation of the important role the oceans

have in regulating the climate, the Joint Global Ocean Flux Study (JGOFS)), focusing on the ocean’s

carbon cycle and air-sea fluxes of carbon dioxide, was conducted. The study includes a global survey

of oceanic properties, such as temperature, salinity, nitrogen, and chlorophyll, and also long term time-

series observations at strategic sites. The Hawaii Ocean Time Series (HOTS) in the Pacific, Bermuda

Atlantic Time Series (BATS) near the Sargasso Sea are two of the long term observation sites that have

been instrumented and carried on until present. There are other long-term observation stations in the

North Atlantic, such as the Western Channel Observatory, station L4 and E4, off the coast of Plymouth,

UK. Furthermore, the advancement of technology has allowed satellites to observe sea surface temper-

ature (SST), altimetry, and ocean colour. Compared to in situ observation, satellite remote sensing has

provide data with higher frequency (1 day), larger coverage, and with high spatial resolution (< 1 km)

(Platt and Sathyendranath, 2008).

Long term regional observations have deepened our understanding about the biogeochemisty of the

1
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ocean, for example the occurrence of two phytoplankton blooms, which have different phytoplankton

group composition in station L4, (Smyth et al., 2010) (shown on Figure 1.1). Furthermore, multiple

regional long term observation stations have made comparison study possible, showing for example how

the mixed layer depth in the oligotrophic North Atlantic region is deeper during winter mixing than in

the Pacific (Dave and Lozier, 2010). Long term observations can also capture trends of the physics and

biogeochemistry of the ocean, for instance the increase in sea surface temperature over the past decades

(Laffoley and Baxter, 2016; Doney et al., 2012), and also the increase in CO2 concentrations over the

past 17 years, that caused a decrease in the calcium carbonate saturation state at station ALOHA (Doney

et al., 2009). Furthermore, using satellite remote sensing, changes in the global ocean can also be ob-

served; a parallel increase of chlorophyll and SST have occurred mostly in the Indian Ocean between

the 1980s to early 2000s, but in the Pacific ocean, an increase in SST and decrease in chlorophyll have

been observed (Martinez et al., 2009; Blondeau-Patissier et al., 2014). Chlorophyll and SST observation

using remote sensing can also distinguish regions where the change in chlorophyll is due to the change

in biomass or due to physiological adjustment in intracellular chlorophyll concentrations, because SST

covary with chlorophyll concentrations as it reflect light and nutrient conditions at productive regions.

At the subtropical region, the increase in intracellular chlorophyll concentrations are dependent on the

nutrient levels (Siegel et al., 2013).

Figure 1.1: Monthly averaged surface nutrients at station L4 and E1 (a, b, c, and d) and phytoplankton
concentration (e for L4 and f for E1). The solid line and dashed line on a, b, c, and d are the monthly av-
eraged nutrients and the maximum and minimum concentrations respectively, at station L4. The asterisks
and bars denotes the averaged nutrients and the minimum and maximum concentrations, respectively, at
station E1. The solid line on e and f shows the mean monthly averaged nutrients at both stations and the
minimum and maximum values are enveloped by the dashed line. In e, Satellite derived chlorophyll and
its range at L4 are represented by the asterisks and bars, respectively. Figures are originally shown in
Smyth et al. (2010)

In situ observations have also shown that the physics of the ocean controls the chemistry and therefore
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the biology, for example, based on the 24 year time series, the change in marine fish communities in the

eastern English Channel is influenced by the warming of the North Atlantic Ocean due to a switch in the

Atlantic Multidecadal Oscillation from a cold to warm phase (Auber et al., 2015). Higher occurrence of

coastal algal bloom in recent decade have also been reported to coincide with an increase of nutrient pol-

lution (Parsons and Dortch, 2002; Heisler et al., 2008). The changes in upper ocean stratification caused

by climate indices such as El Nino/ Southern Oscillation (ENSO) can influence the rates of primary pro-

duction and export of particulate matter (Corno et al., 2007). The seasonal cycle of phytoplankton bloom

can also influence other marine organism. With the help of satellite ocean colour and long term dataset

of haddock recruitment, it is shown that the timing of maximum phytoplankton concentration (bloom

peak) can influence the survival of fish larvae (Platt et al., 2003).

Studying the marine environment has not only been done from observations, but it has also been done

by mathematical models (Gentleman, 2002). Different models can be developed depending on what

scientific questions need to be addressed (Follows and Dutkiewicz, 2011). In order to explore further

how the timing of the bloom affects the survival of fish larvae, it is possible to use an individual based

model to quantify the survival rates of the fish. Using temperature reanalysis data, a modelling study

shows that the increase in survival of fish larvae during warm years can increase to 154% in the North

sea (Kristiansen et al., 2011). Using a model which explicitly represent phytoplankton, nutrients, and

settling speed, it is possible to explain the occurrence of the high chlorophyll concentration below the

mixed layer in the oligotrophic regions (Fennel and Boss, 2003; Cullen, 2014). A combination of plank-

ton model and satellite-derived chlorophyll have been used to study the mechanism of the phytoplankton

blooms (Behrenfeld et al., 2013; Behrenfeld and Boss, 2014). Using mathematical models, feedbacks

and complex interconnections between the ecology and biogeochemistry can be untangled, and concep-

tual understanding can be quantified (Follows and Dutkiewicz, 2011). With growing concern over the

increasing anthropogenic CO2, eutrophication, and climate change, it is essential to synthesise observa-

tions and model in order to understand how the marine ecosystem may be affected by these factors, and

therefore predict the state of the ocean, so that preventive measures can be devised.

Most marine biogeochemical models focus on the lower trophic levels of the ecosystem, where the first

level of the marine food-web, such as phytoplankton and zooplankton, is explicitly represented, as the

ecosystem is impacted first by changes in the physics or biogeochemistry. The first marine biogeochem-

ical model was developed by Fleming to study the temporal variability of phytoplankton concentration

under grazing pressure using differential equations (Fleming, 1939). The model showed that if phyto-

plankton density and growth rates in the field are known, it is possible to estimate the grazing rate. This

simple model is then refined by Riley, who observed plankton production in Georges Bank (Gentleman,

2002). From the observation, Riley further improved Fleming’s model by making the phytoplankton
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growth rate dependant on the abundance of nutrients, zooplankton, temperature, light, mixing, and eu-

photic depth, which was the first coupled biogeochemical-physical model of the marine environment

(Riley, 1946). Furthermore, instead of using the observed population and nutrient density as an input

to run the model Riley separates the nutrients from the biology (phytoplankton and zooplankton) in a

food-chain-like manner (Riley et al., 1949). The nutrient concentration is dependent on phytoplankton

consumption and plankton respiration. The zooplankton abundance is the balance between phytoplank-

ton grazing, predation from higher predator and losses due to natural death. This three compartment

model is the basis of all of the marine biogeochemical models today.

1.2 Early marine biogeochemical model: the NPZ model

The model type nutrient-phytoplankton-zooplankton (NPZ) covers the simplest processes that describe

the plankton dynamics. This type of model usually uses nitrogen as the currency as it is the limiting

macronutrient to phytoplankton growth. This model consists of phytoplankton growth due to light, or

light limited growth (LI), nutrient uptake, or nutrient limited growth (UN), zooplankton grazing (Gz),

phytoplankton (ρ), and zooplankton (ζ ) mortality terms. When constructing the simple NPZ, we need

functional forms that describe these processes, and are dependent on the state variables (which are the

nutrient, phytoplankton, and zooplankton), parameter values, physical oceanography information such

as mixed layer depth or horizontal and vertical velocity which supply nutrients, and the initial conditions.

This section will discuss the different equations that have been used in NPZ models, 1.2.1 and the model

inputs that are needed in order to run the model, 1.2.2.

1.2.1 NPZ model structure, equations, and parameter

The NPZ model equations can be generalised as:

dP
dt

= (LI×UN)P−GZP−ρP (1.1)

dN
dt

= ρP+ζ Z +(1−λ )GZP−UNP (1.2)

dZ
dt

= GzPZ−ζ Z (1.3)

Which describe the rate of change in phytoplankton (P), nutrient (N), and zooplankton (Z) with time.

The general equations also shows how the changes in each compartment affect each other. Unlike a

physical oceanography model which has the navier-stokes equations, the biogeochemical model does

not have a known set of equations that describe different processes, which allows modellers to choose or
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derive their own functional forms to describe each biogeochemical process, as long as the model fits with

experimental data (Flora et al., 2011). All of the governing process functional forms range from linear

equations, that describe constant rate of process (density-independent), to nonlinear forms, where at first

the rate increases with concentrations, and then saturates when it reaches the maximum rate (density-

dependent) (Franks, 2002), as shown in Figure 1.2. Nonlinear forms have both a maximum rate (µ)

and a shape-defining coefficient (usually a half saturation constant, k), and linear functions only have a

constant rate. This makes the choice of functional form crucial as it can affect the dynamics of the model,

and the choice of the parameter values that dictate the rate of grazing or nutrient uptake rates at a certain

concentration. The next subsections will discuss the different functional forms and their parameters for

each governing process within an NPZ model.

Figure 1.2: Common shapes of functional forms that describe the key processes in biogeochemical
models. Saturating response is shown in hyperbolic and sigmoidal.

Phytoplankton Growth (LI and UN)

From equation 1.1, the phytoplankton growth is limited by light and nutrients. Phytoplankton growth

rate in response to irradiance can be calculated using linear, saturating (using Hyperbolic, trigonometric,

and exponential functions), or saturating with photoinhibiting response, summarised in Table 1.1, with a

parameter to determine the irradiance at photosynthesis maximum, Io (Franks, 2002). In a more complex

NPZ model, where the mixed layer depth is taken into consideration (which assumes that the biological

aspect of the model sits above the deep homogeneous layer with constant nutrient and no plankton

(Anderson et al., 2015)), the total growth due to light has to be averaged over the mixed layer, described

by:

J(t,M) =
∫ 24h

0

∫ M

0
LI(I(t,z))dzdt (1.4)
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where J is the light limited phytoplankton growth, t is the time (days), M is the mixed layer depth, and

24h is the day length. The linear and saturating response functions can be chosen to match observed

change in phytoplankton light limited growth rate over one day or how well they represent the nonlinear

response of photosynthesis to irradiance (Franks, 2002). In order to make the functional forms described

in Table 1.1 more similar to the laboratory experiment, instead of only using the term Io, it is possible

to split this term into two different parameters, such as in Smith (1936) function, which is similar to

a hyperbolic saturating response. In Smith (1936) function, the term α/V max
p is used to describe Io,

where α is the initial slope of the P-I curve, and maximum photosynthesis rate is described using V max
p .

Similarly, the Io term in exponential function can also be split into α/V max
p , and this have been used in

the recent NPZ model to described the light limited growth of phytoplankton (Anderson et al., 2015).

The most common function to represent the nutrient uptake is the logistic saturating rectangular hyper-

bolic, also known as the Michaelis-Menten or Monod formulation, based on enzyme kinetics. As shown

in Figure 1.2, this equation has a shape defining parameter, ku, and a maximum rate, in V max
u . This kind

of function is computationally cheap as it is not explicitly linked to resource availability (Flynn, 2018).

However, phytoplankton have been shown to store nutrients in an internal pool before they are used for

growth (Droop, 1973, 1983). The quota (Q) describes the amount of a substance in a unicellular organ-

ism, and this controls the growth of phytoplankton. Q varies between the subsistence quota (Qmin), in

which it is impossible to use the nutrient for growing, and a growth maximum rate (Qmax) (Franks, 2002).

It should be noted that the Qmax here is not for the final phytoplankton growth as this is also limited by

light, as described in equation 1.1.

Zooplankton Grazing (Gz)

In a simple NPZ model, zooplankton would only graze one type of prey, the phytoplankton. Most of

the formulations are based on laboratory experiment where populations of predators are acclimatised to

different prey densities (Holling, 1959). From these experiments, there are four ‘Types’ of zooplankton

grazing; (i) linear variations of grazing rate with prey, (ii) curved variation grazing rate with prey (Type

II), which used rectangular hyperbolic function, and are often called Holling type II, (iii) another curved

variations of grazing, which is similar to the sigmoidal curve, described in Figure 1.2 and is often referred

to Holling type III, and (iv) grazing rate that reaches maximum at an intermediate density and decreases

as the density gets higher, which mimics when the prey is toxic or the predator gets confused (Holling,

1959; Gentleman et al., 2003). The difference between type II and III is that the grazing rate in the former

is higher at lower density prey concentration, compared to the latter, as shown in Figure 1.2. However,

Flynn and Mitra (2016) argued that these hyperbolic functional forms do not explicitly represent the
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effect of physical oceanography processes (such as turbulence) when encountering prey, or how the

motility of zooplankton changes when satiation or saturation occurred.

The first type of grazing has no satiation, and is formulated using a linear function, but there is no

theoretical basis to this equation. The second type is described using a Disk Equation, which is based

on predator-prey theory, and defined by handling and attack rate. The Michaelis-Menten (rectangular

hyperbolic equation), is mathematically equivalent to the Disk equation, however instead of defining the

equation using attack, a, and handling time, h, rectangular hyperbolic has maximum rate (gmax) and half

saturation constant (kg), where in this case, gmax becomes 1
h , and kg becomes 1

ah (Gentleman et al., 2003).

The Michaelis-Menten type function has been used in early NPZ models (Fasham et al., 1990; Steele

and Henderson, 1992) and even a more complex model with various types of phytoplankton (Follows

et al., 2007; Prowe et al., 2012), rather than the actual Disk equation. Similar response curves can also be

formulated using Ivlev functional forms (Ivlev, 1961), however the rate of change in Ivlev is different to

the Disk equation, and has a shape defining functions λ instead of kg or a and h (Gentleman, 2002). The

third type can also be described using a Disk equation, however, the attack rate would vary linearly with

prey density, according to a constant (a= constant × prey). Using a Michaelis-Menten type equation,

this could be described using a sigmoidal (Holling type III) equation, with gmax = 1/h and kg = 1/
√

ch.

The Holling type III function is more commonly used in later biogeochemical models (Fasham et al.,

1993; Edwards and Brindley, 1996; Edwards and Yool, 2000; Palmer and Totterdell, 2001; Anderson

et al., 2015), and is referred as Holling type III. The fourth type can be described using Holling type

II, but with an additional term in the denominator that results in maximum and half saturation constants

depending on complicated functions of other parameters (Gentleman et al., 2003). These equations are

described in Table 1.1.

Plankton Mortality (ρ and ζ )

The mortality terms in the NPZ model allow the recycling of nutrients from phytoplankton and zoo-

plankton. This is usually modelled using either linear, quadratic, hyperbolic, or sigmoidal functions.

The linear mortality has a constant rate independent of plankton concentrations, which may represent

higher predators when this is used for zooplankton, whose biomass does not fluctuate (Edwards and

Yool, 2000). In an NPZ model, the phytoplankton mortality term is usually modelled using a linear or a

quadratic function (Steele and Henderson, 1981, 1992; Fasham et al., 1990; Fasham, 1995; Edwards and

Brindley, 1996), although it is possible to represent phytoplankton mortality using a Michaelis-Menten

type equation (Fasham et al., 1993). However in a more recent NPZ model, such as that of Anderson

et al. (2015), both linear and quadratic phytoplankton mortality is used. This is because the linear mor-
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tality account for metabolic losses or natural mortality, and the density dependent loss (non-linear) may

represent mortality due to infection or viruses (Palmer and Totterdell, 2001; Yool et al., 2011, 2013;

Anderson et al., 2015).

Zooplankton mortality terms have been shown to alter model dynamic more than altering the parameter

values when the equations are altered. Similar to phytoplankton mortality, in an NPZ model, this process

is usually represented by linear mortality, however instead of producing a steady state, it produces os-

cillations over a wider parameter range (Edwards and Yool, 2000; Franks, 2002). The range of different

functional forms for zooplankton mortality may be due to the various feeding strategies of zooplankton.

When cannibalism occurs within the zooplankton compartment, or if the population of higher predators

changes proportionally with zooplankton, the mortality term may be represented using quadratic mor-

tality. This functional form will have a mortality rate that depends on the zooplankton biomass. The

hyperbolic and sigmoidal forms mimic the higher predator grazing strategy (Edwards and Yool, 2000),

similar to the zooplankton grazing. Non-linear mortality functions do not produce limit cycles (Steele

and Henderson, 1992), and therefore are more preferred. When compared to in situ data, using quadratic

mortality produces the largest deviations compared to sigmoidal and hyperbolic (Mitra, 2009). Although

it is suggested that using only one mortality term is inappropriate and necessary in a planktonic food

web model as the description of zooplankton loss processes is biologically inaccurate (Mitra, 2009),

more recent simple NPZD model (e.g. Anderson et al. (2015)), and even more complex biogeochemical

model such as Palmer and Totterdell (2001); Dutkiewicz et al. (2009); Halloran et al. (2010) still use

these density dependent mortality functions, whose equations are summarised on Table 1.1.

1.2.2 Coupling NPZ model to a physical model

We also need to consider the physical oceanography aspect before running an NPZ model, as both light

and nutrients limit phytoplankton growth and are dependent on the physical oceanography. In the ocean,

nutrient is generally stored in the deeper layers of the water column, therefore a physical transport mech-

anism is needed. One of the most important physical inputs is the mixed layer depth, which marks the

depth at which temperature, salinity, and density is generally constant throughout the top layer. This

depth affects the changes in nutrient and light availability for phytoplankton in the upper layer. For ex-

ample, in high latitudes, the depth of the mixed layer is relatively deep in the winter due to cooling and

wind mixing, resulting in high nutrient concentrations in the surface waters. Due to the deep mixing,

the phytoplankton cells are moving vertically from the shallow to the deeper part of the water column.

However since the day length is short and heating is absent, despite being near the surface, the growth

of phytoplankton is low. In spring, when day length is a longer, and the mixed layer becomes shallower,



1.2. Early marine biogeochemical model: the NPZ model 9

Table 1.1: Functional forms that describe the main processes of an NPZ model.

Process Functional form Description

Light limited growth I
I0+I Hyperbolic (Saturating response)

(LI) tanh
(
− I

I0

)
Trigonometric (Saturating response)

1− exp
(
− I

I0

)
Exponential (Saturating)

I
Io

exp
(
− I

I0

)
Exponential (saturating and photo inhibiting
response). Parameter I0 irradiance at
photosynthesis maximum

V max
p
(
1− exp

(
−αI/V max

p
))

Exponential, but Io is replaced with α/V max
p

V max
p αI√

(V max
p )2+α2I2 Smith (Saturating response)

Nutrient limited growth V max
n N

ks+N Michaelis-Menten (Saturating response)
(UN)

V max
n

(1+KQ)(Q−Qmin)
(Q−Qmin)+KQ(Qmax−Qmin) Droop cell quota, KQ is a

shape defining parameter

Zooplankton grazing gmaxP Type I Linear, gmax is maximum grazing rate

gmax
P

P+kg

Holling type II (Saturating response), kg is
half saturation constant(Gz)

aP
1+ahP

Disk Equation Type II (Saturating response),
where a and h are the attack and handling,
respectively

gmax[1− exp(−λP)] Ivlev (Saturating response), λ is the shape
defining parametergmax

P2

P2+k2
g Holling type III (Saturating response)

âP
1+âhP

Disk Type III (Saturating response) â = cP,
where c is constant

P
κ+P+βP2

Type IV (Threshold), where κ and β , are
parameters that controls the decline of
population

Plankton Mortality µ Linear

(ρ , ζ ) µX Quadratic

µ
X

X+kX
Hyperbolic (Saturating response)

µ
X2

b2+X2

Sigmoidal (Saturating response). X is the
concentration of zooplankton or
phytoplankton.
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the phytoplankton concentration increases, as well as the zooplankton, (Behrenfeld and Boss, 2014).

In coastal and other open ocean systems, the nutrients are injected to the upper layer by upwelling, or

vertical currents that move upwards (Fennel and Neumann, 2014).

If the NPZ or a more complex biogeochemical model is coupled with a physical model using the

advection-diffusion equation, the change in concentrations (C) for a state variable in a 3D system is

described by:

dC
dt

=−(w+ws)
dC
dz
−u

dC
dx
− v

dC
dy

+κh

(
d2C
dx2

d2C
dy2

)
+κv

d2C
dz2 +biological equations (1.5)

The physical components from this equation are determined by the physical input or the ocean circula-

tion model. u, and v, are the horizontal, and w the vertical, velocities and ws is the vertical swimming

or sinking speed of the state variable, κv and κh are the vertical and horizontal eddy diffusivities, which

control the mixed layer. If the model is run in 1D, only the first
(
−(w+ws)

dC
dz

)
and last term

(
κv

d2C
dz2

)
of the equations are going to be used. Apart from using the advection diffusion equations, the physical

processes can be parameterised even more simply by using a slab ocean mixed layer model (Parekh et al.,

2005; Anderson et al., 2015). This physical model has a simple structure which consist of two vertical

layers. The depth of the upper layer, which represents the mixed layer, can vary seasonally and can

be determined from observations. The bottom layer is an unchanging bottom layer that contains fixed

nutrient concentrations (Anderson et al., 2015). This slab model is zero-dimensional and more computa-

tionally efficient than using advection-diffusion schemes. It is also possible to permanently set the mixed

layer depth, similar to that of Steele and Henderson (1981); Edwards and Brindley (1996), where mixing

is parameterised as Pmax/(b+ cP)M, where Pmax is the maximum phytoplankton growth under optimum

light condition, M is the mixed layer depth, b is the light attenuation by water, and c is the phytoplankton

shelf-shading coefficient. This approach to parameterising the physical forcing is usually used in simple

NPZ models to conduct sensitivity studies.

Apart from coupling the biogeochemical equations to the advection-diffusion equation, we need another

input to initialise the model, this is called the initial conditions. This input can be obtained from in situ

observations or from spinning up the model, where the model is run for a long time, using either an ocean

general circulation model output, or physical climatology input until it has reached its steady state. This

approach is used because the nature of the system is often excitable and results in high chlorophyll and

zooplankton concentrations at the first few days or time of the model run (Edwards and Brindley, 1996).

After embedding the biological equations (described from equations1.1 to 1.3) to the advection-diffusion

equation and deciding on the initial conditions, the NPZ model can now be run (Steele and Henderson,

1981; Murray and Parslow, 1999; Edwards and Brindley, 1996; Edwards and Yool, 2000).
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As computers become more powerful, apart from seeking to represent observations at particular sites

(Fasham et al., 1990; Robinson et al., 1993), NPZ models can also used to conduct sensitivity studies.

Conducting sensitivity analysis in a simple model is important in order to investigate the range of model

behaviour, before moving to a more complicated scenario (Franks, 2002), such as when adding different

types of nutrients, such as ammonia (NH4) and nitrite (NO2), or before coupling with a physical model.

These studies include: varying the biogeochemical parameters and how they affect the model dynamics

(Ruan, 2001; Edwards and Brindley, 1996; Edwards, 2001), the range of possible ecosystem behaviour

before coupling to a physical model (Franks, 2002), and what will happen if different functions are

used to describe a biogeochemical process (Steele and Henderson, 1981; Murray and Parslow, 1999;

Franks, 2002; Edwards and Yool, 2000). However, the lower trophic ecosystem is more complicated

than the NPZ model represents, therefore adopting better model formulations to represent key processes

and system feedbacks is necessary (Raick et al., 2006).

1.2.3 More complicated biogeochemical models

Riley improved Fleming’s model by adding the nutrient compartments and separating the nutrient field

from phytoplankton and zooplankton. As computing power and knowledge of the ocean biogeochemistry

increases, the addition of more model compartments to a marine biogeochemical model becomes more

common, but the core structure of lower trophic levels remains. For example the addition of detritus,

which facilitates the export of organic material back to the nutrient pool, and bacteria to quantify the

nutrient fluxes through the microbial loop (Fasham et al., 1990, 1993; Palmer and Totterdell, 2001) have

been included into marine biogeochemical models, making the NPZ model into an NPZD. Additionally,

different phytoplankton have different biogeochemical roles in the marine environment. For example,

calcifiers influence atmospheric CO2 through ocean alkalinity and carbonate chemistry, which makes

these phytoplankton types essential when addressing ocean acidification. Other types, such as diatoms,

the silicifiers, are important in terms of carbon cycle, as this phytoplankton type contributes more to the

carbon export than smaller phytoplankton (Le Quere et al., 2005). Representation of other macronutrients

apart from DIN is therefore necessary to include in a model such as silicate (Yool et al., 2011, 2013)

and phosphate (Butenschön et al., 2016; Aumont and Bopp, 2006; Le Quere et al., 2005) as different

phytoplankton functional types (PFTs) require different nutrients to grow. Furthermore, there are regions

where macronutrients are abundant, for example in the North Pacific, where nitrate concentration is high,

but the surface water is dominated by picoplankton, which is usually found in nutrient poor water, then

according to laboratory experiment, the phytoplankton growth is limited by iron (Martin and Fitzwarer,

1988). Due to this early study, iron is often included in the model in order to permit spatial variability in

phytoplankton concentrations (Yool et al., 2011, 2013; Butenschön et al., 2016; Le Quere et al., 2005).
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As the marine environment is rapidly changing, marine biogeochemical models have been devised to be

used as a tool to understand how the ocean ecosystem responds to climate change (Bopp et al., 2005)

and to project trends in ocean ecosystems under the changing global environment (Bopp et al., 2013;

Gehlen et al., 2015). This is because the microbial communities are regulating the environment and

export organic matter to the deep ocean, which is critical for the global atmospheric CO2 sequestration

and modulation (Follows and Dutkiewicz, 2011). Since most of these models explicitly represent lower

trophic levels, these can also be used to monitor the health of ocean ecosystems, and assess the poten-

tial impact of climate change on higher trophic levels (Stock et al., 2011; Gehlen et al., 2015). Sudden

changes in the ocean environment would affect various biogeochemical pathways, therefore it is neces-

sary to include more biogeochemical processes or model compartments. Models that include dissolved

inorganic carbon (DIC), alkalinity, and different PFT, such as coccolithophores may be able to address

some questions regarding how ocean acidification may affect marine calcifiers, the effect of increasing

CO2 emission and stratification on the primary production, and export of particulate matter (Steinacher

et al., 2009; Yool et al., 2013). Therefore, the information from future projections of these complex

models can be provided to policy makers or fisheries managers (Hyder et al., 2015). Biogeochemical

models, which results can be provided to end users are called operational models (Ford et al., 2012). The

operational model may be embedded in an earth system model, so that biogeochemical feedbacks can be

simulated during climate change scenarios. These include some questions about the contribution of the

ocean to the atmospheric trace gas composition in changing climate and the release of methane hydrate

that could be triggered by climate change (Kwiatkowski et al., 2014).

Operational biogeochemical models vary in complexity, but the model currency is mostly nitrogen, sim-

ilar to the simpler NPZ models. The Diatom Hadley Centre Ocean Carbon Cycle model (Diat-HadOCC)

(Halloran et al., 2010), which is the ocean biogoechemistry component of HadGEM2-ES, the Met Of-

fice’s Earth system model, has nitrogen as the model currency, and has two different phytoplankton types,

diatoms and ‘other phytoplankton’. Apart from the two plankton types, zooplankton, and dissolved inor-

ganic nitrogen (DIN), this model explicitly represents DIC, total alkalinity, silicate, and dissolved iron,

and for cloud feedbacks, a dimethyl sulfide submodel is added (Cox and Kwiatkowski, 2013). This

model is developed from a simpler model HadOCC, which is essentially an NPZD model with DIC

and alkalinity explicitly represented. Although simpler than Diat-HadOCC, this model was used as the

first ever coupled carbon-climate study in the UK, by embedding in it to the physical coupled general

circulation model (GCM) HadCM3 (Cox et al., 2006).

Another global marine biogeochemical model with similar structure is the Model of Ecosystem Dy-

namics nutrient Utilisation Sequestration and Acidification (MEDUSA-2.0), preceded by MEDUSA-

1.0, which is described as ‘beyond the standard NPZD model formulations’ (Yool et al., 2011). Al-
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though similar to the Diat-HadOCC with DIC, alkalinity, silicate, and diatoms explicitly represented,

in MEDUSA-2.0 phytoplankton and zooplankton are separated into two large (diatoms and mesozoo-

plankton) and small (non-diatoms and microzooplankton). MEDUSA also has dynamic Silicon:Nitrogen

and Carbon:Chlorophyll ratios, unlike Diat-HadOCC. As explained in the previous paragraph, besides

expanding plankton into different types or sizes, the nutrients can also be expanded. For example, a sim-

ilarly structured model with two phytoplankton and zooplankton types, the Pelagic Interaction Scheme

for Carbon and Ecosystem Studies (PISCES), have expanded its DIN compartments into ammonium

and nitrate, as well as adding phosphate to the model compartments (Aumont and Bopp, 2006). These

models have good levels of complexity that is close enough to the observations and can address some

important questions about climate change. For example the PISCES model has been used to address the

iron fertilisation questions and how it may affect CO2 levels if the experiment done for a long term (100

years), and found that iron fertilisation does not reduce as much CO2 as previously thought (Aumont

and Bopp, 2006). Using MEDUSA, it is possible to predict the shift of bloom timing in response to

the projected 21st century climate change (Henson et al., 2017). With the representation of a dimethyl

sulfide submodel, Diat-HadOCC embedded in the HadGEM2 model is able to simulate how increasing

albedo can affect the mean radiative forcing (Crook et al., 2016).

In order to address further questions and have better representation of real ocean ecosystems, some

models include even more processes, ecosystem representations, and PFTs. For example, the European

Regional Seas Ecosystem Model (ERSEM) was initially designed for shelf seas, but has expanded to a

global ocean. The model is essentially still an NPZD model, but in its most recent version, it has four phy-

toplankton and three zooplankton functional types, which are explicitly represented. Additionally, there

are five nutrient compartments, along with carbon, oxygen, and alkalinity. The biogeochemical rates are

computed within the pelagic and benthic systems, for oxygen and carbon the gas transfer is computed

on the sea surface, and the fluxes across the seabed (Butenschön et al., 2016). Overall, ERSEM has 57

model tracers, shared between the different ecosystem representations. For global models, the addition

of different PFTs is also important to represent different phytoplankton types in different oceanic re-

gions. The PlankTOM10 model has five phytoplankton types including diatoms, coccolitophores, mixed

phytoplankton, nitrogen fixers, and picophytoplankton, and three zooplankton types, protozooplankton,

mesozooplankton, and macrozooplankton (Le Quere et al., 2005). Similar to ERSEM, PlankTOM10 ex-

plicitly represents carbon, nitrogen, oxygen, phosphate, silicate, and iron cycles, along with air-sea fluxes

of CO2, oxygen, dimethyl sulfide and nitrous oxide. With more representations of phytoplankton and

zooplankton, it represents global satellite-derived chlorophyll concentration better than simpler models

(such as Diat-HadOCC and MEDUSA-2.0) (Kwiatkowski et al., 2014). More complex models are also

able to reproduce emergent relationships, for example, ERSEM can reproduce higher diatom fractions
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in the northern part of the North Atlantic better than simpler models (Holt et al., 2014), as well as the

distribution of the phytoplankton community structure (De Mora et al., 2016).

An ocean biogeochemical model is also needed for the next generation of UK Earth System Model

(UKESM1). In order to find a suitable model, an inter-comparison project was conducted. In this project,

six UK marine biogeochemical models were assessed based on their ability to reproduced bulk properties

of the ocean, such as nutrient and carbon distributions (Cox and Kwiatkowski, 2013; Kwiatkowski et al.,

2014), using the same ocean GCM and their computational cost. This study was done in a global 3-D

setting, and explored biogeochemical dynamics from an NPZD model (Palmer and Totterdell, 2001) to

multiple PFTs (Le Quere et al., 2005). From this project, simpler models with fewer state variables

showed better agreement with observational biogeochemical data (such as CO2, dissolved inorganic

nitrate, and alkalinity). From these results, the inter-comparison project recommended MEDUSA-2.0

to be adopted as the ocean biogeochemical component for UKESM1, given the model shows relatively

good performance and offer a good compromise between complexity and computer time (Kwiatkowski

et al., 2014; Cox and Kwiatkowski, 2013).

The problem with complex models is that some of the ecology is still poorly understood, for example the

optimum conditions for coccolitophore blooms, and the justification to divide zooplankton into different

sizes (Anderson, 2005), which makes some of the PFT representations lack robustness. Furthermore,

as discussed in section 1.2.1, some of the functional forms that represent biogeochemical processes are

biologically inaccurate (Flynn and Mitra, 2016; Mitra, 2009). There is also no consensus on which

processes should be represented in a biogeochemical model. Different physical models can also give

alternative simulations (Doney et al., 2009; Sinha et al., 2010). Additionally, parameter values have to

be estimated by fitting the model to data (Ward et al., 2013; Spence et al., 2016), and therefore this adds

another source of uncertainty.

1.3 Sources of uncertainties

Marine biogeochemical models are uncertain for many reasons; there is limited knowledge of the biogeo-

chemical and physical processes and how they work, limited ability to parameterised the known processes

into the models, and limitations in the in situ observations to provide for model initialisation, parameter

optimisation (making the model simulation more similar or closer to the observations by changing the

parameter values), and validation. Therefore, when constructing a marine biogeochemical model, we

need a few things to consider:

• Structure: which includes how many model compartments are represented in the model (complex-
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ity) and what model equations or functional forms are chosen to represent the biogeochemical

processes.

• Parameters: what parameter values are going to be assigned to the model formulations.

• The physical input: which physical model or input are we going to use to force the biogeochemical

model.

These area also the components that contribute to the model uncertainty. These uncertainties are inter-

linked, as they often emerge because of one or another, for example, the higher the model compartments

(complexity), the more uncertain the parameters are, and the harder it is to optimise without sometimes

resulting unrealistic parameter values (Friedrichs et al., 2006). In a multi PFTs biogeochemical model,

some processes are poorly understood, and the lack of in situ data, means parameter optimisation for

a particular model compartment would not be feasible. Earlier studies have also shown that complex

biogeochemical models are sensitive to GCMs because of the difference of mixing strength between

different GCMs (Sinha et al., 2010).

1.3.1 Parametric and structural uncertainty due to model complexity

Each of the functional forms in the model equations contain parameters (or constants), which are ad-

justable, as these values are sometimes obtained from tuning the model with observational data or from

laboratory experiments (Anderson et al., 2015). However, the corresponding parameter values are vari-

able in different regions, times, and across taxa (Hemmings and Challenor, 2012). Indeed, model pa-

rameter values are mostly constants, however adding dependence on time and space will require more

parameters to be adjusted. These parameters can be varied in order to analyse how they affect the model

output dynamics, as some parameters can affect model results more than others. This practice is called

sensitivity analysis, and is usually carried out in modelling studies before deciding the correct param-

eters to be assigned. For example, in an unforced NPZ system (the model is run without time-varying

physical input) varying maximum zooplankton mortality rate can produce oscillations in model dynam-

ics, instead of reaching a steady state, due to bifurcation (Edwards and Brindley, 1996; Edwards, 2001;

Denman, 2003). Increasing the zooplankton mortality rate from 1 to 1.5 day−1, in a similar model,

would produce oscillations between the N, P, and Z concentrations, with a period of 35 days, instead of

a steady state (the NPZ compartments becoming constant), as shown in Figure 1.3(a) and (b) (Edwards

and Brindley, 1996). Adding model compartments also alters the steady state conditions, summarised in

Figure 1.3(c) and (d). When detritus is added to the model compartments and is grazed by zooplankton,

the oscillations still occurred, when the rate is changed to 1.25 day−1, with the period of oscillation 59
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days (Edwards, 2001). This shows that oscillations still occur when the zooplankton mortality parameter

is varied, even though a model compartment is added, although the period of oscillations changed.

Figure 1.3: Time series of nutrient, phytoplankton, and zooplankton (a and b), and detritus (c and d)
output from and NPZ and NPZD model respectively. Subfigure a, shows the steady states in an NPZ
model when maximum zooplankton mortality d=1.0 day−1, b shows the oscillations between model
compartments d=1.5 day−1 (these subfigures are obtained from Edwards and Brindley (1996)). Subfigure
c shows the steady states in the NPZD model when d=1.5 day−1, and d shows the unforced oscillations
when d=1.25 day−1 (These subfigures are obtained from Edwards (2001)).

Since parameter values are adjustable, it is possible to use optimisation techniques to adjust model pa-

rameters to get closer to observations. However, parameter fitting can hide underlying model problems,

such as biologically inaccurate model equations (Anderson and Mitra, 2010). Additionally, during the

optimisation process parameter values that have been obtained could be unrealistic, with parameters

outside the observation or experimental range (Anderson et al., 2015). Calibrated parameters that are

different from the initially hypothesised values make it difficult to assess whether it is reasonable to to

use them or whether they compensate for an error in another parameter (Robson et al., 2018). Even

after optimisation, it is important to ensure that the model is giving a good fit to the observation for the

right reasons (Anderson, 2005; Friedrichs et al., 2006). Parameter sensitivity is closely linked to model

complexity. Complex models are less sensitive to varying parameters (Friedrichs et al., 2007; Kriest

et al., 2010, 2012), as the higher the number of model compartments the more parameters are constrain-

ing the model dynamics. Yet not all parameter values can be optimised using observations, as this can

result in unrealistic values and some of the parameter values cannot be obtain from observation, such

as mortality rate (Ward et al., 2010). There are also parameters, such as sinking rate, plankton density

independent mortality, and remineralisation of small detritus, that can be removed without changing the

model’s ability reproduce biogeochemical tracers and primary productivity (Ward et al., 2013). However,

the optimum parameters are specific to the assimilated observation and physical environment, showing

that the optimum parameters are generally not portable (Ward et al., 2013), which is problematic for
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a global 3-D model. This may mean that for diagnostic purposes simpler model performed better, but

not necessarily for operational purposes as they do not represent all the necessary biological processes

(Ward et al., 2013). Although complex models can reproduce better surface nutrients, in the global ocean

interior simpler models are also able to reproduce oxygen and nutrient distributions (Kriest et al., 2012).

Furthermore, in a model inter-comparison project, more complex models do not always reproduce bulk

in situ observations, such as total DIN and DIC, better than the simpler models (Kwiatkowski et al.,

2014). This leads to a conclusion that the discrepancy between more complex model and the observation

is due to poorly represented physical modelling (Friedrichs et al., 2006; Hemmings and Challenor, 2012;

Ward et al., 2013).

1.3.2 Uncertainty due to physical forcing input

The physical environment controls the growth of phytoplankton by providing mixed layer depth, tem-

perature, irradiance, which affect the growth rate of phytoplankton, and vertical velocity which brings

the nutrients to the euphotic zone (Doney, 1999). Physical forcings for marine biogeochemical model

are often obtained from ocean GCMs. Similar to the biogeochemical models, ocean GCMs also have

deficiencies, such as some physical processes are not explicitly embedded in the model equations, uncer-

tain initial or boundary conditions, structural errors in the formulations, and uncertain model parameters,

such as mixing and diffusion rates (Griffies et al., 2000).

Uncertainties in these fields can affect various biogeochemical processes such as nutrient supply and ver-

tical transport of dissolved organic matter (Doney, 1999; Najjar et al., 2007). Using assimilated NEMO

vertical velocity and mixing data, instead of from NEMO output has also been shown to enhance primary

production, but may overestimate nutrient concentration, due to the overall upwelling resulted from the

assimilated data (Raghukumar et al., 2015). Furthermore the resolution of a model can also affect the bi-

ological compartments, as it has been shown that phytoplankton production is affected by sub-mesoscale

processes (Lévy et al., 2001). For example in the oligotrophic gyres, in order to enhance productivity

in the biogeochemical model, nutrient supply can be increased by introducing eddy-induced nutrient

pumping, which requires super high resolution physical model (Popova et al., 2006; McGillicuddy et al.,

2003). Furthermore when a complex marine biogeochemical model with multiple PFTs is run using two

different ocean circulation models (NEMO and OCCAM), although the bulk properties, such as the total

phytoplankton biomass, do not show much difference, the distribution of PFTs between the two runs can

be markedly different, due to the different strength of the mixing processes (Sinha et al., 2010). This

discrepancy between simulations may be due to complex models exhibiting a wide range of behaviours,

which are not easily predictable before actually running the model (Sinha et al., 2010).
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There have been some uncertainty studies done especially for marine biogeochemical models, which

examine the effect of parameteric, complexity, and physical model uncertainties to the model results.

The next subsection will briefly summarise some of these studies and what has been found.

1.3.3 Examining uncertainties in marine biogeochemical models

As discussed in section 1.3.1, one way of examining uncertainties in a biogeochemical model is to vary

the parameter values. A different approach was tried by Steele and Henderson (1992), instead of varying

the parameter values, the equation to describe zooplankton mortality was varied between linear and

quadratic. It was shown that when the quadratic equation is used, limit cycle oscillations do not occur. A

further study by Edwards and Brindley (1996) and Edwards (2001) varied the parameter values and found

that the quadratic equation is able to produce oscillations as shown in Figure 1.3, in both NPZ and NPZD

models. Similar sensitivity studies have been applied to the seven compartment biogeochemical model

of Fasham et al. (1993), and limit cycle oscillations still occurred with all mortality functions, even with

sigmoidal and hyperbolic forms, when the half saturation coefficients are low (Edwards and Yool, 2000).

This shows that oscillations are produced regardless of the functional forms that are used to describe

zooplankton mortality, but it is more common with linear terms (Edwards and Yool, 2000). Therefore

the occurrence of limit cycle oscillations are dependent on the choice of parameter values. These studies

show how the choice of functional forms and parameter values can change the model dynamics, however

it only explores one particular process, the zooplankton mortality.

A more comprehensive study by (Kriest et al., 2012) assess both sensitivity in parameter values and

model complexity, by changing only some essential parameters (for example: the maximum growth

rate, half saturation constant for light, nutrients, and sinking speed). The model complexity varies from

nutrients only, to NPZD-DOP and is run globally. The parameters are varied by halving and doubling the

typical values for each parameter, but with a smaller range for the sinking speed, so that the experiment is

computationally feasible. Compared to the in situ nutrients, in this case phosphate, simpler models show

higher sensitivity to variations in parameters. The regional misfits also differ across different complexity

models, where more complex models underestimate nutrients in the North Pacific and the Southern

Ocean, but the simpler models overestimate nutrients in the equator, low latitudes, and northern North

Atlantic. Overall the more complex model produces a better fit with observations at the surface, but

all models are sensitive to sinking parameters (Kriest et al., 2012). The results from this study agrees

with a previous study by Friedrichs et al. (2007), where the performance of 1-D models with varying

complexity, from NPZD to a 24 component model, is assessed. The most complex model shows the

best fit with the observations, with or without data assimilation to optimise the parameters, as long



1.3. Sources of uncertainties 19

as only a few key biogeochemical parameters, such as growth and remineralisation rates, are tuned

to the observation. However if the number of parameters that are optimised are not constrained, the

success of reproducing an independent dataset may decrease (Friedrichs et al., 2006, 2007). Furthermore

underdetermined parameters are harder to fit than those with a priori values from observation (Ward

et al., 2010), making complex global biogeochemical models highly uncertain, and difficult to fit, as

they are computationally expensive and must cover various biogeographical regions. This also begs

the question whether it is still necessary to run a single deterministic model on a global level, where

parameters values are often dependent on regions, and across taxonomic groups.

Figure 1.4: Distribution of dominant PFT for March April May (MAM) and September, October, Novem-
ber (SON). Mixed phytoplankton, diatoms, and coccolithophores are shown in green, yellow, and brown
respectively in 1994 for NEMO (a) and OCCAM (b) simulation (These subfigures are obtained from
Sinha et al. (2010)).

In a 1-D model, chlorophyll and zooplankton biomass distribution is more sensitive to the model com-

plexity than the choice of physical forcing input, if the biogeochemical model is not assimilated. Yet,

after assimilation, the distribution of zooplankton and chlorophyll concentrations are more sensitive to

the physical input (Friedrichs et al., 2006). This study may be relevant in 1-D regional models, how-

ever in a global operational 3-D biogeochemical model, optimisation may be computationally expensive

(Kriest et al., 2012). Furthermore, as previously discussed, the emergent properties, such as the dis-

tribution of PFTs in PlankTOM5.2, a complex biogeochemical model with five PFTs, are sensitive to

the choice of ocean GCM (Sinha et al., 2010), as shown in Figure 1.4. When NEMO is used, mixed-

phytoplankton and mesozooplankton dominated the North Atlantic, North Pacific, and Southern Ocean
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between September to November, but in OCCAM diatom and microzooplankton are the dominant types

in these regions. This discrepancy may be due to enhanced mixing in OCCAM, but it further emphasises

that correct formulation of PFTs is important as this determines the emergent properties of a biogeo-

chemical model (Sinha et al., 2010). Anderson et al. (2010) conducted a study using similar model

(PlankTOM5.2) where the zooplankton grazing equation is varied using four different functional forms,

namely rectilinear, Holling type II, Holling type III, and Ivlev. The study uses similar parameter values

for each functional response to show how different behavioural assumptions is translated into functional

dependencies on diet and food density. The model results shows that the surface chlorophyll concentra-

tion during autumn varies greatly, especially between Holling type III and Holling type II (2.73 mmol C

m−3 and 1.58 mmol C m−3, respectively), but not so much during spring time (2.96 mmol C m−3 and

2.12 mmol C m−3, respectively). These results show that subtle differences among functional responses

can affect significantly the predicted phytoplankton densities.

It is clear from these studies, both the model functional forms that describe the biogeochemical processes

and the parameters play a big role in contributing to the model uncertainty. In the next subsection, we

will discuss how different model equations can alter the model dynamics.

1.4 Why structural sensitivity needs to be addressed

From the studies mentioned previously, changes in model dynamics can occur when the parameter values

are perturbed during conventional parameter sensitivity analyses. However, much larger changes in

system dynamics can result from changes in the structural formulation of process functions, despite

these formulae producing similarly shaped curves (Wood and Thomas, 1999; Fussmann and Blasius,

2005; Levin and Lubchenco, 2008; Flora et al., 2011; Adamson and Morozov, 2013; Aldebert et al.,

2016). This is because a change in formulation may affect the function shape, and this also affect the

stable state of the system (Aldebert et al., 2016). This is called structural sensitivity (Wood and Thomas,

1999; Flora et al., 2011; Adamson and Morozov, 2013). A study by Fussmann and Blasius (2005),

demonstrated that in a simple Rosenzwig-McArthur predator and prey model, using similarly shaped

prey uptake functions could produce different predator and prey dynamics. In the study, the parameters

are chosen so that the functions are phenomenologically similar, as shown in Figure 1.5.

Although similarly shaped, these functions are formulated differently:
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Figure 1.5: Three similarly shaped prey uptake functions from (Fussmann and Blasius, 2005). The
rectangular hyperbolic (1.6) is shown in blue, hyperbolic tangent (1.7) is shown in red, and the ivlev
(1.8) function is shown in black. Figure originally from Fussmann and Blasius (2005).

fH(x) =
arhx

1+brhx
(1.6)

fT (x) = aht tanh(bhtx) (1.7)

fI(x) = ai(1− exp(−bix)) (1.8)

Using equation 1.6, resulted in oscillations with high amplitude of (∼ 0.8), and predator and prey con-

centrations dropping close to zero, conversely equations 1.8 produced much lower amplitude (∼ 0.2) of

oscillation. Equation 1.7 produced the most striking difference as it produces a steady state, summarised

in Figure 1.6. These differences in model dynamics show structural sensitivity due to model functional

forms (hereafter structural sensitivity).

Structural sensitivity may be less significant in models built on well-tested mechanisms such as those in

the physical sciences. However, in a biogeochemical model, any mathematical functions that describe a

process are likely to be an oversimplified representation of that process. This is because biogeochemical

processes are mostly complex, and involve many interactions between diverse individuals, across differ-

ent regions and temporal resolutions in an environment that is changing rapidly (Adamson, 2015). This

is even more problematic if the process itself is not well understood so that theoretical justification for

the specific representation is weak (Adamson and Morozov, 2013). Often it is difficult to implement the

functional relations that are observed in the laboratory into a large scale ecosystem with heterogeneous

populations (Englund and Leonardsson, 2008). From simple predator-prey models, applying similarly

shaped equations can also give completely different stability and oscillatory model dynamics (Fussmann
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Figure 1.6: Different dynamics produced from similarly shaped prey uptake function 1.5. Rectangular
hyperbolic (1.6) is shown in a, ivlev (1.8) is shown in b, and hyperbolic tangent (1.7) is shown in c.
Figure is originally from Fussmann and Blasius (2005).

and Blasius, 2005; Roy and Chattopadhyay, 2007). Moreover, a specific functional form may not cap-

ture all details of the biological processes, for example, the rectangular hyperbolic function for grazing,

commonly known as the ’Holling Type II’, fails to correctly describe what happens to grazer’s move-

ments when satiation has been reached (Flynn and Mitra, 2016). The formulation that is adequate from a

theoretical point of view, does not necessarily describe the data quantitatively (Aldebert et al., 2018). In

a recent study, although the complex model promotes the survival of a species, such as phytoplankton,

the variability of dynamics in the foodweb is more strongly affected by the choice of functional forms

(Aldebert et al., 2016).

Some studies have investigated the effects of different process formulations on biogeochemical models,

e.g. Edwards and Yool (2000); Yool et al. (2011) have demonstrated that in a simple NPZ model and an

intermediately complex model, linear density dependent mortality produces the most significant differ-

ences when applied to diatoms, compared with sigmoidal, quadratic, or hyperbolic forms, as stated in

section 1.2. The choice of zooplankton grazing equations can also affect phytoplankton concentration

dramatically in a model with five plankton types, PlankTOM5.2 (Anderson et al., 2010),which has been

discussed previously, and also in self-assembling ecosystem models (Prowe et al., 2012). The Holling

type II grazing function produces 30% less total surface phytoplankton concentration compared to the

Holling type III functions in the North Atlantic and North Pacific (Anderson et al., 2010). Nevertheless,

not all processes give significantly different model output. Anderson et al. (2015) also shows that when

two similarly shaped photosynthesis-irradiance curves, namely, Smith and the exponential function, were

used in an NPZD model, the concentration of chlorophyll during the spring bloom was only slightly

higher (0.2 mg m−3) for the exponential function (Anderson et al., 2015). For these studies, only one
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process function is altered in the model, despite multiple processes that might be structurally sensitive.

Therefore, a thorough assessment on how structural sensitivity affects the results of an intermediately-

complex or an operational model, with more biological processes that are varied, is needed (Aldebert

and Stouffer, 2018).

There are models that avoid the issue of structural sensitivity by constructing a generalised bifurcation

diagram in a generalised parameter space, to explore the possible model dynamics (Gross and Feudel,

2006). However, this kind of model does not address alternative stable states that can be affected by

structural sensitivity (Aldebert et al., 2016). Further, the discrepancies reported from simple interaction

models suggest that the dynamics of complex biogeochemical models need to be tested by altering their

default functional forms (Anderson and Mitra, 2010; Anderson et al., 2010). To properly address the

structural sensitivity in an operational biogeochemical model, it is possible to generate a model ensemble.

1.4.1 Generating ensembles to address uncertainty

In order to address the alternative simulations representing structural uncertainty, it is possible to generate

an ensemble. Here, an ensemble means multiple model variations are run to acquire a range of future

predictions, or simulations, with its uncertainties represented by the spread of outcomes. The ensemble

approach has also been used to inform policy makers and planners to estimate uncertainty associated

with physical model projection, so that appropriate strategies for adaptation could be identified (Murphy

et al., 2007). This also means that the ensemble should represent the uncertainties that may also occurred

in the true value from the observation.

In climate modelling, perturbed physics ensembles have been developed to investigate multiple param-

eter uncertainty (Murphy et al., 2007; Tinker et al., 2016). The ensemble can be generated by varying

uncertain parameters according to prior studies of relevant physical processes, or using an ensemble

Kalman filter (Murphy et al., 2007). Another approach to ensemble modelling is by exploring multiple

parameterization (functional) uncertainties (Subramanian and Palmer, 2017). Additionally, it is possible

to generate an ensemble which consists of multiple climate models, or multimodel ensembles, although

since some models share similar process representations and parameterisations, it is often that nominally

different models might still have similar biases, because the models are not independent (Abramowitz

et al., 2019). Although uncertainty is always present in every model, it is possible to utilise this so to im-

prove the skill of climate models. The next section will introduce data assimilation, where uncertainties

are used to make model more consistent with observation.
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1.5 Utilising uncertainties: Data Assimilation

Data assimilation aims to provide the best possible descriptions of the time varying ocean circulation,

and therefore helping to improve the skill of climate models (Stammer et al., 2015). Some quantities in

the ocean are difficult to observe, such as vertical velocity, mixing, and viscosity coefficients, and data

assimilation can help to estimate these quantities (Stammer et al., 2015). In order to apply this method,

an error estimate of the model and available observations are required. Data assimilation is also used

in numerical weather prediction to create initial conditions for atmospheric models designed to forecast

over short time scales (within hours or days) (Bouttier & Courtier (1999)). This approach is adopted by

oceanographers to initialise ocean and seasonal forecasts (e.g. Anderson et al. (1996)).

Ocean data assimilation converts the available information from the observations, which include making

a model more consistent with the observations, within the error estimates of both the model and the ob-

servations. In order to carry out this approach, a model that is being constrained by quality controlled

data, in which error information about both the model and observations are available is required. The

mechanism for filtering and extracting the useful information from inaccurate and noisy data and com-

bining them with the model is provided from the assimilation method. The mechanism in carrying the

information forward from earlier observations to the analysis time and beyond is provided by the model

(Anderson et al., 1996). There are two main methods, one is sequential where model and data are com-

bine at given (analysis) times, then integrated forward to the next assimilation time by using the analysis

as initial conditions for the model, and the other is a trajectory method, where the best model trajectory

that fits the data that are gathered during a particular time interval is selected. In this method the model

needs to be varied so that the trajectory analysis can be carried out.

As explained in previous sections some model parameters, for example the half saturation coefficient,

vertical mixing coefficient, or the external forcings, such as vertical velocities, are uncertain. In the tra-

jectory method, these uncertainties are utilised to form model trajectories, to then be used in minimising

the ’cost function’ which measures the difference between the model trajectory and the observations. As

seen in the pilot experiment in section 2.9, the variability arising by altering different functional forms

is large, in terms of time period and also the mean overall concentration. This high range may be able

to encompass the time varying observational data and errors, without having to vary further parameter

values.

In marine biogeochemical models, data assimilation has been used with ocean colour data, such as Sea-

WIFs (Ford et al., 2012; Ford and Barciela, 2017; Ciavatta et al., 2014). The results show that the model

bias is reduced, root mean square error, and also the correlation with GlobColor products is improved.

However if the physical forcing for the model is assimilated independently, although resulting in better
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correlations with satellite-derived chlorophyll, the bias is increased, especially for nutrients. This may

be because the fluctuation of vertical nutrient transport due to spurious vertical velocity, or gravity wave

generation in the assimilation cycle initialisation (Ourmières et al., 2009; Raghukumar et al., 2015). This

evidence will be presented in section 2.5.3.

From section 1.3, studies have shown that the effect of model uncertainties can vary across different

oceanic regions. The next section will explore the characteristics of different oceanic regions based on

oceanographic stations, where physical, chemical, and biological oceanographic data have been observed

and analysed regularly over a long period of time. These stations are used to monitor the changes in the

ocean environment and how it impact the ecosystem, and also provide observational data to construct,

run, optimise, or validate biogeochemical models.

1.6 Variability of the biogeochemistry at different oceanic regions

Different regions in the ocean are characterised by different physical and biogeochemical signatures. The

North Pacific Tropical Gyre is characterised by low nutrients and strong stratification (Barber, 1988). The

sudden increase in phytoplankton biomass, also called a bloom, at the surface only occurs when the upper

ocean stratification is changed (Corno et al., 2007), however high phytoplankton concentrations can also

occur below the mixed layer, also known as deep chlorophyll maxima (DCM). The concentrations of

the DCM is often higher than at the surface. The coastal region, is often characterised by high nutrient

availability at shallower depths and its transport to the euphotic zone is controlled by upwelling (Walsh

et al., 1999). In the subpolar region, the phenomenon of the spring bloom has fascinated oceanographers

since the 1950s (Sverdrup, 1953). It has been shown that there is a link between winter mixing depth

and the occurrence of this phytoplankton bloom, which implies that weaker winter mixing can reduce

the bloom cycle (Behrenfeld et al., 2013).

These differences in physical and biogeochemical processes can be partitioned into four biomes, and

further into various biogeographical provinces, as shown in Figure 1.7. According to Longhurst et al.

(1995), seasonal phytoplankton growth observed from satellite-derived chlorophyll and physical pro-

cesses in the upper ocean are used to partition the provinces. There are four primary domains of the

global pelagic ecosystem: Polar, Westerlies, Trade Winds, and Coastal. The first domain is characterised

by the seasonal sea ice that results in brackish water that occur during spring and summer. The ac-

tive bloom occurs as soon as ice break-up occurs. The defining characteristic of the westerlies is the

deepening of the mixed layer in the winter that is caused by the westerlies wind stress. This region is

further split into 16 secondary biogeochemical provinces, which include the North Atlantic Subtropical
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Figure 1.7: Biogeographical provinces, acronyms are defined by Longhurst et al. (1995). The provinces
are essentially partitioned into four biomes: polar (pink), westerlies (blue), trade winds (lime green), and
coastal (amber). The figure is taken from Ecological Geography of the Sea (Longhurst, 2007).

Gyre (NAST(W)) and North Atlantic Drift (NADR). In the trade wind domain, it is expected that the

mixed-layer algal blooms are not light limited, the seasonal change in mixed-layer depth changed due to

a geostrophic response to the wind field, and the nutrient renewal in the mixed-layer only occurs at strong

divergences (Longhurst et al., 1995). This biome is further partitioned into 12 provinces, which includes

the Caribbean (CARB), North Atlantic Tropical Gyre (NATR), and North Pacific Tropical Gyre (NPTG).

Finally the coastal domain, has significantly modified circulation produced because of the coastal topog-

raphy and coastal wind regimes (Longhurst et al., 1995). Often in this domain, coastal upwelling and

anticyclonic eddy fields dominate. However, these biogeographical regions can be fluid. For example

the unification of tropical and subtropical Pacific regions during ENSO events (Barber 1998). Barber

(1998) also distinguish further the biogeographical region into six ocean basin ecosystems, which in-

cludes Coastal upwelling, Low latitude gyre, Equatorial upwelling, subarctic gyre, southern ocean, and

eastern boundary currents. These regions are distinguished by stratification strength and duration, nutri-

ent level and source, the amount of primary productivity, and processes that regulate the productivity. For

example the low latitude gyre is characterised by strong and permanent stratification, with oligotrophic

(nutrient limited concentrations) conditions. This results in low to medium primary productivity, which

is regulated by the grazing and physical processes (Ducklow, 2003).

As discussed earlier, observing the marine environment has been done in order to understand a variety of

interacting processes via positive or negative feedbacks (Dickey and Bidigare, 2005). Due to challenges
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and problems faced by oceanographers, such as climate change, pollution, and eutrophication, ocean

observational programmes have become inter-disciplinary, in order to understand the interaction between

physical, biological, chemical, and geological processes. Therefore in some of oceanographic cruises,

inter-disciplinary observations are common, for example the North Atlantic Bloom Experiment (NABE)

spanning from April to May 1989 (Harrison et al., 1993), AMT cruise (Aiken et al., 2000) that takes place

every year since 1995 between summer and fall, and the Ocean Surface Mixing, Ocean Submesoscale

Interaction Study (OSMOSIS) that took place between April to September 2015 (Hemsley et al., 2015).

However, these observations only take place for a short period. Although AMT cruises, take place every

year, it only covers a certain period (e.g. between September to October), and therefore only the long

term trend for that season can be drawn from the cruise. In one of the first ocean biogeogchemical studies,

in the Northeast Pacific Ocean, significant variability in rates of primary production and particle fluxes

have been observed (Karl and Lukas, 1996). Yet, there are no clear relationships between new production

and primary production. Although the intensity and scope of the research project is comperhensive, high

sampling frequency is needed in order to resolve the natural variability in the oligotrophic ocean (Karl

and Lukas, 1996). This further emphasises the needs to have long term frequent holistic integrative

measurements.

1.6.1 Long term observation stations

Long term regional ocean monitoring has been done in order to gain a deeper understanding of the

variability of the natural habitat, recording multi year trends, and how global change of the environment

that might arise from human activities affect the variability (Karl and Lukas, 1996). It has documented

the increase of CO2 over the years (Doney et al., 2012). In fisheries management, long term data are

also essential for informing a precautionary approach (Hawkins et al., 2013). As one of the objectives of

JGOFS, these regional monitoring stations are now spread across different biogeographical provinces:

station ALOHA, which is located at the North Pacific Tropical Gyre within the trade wind region; station

BATS, located in the North Atlantic Subtropical Gyre within the westerlies, but also the trade wind region

of North Atlantic Tropical Gyre; L4 and Cariaco which are located in the Northeast Atlantic Continental

Shelf and Guiana Current respectively, within the coastal region; and station PAP, situated in the North

Atlantic Drift, within the westerlies. These stations have available chlorophyll and DIN data at least

at the surface or depth profiles. Apart from monitoring the changes in the ocean environment, the also

provide observational data to build, run, or validate biogeochemical models. This section will explain

the characteristics of each station, such as the average DIN and chlorophyll concentrations, along with

the mixed layer depth, and the measuring strategies.
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Figure 1.8: SeaWIFs-derived mean 1998 chlorophyll-a (mg m−3) overlain with the 5 oceanographic
stations time series site (Red dots). These stations are located in different oceanic regions: oligotrophic
(ALOHA and BATS), coastal (L4 and Cariaco), and abyssal plain (PAP).
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Station ALOHA

Station ALOHA (A long term Oligotrophic Habitat Assessment) is a deep-water hydrostation in the

NPTG (22◦45’N 158◦00’W). The first water sample was taken on October 1988, and the following

samples are taken monthly. These are collected from the surface to 50m above the seafloor (4800m).

The measurements that are conducted at this station include dissolved nitrate and nitrite, silica, and

chlorophyll-a (Karl and Lukas, 1996). However recently, other measurements have been added (such as

alkalinity, pH, dissolved organic nitrogen, see Hawaii Ocean Time Series (2017)). The main objective of

the measurements is to provide a database for modeller to validate and develop biogeochemical models

(Karl and Lukas, 1996).

At station ALOHA, surface warm water and deep permanent pycnocline and nutricline are common

features. In the upper 100m of the water column, nutrient concentration is very low (< 15nM), and

the nutricline (2 µmol kg−1 horizon of nitrate plus nitrite concentrations) depth varies seasonally with

a range of 170 – 191 m (Dave and Lozier, 2010). The annual mean mixed layer depth (MLD) at this

station has increased from 1997 to 2004 from 56m to 66m, which may be caused by the El-nino Southern

Oscillation (ENSO) (Corno et al., 2007). The seasonal range of MLD is between 36-96 m, where deeper

mixed layers occur in winter (Dave and Lozier, 2010). A continuous DCM, that usually occurs below the

mixed layer is observed at 74 – 140 m, because light-attenuating compounds at the surface are rare, and

therefore photosynthetically available radiation (PAR) is sufficient to support it, with DCM concentration

could go up to 0.4 mg m−3 (Letelier et al., 1993), as shown in Figure 1.9.

Although chlorophyll levels are low in the top 25m (chlorophyll mean ∼ 0.08 mg m−3), phytoplankton

blooms have been observed to occur during late March, where concentrations can go up to three times

of the mean (Letelier, Karl, Abbott, Flament, Freilich, Lukas and Strub, 2004), with another small peak

during summertime, which comprises of nitrogen-fixing phytoplankton. Due to the low nitrogen con-

centration in the euphotic zone, nitrogen fixation (diazotrophy) is an important source of nitrogen, and

supports the summer chlorophyll booms, although the bloom is not as high as the one in spring (Villareal

et al., 2012). The increase of chlorophyll concentration at ALOHA is not always due to the entrainment

of deep nutrients, but it may be due to photo-adaptation and changing photosynthetic efficiency with

deeper mixing that occurred during winter months(Dave and Lozier, 2010). In the absence of large-scale

climate events, such as ENSO, the North Pacific has stronger stratification than the North Atlantic (Dave

and Lozier, 2010). This reduces vertical mixing and restricts deep nutrient inputs to the surface (Letelier

et al., 1993), as station ALOHA is located at the relatively calm southern and eastern recirculation zone

of the North Pacific Subtropical Gyre. In the event of low mixed layer depth variability and detectable

pulses of nutrients, the proliferation of diazotrophs occurred and the pelagic ecosystem shifted from
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Figure 1.9: Subsurface chlorophyll maxima at station ALOHA (a) and dissolved inorganic nitrate and
nitrite (b) at station ALOHA between 1989 to 2000. The figure is obtained from Huisman et al. (2006).
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nitrogen limited to phosphorus (Letelier, Karl, Abbott, Flament, Freilich, Lukas and Strub, 2004).

Phytoplankton community structure can also be influenced by physical changes. A study Corno et al.

(2007), reported an increase in primary production and biomass at station ALOHA, that coincide with

changes in upper ocean stratification, which includes the change in MLD, which may link to larger-

scale climate forcing, such as ENSO and Pacific Decadal Oscillation. These changes are potentially

influencing the nutrient dynamics in the upper ocean, and light availability (increasing mixing resulted

in decreasing daily integrated light in the mixed layer). These changes are accompanied by a shift in

plankton assemblages from larger eukaryotes to smaller prokaryotes in the upper ocean.

Station BATS

The Bermuda Atlantic Time-series is located in the northwest Sargasso Sea, in the subtropical gyre

of the western North Atlantic (32◦ 50’N, 64◦ 10’W, NASW(W)), bounded on the west and northwest

by the Gulf Stream and to the south by the North Atlantic equatorial current (Steinberg et al., 2001).

At this station hydrographic properties, such as temperature, salinity, and conductivity, and biological

parameters, such as nitrate, silicate, and chlorophyll-a have been sampled monthly since 1988. Surface

temperature and mixed-layer depth varies seasonally by 8◦–10◦ C and from >200m in the winter to <10

m during summer respectively (Bates, 2001).

During April to October, high heat flux and low wind stress causes a strong thermal stratification. During

this period, nutrients are absent within the euphotic zone (Lipschultz, 2001), making primary production

rates low, but a subsurface chlorophyll maximum is present between 60 and 120m (Steinberg et al., 2001).

The DCM at BATS which consists of chlorophyll-a and chlorophyll-b, peaks at 100m, which can go up

to 0.7 mg m−3 (Steinberg et al., 2001), as shown in Figure 1.10. The underlying Subtropical Mode Water

(STMW), that is found in a thick layer of nearly uniform temperature around 18◦C, controls the nutrient

availability of nutrients in the North Atlantic Subtropical Gyre. The thickening of STMW layers depletes

the nutrient in the Gyre, as it push the nutrients deeper (Palter et al., 2005). However in the winter deep

vertical mixing, brings nutrients into the euphotic zone, making the nitrate concentration increase up to

0.5 mmol m−3 (Lipschultz, 2001), resulting in a short period of spring bloom between January to March,

making the initiation occur in late December, when the MLDs were deeper than the euphotic zone, and

termination is between April–May, before the MLDs starts to deepen. The phytoplankton bloom at BATS

occur due to the increase in phytoplankton group, instead of the increase in biomass of a particular group

that is present in the water (Steinberg et al., 2001). From these description, although the trade winds

region is not light limited which is similar to BATS, the mixed layer deepening in winter is more similar

to the westerlies domain (Longhurst et al., 1995).
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Figure 1.10: Dissolved nitrate and nitrite (a) and chlorophyll a concentration (b) at station BATS between
1989 to 1997. The figure is obtained from (Steinberg et al., 2001).

Biogeochemistry at Station BATS has also been shown to be driven by climate variability, such as ENSO

(Bates, 2001). Similar to the North Pacific, in the Sargasso Sea, there has been an increase in integrated

chlorophyll, primary production, and prokaryotic phytoplankton between 1996-2007, which coincide

with large-scale climate forcing. However, unlike the North Pacific, there are no significant changes

in MLD and upper ocean stratification (Lipschultz, 2001). Nevertheless there was an increase in ver-

tical mixing due to the negative anomalies in the North Atlantic Oscillation (NAO). This NAO index

is the dominant climate mode in the region, and negative values would result in intensified westerlies.

This changes the mixing therefore increasing the nitrate gradients, which also raise the concentration of

cyanobacteria, Synechococcus (Lomas et al., 2010). Additionally in a modelling study, it is suggested

that the thinning layer of STMW, which in turn increases the nutrient supply in the upper ocean, also

contributes to the increase in chlorophyll and therefore primary production at BATS (Saba et al., 2010).

Station Cariaco

This station in located on the Venezuelan continental shelf, in the eastern part of the Cariaco basin

(10◦30’N, 64◦40’W). It has been the site of sampling for marine biogeochemical and ecological obser-

vation since 1995, as part of the Carbon Retention in a Coloured Ocean (CARIACO) Time-Series study

(Muller-Karger et al., 2001). It is bound to the north by a sill, connecting Margarita Island to Cabo
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Figure 1.11: HPLC-measured chlorophyll from January 1996 to October 2000 (Time 1) and July 2006
and December 2010 (Time 2). Dots represent the data points from the in situ observation at station
Cariaco. This figure is obtained from Pinckney et al. (2015)

Codera, at a mean depth of about 100m with two channels breaching this sill. It restricts any water ex-

change below 140m, therefore below 275m, permanent anoxia occurs because of restricted circulation

and high primary productivity (Muller-Karger et al., 2001).

Coastal, wind-driven upwelling in the southern Caribbean sea has been linked to the high productivity in

the Cariaco Basin (Walsh et al., 1999). The upwelling season occurs between December and April due to

trade winds, and accounts for∼ 70% of annual depth integrated primary production that is dominated by

microphytoplankton consisting of diatoms, dinoflagellates, and coccolithophores (Muller-Karger et al.,

2001). During these months, the total chlorophyll-a increases (up to 3 mg m−3) (Pinckney et al., 2015),

and peaks between April and May exceeding 6 mg m−3 (Muller-Karger et al., 2001). The chlorophyll

concentration then declines to <0.2 mg m−3, in June and December (Muller-Karger et al., 2001). Sub-

tropical Underwater (SUW), that lies north of 14.5◦ N between 100 and 200m, depth and shallower than

150m south of 14.5◦ N, is characterised by high salinity (∼ 36.85 PSU). Intrusion of deeper water from

the Caribbean sea into the Basin occurrs when the salinity gradient tilts upward towards the southern

Caribbean around the same time as the upwelling events (December and the following June) (Morrison

and Smith, 1990). Within the layer, Nitrate of 5-10 µM is stored (Morrison and Nowlin, 1982). When

there is an upward tilt, nitrate is therefore elevated to the surface, which leads to elevated nutrients,

stimulating phytoplankton growth (Muller-Karger et al., 2001). However in May-November, the rainy

season caused an increase in stratification of surface waters, reducing primary productivity (Lorenzoni

et al., 2013).

There were weaker trade winds between 2006-2010 which changed the physical and biogeochemical

conditions of the basin. Furthermore by 2010, the average SST has increased by ∼1.0◦C, compared

to 1995, and the mixed layer depth increased (Taylor et al., 2012; Pinckney et al., 2015). The surface
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chlorophyll decreased in concentrations between 2006 and 2010. However, the 100m integrated chloro-

phyll between 1996 and 2000 is significantly lower than between 2006 and 2010, especially when only

integrated from 55-100m. These are summarised in Figure 1.11. This increase in subsurface chlorophyll

is associated with less intense upwelling and greater light penetration due to the decrease in primary

production. A decrease in diatoms has been reported, but other microphytoplankton have increased in

abundance within the top 100m (Pinckney et al., 2015). This is consistent with earlier studies where a

decrease in large cells can be triggered by a small increase in temperature (Mousing et al., 2014). These

observations further shows that phytoplankton community structure can be shaped by the physics of the

ocean.

Station L4

Station L4 is located 13 km off the coast of Plymouth (50◦ 15’N, 4◦ 12.3’W; 50m depth) in the Western

English Channel where its dynamics is influenced by tides. It stratifies constantly in summer where

nutrients are depleted and a distinct thermocline is observed (Smyth et al., 2010). During periods of

strong south westerly wind the hydrography is influenced by both oceanic and also from the riverine

flood water from the nearby rivers (Smyth et al., 2015). Additionally, multi-decadal oscillations of

several environmental parameters at L4 are driven by the NAO (Reygondeau et al., 2013), such as the

seasonal variability, timing, and amplitude of wind speed and direction and sea surface temperature

(SST) and stratification (Molinero et al., 2013).

Surface measurements of Chlorophyll-a and inorganic nutrients are taken weekly. Chlorophyll a is avail-

able from 1999, and surface nutrients have been collected since 2000 at station L4. From the satellite

image, the background chlorophyll a concentration in the Western English Channel is typically 1 mg

m−3 throughout the year. In the middle of the channel, the bloom occurred for a long time, from June to

August, which mainly consist of dinoflagellates (Smyth et al., 2010). However, two bloom events occur

every year, with sharp peaks for short durations; in May and September where it could go up to 8 mg

m−3 in the autumn, but the typical value is observed to be around 2 mg m−3, as shown on Figure 1.1.

Diatoms mainly dominates the spring bloom whereas are found dinoflagellates in autumn, as they can

access the nutrients below the nutricline and swim back up to access light at the surface (Ryan et al.,

2009; Smyth et al., 2010).

Another aspect that controls the length of the phytoplankton bloom is the availability of nutrients. In

January, surface nitrate can get up to 8µM, however between May and July, it falls below the detectable

limit. Before the spring bloom in March, a maximum of 0.25µM has been measured, although it then

falls below the detectable limit until July, because it has been taken up by the phytoplankton. In Septem-
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ber and October, when thermocline vanishes and stratification has been broken, nitrate is replenished in

the surface layer (Pingree et al., 1977), which causes the early autumn bloom.

Changes in phytoplankton community structure and bloom phenology have been observed in station L4.

A prolonged duration and amplitude of summer SST have occurred since the early 1990s, which has

also been observed in the east North Atlantic deep water. This significant environmental change results

from the decline of temperature gradient that occurrs between 1995-2007 and therefore determines the

dynamics of the food web (Falkowski and Oliver, 2007). Due to the shift in NAO index, small summer

and autumnal peaks occurs, but the spring bloom peak decreases between 1995-2000 (Reygondeau et al.,

2015). However, the two bloom events returned in 2001-2007, but with lower average chlorophyll and

lower spring bloom amplitude (Molinero et al., 2013). Earlier observations have also shown that in the

mid-late 1990s there was a decrease in large diatoms and an increase in phyto-flagellates (Widdicombe

et al., 2010).

PAP-SO

The Porcupine Abyssal Plain sustained Observatory (PAP-SO) is located in the Northeast Atlantic, (49◦

N, 16.5◦ W), which is in the westerlies biomes in the NADR province. At this site, temperature and

salinity have been measured using Seabird SBE 37-IM MicroCAT recorders at 30m. Biogeochemical

parameters such as nitrate, chlorophyll-a fluorescence and p(CO2), were also measured using sensors on

the frame, between 2002 and 2007, at a single depth varying from 20 to 225, which fluctuates with the

current (Hartman et al., 2015). The sample for nitrate is taken twice daily, between 2003 to 2005. The

mooring was deployed three times between 2003 to 2005; between 12 July 2003 to 16 November 2003,

17 November 2004 to 16 June 2004, and 22 June 2004 to 18 July 2005 (see Körtzinger et al. (2008)).

The characteristics of station PAP are similar to the North Atlantic. Observed nitrate from the mooring

shows an increase in concentration during the winter and depletion between spring and summer due to

phytoplankton consumption. From shipboard measurements, winter nitrate concentrations has experi-

enced a decline (from 8.3 to 4.9 mmol m−3 between 2003-2005) over the three year period (Hartman

et al., 2010). The North Atlantic Current (NAC) influences station PAP. The changes in nutrient con-

centration in 2003 to 2005 coincide with the shift in NAC from a southern mode to a more northerly

crossing (Bower and von Appen, 2008). The northern mode made the PAP site more exposed to sub-

tropical condition, with lower nitrate concentrations (Hartman et al., 2010, 2015). This declines results

in a further decrease in annual new production over the productive period (from March to August), from

85.4 gCm−2a−1 in 2003 to 40.3 gCm−2a−1 in 2005, which also agrees with the satellite observation from

SeaWiFS.
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Figure 1.12: Weekly mean±1 standard deviation of chlorophyll-a in 2004 from in situ (at an average±1
standard deviation depth of 37.56 ±14.82 m) on the mooring at the PAP observatory sites (open circles),
compared with the SeaWIFS-derived chlorophyll concentration (black circles) within 200km radius of
the PAP observatory site. The figure is obtained from Hartman et al. (2010)

As at L4, at PAP, two blooms occur through the year, one in spring (April) and another in summer.

This has been observed by satellite and also the mooring sensors. However the satellite-derived product

underestimates the in situ chlorophyll, which may be due to the development of a seasonal DCM which

cannot be detected by the satellite. The spring bloom of 2004 peaked in late April, as shown in Figure

1.12, although it shifted into mid April in 2005 (Hartman et al., 2015). This may be caused by the

shoaling of the MLD that occurred earlier in the year in 2005 than in 2004 (Hartman et al., 2010).

Although the data at PAP is limited to short period, these biogeochemcal changes further show that at

this station, a prolonged warming period that affected the bloom timing also occurred, consistent with

that reported at station L4.

1.6.2 Similarities and differences

At most of the oceanographic stations, phytoplankton blooms occur when light and nutrients are suffi-

cient, which usually occurs in spring. The availability of nutrients in the euphotic zone is controlled by

the upwelling and mixing. Not long after an episode of deep winter mixing, an increase in phytoplankton

concentration in the surface usually occurs. Therefore when there has been a change in the physics, such

as ENSO, the weakening of trade winds, or an increase in temperature, the timing and the taxonomic

composition of the phytoplankton bloom would change. At most stations these physical changes have

caused an increase in primary productivity in the last two decades (Corno et al., 2007; Saba et al., 2010).
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The oligotrophic ocean is characterised by very low nutrients in the euphotic zone, and therefore low

chlorophyll concentration (surface mean ∼ 0.08 mg m−3). Small phytoplankton then dominates the

water, and during times of low nitrogen, the diazotrophs start to increase. Higher concentrations of

chlorophyll are often observed below the mixed layer, due to the absence of light attenuating compounds.

The DCM at ALOHA occurs deeper than at BATS and the MLD at ALOHA, although it has increased

in depth over the past decade, is shallower than the MLD at BATS during the winter. High nutrient

concentrations in the euphotic zone at BATS occurred in early spring after winter mixing, which is then

followed by an increase in chlorophyll concentration in the euphotic zone. At ALOHA, although the

increase in subsurface chlorophyll is around a similar time, it is not due to the increase in nutrients, as

the nutricline occurred deeper than the deepest MLD, but due to photo-adaptation and therefore more

efficient photosynthesis.

In the coastal and abyssal plain regions, the mean chlorophyll and nutrient concentration in the euphotic

zone is higher than the oligotrophic (surface DIN mean can go up to 8 mmol m−3 at the coastal station

and in the oligotrophic region, the highest DIN concentration is only ∼ 0.5 mmol m−3). The phyto-

plankton bloom in the light limited regions, such as L4 and PAP occurs twice. First one during spring

and second one in autumn or summer at L4 and PAP respectively, when light and nutrients are sufficient.

At Cariaco, the bloom occurs in late spring (between April and May) after upwelling in December to

April. Usually in the coastal regions, the bloom is dominated by large phytoplankton such as diatoms

and coccolitophores. However due to changes in the physical conditions, a community shift to smaller

phytoplankton has occurred at both coastal stations, showing how temperature can change phytoplankton

community structure. At these stations, the peak of the phytoplankton bloom concentration can go up to

8 mg m−3, although at Cariaco, there has been a decline in the concentration at the bloom peak between

2007 to 2010, and at L4 a decline in chlorophyll concentrations has been observed since 1995.

The oceanographic stations discussed above show how variable the oceanic conditions are at different

sites. Even though some stations are located in the oligotrophic regions, the distribution of nutrients

and therefore phytoplankton are different. This further shows the challenges in deterministic global

biogeochemical modelling to reproduce the observations and therefore provide future predictions under

different climate scenarios. From these observations, a change in the timing of a phytoplankton bloom

can reflect a change in both physical and chemical environment. Therefore in order to assess the impact

of changes due to uncertainties in marine biogeochemical models, the timing of phytoplankton bloom

can be used to assess how structural uncertainty affect the model prediction. Furthermore, to provide

uncertainties in the phytoplankton bloom in regions where harmful algal blooms occur, an ensemble can

be used to inform policy makers and to devise adaptation strategies (Hyder et al., 2015) or early warning

system. Therefore a method of generating an ensemble, as well as assessing biogeochemical model
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uncertainty, is needed. The ensemble model would also need to be able to capture the observations better

than a single deterministic model.

1.7 Aims and Objective

Marine biogeochemical models are uncertain, and there are different sources of uncertainty: paramet-

ric, structural - which consist of model complexity and the choice of model equations - and physical

input. From previous studies, altering the model process equations have been shown to produce larger

differences in model dynamics, compared to altering a large range of parameters. Assessing the model

sensitivity thoroughly can be done by using the ensemble method, where multiple model variations are

run to acquire a range of model simulations. The sensitivity of the climate model have been assessed

using ensemble method, by perturbing the physical model parameter (Murphy et al., 2007; Tinker et al.,

2016) or by running multiple climate models, also known as multi-model ensemble (Tebaldi and Knutti,

2007; Abramowitz et al., 2019), but using an ensemble method is not yet common in marine biogeo-

chemical modelling.

This thesis aims to explore the structural sensitivity in a marine biogeochemical model arising from

the model process equations (structures) by generating a perturbed biogeochemistry ensemble. Struc-

tural sensitivity has been assessed in marine biogeochemical models in previous studies (Ward et al.,

2013; Yool et al., 2011; Anderson and Mitra, 2010), however, these studies have not assessed all the key

biogeochemical processes either separately or together. In this study, we aim to assess the uncertainty

arising from a moderately complex biogeochemical model ensemble of outputs generated using all pos-

sible functional forms within the NPZ compartments. This is because these compartments are the heart

of most of the marine biogochemical model regardless of the complexity. This is a new approach to

generate biological model ensemble, which is different to varying the parameter approach. Generating

biogeochemical model ensemble, as done in this thesis, may also contribute to data assimilation (e.g.,

for Trophic Diffusive Model (TDM) (Cossarini et al., 2009) and NPZ model (Roy et al., 2012)), where

model ensemble are generated routinely. Marine biogeochemical models are also highly sensitive to

the physical forcings that drive the biogeochemical tracers (Doney, 1999; Sinha et al., 2010; Friedrichs

et al., 2006). For the completeness of this approach, we will explore the impact of perturbing physics

and biology separately and together. Signature characteristics from the ensembles are also explored, so

that it may be possible to infer which processes (physical, biological, or both) may be responsible for the

temporal changes seen from in situ observations.

The main objectives of this project are:
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1. To develop a method to generate a biogeochemistry ensemble by perturbing the key biogeochemi-

cal process formulations in an intermediately complex biogeochemical model (Chapter 2).

2. To evaluate the performance of the new ensemble model and default single structure model with

the available in situ observation and satellite-derived products. Additionally, we will explore how:

a) altering the biogeochemical process formulations affect the model predictions of plankton

bloom and

b) how the effect of structural sensitivity vary across different regions.

3. Extend the perturbed biogeochemistry methodology to include perturbing the physics in the model

and generating perturbed physics-biology ensemble. Further, we will also develop methods to

minimise the computational cost of such combine perturbations systematically. (Chapter 4)

4. To compare the impact of perturbing the biogoechemistry and physics on model outputs in different

regions of the ocean. More specifically we will look into the signatures and characteristics of the

ensemble generated from perturbing the biogeochemistry and physics. (Chapter 5)

1.8 Thesis Outline

In this chapter, the construction of a marine biogeochemical model, its evolution and sensitivities to

model inputs and equations have been examined. The concept of structural sensitivity and how to exam-

ine the effect of this uncertainty in an intermediately-complex biogeochemical model in different regions

using a 1-D model have also been explored.

Chapter 2 will describe the methods of exploring the structural sensitivity in more detail, including the

model output, various functional forms that made up the ensemble, which will address objective 1. The

model metrics, including how to determine phytoplankton bloom phenology, will also be described.

Chapter 3 will examine the effect of structural sensitivity of the ensemble, by using the metrics described

in Chapter 2 at different oceanographic stations identified in Chapter 1. This chapter will address the

research questions in objective 2. Along with some discussion of the biases against the observation data

and possible further work towards 3D modelling.

Since a 3D model is computationally expensive, it is necessary to reduce the number of the perturbed

biogeochemistry ensemble, while still retaining the ensemble range and other statistical properties. Fur-

thermore, as described in the introduction chapter, biogeochemical models are also sensitive to the phys-

ical input. Therefore the method for generating perturbed physics ensemble, by adding different strength

noise to the vertical velocity will be explained in 4. This chapter will discuss the method for objective
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4 as well as compare the effect of perturbing the physics, and both biogeochemistry and physics to the

model dynamics using the statistical metrics described in Chapter 2.

Chapter 5, will compare and examine the characteristic signatures from the two ensembles described in

chapter 4. The ensemble spread, how this affects the chlorophyll distributions, anomaly correlations,

and nitrogen proportions between phytoplankton and DIN pool will be explored. This chapter mainly

addressed objective 5.

Chapter 6 will generally discuss the results shown in Chapters 3 and 5, and what can be improve on if

there is a further study.

Conclusion of the study and possible future directions for structural sensitivity studies, especially in a

3D operational biogeochemical model and how we may utilise the ensemble model will be discussed in

Chapter 7.



Chapter 2

Methods: Generating a Perturbed

Biogeochemistry Ensemble 1

The previous chapter has introduced the marine biogeochemical models from the most basic to the more

complex models. We discussed how the marine biogeochemical models are uncertain and there are dif-

ferent sources of uncertainty: parametric, structural; which consist of model complexity and the choice of

model equations, and physical input. From previous studies, altering model equations have been shown

to produce different model dynamics, compared to altering parameters. Assessing structural sensitivity

thoroughly can be done by using the ensemble method, which has also been used in climate modelling.

Since this method can be computationally expensive, it is possible to use a 1-D model to minimize the

computational cost. Calibration based on specific locations using a 1-D model has been shown to im-

prove the predictive skill of 3-D models (Oschlies and Schartau, 2005; Kane et al., 2011; McDonald

et al., 2012). Structural uncertainty can provide a form of ensemble to inform policy makers to devise

adaptation strategies, and it is possible to use this approach in order to explore different versions of a ma-

rine biogeochemical model where each version contains a different combination of functional form. It is

possible to assess the impact of the uncertainty using interannual means of biogeochemical properties,

such as chlorophyll and DIN, as well as the timing of phytoplankton blooms. At oceanographic stations

where biogeochemical and physical observations are available for a long period, a disturbance in the

environment, such as a rise in temperature or deepening of the mixed layer, affects the timing as well as

concentration of the phytoplankton bloom (Taylor et al., 2012; Pinckney et al., 2015; Reygondeau et al.,

2015; Molinero et al., 2013).

As noted, a model intercomparison project, showed that MEDUSA-2.0 has a good balance of complex-

1This chapter is based on parts of the paper Anugerahanti, P., Roy, S. and Haines, K. (2018), ‘A perturbed biogeochemistry
model ensemble evaluated against in situ and satellite observations, Biogeosciences 15(21), 66856711.
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ity, the ability to reproduce bulk marine biogeochemical properties, and also the computation cost, and

therefore becomes the ocean biogeochemical model for the first UKESM (Kwiatkowski et al., 2014).

However, in this study, we used MEDUSA-1.0, because the model is less complex, and compared to

MEDUSA-2.0, there is not much difference in the NPZ simulations between the two models (such as

both models show an underestimation of chlorophyll in the oligotrophic gyre and a poor match between

the modelled and SeaWiFS-derived chlorophyll (Yool et al., 2013)). The MEDUSA model will be dis-

cussed further, along with its default functional forms in section 2.1. Furthermore, the 1-D version of

MEDUSA-1.0 is available within the Marine Model Optimisation Toolbox (MarMOT) (Hemmings and

Challenor, 2012; Hemmings et al., 2015) where simulation of large ensembles can be done with suffi-

cient computational cost, which will be explained in section 2.2. The method of generating the ensemble

and optimising the functional forms so that they are equivalent to the MEDUSA default functional forms

will be described in section 2.3. The model parameters are described in section 2.4. Running the 1-D

MEDUSA using MarMOT is shown in section 2.5, along with the physical input, the initial conditions,

and the validation data. The model statistical metrics are described in sections 2.7 and 2.8.

2.1 MEDUSA

MEDUSA is a biogeochemical model which spans beyond the basic NPZD model. The first version of

this model (MEDUSA-1.0) has 11 state variables, including four plankton groups distinguished by size,

silicic acid, chlorophyll, and iron. The state variables are:

Non-diatom phytoplankton mmol N m−3

Diatom phytoplankton mmol N m−3

Chlorophyll in non-diatoms mg m−3

Chlorophyll in diatoms mg m−3

Silicon in diatoms mmol Si m−3

Microzooplankton mmol N m−3

Mesozooplankton mmol N m−3

Slow sinking detritus mmol N m−3

Dissolved Inorganic mmol N m−3

Nitrogen (DIN)
Silicic acid mmol Si m−3

Iron mmol Fe m−3

Although nitrogen is the model currency, a diatom silicon state variable is explicitly represented which

allows for dynamic Si:N ratio in diatoms, based on the model of Mongin et al. (2006). In order to

permit regional growth limitation by the iron, an additional iron cycle is present. The second version,

MEDUSA-2.0 incorporates the carbon and oxygen cycles by including total dissolved inorganic carbon,

alkalinity, dissolved oxygen, and detrital carbon. The fluxes of carbon in MEDUSA-2.0, are calculated
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from those of nitrogen using the Redfield ratio (Redfield, 1934). State variables for both versions of

MEDUSA and their interactions are shown in figure 2.1.

(a) MEDUSA-1.0

(b) MEDUSA-2.0

Figure 2.1: Schematic diagrams showing state variables their interactions in MEDUSA 1.0 (2.1a) and
the more complex MEDUSA-2.0 (2.1b). Explicitly modelled components are shown in boxes with solid
borders, whereas dashed borders are implicit. Component that are modelled using other currencies (e.g
chlorophyll, silicon) shown overlapped with other box. (Yool et al., 2011, 2013)

From Figure 2.1, although intermediately complex, the interaction between nutrients, phytoplankton,

and zooplanktons are similar to that in an NPZ model, but with multiple nutrients and plankton groups.

The four groups of plankton consist of two phytoplankton and two zooplankton groups which are dis-

tinguished by size. The small component includes prokaryotic nanophytoplankton (represented as non-

diatoms) and microzooplankton which includes protists and metazoan larvae. The larger component

consists of diatom phytoplankton and mesozooplankton. Diatoms are chosen to represent the larger phy-

toplankton since diatom is a key component and predominates in highly productive areas (Mann, 1999;
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Yool et al., 2011). This means that the term non-diatom in this model merely ignores other larger species

such as coccolithophorids or flagellates (Cox and Kwiatkowski, 2013). In zooplankton grazing, micro-

zooplankton strongly control the population of smaller phytoplankton, whereas the mesozooplankton

slowly graze the larger phytoplankton. Another assumption is that the small phytoplankton have better

nutrient uptake kinetics and therefore faster growth (Furnas, 1990), which also applies to zooplankton

(Baird and Suthers, 2007). Maximum phytoplankton growth, VpT is also dependant on temperature, by

applying the Eppley (Eppley, 1972) function:

VpT =Vp×1.066T (2.1)

where T is temperature and Vp is the maximum phytoplankton growth rate at 0◦C. However, this is not ap-

plied to zooplankton grazing nor growth. Chlorophyll quotas in phytoplankton are explicitly represented

so that its response to irradiance will depend of the chlorophyll content .

MEDUSA-1.0 has 11 differential equations (15 in MEDUSA-2.0) that describe the biogeochemical pro-

cesses in the model. Regardless of the horizontal or vertical positions, these equations are applied within

every ocean grid cell in the physical model (Yool et al., 2011), unlike earlier model studies which distin-

guish between photic and aphotic zones (e.g. Popova et al. (2006)). Both versions of MEDUSA use the

classic rectangular hyperbolic Michaelis-menten for nutrient limited phytoplankton growth, and given

the initial slope of P-I curve α̂p and maximum phytoplankton growth VpT , Smith function (Smith, 1936)

as described in Table 1.1, is used to calculate light limited phytoplankton growth rate, Jp, given local

irradiance, I, the equation becomes:

Jp =
VpT α̂p I

(V 2
pT + α̂2

p I2)1/2 (2.2)

In MEDUSA-2.0, I is the sum of two components of photosynthetically available radiation (PAR), red,

and green-blue, which are derived from the simpler LOBSTER model (Lévy et al., 2001). The two

different wavebands are attenuated separately by seawater and chlorophyll. Nutrient uptake and primary

production via Redfield coupling is determined using a multiplicative term that brings together light and

nutrient limitation factors.

Diatom growth is limited by the availability of silicic acid since they use this macronutrient to construct

their cell walls or frustules such as spines and girdle bands (Martin-Jezequel et al., 2000). If the ratio is

less than the critical value R0
Si:N , diatoms are unable to grow (Martin-Jezequel et al., 2000). This makes

diatoms have flexibility in their requirement of silicon. Above this minimum value, the uptake of iron

and nitrogen is scaled by a factor of Si:N ratio, and if the ratio is three times the minimum, growth is

unrestricted. In silicon uptake, the maximum rate is achieved when the Si:N ratio is below a critical

threshold (3×R0
Si:N)

−1. Silicon uptake is linearly decreased to another threshold value, (R0
Si:N)

−1, and
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above this threshold, no silicon is taken up by diatom cells, but diatom nitrogen can still increase and alter

the Si:N ratio. The loss of silicic acid occur everywhere in the water column since the modern ocean

is undersaturated with it (Yool and Tyrrell, 2003). This is represented by a linear loss rate following

(Mongin et al., 2006).

Zooplankton grazing is separated by size and as explained previously, larger zooplankton have a broader

prey range. This results in grazing preference. MEDUSA adopts the (Fasham et al., 1990) method of

grazing preference, where an ingestion function balances the availability of prey items. It is assumed

that both zooplankton groups prefer higher quality food items; non-diatoms in microzooplankton and

microzooplankton and diatoms in mesozooplankton. Nevertheless this prey selectivity is biologically

questionable (Cox and Kwiatkowski, 2013), because the predator-prey interactions are complex; includ-

ing prey capture and satiation feedback (Flynn and Mitra, 2016). The nitrogen and carbon component

ingested by zooplankton are separated. Inefficient grazing, due to zooplankton messy feeding, is returned

back to dissolved nutrient. Then, the C:N ratio for the ingested material can be derived, and compared

with the ideal ratio preferred by zooplankton. Using the assimilation and metabolism submodel of (An-

derson and Pondaven, 2003), growth, excretion, and respiration are balanced according to which nutrient

is limiting. Apart from grazing, all four plankton types have secondary losses to other processes, which

are the density-independent loss terms, modelled using a linear function, and a density-dependent loss

term which are modelled using rectangular hyperbolic terms as it provides a source of stabilising feed-

back (Steele and Henderson, 1992).

MEDUSA-2.0 is chosen as the ocean biogeochemical part of UKESM1 because the model shows a

better overall match with the observational data, and it is computationally inexpensive compared to

other more complex models. This study also shows no evidence that the more complex models produce

a better match with the bulk properties. Complex marine biogeochemical models may represent the

ocean ecosystem better, however, some of the ecology is still poorly understood (Anderson, 2005). For

example, from the experiment, the degradation of dissolved organic matter in the ocean is not dependent

on only one group of bacteria, and therefore only having one compartment of bacteria is not very accurate

(Anderson, 2005). Adding more complexity also means increasing the number of equations and therefore

the model parameters. The magnitude of gmax or µ may influence how much phytoplankton is lost due

to grazing and mortality. As summarised in Table 1.1, each process in an NPZ model can be modelled

using a variety of functional forms, so adding more process may also means more functional forms to

choose. Additionally, different ocean circulation models may result in different simulations of the state

variables, as the physical processes controls the biogeochemical processes. These problems show that

the marine biogeochemical model has considerable uncertainties.
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2.1.1 The default MEDUSA functional forms

The base of both MEDUSA-1.0 and 2.0 include nutrient uptake, zooplankton grazing, and plankton

mortalities, which are represented using functional forms. The way the MEDUSA differential equations

and default functional forms of MEDUSA is most similar to the NPZDB model by Fasham et al. (1990)

and NPZD model by Popova et al. (2006). However, unlike that in the NPZDB in MEDUSA, instead of

having two types of DIN (ammonium and nitrate), and bacteria, the NPZD compartments of MEDUSA

has DIN, silicon, and iron, along with four types of plankton.

For nutrient limited growth, the model uses the classic Michaelis-Menten (rectangular hyperbolic) equa-

tion, where phytoplankton take up the ambient nutrient. Since the maximum growth is decided using

the eppley function, the parameter that is adjustable for this term is the half saturation constant. The

phytoplankton growth is brought together in a multiplicative term between light limited, Jp, as described

in equation 2.2 and nutrient limited growth. Primary production of diatom PPd can then be calculated

via Redfield coupling:

PPd = Jp×
N

kN +N
× Fe

kFe +Fe
× Si

kSi +Si

The first term of the primary production equation is the light limited growth. The second, third, and

fourth terms are the nutrient limited growth modelled using Michaelis-Menten term, with N, Fe, and Si

representing the nutrients DIN, Iron, and silicon respectively.

In terms of grazing, instead of using multiple resource grazing using Holling type II, as in (Fasham et al.,

1990), the functional form that describes zooplankton grazing is Holling type III, as (Ryabchenko et al.,

1997). Multiple prey grazing Gp,q can be expressed as a weighted fraction of the total ingestion GT,p,

therefore:

Gp,q = GT,p
wp,qDp

DT,q

where:

DT,q = ∑
q

wp,q,Dp

Where Dp is the density of prey type p and DT,q is a weighted measure of the total available food.

The term wp,q is the preference for prey type p grazed by zooplankton q, which corresponds to the

relative proportion that prey p occurs in the diet of zooplankton q compared to the relative proportion

that prey p occurs in the environment (Gentleman, 2002). This makes Holling type III function for
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microzooplankton, Zmi that into:

GPr =
gmax .wPr .Pr2 .Zmi

k2 +w2
Pn .Pn2 +w2

D .D2

where wPr is the microzooplankton grazing preference for a prey Pr, which could be non-diatom, Pn, or

detritus, D. Since non-diatoms are assumed to be more nutritious compared to detritus, the weighting

on non-diatoms is higher (0.75) than on detritus (0.25). As explained previously, for plankton mortality

terms, MEDUSA has both density independent and density dependent mortality rates for all the phyto-

plankton and zooplankton types. Density-independent loss is modelled by a linear function representing

plankton metabolic loss. Density-dependent loss, which includes processes such as higher-trophic graz-

ing and disease, is modelled using the hyperbolic function of plankton concentration (Fasham et al.,

1993). All of the default functional forms are summarised in Table 2.1.

Both MEDUSA-1.0 and MEDUSA-2.0 have similar default functional forms which have been described

above. As discussed above, MEDUSA-1.0 is the simpler version of MEDUSA-2.0 and only focuses

on the NPZD compartments, and the results from MEDUSA-2.0 and MEDUSA-1.0 are quite similar in

terms of geographical distribution of primary productivity and limiting nutrients. However slightly higher

surface phytoplankton and microzooplankton concentrations are observed globally from MEDUSA-1.0,

but for nutrients and mesozooplankton, MEDUSA-2.0 globally produces slightly higher concentrations

(+9.1% in DIN, +5.2% in silicon, and +5.8% in Iron) especially in the Atlantic and the Indian Oceans

(Yool et al., 2013). As a consequence of the reduced phytoplankton concentrations, MEDUSA-2.0 shows

less pronounced seasonality at higher latitudes in the Northern Hemisphere compared to MEDUSA-

1.0 (Yool et al., 2013). These differences may be caused by the different simulation years between

MEDUSA-2.0 (145 years) and MEDUSA-1.0 (40 years), and also the differences in sinking rate, where

MEDUSA-2.0 uses 2.5 m d−1 instead of 3 m d−1 and the updated iron deposition, by using a ‘present

day’ field produced by Mahowald et al. (2005). Due to these minor differences, we have decided to use

the simpler MEDUSA-1.0 model.

Before moving to other functional forms that have similar properties to these default functions and gener-

ating the ensemble, it is possible to address uncertainty in MEDUSA using MarMOT, which has the 1-D

version of MEDUSA-1.0 embedded in it. This will reduce computational cost and alternative versions of

the MEDUSA model e.g. an ensemble, can be run using a standard PC. The next section will introduce

MarMOT and how to run MEDUSA using MarMOT.
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2.2 Addressing model uncertainty using Marine Model Optimisation Testbed

Marine Model Optimisation Testbed (MarMOT) is a site-based emulator which relies on an array of 1-D

simulators of the target model dynamics. The full description of MarMOT can be found in Hemmings

and Challenor (2012) and Hemmings et al. (2015). This model optimisation testbed is used to examine

the impact of error in a biogeochemical model’s environmental input data, including the physical envi-

ronment and adjustable parameters. MEDUSA is integrated into a 1-D scheme where the environmental

input from the site-based simulation is acquired from the physical and biogeochemical information from

the 3-D model. By using MarMOT, various physical frameworks can be used as an input as the bio-

geochemical parameters are independent of the physics. However the biogeochemical environment is

dependent on the parameters. The Marine Model Optimization testbed facility is used to configure the

1-D simulator for MEDUSA (Hemmings et al., 2015).

Using MarMOT, the biogeochemical state variable (i) concentration (cik) is calculated at each depth level

(k) in the 1-D simulator, using the first and fifth term of equation 1.2.2:

dcik

dt
=−(wp +wi)

∂ci

∂ z
+

∂

∂ z

(
Kρ

∂ci

∂ z

)
+SMSik(C, F) (2.3)

The rate of change due to vertical flux divergence is described in the first term, where wp and wi are the

vertical velocity of the water, provided by the physical framework, and the biological material relative

to the water respectively, with Kρ the turbulent mixing diffusion coefficient, which is obtained from the

physical framework. The source-minus-sink term, SMSik from the MEDUSA plankton model is embed-

ded in the third term as a function of the state vector C and forcing vector F, including temperature,

downwelling solar radiation at sea surface, which are provided from the physical framework, and soluble

iron from atmospheric dust deposition input. Since light available for phytoplankton photosynthesis and

the nutrient sources from the remineralisation of fast-sinking detritus depend on tracer concentrations at

one level shallower than the current level, SMSik is depth-dependent. wi is a constant sinking rate for de-

tritus, which corresponds to the slow sinking parameter from MEDUSA. Initially, MarMOT is developed

to explore robustly the behaviour of global biogeochemical models by using perturbed parameter ensem-

ble with multiple members on a basis of analysis performed on representative arrays of 1-D simulators.

This will also allow large parameter space investigation (Hemmings et al., 2015).

Since MarMOT allows running the 1-D version of a marine biogeochemical operational model, it is pos-

sible to run a large number of ensemble members containing different functional form combinations,

which describe the essential biogeochemical processes. Furthermore, it is also possible to vary the phys-

ical input and compare these uncertainty within the same model using MarMOT. The full method for



2.3. Generating the ensemble: Optimising the functional forms 49

simulating the 1-D MEDUSA in MarMOT is described in appendix A.

2.3 Generating the ensemble: Optimising the functional forms

Different marine biogeochemical models share common processes: the interaction between nutrients,

phytoplankton, and zooplankton shown on figure 2.2. These processes could be modelled using different

equations. For example multiple predator uptake has two functional forms that could be used to represent

the process; using Michaelis-Menten expression or Holling type II (Fasham et al., 1990) and Holling type

III (Ryabchenko et al., 1997). They have similar saturation curves despite being described by different

mathematical equations. Structurally different analytical forms could be used interchangeably, given the

uncertainty with which resource uptake by real organisms is measured (Fussmann and Blasius, 2005).

Functions that show similar shapes to MEDUSA’s default functional forms are chosen to ensure that they

describe the biogeochemical processes in a similar way.

The non-linear least square method is used to enhance the phenomenological similarity between the

default functional forms. The parameters associated with the functions, apart from the maximum rate,

are obtained by using the command ‘scipy.optimize.curve fit’, which uses non-linear least

squares, in python. Here we made the maximum rate values for other functional forms similar to

MEDUSA’s default parameter, so that these functions would become saturated at the same concen-

tration. Different functional forms and their parameters are then embedded into the model code. The

ensemble model has 128 members, which resulted from combining four phytoplankton nutrient uptake,

two zooplankton grazing, four phytoplankton, and four zooplankton mortalities functions.

All possible combinations of functional forms that describe the main biogeochemical processes (such as

nutrient uptake, grazing, and mortality, explained in section 2.3.1 to 2.3.3) can be generated as an ensem-

ble, whereby each member contains a combination of functional forms similar to the default MEDUSA

functions. These combinations are then embedded into the 1-D MEDUSA code. The same process func-

tion is always used for both diatoms and non-diatoms, or mesozooplankton and microzooplankton. Each

ensemble member has at least one functional form changed from the default functions. This provides

a total number of 128 combinations, arising from 4 types of nutrient uptake, 4 phytoplankton mortality

formulations, 2 types of zooplankton grazing, and 4 zooplankton mortalities.

2.3.1 Nutrient uptake ensemble

Alongside light, nutrient concentration limits the growth of phytoplankton. In MEDUSA the standard

hyperbolic monod, hereafter Uh, function is used as the default function. The growth of cells monotoni-



50 Chapter 2. Methods: Generating a Perturbed Biogeochemistry Ensemble

Figure 2.2: Schematic diagrams of MEDUSA-1.0 adopted from Yool et al. (2011), red circles shows
core biogeochemical process. These are represented by nutrient uptake by phytoplankton, zooplankton
grazing, and plankton mortality, which could be parameterised by different equations

cally increases with ambient nutrient concentration, and halts when nutrients become scarce. If nutrient

concentrations are high, the rate of uptake saturates. Other mathematical functions show similar proper-

ties including (i) Sigmoidal (Fennel and Neumann, 2014) Us, (ii) the exponential (Ivlev, 1961), Ue, and

(iii) trigonometric functions (Jassby and Platt, 1976), Ut . All these functions include a shape-defining

parameter, k, which for monod and sigmoidal can be interpreted as a half saturation constant, and a max-

imum uptake rate, described in equation 2.1. As explained in section 2.1, MEDUSA has silicon and iron

nutrients as well as diatoms and non diatoms. The uptake of different phytoplankton types and nutrients

use similar functions but different parameter values for k, summarised in Table 2.1, obtained by min-

imising the sum squared difference with Uh. The nutrient uptake functions after optimization are shown

in Figure 2.3(a). The fit is done over the nutrient concentration ranging from 0.001 to 20 mmol m−3

for DIN and silicon. These are discretised into 1000 intervals. The difference in shape of the optimised

functional forms are more obvious between 0.1 to 1 mmol N m−3.

2.3.2 Zooplankton grazing ensemble

In MEDUSA, both phytoplankton and zooplankton are grouped into ”small” and ”large” categories. The

small zooplankton, represented by the microzooplankton, graze on non-diatoms and detritus, with the

more nutrient rich, higher quality, non-diatoms preferred over detritus. Larger zooplankton, represented

by mesozooplankton have a broader range of prey, including both microzooplankton and diatoms, which
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are higher quality food sources compared to non-diatoms and detritus.

Describing multiple grazing using mathematical forms can be done by defining the zooplankton grazing

rate using the hyperbolic Michaelis-Menten or Holling type II, hereafter G2 expression and weighted

preference on the different food sources pn (Fasham et al., 1990). Suppose the specific grazing rate, G,

is described by:

G = g
F

kg +F
(2.4)

where F is the total food with their preferences by grazers (paPa+ paPb), g is the maximum grazing rate,

and kg is the half-saturation constant for grazing. When Pa is grazed constantly, equation (2.4) is then

scaled into the zooplankton’s food preference by substituting the preference scaled prey concentration:

GPa = g
paPa

kg +(paPa+ pbPb)
(2.5)

Since zooplankton preferences will change throughout the year, the assigned preference should change

as a function of the food ratio. This could be achieved by defining the weighted preference, p∗a and p∗b:

p∗a =
paPa

paPa+ pbPb
and p∗b =

pbPb
paPa+ pbPb

(2.6)

Substituting p∗a and p∗b for pa and pb, in equation (2.5), grazing on Pa is described by:

GPa = g
paPa2

kg(paPa+ pbPb)+ paPa2 + pbPb2 (2.7)

Another method of multiple grazing parameterisation is based on sigmoid Holling type III function,

which is defined as:

G =
gF2

k2
g +F2 (2.8)

In the case of two resources, equation (2.8) for Pa uptake becomes:

GPa = g
paPa2

k2
g + paPa2 + pbPb2 (2.9)

Equation (2.9) is the default functional form used in MEDUSA for zooplankton grazing. As shown in fig-

ure 2.3(b) equation(2.7) and (2.9) have similar trends where grazing rate becomes constant as it reaches

a certain phytoplankton concentration and a half saturation constant kg. During the fitting process, the

range of phytoplankton and microzooplankton concentrations used was 0.001 to 10 mmol m−3, discre-

tised in 1000 intervals equally. At low zooplankton concentrations (between ∼0.01 to ∼0.5 mmol m−3)

the Holling type III response has lower grazing rates than the hyperbolic, however as the phytoplankton

concentration increases, the Holling type III curve has a more rapid increase in predation rate before
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becoming saturated (Edwards and Yool, 2000) compared to the Holling type II, shown on Figure 2.3(c).

Preferences for food types are kept the same as MEDUSA’s default parameters, with terms summarized

in Table 2.1.

2.3.3 Plankton mortality ensemble

Alternative functions can describe the density-dependent mortality, and in this study the combinations

of hyperbolic (ρh,ζh), linear (ρl,ζl), quadratic (ρq,ζq), and sigmoidal (ρs,ζs) functions to describe the

phytoplankton (ρ) and zooplankton (ζ ) mortalities are used (equations and abbreviations are shown on

Table 2.1). Similar to grazing and nutrient uptake, the functional forms have different maximum rates

for each plankton type. These maximum rates are made the same for all the different functions.

Of the four different mortality functions, linear and quadratic functions are most different in shape, as

shown on Figure 2.3(c). Using the linear term is similar to constant removal of plankton at the same

rate as the maximum mortality (µ). To make the linear function similar to the sigmoidal and hyperbolic

functions, the maximum mortality rate is set so that the total loss integrated over the range of phytoplank-

ton concentrations (calculated as the area below the function representing the total loss in linear terms,

between 0.001 to 10 mmol m−3) is similar to that for the hyperbolic curve. The quadratic term, instead

of asymptoting, continues to grow with plankton abundance. In order to keep this similar to other forms,

after reaching a certain concentration the function is switched to linear, so that the rate plateaus at high

abundance. For sigmoidal mortality, the default µ are not changed but the half-saturation constant, kM

is optimised. The optimised mortality functions are shown in Figure 2.3(c). The range of phytoplankton

and zooplankton concentrations used during the fitting process was between 0.001 - 10 mmol m−3, and

discretised within 1000 intervals equally. A distinctive feature of these functional forms after optimisa-

tion is that the quadratic mortality rate remains low until phytoplankton concentration reaches 1.0 mmol

m−3, and the linear function shows consistently high plankton mortality (Figure 2.3(c)).

2.4 MEDUSA parameters that have been changed

Apart from sinking rate, maximum growth, and grazing rates, parameters not listed in Table 2.1 are kept

at their default values (Yool et al. (2011), described in Appendix A.2). From a previous 3-D MEDUSA

run, the oligotrophic regions show a low ‘background’ chlorophyll concentration (Yool et al., 2011) so

to raise this concentration a higher maximum growth rate and lower grazing rate have been used. The

maximum uptake rate, Vp , is 0.8 day−1, similar to that in the HadOCC model (Palmer and Totterdell,

2001). For zooplankton grazing, similar to NPZ models (Fasham et al., 1990; Fasham, 1995; Anderson



2.4. MEDUSA parameters that have been changed 53

Table 2.1: Parameter values for resource uptake (U), zooplankton grazing (G), and plankton mortalities
(ρ and ζ for phytoplankton and zooplankton respectively), described using similar functional forms
(shown in Figure 2.3). In grazing equation, gm represents maximum grazing rate, Pa is the prey, and pa

denotes the grazing preference. Starred equations are the default functional responses in MEDUSA.

Process/ Symbol Meaning Parameter value (mmol m−3)
Plankton type
Nutrient Uptake (U) Monod* Sigmoidal Exponential Trigonometric

(Uh) (Us) (Ue) (Ut)
n

n+k
n2

n2+k2 1− exp(−n
k )

2
π

arctan
(n

k

)
Non-diatom kNnd shape defining 0.5 0.74 1.12 0.60

constant for DIN
kFend shape defining 0.33 0.49 0.74 0.40

constant for iron ×10−3 ×10−3 ×10−3 ×10−3
Diatom kNd shape defining 0.75 1.12 1.68 0.91

constant for DIN
kSid shape defining 0.75 1.12 1.68 0.91

constant for silicon
kFed shape defining 0.67 0.99 1.50 0.81

constant for iron ×10−3 ×10−3 ×10−3 ×10−3

Grazing (G) Holling type III* Holling type II
(G1) (G2)

gm
paPa2

k2
g+paPa2+pbPb2 gm

paPa2

kg(paPa+pbPb)+paPa2+pbPb2

Microzooplankton kmi half saturation 0.80 0.46
constant

pmind grazing preference 0.75 0.75
for non-diatom

pmidet grazing preference 0.25 0.25
for detritus

Mesozooplankton kme half saturation 0.30 0.17
constant

pmend grazing preference 0.15 0.15
for non-diatom

pmedet grazing preference 0.15 0.15
for detritus

pmed grazing preference 0.35 0.35
for diatoms

pmemi grazing preference 0.35 0.35
for microzooplankton

Mortality (ρ,ζ ) Hyperbolic* Linear Quadratic Sigmoidal
(ρh,ζh) (ρl,ζl) (ρq,ζq) (ρs,ζs)
µ

P
P+kM

P µP µP2 µ
P2

P2+k2
M

P

Non-diatom µnd maximum rate 0.10 0.09 0.05 0.10
(day−1)

kMnd half saturation 0.50 - - 0.74
constant

Diatom µd maximum rate 0.10 0.09 0.05 0.10
(day−1)

kMd half saturation 0.50 - - 0.74
constant

Microzooplankton µmi maximum rate 0.10 0.09 0.05 0.10
(day−1)

kMmi half saturation 0.50 - - 0.74
constant

Mesozooplankton µme maximum rate 0.20 0.19 0.07 0.20
(day−1)

kMme half saturation 0.75 - - 1.12
constant



54 Chapter 2. Methods: Generating a Perturbed Biogeochemistry Ensemble

Figure 2.3: Nearly identical curves which describes resource uptake (a), zooplankton grazing (b), and
phytoplankton mortality (c). Figure (a) shows four uptake functions, which have been optimised to the
default uptake function, monod (Uh). Figure (b) shows two grazing functional forms, the holling type III
(G1) and type II (G2) functions. Four phytoplankton mortality functions are shown on figure (c), whereby
hyperbolic is the default function. The optimisation method is describe in section 2.3.1, 2.3.2, and 2.3.3.
The range for DIN in (a) is between 0.001 and 20 mmol m−3, and phytoplankton in (b) and (c) are 0.001
and 10 mmol m−3. Table 2.1 describes the function’s equations and parameters.

et al., 2015) we use 1 day−1 as the maximum grazing rate, gm. MEDUSA also parameterises both slow

and fast detritus sinking factors. It is assumed that the latter sinks rapidly relative to the model time-step,

and remineralisation of the detrital nitrogen and silicon is done implicitly. In the default model 3 m

day−1 is used for the slow sinking of detritus, however over long runs we found this leads to downward

loss of nutrients from the euphotic zone, to the sea floor. Earlier studies have used lower detrital sinking

rates (Steele and Henderson, 1981; Fasham et al., 1990; Lacroix and Gregoire, 2002; Raick et al., 2006),

between 0 to 1.25 m day−1 and a study has even suggested to use 0 m day−1, (Ward et al., 2013). In this

study a sinking rate of 0.1 m day−1, towards the lower end of the range of literature values, is chosen to

prevent depletion of state variables particularly at the shallower stations.

2.5 Running the Model and Generating the Ensemble

MEDUSA is run in the Marine Model Optimization Testbed (MarMOT-1.1 alpha) (Hemmings and Chal-

lenor, 2012; Hemmings et al., 2015). As explained in section 2.2, MarMOT was developed to investigate
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the effect of sensitivity in plankton model simulations, especially in regard to parameter and environmen-

tal inputs (Hemmings and Challenor, 2012). Despite some uncertainties associated with the differences

in physical forcing, fluxes, and initial values of biogeochemical properties, using 1-D simulations to

approximate 3-D model behaviour for calibrating models based on specific sites has improved the pre-

dictive skill of 3-D models (Oschlies and Garçon, 1999; Oschlies and Schartau, 2005; Kane et al., 2011;

McDonald et al., 2012). As discussed in section 1.3, parameter and physical forcing uncertainties vary

across different regions, as the biogeochemistry in the regions have different physical controls. In order

to robustly examine the structural uncertainty in a marine biogeochemical model, it is essential to ex-

amine this uncertainty in different regions or sites. Since MarMOT permits running multiple ensembles

at different sites, the 1-D MEDUSA is run at five oceanographic stations, described in section 1.6. The

ensemble at each station is initialised using in situ measurements of chlorophyll, DIN, silica, and iron,

and is run over 10 years starting from January 1998, following the test-data and availability of NEMO

output for physical input, and in situ data. In the next subsections, the model inputs for MarMOT will be

described in the next subsections.

2.5.1 Physical input

Physical input files consist of gridded values of vertical velocity (w, m day−1), vertical diffusion coeffi-

cient (vdc, m 2 day −1), and temperature (T, ◦C), which are applied at each depth level. Additionally, time

series of downwelling solar radiation (W m−2) and mixed layer depth (m) are also used as input. These

are obtained from the 5-day mean output of the Nucleus for European Modelling of the Ocean (NEMO)

model, using the Met Office Forecast Ocean Assimilation Model (FOAM), which controls the physical

parameters and therefore the biogeochemical tracers every 5 days. The FOAM-NEMO system assim-

ilates satellite-derived sea surface temperature, sea-level anomaly, sea-ice concentration, temperature,

and salinity profile data, in order to make the physical system more realistic (Storkey et al., 2010).

However, assimilating physical data into a coupled physical biogeochemical model does not improve the

simulation of the ecosystem. A study by Ourmières et al. (2009) using the LOBSTER model, shows

that although assimilating physical data has improved the primary production at the Labrador Sea (due

to increasing eddy activity), it does not follow the pattern from SeaWiFS derived chlorophyll-a. When

FOAM is used with the 3-D HadOCC model, it simulated an overestimation of nutrient concentration,

compared to NEMO without data assimilation, due to the change in isopycnal levels caused by spurious

vertical velocities (Ford et al., 2012; Ourmières et al., 2009). During the initial run, when NEMO-FOAM

output is used to run MEDUSA, a large discrepancy was observed between the in situ and modelled

nutrient distributions, especially at ALOHA, BATS, and Cariaco. The effect of using NEMO-FOAM on
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the nutrients in 1-D MEDUSA is going to be explored in subsection 2.5.3.

Since input data on the vertical diffusivity was not stored in FOAM, we used values from NEMO

ORCA025-N102 output from January 1998-December 2001 and from ORCA0083-N01 from January

2002-December 2007, both obtained from the CEDA Group workspace web (http://gws-access.

ceda.ac.uk/public/nemo/#_top). These physical inputs are 5-day averaged and are available at 63

depth levels (from 6 to 5800m) for NEMO ORCA025-N102, with the resolution of 1/4◦ and ORCA0083-

N01, with finer resolution at 1/12◦ and more depth levels (from 0.5 to 6000m). The level thickness

increases exponentially with depth.

2.5.2 Biogeochemical input

The 1-D MEDUSA ensemble is run at five oceanographic stations: PAP, ALOHA, BATS, Cariaco, and

L4, as these stations provide relatively long term biogeochemical observation data that are sampled

regularly, such as chlorophyll and DIN. The input for the biogeochemical environment are the initial

conditions for the 11 primary tracers (state variables) including; DIN, non-diatom, diatom, silicon in di-

atom, silica, detritus, microzooplankton, mesozooplankton, non-diatom chlorophyll, diatom chlorophyll,

and iron (mmol m−3), along with the model parameter values. Initial conditions for chlorophyll, silicate,

iron, and DIN concentrations and are taken from the in situ data at the five oceanographic stations. We

did not use spin up runs when initialising, which will be discussed in section 2.6. Location coordinate,

data source, and maximum depth are summarised in Table 2.2 and the stations locations are shown in

Figure 1.8. After initialization, in situ data from these stations are used to compare the in situ observa-

tion with the model results. For station PAP, because surface chlorophyll data is not available, we also

use SeaWIFS-derived chlorophyll-a data with 9 km spatial resolution and 8-day averages provided by

GlobColor (http://hermes.acri.fr/) for comparing the surface chlorophyll.

Table 2.2: Location, data source, and available depth range for the five oceanographic stations

Station Location Source depth range
ALOHA 22◦45’N, 158◦00’W http://hahana.soest.hawaii.edu/hot/hot-dogs/

interface.html

5-5000 m

BATS 32◦50’N, 64◦10’W http://bats.bios.edu/ 4-4000 m
Cariaco 10◦30’N, 64◦40’W http://imars.marine.usf.edu/cariaco 1-1310 m
L4 50◦15’N, 4◦12.3’W http://www.westernchannelobservatory.org.uk/data.

php (available upon request)
surface

PAP 49◦N, 16.5◦W http://projects.noc.ac.uk/pap/data 7-400m

At these stations, the DIN consists of ammonia, nitrate, and nitrite, however at oligotrophic stations like

ALOHA the ammonium is below the detection limit (Hawaii Ocean Time Series, 2017), and therefore

DIN only consists of nitrate and nitrite. At PAP we use the initial condition from one of MarMOT’s test

stations, located at 50◦N, 20◦W in the Atlantic (Hemmings et al., 2015), since the nitrate data were only

http://gws-access.ceda.ac.uk/public/nemo/#_top
http://gws-access.ceda.ac.uk/public/nemo/#_top
http://hermes.acri.fr/
http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html
http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html
http://bats.bios.edu/
http://imars.marine.usf.edu/cariaco
http://www.westernchannelobservatory.org.uk/data.php
http://www.westernchannelobservatory.org.uk/data.php
http://projects.noc.ac.uk/pap/data
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collected between 30-400 m. At station L4 chlorophyll and DIN data were collected from the surface

from 1999-2008. Since the maximum depth in this station is only 50 m deep, the initial concentrations

for chlorophyll and DIN are the same at every depth (total chlorophyll = 0.27 mg m−3, DIN = 6 mmol

m−3). Other inputs that are not available at the websites mentioned above, such as microzooplankton,

mesozooplankton, and detritus were taken from the nearest test stations. In the oligotrophic stations, 75

% of total chlorophyll was allocated initially to the non-diatom phytoplankton since these dominated the

water column (Villareal et al., 2012). At the other stations half of the total chlorophyll goes into the

diatoms.

For validation of the model, we consider the total chlorophyll-a concentration, instead of separating

diatoms and non-diatoms. The model is simulated at 37 depth levels, spanning from 6-1200 m, instead of

the full 63 depth level (6-5800 m) to minimise computational cost, apart from station L4, with maximum

depth of 50 m, and Cariaco, where the maximum depth for the physical input is available down to 500

m, although the depth at which nutrients are sampled are down to 1310 m. The boundaries for the depth

levels are as follows: 6, 12, 19, 25, 32, 39, 46, 54, 62, 71, 80, 90, 100, 112, 124, 137, 152, 168, 187, 207,

229, 254, 281, 312, 347, 386, 429, 477, 531, 591, 656, 729, 809, 896, 991, 1093, and 1200 m. At the

lowest level, vertical velocity and diffusion are set to zero and this level is a sink for detritus. Stations that

have shallower maximum depths are run with fewer depth levels. Additionally, apart from the physical

input files a time series for soluble iron flux from dust deposition is applied, but this is constant using

the average value from (Mahowald et al., 2009), but the iron profiles data are available from the websites

mentioned in Table 2.2.

2.5.3 Uncertainty in physical input: NEMO FOAM

As explained in section 2.5.1, directly assimilating the physical oceanography model cause an overes-

timation of nutrients concentration. Therefore, to avoid overestimation the vertical velocities from the

FOAM system were capped at the 90th and 10th quantiles, and the 10-year mean of the vertical velocity

is also removed. This means that the time mean of vertical velocity is zero, summarised in Figure 2.4.

These adjustments gave a better long-term vertical structure to the nutrient and other distributions.

In this subsection, we will examine the effect of using NEMO FOAM to the DIN distribution and con-

centration at the five oceanographic stations that has been described in Table 2.2. We will consider the

correlations, p values, RMSE, and bias from the default run, ensemble median, and mean, which are

summarised in table 2.3. Primarily in MEDUSA, nitrogen is the model currency (Yool et al., 2011).

Inorganic nitrate, NO3, and nitrite, NO2, were used as an initial condition for DIN, however if the station

has ammonia, NH4, this nutrient is also added to the DIN pool.
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Figure 2.4: Vertical velocity, w, at station ALOHA at Level 10 (71m). Subfigure (a) shows the original
vertical velocity, (b) shows the capped vertical velocity, and (c) shows the capped vertical velocity with
its annual mean subtracted, which is the chosen physical input
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At station ALOHA, the distribution of DIN changes over time in the simulation, especially after 1999,

nitrocline has become shallower, going from 400m to 200m, whereas in situ DIN distribution show a

consistent nitrocline at 400m. Nonetheless, low nutrients of > 4 mg m−3 in the top 150m is represented

well in the model simulation. In contrast, simulation at station BATS shows a deepening in nitrocline by

the end of 2002, to the point where it gets deeper than 1000m. However from mid 1999 to the end of

2001, the nitrocline got shallower from 500m to 200m 2.5, whereas in situ DIN shows a stable nitrocline

over the years, apart from occasional shallowing in 2001 and 2007. Exhaustion of nutrient at the first

50m is also not well represented in the model simulation at BATS, especially after the deepening of the

nitrocline. These are shown on figure 2.5

Figure 2.5: (top) ensemble mean and (bottom) in situ DIN profiles in station BATS (left) and ALOHA
(right).

In simulating DIN, there are no noticeable differences between the ensemble mean, median, and default

run. Simulated DIN at Station ALOHA shows RMS differences of 8.06, 8.05 and 8.16 mmol m−3

for ensemble mean and median and default run, respectively, and is overestimated compared to in situ

nitrate. DIN at station BATS has a smaller bias than at station ALOHA, and is slightly underestimated.

Despite the discrepancy in the DIN distribution, the RMS difference and bias at station BATS is lower

that those in station ALOHA. Despite the discrepancy in distributions, both stations show relatively high

correlations between in situ DIN and all the ensemble members (r > 0.7, p < 0.05 and r > 0.9, p< 0.05

at station BATS and ALOHA respectively).

DIN distribution at station Cariaco is rather unique. In this region, as discussed in Chapter 1, section

1.6.1, a nutrient rich layer with high salinity occurs between 100 and 200m, called the Subtropical
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Figure 2.6: (top) ensemble mean DIN at the first 100m (right) and 500m (left) and (bottom) in situ
profiles in station Cariaco

Under Water (SUW). Strong upwelling happened during December to April, and intrusion of deeper

water to shallower depths brings this layer to the surface to feeds nutrient pools, therefore enhancing the

productivity (Walsh et al., 1999). The Cariaco nutrient profile has two layers of nutrients from the SUW

in the top 200m, and one below 400m the anoxic region, as shown on figure 2.6.

From the model output, DIN is visibly overestimated, in the first nutrient rich layer, shown in Figure

2.6. High DIN concentration (>10 mmol m −3) is only observed below 100 - 200m, and below 400m,

whereas in the model it occurs at all depths below 30m. The two nutrient layers that occurs at 100 to

250m, and below 400m are also not captured in the simulation. In the first four months, the DIN layers

remain separated, but they eventually merge in 1999. The simulated first layer is also deeper, with a

nitrocline of 30m and 275m, and the first layer starts to get deeper within six months. This discrepancy

is also reflected in the weak correlations of DIN between in situ and the ensemble mean and the default

run, where r =0.48 and 0.5, respectively, summarised on Table 2.3). This discrepancy between ensemble

simulation and in situ DIN is expected because the simulation of the two layers is only possible if we

use the 3-D version of MEDUSA where horizontal advection can be simulated. An increase in DIN in

the first half of the year is also simulated, as a ‘burst’, only lasting a few weeks for the first five years,

but more defined in later years. However, these bursts happen at very shallow depths (in the top5m)

compared to in situ profiles, where they happened in the top 10m.

As explained from section 1.6.1 in situ DIN from station PAP was only collected from mid 2002 to mid

2004, to a maximum depth of 400m. Strong seasonality of nitrate is captured well. High nitrate at the

surface occurs in the winter (December - April) and declines in the summer. However, below 400m, a

mostly continuous high (> 10 mmol m−3) nitrate layer is found. This seasonal pattern also coincide
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with the mixed layer; when the mixed layer gets deeper, nutrient concentrations get higher in the surface

and decline as it shallows. This may also coincide with light availability during the summer. These are

shown on figure 2.7. Compared to in situ DIN, the model overestimates the concentration and does not

show similar seasonality. This is shown by a very weak correlation shown in table 2.3, however it shows

the lowest RMSE compared to other stations.

Figure 2.7: (top) ensemble mean DIN at the first 400m depth. Black line shows mixed layer depth
(bottom) in situ DIN at PAP

The overestimation of DIN concentration also happens at the coastal station L4, after we decrease the

sinking speed to 0.1 m day−1. The overestimation occurs during summer when in situ DIN is close to 0,

but the ensemble still simulate high DIN concentration (>4 mmol m−3) shown on figure 2.8. The pattern

of DIN is dictated by the mixed layer depth, similar to station PAP. However, despite the overestimation,

the correlations between in situ and the ensemble mean and median at this station is still relatively high.

From these results, it is evident that vertical velocity from NEMO-FOAM has changed the distribution

of nutrient in the water column, especially at stations ALOHA, BATS, and Cariaco. It also shows an

overestimation of DIN, from the surface to 200m, except for station BATS where large downwelling

current push the DIN to even deeper depth.

2.6 Model spin up

In this experiment, spin up runs are not used to initialise the model because when the model is run for

a very long time, a steady increase of DIN concentration occurs over the time series. In this section,

we run the 1-D MEDUSA at station ALOHA using two different physical inputs and spinup periods:

(i) using the first year’s physical inputs, described in 2.5.1, which have been capped as described in the
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Figure 2.8: surface nitrate at station L4, the solid and dotted red lines are the ensemble mean and the in
situ DIN concentration. The shaded grey is the 75th and 25th quartiles of the ensemble spread.

Table 2.3: Ensemble mean, median, and default run error statistic for DIN profiles at different stations
for the top 1000m, from 1st January 1998 to 31st December 2007. For L4 the statistical metrics are taken
from the surface. Bias is calculated by subtracting the model output with in situ data, therefore negative
values denotes overestimation.

Stations median mean default

ALOHA Correlation 0.926 0.926 0.922
p 0 0 0
RMSE (mg m−3) 8.051 8.061 8.155
Bias (mg m−3) -4.860 -4.878 -4.841
n 2931

BATS Correlation 0.734 0.732 0.748
p 0 0 0
RMSE (mg m−3) 5.060 5.074 4.969
Bias (mg m−3) 0.244 0.199 0.641
n 3279

Cariaco Correlation 0.479 0.482 0.504
p 0 0 0
RMSE (mg m−3) 6.984 6.980 6.304
Bias (mg m−3) -5.269 -5.284 -4.627
n 1963

PAP Correlation 0.244 0.246 0.227
p 0 0 0
RMSE (mg m−3) 5.450 5.308 5.253
Bias (mg m−3) -3.802 -3.538 -2.722
n 814

L4 Correlation 0.616 0.625 0.627
p 0 0 0
RMSE (mg m−3) 4.604 4.526 4.182
Bias (mg m−3) -3.699 -3.627 -3.134
n 267
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previous subsection (2.5.3), repeated over 50 years and (ii) using the climatology (mean from 10 years

of the physical inputs), repeated over 250 years. The initial condition for this run is taken from the in

situ data, similar to that in the full model.

Figure 2.9: Spinning up 1-D MEDUSA using first year condition at ALOHA for 50 years. Chlorophyll
surface and profile are shown on (a) and (b) respectively. DIN surface and profile are shown on (c) and
(d) respectively.

When repeating the first year’s physical input for 50 years, the chlorophyll concentrations reach a repeat-

ing cycle after ∼16 years, except for DIN. During the spin up period, surface chlorophyll concentration

increases from 0.13 to 1.64 mg m−3 in the span of ∼15 years, then reaches a constant cycle for the rest

of the spinup period, summarised in Fig. 2.9(a). Additionally, the deep chlorophyll maxima vanish as

the concentration increases (Fig. 2.9(b)). For surface DIN, on the other hand, the concentration increases

throughout the spinup period, as shown in Fig. 2.9(c). This could be due to the mean upward vertical

velocity, bringing the DIN from the depth to the surface, and therefore increasing the concentration.

Another experiment has been carried out using the climatology of the physical inputs of the 10-year

period (January 1998 - December 2007) and has been run for 250 years. In this spin up run, the surface

chlorophyll decreases from 0.06 to 0.01 mg m−3 after four years, and starts to increase over ∼ 70 years

to 0.2 mg m−3. Then it starts to decline again for the rest of the time series, summarised in Fig. 2.10(a).

When chlorophyll starts to decline, DIN increases drastically over the time series, (Fig. 2.10(c) and (d)).

This might be caused by the decline of phytoplankton. The deep chlorophyll maxima also vanishes after

∼ 54 years.
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Figure 2.10: Spinning up 1-D MEDUSA using climatology of the physical input for 250 years at
ALOHA. Chlorophyll surface and profile are shown on (a) and (b) respectively. DIN surface and profile
are shown on (c) and (d) respectively.

From these two spinup runs, we decided not to initialise the model using the spinup run, as both runs

show that DIN concentrations keep increasing. This is mainly due to the sum of the first 200m vertical

velocity from the climatology at ALOHA is going upwards, making the DIN increase over the years,

especially in the first spinup run. This also suggests that the increasing trend may still present in all runs.

2.7 Model metrics

2.7.1 Statistical metrics

Exploring the effect of structural uncertainty can be done by quantifying its bulk properties, such as

the total concentration of chlorophyll in the surface, at depth, and DIN concentrations at depth, both

seasonal and annual average (Kwiatkowski et al., 2014), and the regional differences of the effect of

structural sensitivity. We use statistical metrics including correlation coefficient, root-mean squared error

(RMSE), bias, ensemble range, and 10-year mean depth profiles of DIN and chlorophyll and integrated

chlorophyll in order to compare the ensemble model with the default model and how well they represent

the observations. For surface chlorophyll, apart from the metrics above we use the mean chlorophyll

abundance each year in order to see inter-annual variability, and monthly abundance for the seasonal
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variations. A similar approach is applied to DIN, apart from station L4 where chlorophyll and DIN are

only observed at the surface, we use the averaged DIN over 200 m (integrated DIN / depth) to calculate

the inter-annual mean and monthly abundance, because at some stations, especially the oligotrophic, it

is often that the top 50m DIN concentration is 0 mmol m−3. These statistical metrics are compared with

in situ data.

2.7.2 Other metrics

In an ensemble forecast system, an ensemble with good reliability is one that is statistically consistent

with the observations, such that the observations are statistically indistinguishable from the ensemble

members. This is something that cannot be done with default run alone. In order to assess the value of

the ensemble probability distribution we must assess the consistency of the ensemble spread as well as

the ensemble mean error (Moradkhani and Meskele, 2010). A simple method is discussed by Anderson

(2001) which takes the ratio Ra of RMSE of the ensemble mean and the mean RMSE of all the ensemble

members, which has the expectation value E[Ra] =
√

(n+1)
2n , where n is the number of ensemble mem-

bers. This is called the Normalised RMSE Ratio (NRR= Ra/E[Ra]) where the desirable ensemble spread

should have NRR=1. If the NRR >1 then the spread is too small, and NRR <1 indicates that the ensem-

ble spread is too large. We may expect different NRR values for different metrics and also for variability

on different timescales, such as monthly or inter-annual data. This method has previously been used to

set the number of ensemble members in data assimilation (Moradkhani et al., 2006; Roy et al., 2012).

As explained in section 1.7, one of the research objectives is to determine whether structural sensitiv-

ity affects the model prediction. In order to address this question, it is possible to use phytoplankton

bloom phenology metrics. These metrics are useful ecological indicators for detecting natural and an-

thropogenic impacts on the pelagic ecosystem (Platt and Sathyendranath, 2008). In this study, seven

phenology indicators are considered; bloom initiation time, where the chlorophyll concentration exceeds

a certain threshold, which is 1.05% of the chlorophyll median of a certain year. We also derived a ‘ter-

mination time’, where bloom concentration falls below the same threshold. The number of days when

chlorophyll concentration is higher than the threshold is the ‘bloom duration’. The concentration at the

bloom peak and the date it takes place, are also included as indicators. We also note the amplitude of

the bloom, which is half the peak height minus the minimum chlorophyll concentration. The method of

deriving the phytoplankton bloom phenology is explained in the next section.
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2.8 Phytoplankton Phenology as model metrics

When the environmental conditions are right, a dramatic increase in phytoplankton may occur over large

areas of the ocean, called a phytoplankton bloom. This phenomenon has been observed to occur annually

all over the world’s oceans (Heinrich, 1962; Cole, 2013). In the North Atlantic, this is seen in the

springtime and sometimes in the autumn (Raymont, 1980). Two of the most well known hypotheses

which explains the occurrence of the North Atlantic bloom are the critical depth hypothesis Sverdrup

(1953) and the disturbance recovery hypothesis Behrenfeld et al. (2013).

According to the critical depth hypothesis, the initiation of the bloom occurred when the critical mixing

depth is reached, which usually occurred in spring in the North Atlantic. According to this hypothesis,

during winter, the loss rate of phytoplankton exceeds the division rates. As spring proceeds, mixed-

layer integrated phytoplankton division rates increase with decreasing MLD and increasing sunlight and

temperature. This eventually made the division rates equal to the loss rates (which are assumed to be

constant over time). The depth at which loss rates is similar to the division rates is called the critical

mixing depth (Sverdrup, 1953).

Disturbance recovery hypothesis (Behrenfeld et al., 2013) stated that blooms are initiated by physical

processes (disturbance) that disrupt the balance between grazing and phytoplankton division, such as

deep winter mixing, upwelling, or polar night. According to this hypothesis, the changes of physical

processes in autumn have a more significant impact on grazers, so that by early winter, the division

rate of phytoplankton can exceed loss rate by grazing. This makes the depth-integrated phytoplankton

biomass increase. Higher phytoplankton division rate is sustained during spring because increasing

grazing pressure is in line with increasing phytoplankton division rate (Behrenfeld and Boss, 2014).

The phytoplankton bloom occurs annually, but the size, time which it occurs, and the length of a partic-

ular bloom varies yearly. The study of these biological events is called phenology.

2.8.1 Why phenology matters

Interest has grown into phytoplankton phenology because it may affect the survival of fish larvae through

a ‘mismatch’ hypothesis (Cushing, 1990), where the difference between the timing of the spring bloom of

phytoplankton and fish spawning time determine the variations in the abundance of adults. In the North

Atlantic a link between anomaly in phytoplankton bloom and haddock larval survival has been observed

(Platt et al., 2003). In the event of global climate change, bloom timing may be affected (Kahru et al.,

2010), and therefore a mismatch between life cycles at higher trophic levels and phytoplankton bloom

(Edwards et al., 2004). Since variation in seasonal temperature in the ocean is smaller than the terrestrial,
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the change in phenological events that are driven by climate change are expected to occur earlier in

the ocean, despite warming in the ocean being slower than terrestrial trends (Burrows et al., 2011).

Earlier and longer stratification is expected to occur (Sarmiento et al., 2004) due to the rise in sea surface

temperatures; in response to this, phytoplankton in high-latitude regions may initiate earlier blooms and

potentially boost primary production (Bopp et al., 2001; Steinacher et al., 2009). In contrast reduced

plankton production may be observed in lower and mid-latitudes as increases stratification prolongs the

period of nutrient limitation because entrainment of nutrients from below the thermocline is inhibited

(Behrenfeld et al., 2006).

Satellite-derived ocean colour data provide a valuable tool to examine phytoplankton blooms and their

initiation at the basin scale (Platt et al., 2009). A bloom is characterised by a strong chlorophyll signal

in the seasonal variation, and is the most important event in the dynamics of phytoplankton (Platt and

Sathyendranath, 2008). As shown in figure 2.11, a bloom can be identified using its peak (maximum),

width (initiation, termination, and length of the bloom), and timing of peak. These are the indicators that

are associated with phytoplankton phenology. In determining this metrics, there are several methods that

fall into three broad categories (Ji et al., 2010; Brody et al., 2013): (i) threshold method (Siegel et al.,

2002; Racault et al., 2012; Cole et al., 2012) or when a fitted model to chlorophyll-a data crosses a set of

thresholds (Platt et al., 2009; Zhai et al., 2011; Sapiano et al., 2012), (ii) cumulative sum (Greve et al.,

2005; Mackas et al., 2012), and (iii) rate of change methods (Sharples et al., 2006; White et al., 2009).

These methods will be explained further in the next subsection.

2.8.2 Methods of determining phytoplankton phenology

In the threshold method, initiation occurs when chlorophyll-a concentration exceeds a certain threshold.

This is the most widely used to identify bloom initiation and termination (Brody et al., 2013). The thresh-

old itself could be set in absolute terms (chlorophyll concentration) or in relative terms (some percentage

of the maximum amplitude). The cumulative sum method identifies a bloom when the cumulative sum

of chlorophyll crosses a certain threshold percentile of the total biomass. For the rate of change methods,

initiation of the bloom is detected when the increase of chlorophyll is most rapid in a time series or a fit-

ted function. All bloom detection methods have similar characteristics, initiation, peak timing, duration

(the difference between start and end of the bloom), and the maximum concentration (bloom height),

shown on Figure 2.11.

When determining bloom initiation, some studies use an annual median based threshold (Siegel et al.,

2002; Racault et al., 2012; Cole et al., 2012), although in the critical depth hypothesis, the initiation is

not determined using this method (Behrenfeld and Boss, 2014). The range is between 1-30% above the
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Figure 2.11: Properties of a phytoplankton bloom on a time series of chlorophyll concentration. In this
figure, initiation is determined using the threshold method. Figure is obtained from (Platt and Sathyen-
dranath, 2008)

annual median, but a study by (Siegel et al., 2002) found that bloom initiation dates were not sensitive

to the choice of percentage and chose 5%. In order to only identify the primary bloom, time series of

chlorophyll are often shifted, by starting in the late summer for regions where high primary production

occurs in fall (Siegel et al., 2002; Henson et al., 2006; Platt et al., 2009; Thomalla et al., 2011; Cole,

2013). Another option is to find the bloom peak and work backwards to find when chlorophyll concen-

tration goes below the thresholds (Siegel et al., 2002; Racault et al., 2012; Cole et al., 2012). To eliminate

noisy data, some studies fit a function or model to the time series before identifying the initiation (Platt

et al., 2009; Vargas et al., 2009; Zhai et al., 2011; Sapiano et al., 2012). Others temporally and spatially

averaged chlorophyll data and only consider a bloom when the concentration above threshold occurs for

more than two weeks long (Brody et al., 2013). Another method is to use the percentage of maximum

bloom peak as the threshold. Compared to the median threshold, this method is influenced by the size

of bloom peak (Cole et al., 2012). Anomalous spikes of overestimated chlorophyll values can bring the

threshold value to more than the annual median.

Similar to threshold methods, the cumulative sum method uses some threshold value to estimate the start

and end of the bloom. The method is initially used in zooplankton phenology (Greve et al., 2005). In

contrast to the threshold value where the time series is centred around the bloom peak, the cumulative

sum method has to set the start date during low chlorophyll so that thresholds are associated with a

percentage of the data (i.e initiation when concentration is 15% and termination when the sum is 85%

(Greve et al., 2005)). In the rate of change method, there are no threshold values, since it is based

on the greatest positive and negative change in chlorophyll concentration for initiation and termination

respectively. When this method is used in satellite-derived chlorophyll data where gaps are present, a
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model or function may be fitted to the time series to smooth the data.

Aspects of phytoplankton phenology could be used as ecological indicators. These indicators are used

as a metric to show how structural sensitivity affects the model prediction. The indicators and their

descriptions are summarised in table 2.4. These are derived using the method described above, and

applied to all ensemble outputs for each year. In this study, annual median based threshold and curve

fitting methods have been used to derive the phenology of phytoplankton, to avoid misidentification for

secondary blooms as primary bloom (Brody et al., 2013), which will be explained below.

Table 2.4: Ecological indicators that serve as the ensemble metrics

Indicators Description

Annual mean The average concentration of chlorophyll at a particular year
Initiation The day when chlorophyll concentration exceeds a certain threshold
Bloom timing The month at which the chlorophyll is at its maximum
Peak height Concentration of highest bloom
Amplitude Half of the highest peak
Duration The length of days when chlorophyll concentration is higher than 50%

of the peak height
Termination The end the first prominent bloom of the year

Threshold method applied to data

The initiation is determined by the day when chlorophyll concentration exceeds a given threshold. Fol-

lowing the work of (Siegel et al., 2002). Using this method alone, determination of phenology is shown

on figure 2.12, where we use the MarMOT-MEDUSA test run at 60◦N, 20◦W, which is run for three years

from January 1998 to December 2000. First, the model outputs are separated into three individual years.

After finding the maximum peak, initiation and termination values were calculated within six months of

the peak, and if these values are outside the range, then it is set as not a number (NaN) and excluded

from further analysis.

As seen on figure 2.12, in the second and third year, there is a second peak that occurs near the spring

maximum. By using the method explained above, the actual peak height is uncertain. Additionally, the

phytoplankton bloom not only occurs during spring time, but also during summer, thus the secondary

bloom is undetected. The length of spring bloom becomes as long as 200 days. To resolve this problem

the output is then fitted to a 4th order polynomial function if a second bloom is detected, and to a 3rd

order if only one prominent bloom occurs during the year.

To fit the curve, spikes in the data that are above the threshold are identified as the points to be fitted.

The fitting of a polynomial curve to the data is done by using polyfit and polyval functions in
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Figure 2.12: Time series of chlorophyll concentration at 60◦N 20◦W. The black, red, and pink lines
denote the threshold value for each year. The green line shows when chlorophyll is above the thresh-
old concentration, and the green star is the maximum chlorophyll. The closed green circles represent
initiation and termination time

MATLAB. By using the acquired value ( polyval), peak height is identified by finding the maximum

data point from the fitted curve. Amplitude is then calculated as half of the highest peak (Kostadinov

et al., 2017). Then the spring bloom is defined as when the fitted values are 50% of this peak height

and therefore the length of this set of data is the duration of the spring bloom. Initiation of spring bloom

is similar to the annual threshold method. However, termination is determined when the polyval

value is below 50% of the peak height, if only one prominent peak is detected. When two peaks are

present, the termination of spring bloom is determined when the first bloom reduces to its minimum,

just before the second bloom starts (at the first valley). This method is useful to see how the bloom

develops and terminates, whether the concentration increases rapidly and decreases slowly or vice versa.

The phenology is summarised in figure 2.13. The curve fitting method is only applied if the data show

potential outliers especially in higher concentrations. If there is only one prominent bloom each year,

such as at stations ALOHA and BATS, and the data are smooth, the regular threshold method (when the

concentration is above 50% of the maximum bloom, and the associated initiation and termination times)

without fitting the data with a curve is applied. To avoid results being affected by how bloom phenology

is determined, the same method is used for determining the metrics from both in situ and model output.
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Figure 2.13: Determining phenology using a combination of threshold method and curve fit in the North
Atlantic (60◦)

2.9 Pilot Study: Altering default functional forms in a simple NPZ model

The effect of structural sensitivity is prominent in a simple predator-prey model. Since all complex

marine biogeochemical models have common features; the nutrient, phytoplankton, and zooplankton

compartments, before moving on to a more complex model, the effect of structural sensitivity in a simple

NPZ model may give insights to how it may affect a more complex marine biogeochemical model. Here,

structural sensitivity is tested by altering the default functional forms with equations that have similar

properties as the default form. In this experiment, simple 0-D NPZ model by Edwards and Brindley

(1996), which is based on Steele and Henderson (1981), is used. The model can be represented by

coupled ordinary differential equations:
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dN
dT

= -uptake+ respiration+Z excretion+Z predation excretion+mixing

=− N
e+N

a
b+ cP

P+ rP+
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P− (rP)− λP2

µ2 +P2 − (s+ k)P

dZ
dT

= growth−higher predation

=
αλP2

µ2 +P2 −dZ2

(2.10)

Similar to the default MEDUSA, this model uses rectangular hyperbolic nutrient uptake, N
e+N , where e

is the half saturation constant. The term a/(b+ cP) is the light limited growth, where b and c are the

limitations due to light attenuation by water and self-shading of the phytoplankton, respectively. In the

original equation, the depth averaged daily phytoplankton growth rate is given by 2.58 Pmax/(b+ cP)M,

where Pmax is the maximum phytoplankton growth rate and M is the mixed layer depth. This model

uses a constant mixed layer depth of 12.5m. Therefore in this equation, a/b gives the maximum growth

rate averaged over the depth of the mixed layer (Edwards and Brindley, 1996). The respiration term is

represented by a linear term. Zooplankton grazing is described using Holling type III, where λ is the

maximum grazing rate and µ is the half saturation constant, similar to that in MEDUSA. However, not

all of the prey is assimilated to the zooplankton, and this efficiency is described using the term α . Parts

of the prey that is not assimilated to the zooplankton is described with the parameter β , and this will be

regenerated as nutrients, making α +β = 1.

The higher predation of zooplankton is described in the quadratic form dZ2, where d is the maximum

predation rate. The zooplankton loss is regenerated as nutrient, represented by γ , and which is described

within the nutrient equation. The exchange of nutrients with the nutrient rich water below the mixed layer

is modelled as k(No−N), where No is the sub mixed-layer nutrient concentration and k is the fraction

of the mixed layer which is exchanged daily with the deeper water due to diffusive processes. The last

term of the phytoplankton equation is the sinking and mixing. The term s, describes the sinking rate of

phytoplankton out of the mixed layer.

From these equations, it is possible to alter the default functional forms using the equations described in

Table 1.1. For zooplankton grazing, we used Holling type II, Ivlev, trigonometric function ( 2
π

arctan( µ

k )),

and sigmoidal II function, which is similar to the Holling type III ( P2

(µ+P)(µ+P) ) to describe the zoo-

plankton grazing. Apart from Michaelis-Menten function, nutrient uptake, can also be described using,
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(a) Nutrient uptake functions (b) Grazing functions

(c) Respiration functions

Figure 2.14: Uptake, grazing, and respiration functions that have been made equivalent using non-linear
least square.

trigonometric, exponential (ivlev), and sigmoidal functions. These functions are all similar in shape and

have features such as the shape defining parameter and maximum rates. Following the early work of

Steele and Henderson (1992), the quadratic and linear functions are used for respiration. The parameter

values and initial conditions are adopted from the original Edwards and Brindley (1996) paper. There-

fore, there will be four uptake functions, four grazing, and two respiration (phytoplankton mortality).

Similar to the study by Fussmann and Blasius (2005), non-linear least squares is used in order to make

the functional forms more equivalent, as seen on Figure 2.14.

In this experiment, only one functional form will be altered at a time, instead of having multiple func-

tional form combinations. The simple model is run for 730 days, with initial conditions of 0.4, 0.1, and

0.05 gCm−3 for nutrient, phytoplankton, and zooplankton respectively. Then the overall mean, period,

number of peaks, and amplitude for all of the model compartments are used as metrics to quantify the

effect of altering functional forms.
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2.9.1 Results: alternative model simulations

The model metrics and the results for each of the biogeochemical processes are shown in Table 2.5. In

terms of uptake functional forms, the mean concentration and amplitude of nutrients from the alternative

uptake functions show significantly lower nutrient concentrations compared to the default run. However,

the default run produced fewer peaks throughout the time series, compared to the alternative functions.

In terms of phytoplankton and zooplankton, the alternative functions do not produce concentrations that

are significantly higher or lower than the default run. Similar to the nutrients, in both phytoplankton and

zooplankton the number of peaks in the default run is lower than other alternative functions. Phytoplank-

ton from the default uptake function also shows the lowest concentrations but also has the longest period

and highest amplitude. Both nutrient and zooplankton from the default functions produce the longest

period and highest amplitude.

Altering the grazing function produces more variability for all the model metrics, and therefore makes

the ensemble range larger than other functions. Using the Holling type II function produces the highest

mean nutrient concentration, period, and amplitude for all of the model compartments however, the

number of peaks produced from perturbing the grazing function is the smallest compared to perturbing

other processes (including nutrient uptake and respiration). The lowest mean zooplankton concentration

compared to other functional forms (including nutrient uptake and grazing) is produced from the Holling

type II grazing function. From Figure 2.15a, the shape of the nutrient peaks from Holling type II is the

most distinct compared to other functions, where the concentration decreases rapidly after reaching the

peak. The opposite is observed in phytoplankton and zooplankton whereby their concentrations increase

more rapidly compared to how they decrease, shown in Figures 2.15b and 2.15c.

The phytoplankton concentration during low concentration periods can go down to almost zero, when

Holling type II is used. Although the sigmoidal II equation is more similar to the default Holling type

III function, the amplitudes for nutrient and phytoplankton are almost three times higher than the default

function, and the period for all the model compartments are almost twice as long than for the default

function. This functional form also produced the highest mean phytoplankton concentration. Similar

to Holling type II, the phytoplankton concentration can reach close to zero during non-bloom periods

when applying sigmoidal II function. Using a trigonometric grazing function, dampens oscillations at all

model compartments, similar to when a hyperbolic tangent is used in the simple predator and prey model

(Figure 1.6).

In terms of phytoplankton respiration, from Figure 2.14c, the two functional forms are distinctive. Using

the quadratic term resulted in the lowest nutrient concentrations, and an increase in phytoplankton and

zooplankton concentrations compared to the default model. The period, and number of peaks, for all the
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model compartments are reduced, and increased respectively, compared to the default model. All of the

amplitudes are also higher than the default function, especially in zooplankton and phytoplankton.

Table 2.5: Mean, period, number of peaks, and amplitude for nutrient, phytoplankton, and zooplankton
using simple NPZ model. The units for all of the model compartments are gCm−3. In the sigmoidal
forms, as seen on Figure 2.15 the oscillation dampens, therefore there are no amplitude

Uptake Grazing Respiration Range Mean
N

e+N * N2

e+N2 1− exp(eN) 2
π

arctan(N
e )

λP
µ+P λ (1− exp(−µP)) λ tanh(µP) λP2

(µ+P)(µ+P) rP2

Metrics Nutrient
Mean (gCm−3) 0.158 0.122 0.139 0.131 0.324 0.150 0.154 0.206 0.084 0.239 0.163
Period (days) 34 30 30 26 100 38 32 55 28 74 41.444
No of peaks 20 27 25 27 7 19 22 13 26 20 20.667
Amplitude 0.062 0.044 0.038 0.025 0.277 0.101 0.187 0.084 0.252 0.102

Phytoplankton
Mean (gCm−3) 0.064 0.069 0.066 0.065 0.084 0.078 0.065 0.089 0.074 0.025 0.072
Period (days) 35 29 29 27 101 39 33 55 27 74 41.667
No of peaks 21 25 26 28 8 20 23 14 26 20 21.222
Amplitude 0.035 0.030 0.027 0.017 0.220 0.070 0.144 0.073 0.203 0.077

Zooplankton
Mean (gCm−3) 0.075 0.074 0.073 0.074 0.037 0.069 0.072 0.058 0.077 0.040 0.068
Period (days) 35 29 29 26 101 39 32 55 28 75 41.556
No of peaks 21 25 28 27 7 20 23 13 26 21 21.111
Amplitude 0.011 0.007 0.007 0.004 0.036 0.016 0.025 0.077 0.073 0.023

2.9.2 Lessons from a simple model

From Figure 2.14, functions that produced the most deviations compared to other alternative functions

are the default uptake function (Michaelis-Menten), Holling type II, and Sigmoidal II for grazing. The

default uptake function has a higher uptake rate compared to the other uptake functions when the nutrient

concentration is low, however when the nutrients raise above 0.1 gCm−3, the uptake rate is lower than

other functions, shown in Figure 2.14a, making the mean nutrient concentration slightly higher compared

with other functional forms. This may explain why the phytoplankton concentrations is slightly lower

than other alternative uptake functions. Similarly, when using Holling type II or Sigmoidal II functions,

lower grazing rate is produced when the phytoplankton concentration is above 0.05 gCm−3, especially

for Holling type II, making the overall phytoplankton mean concentration higher than other grazing

functions. This can also be applied in the phytoplankton respiration, where the quadratic forms generally

produces more phytoplankton, therefore less nutrients, since the linear respiration is always higher than

the quadratic rate.

In terms of model dynamics, altering the grazing equation produces the most distinct dynamics for all

the model compartments, compared to perturbing other processes. This is because the grazing equation

appeared at all the state variable equations (see equation 2.10). Using the type II grazing also causes the

phytoplankton concentration to crash (reduce down close to zero), but increases rapidly as the nutrients

decreases, which has not been observed in other functional forms. The trigonometric function on the

other hand produces nutrient, phytoplankton, and zooplankton concentrations with amplitudes getting

smaller and smaller. These patterns have also been observed in the predator and prey model (Figure
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(a) Nutrient

(b) Phytoplankton

(c) Zooplankton

Figure 2.15: Time series of nutrient, phytoplankton, and zooplankton concentration from a simple NPZ
model when the grazing functions are altered.

1.6(a) and (c)) showing that the effect of structural sensitivity in predator-prey does propagate to the

NPZ model. The high amplitudes in Holling type II may be due to the unstable equilibrium and the

trajectories settle into a stable limit cycle with large amplitudes (Fussmann and Blasius, 2005).
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From these model runs, we can expect that altering the model equations in a simple model can alter the

overall mean concentrations, period, and amplitude, which therefore affect the model predictions, such as

phytoplankton peak timing and concentrations. This initial experiment shows how altering one functional

form at a time can generate a large range, especially when altering the grazing function, making the NPZ

model very sensitive to the choice of grazing functions, especially between sigmoidal and hyperbolic

functions. These results also concur with Anderson et al. (2010). Furthermore, changing phytoplankton

mortality from linear to quadratic doubles the amplitude of phytoplankton and increase the zooplankton

amplitude seven-fold, making the NPZ model also sensitive to the change in phytoplankton as well as the

zooplankton mortality (Edwards and Yool, 2000; Edwards, 2001). Therefore if all the functional forms

are perturbed more range and variations would be produced from the alternative simulations.

In the next chapters, we will explore the structural sensitivity in an operational intermediately complex

marine biogeochemical model.



Chapter 3

The effect of structural sensitivity in a

marine biogeochemical model 2

In the previous chapter, the method of generating the ensemble and examining the effect of structural sen-

sitivity in an intermediately complex biogoechemical model have been described. This chapter explores

the effect of structural sensitivity by comparing the observations with the ensemble mean and median

using statistical metrics, the spread (NRR), and ensemble range. Inter-annual and monthly variabilities

are considered, and both biological concentrations and phytoplankton bloom phenology are assessed.

The Abyssal Plain station comparisons are discussed in section 3.1, followed by the two oligotrophic

stations 3.2, and the two coastal stations 3.3. The effect of structural sensitivity will be summarised and

discussed in section 3.4.

Each section that describes different regions will have separate sections for the chlorophyll and DIN

concentrations, which describe their statistical metrics interannual, and seasonal means, and the phyto-

plankton phenology. At each stations, the ensemble is going to be run fully (128 members) and also

one at a time, where only one process function is changed, while keeping other functions in their default

state, like that in section 2.9. This is done in order to compare the range from altering one process func-

tion with the full ensemble, therefore showing how efficient the large ensemble is in producing ensemble

range.

As explained previously, we choose DIN and chlorophyll as in situ data for these variables are available

at all of the stations, which will be used to compare the ensemble results.

2This chapter is based on parts of the paper Anugerahanti, P., Roy, S. and Haines, K. (2018), ‘A perturbed biogeochemistry
model ensemble evaluated against in situ and satellite observations, Biogeosciences 15(21), 66856711.
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Table 3.1: Error statistics, 10-year mean, and NRR of chlorophyll (mg m−3) and DIN (mmol m−3)
concentration at five stations for the default run, ensemble mean, ensemble median, and the ensemble
range (ensemble maximum - ensemble minimum). These are calculated from surface to 200 m depth,
starting from January 1998 to December 2007. Bias is (model output) – (in situ observation). Bold text
indicate the smallest RMSE. At Station L4 error statistics and mean are taken from the surface and starts
from January 1999 for chlorophyll and June 2000 for DIN. For station PAP, error statistics are taken from
2002-2004 since in situ data is only available during that time.

DIN profile Chlorophyll profile Surface chlorophyll Integrated chlorophyll
Stations r RMSE Bias Mean r RMSE Bias Mean r RMSE Bias Mean r RMSE Bias Mean

PAP Ens mean 0.23 3.26 0.61 6.59 0.42 0.32 0.06 0.48 0.45 0.51 0.22 0.66
(±0.07) (±2.57) (±5.13) (±5.24) (±0.37) (±0.73) (±0.68) (±0.75) (±0.38) (±0.73) (±0.68) (±0.76)

Ens median 0.23 3.16 0.54 6.38 0.49 0.29 0.003 0.42 0.54 0.46 0.15 0.60
Default run 0.21 3.32 -0.20 5.64 0.28 0.40 0.18 0.59 0.36 0.57 0.30 0.74
in situ 5.83 0.42 0.44
NRR 1.29 1.19 1.25

ALOHA Ens mean 0.77 1.06 0.67 1.20 0.22 0.10 -0.06 0.06 0.22 0.05 -0.01 0.10 0.69 2.73 -0.72 3.80
(±0.03) (±0.19) (±0.39) (±0.39) (±0.49) (±0.04) (±0.11) (±0.11) (±0.47) (±0.09) (±0.13) (±0.14) (±0.60) (±5.49) (±7.09) (±10)

Ens median 0.77 1.06 0.68 1.18 0.14 0.11 -0.07 0.05 0.13 0.05 -0.01 0.07 0.56 3.3 -1.17 3.34
Default run 0.77 1.09 0.61 1.10 0.28 0.10 -0.03 0.09 0.27 0.07 0.03 0.11 0.70 4.71 1.25 5.77
in situ 0.50 0.12 0.08 4.52
NRR 1.39 1.29 1.07 1.01

BATS Ens mean 0.56 1.39 1.16 1.77 0.19 0.33 -0.12 0.05 0.22 0.33 -0.12 0.05 0.39 52.13 -19.39 6.18
(±0.38) (±0.84) (±1.00) (±1.01) (±0.37) (±0.05) (±0.16) (±0.16) (±0.58) (±0.15) (±0.05) (±0.15) (±0.54) (±9.40) (±21) (±14)

Ens median 0.55 1.39 1.16 1.77 0.11 0.33 -0.12 0.05 0.06 0.34 -0.12 0.05 0.27 23.30 -17.71 4.51
Default run 0.58 0.73 0.62 1.35 0.23 0.31 -0.07 0.10 0.28 0.31 -0.07 0.09 0.43 48.58 -10.77 13.14
in situ 0.98 0.17 0.15 23.90
NRR 1.38 1.39 1.40 1.40

Cariaco Ens mean 0.78 2.97 0.61 5.39 0.29 0.83 -0.02 0.49 0.13 1.23 0.02 0.77 0.41 17.73 -1.05 11.47
(±0.08) (±0.49) (±2.54) (±2.54) (±0.34) (±0.42) (±0.93) (±0.93) (±0.22) (±0.33) (±1.90) (±0.57) (±0.40) (±7.90) (±17) (±17)

Ens median 0.76 3.24 0.51 5.29 0.20 0.88 -0.18 0.32 0.072 1.29 -0.29 0.46 0.29 19.46 -5.51 7.00
Default run 0.76 3.29 0.59 5.37 0.22 0.87 -0.09 0.42 0.11 1.27 -0.18 0.57 0.34 18.71 -3.86 8.65
in situ 4.78 0.51 0.76 12.52
NRR 1.25 1.19 1.21 1.17

L4 Ens mean 0.70 2.94 1.56 4.52 0.25 1.05 0.42 1.76
(±0.14) (±2.13) (±4.06) (±4.06) (±0.33) (±1.67) (±2.61) (±2.61)

Ens median 0.68 3.10 1.73 4.69 0.21 1.02 0.27 1.61
Default run 0.52 2.67 1.12 4.08 0.31 1.13 0.83 2.17
in situ 2.96 1.34
NRR 1.31 1.21

3.1 Abyssal Plain

The Abyssal Plain is represented by station PAP located in the North Atlantic. However in situ sampling

is limited, with nitrate only measured from mid 2002 to mid 2004 and to a maximum depth of 400 m, and

chlorophyll from mid 2003 to mid 2005 with maximum depth of 200 m, described in Table 2.2. Surface

chlorophyll is derived from SeaWIFs (8-day averages) and is available for the full 10-year time series

as seen in Figure 3.2. As discussed in the previous chapter, section 2.4, some of the MEDUSA original

parameters have been changed, in order to accommodate the oligotrophic region. Since the in situ data

is only available from mid 2002, a model output is used as an initial condition. Subsections on using

MEDUSA parameter instead of the modified parameter and using in situ DIN as initial condition will be

shown in sections 3.1.3 and 3.1.4, respectively, in order to examine the effect of changing parameter and

initial condition to the ensemble range and phytoplankton phenology.
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Figure 3.1: Chlorophyll and DIN profiles from ensemble mean ((a) and (c) respectively), in situ ob-
servations ((b) and (d) for chlorophyll and DIN respectively), and minimum and maximum range of
concentrations at each depth ((e) for chlorophyll and (f) for DIN) at station PAP. The range are obtained
by averaging the concentrations from all ensemble members for 10 years at each depths. Black dots in
the second column show the mean concentration of the ensemble mean over the time series (from Jan-
uary 1998-December 2007), whilst blue and red dots denote the default run and in situ concentrations,
respectively. White solid line in (a) shows mixed layer depth.

3.1.1 DIN and chlorophyll in light-limited region

The PAP data show seasonality in both chlorophyll and DIN profile concentrations, with high DIN during

winter (December-April), and a decline in summer, Figure 3.1(b). The averaged DIN profile peaks in

February, with a spike of high DIN in September, as shown in Figure 3.6(a). At around 70 m the highest

concentrations of chlorophyll occur in May-June, summarised in Figure 3.1(b), similar to that in the

surface.

The ensemble

The ensemble mean reproduces the seasonality in averaged DIN in Figure 3.6(a), where both ensemble

mean and in situ show peak bloom between March and April, but a secondary peak is observed in July

instead of the ensemble mean peak in September. The ensemble mean chlorophyll also has a seasonal

cycle but with chlorophyll confined to shallower depths than in situ, summarised in Figure 3.1(a) and (e).
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The ensemble mean chlorophyll starts to decline below 50 m, which also corresponds to the decline in

the chlorophyll range with depth, shown on Figure 3.1(e). For chlorophyll profile the ensemble median

is better than the ensemble mean, showing a higher correlation, a lower RMSE, and lower bias, than

the ensemble mean against the in situ, as shown in Table 3.1. In terms of chlorophyll distribution, the

ensemble range capture the in situ observation, and the ensemble mean concentrations are often close to

the in situ concentration, shown in Figure 3.1(e), resulting an NRR of 1.20.

The ensemble range shows an increase in DIN concentration below 40m, however, in the in situ DIN,

there are no clear nitricline, shown on Figure 3.1(f). The DIN vertical profile means fall within the upper

limit of the ensemble range at the top ∼50 m, and within the ensemble between 50m and 100m. But

below 100m, the ensemble mean cannot capture the in situ DIN concentrations, resulting an NRR of

1.25. The highest chlorophyll profile RMSEs (> 0.62 mg m−3) are produced from ensemble members

that combine G1 with ρhζl , ρqζq, and ρhζs, and this also coincides with high chlorophyll profile concen-

trations (> 0.7 mg m−3). However for DIN the ensemble mean/median RMSEs are higher than in other

regions, which is traced to be due to ensemble members that contain the UtG2 combination which has a

particularly high DIN bias (> 9 mmol m−3), as shown in Figure 3.20(j).

At the surface, the ensemble peak chlorophyll occurs in May, similar to the satellite observation, although

peak concentrations are higher than satellite observation. These peaks shows later timings compared to

the in situ observation where the chlorophyll peaks occurred in mid-April (Hartman et al., 2010). The

decline in surface chlorophyll in the observation has been captured by six ensemble members (UtρhζhG2,

UtρhζsG2, UtρlζqG2, UtρqζlG2, UtρqζqG2, and UtρsζlG2), although with weaker correlations (r = -0.14

(±0.06), p < 0.05). An inter-annual decline has been observed in the satellite-derived chlorophyll, (r =

-0.21, p < 0.05), shown on figure 3.3(a).

At the surface, in years 1998, 1999, and 2001, the satellite-derived chlorophyll is within the inter-quartile

range, however in other years, it is well below the ensemble inter-quartile box limits, Figure 3.3(a). The

ensemble spread for inter-annual means has NRR of 1.26, and there is also an effect on the overall 10-

year ensemble spread, as seen in Figure 3.2 with an NRR=1.29. High surface chlorophyll concentrations

with high RMSE (>0.8 mg m−3) are seen when combining Uh with ρhζl , ρqζq, and ρhζs, see Figure

3.19(e) and (j), which is consistent with the largest errors in the profile average values. However the low

chlorophyll concentrations (< 0.4 mg m−3) that are produced when combining Ut and G2 in the profile

averages, is not reproduced in the surface chlorophyll.

The ensemble range of surface chlorophyll annual mean is 0.7 mg m−3. However if we only allow one

process function to change in each ensemble member, keeping the other processes with their default

functions, the new 11 member ensemble range reduces to 0.58 mg m−3, still covering 83% of the full
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ensemble (128 members). When the original MEDUSA parameters are used, the ensemble fits the inter-

annual surface chlorophyll observations slightly better, but the DIN fit gets worse.

Default run

The seasonality for DIN at PAP from the default run mostly follows the ensemble mean and median,

although the concentration is slightly lower in ensemble median, Figure 3.6(a). The default run also pro-

duces seasonality of chlorophyll profile. The distribution of chlorophyll from the default run is confined

in the upper 50m in the summer. During winter, the chlorophyll with a concentration of ∼0.5 mg m−3

can penetrate down to ∼200m. These distributions are similar to the ensemble mean. For chlorophyll

distribution in the water column, the default run overestimates the in situ below 75m, and some of the

default run chlorophyll concentrations are very close to the in situ, shown in Figure 3.6(e). This produces

a higher bias, RMSE, and lower correlation for the chlorophyll profile compared to the ensemble mean

and median, as shown in Table 3.1. Default run also shows an increase in DIN concentration below 40m.

The default run produces the lowest bias compared to the ensemble mean and median, but the RMSE is

higher than the ensemble mean and median.

In terms of the surface chlorophyll the default run in general show higher concentration than the ensemble

mean and median, as shown in Figure 3.2(a). The peak chlorophyll in the surface occurs in May, similar

to the ensemble mean and median. The default run also overestimates the satellite-derived chlorophyll

concentration. At most months, the default run produces higher chlorophyll concentrations than the

satellite-derived chlorophyll, shown in Figure 3.4. This overestimation also carried on to the annual

mean, although in 1999, the satellite-derived mean is very close to the default run 3.3(a). In the statistical

metrics, the bias, RMSE, correlations from the default run are worse than the ensemble mean and median.

3.1.2 Phenology: the North Atlantic Spring bloom

Station PAP is a long-term ocean observatory that aims to observed pCO2 and nitrate continuously

(Körtzinger et al., 2008). This station is also located 350km northeast from the NABE site, where

North Atlantic spring bloom was studied (Körtzinger et al., 2008). At station PAP, the initiation from the

satellite-derived chlorophyll occurs in April, see Figure 3.8(a). Although typical North Atlantic blooms

happen in spring (Behrenfeld and Boss, 2014), most peak blooms at PAP occur in late May-early June, as

shown in Table 3.2 and Figure 3.4, which is one month later compared to the in situ observation by Hart-

man et al. (2010), shown in Figure 1.12. Additionally, a late bloom in September from satellite-derived

chlorophyll occurred in 2005, making the mean bloom timing fall in June. The peak height is observed
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Figure 3.2: (a) SeaWIFs-derived surface chlorophyll-a at station PAP overlain with the ensemble 75th

and 25th (blue shade), ensemble mean (cyan), and default run (dark cyan). Statistical metrics associated
with the ensemble mean’s surface chlorophyll such as range, bias, and RMSE are shown on (b), (c), and
(d) respectively

to be 1.52 mg m−3 with an amplitude of 0.45 mg m−3 from the satellite. The duration of the bloom is

around three months (95 days), putting the mean termination in July.

The observed initiation time at PAP is within the ensemble inter-quartile range, and the ensemble median

is only one week earlier than the observations. However, due to the inter-annual variability, the observed

bloom peaks occur about a month later than the ensemble mean and median, although the bloom timing

is still within the ensemble range, with NRR value of 1.31. The ensemble mean produced higher peak

chlorophyll (2.03 mg m−3) and therefore higher amplitude. This puts the satellite-derived chlorophyll at

the lower end of the ensemble range. The termination for ensemble mean and median is two days later

and earlier respectively than the observed termination. This puts the satellite observed duration time

within the ensemble inter-quartile range and very close to the ensemble mean duration.
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Figure 3.3: Inter-annual mean of surface chlorophyll from all the study sites ((a)-(e)) and the 10-year
annual mean (g), all measured in mg m−3. The boxplots show the ensemble annual means. Blue cross
is the in situ observation, red open circle, black dot, and blue stars are the ensemble mean, median, and
the default run respectively. The blue box is the 75th (top) and 25th (bottom) quartiles. Red line is the
median. The whiskers are the ensemble minimum and maximum mean of surface chlorophyll. Annual
mean values and NRR are described in Table 3.2.

3.1.3 Original MEDUSA parameters at station PAP

In this subsection, we present the ensemble results from running the 1-D MEDUSA in station PAP, using

the original MEDUSA parameter which differ to that using the modified parameter, described in 2.4.

From the results, the default overestimates the chlorophyll and show an overall poor match with the in

situ when the model is run using MEDUSA parameters. The poor match may be due to the higher uptake

and grazing parameter from HadOCC.

Running the ensemble using MEDUSA parameters produces similar seasonality, with the highest mean

surface chlorophyll occurring in May. However, all the satellite-derived seasonal and inter-annual surface

chlorophyll means are within the ensemble range, summarised in Fig 3.9(a) and (b), unlike that when

modified parameters were used. This results in a broader ensemble spread, as indicated by the NRR

values, summarised in Table 3.3, that are mostly closer to reliable spreads. The NRR value for the

annual mean is broader than the modified parameters. The default run is also closer to the satellite-

derived chlorophyll concentration, especially when it declines between July to October.

In terms of DIN, not all of the in situ observations have been captured by the ensemble range. The decline
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Figure 3.4: 10-year monthly mean surface chlorophyll from all the study sites ((a)-(e)), showing the
seasonal dynamics of surface chlorophyll (mg m−3). The boxplots show the ensemble seasonal means.
Blue cross is the in situ observation, red open circle, black dot, and blue stars are the ensemble mean,
median, and the default run respectively. The blue box is the 75th (top) and 25th (bottom) quartiles.
The red line is the median. The whiskers are the ensemble minimum and maximum mean of surface
chlorophyll. In station PAP, in situ data for December is not available due to low light and high cloud
cover.

of DIN concentration occurring between February to August is not captured and therefore making the

ensemble overestimates in situ monthly means. The DIN produced by ensemble only starts to decline

between July to September, instead of February to March. This makes the NRR value for DIN profile

higher (1.33) than that running the model using the parameters described in Table 1.

Table 3.3 summarised the statistical metrics when running the ensemble using MEDUSA parameters

in station PAP. The default run produces better RMSE for DIN, although the correlation coefficient is

higher in the ensemble median, similar to the modified parameters run. However, the RMSE and bias

for the default run, ensemble mean, and median in DIN are generally higher compared to the modified

parameters. Running the ensemble using MEDUSA parameters enhance the correlation coefficient for

chlorophyll, both on the surface and over the depths, as well as reducing the RMSEs and bias for the

ensemble mean, median, and default run. These improvements, therefore, making the NRR values for

chlorophyll profile and surface closer to unity compared to using the modified parameter.

In the original MEDUSA parameter, the maximum uptake is slightly lower (0.53 day−1), and the grazing
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Figure 3.5: Inter-annual variability of DIN averaged over 200 m, from all the study sites ((a)-(e)), and
the annual mean (f). Since the in situ data for PAP does not always cover the first 200m, the overall mean
DIN concentration from all depth is used instead. For station L4, in situ DIN is only collected on the
surface. Blue cross is the in situ observation, red open circle, black dot, and blue stars are the ensemble
mean, median, and default run respectively. The blue box is the 75th(top) and 25th(bottom) quartiles.
Red line is the median, and the whiskers are the ensmeble minimum and maximum of the averaged DIN.
In station L4 and PAP data for DIN is only available from 2000-2007 and 2002-2004 respectively.

rate is twice higher (2.0 day−1), compared to that in the modified parameter. This will cause lower phy-

toplankton abundance, and higher DIN concentrations as shown in Figure 3.9 and from the 10-year mean

shown in Table 3.3, especially in surface chlorophyll, where the mean is reduced to 60%, resulting in

smaller bias. However, the effect of structural sensitivity is still quite similar to when using the modified

parameter, where higher chlorophyll is produced when G1 is applied. In terms of DIN, apart from apply-

ing G1, low concentration is produced, when the functional form is combined with ρlζq,ρhζl,ρqζq, and

ρhζs. These functional form combinations coincide with low RMSEs. However, higher DIN concentra-

tion > 9.5 mmol m−3, is observed when the ensemble members contained G2, unlike that in the modified

parameter whereby high DIN is only produced when combining U4 with G2. In terms of surface chloro-

phyll, lower concentrations when using functional forms that contain U4 and U3 have not been observed.

Instead, high chlorophyll concentrations and hence RMSE, both in the surface and profile, is produced

when the functional forms that contain ρlζq and combining G1 with ρhζl . These are summarised in

Figure 3.10.

When using MEDUSA parameters, the observed peak height is not within the interquartile range, with



3.1. Abyssal Plain 87

Figure 3.6: 10-year monthly mean of DIN averaged over 200 m from all the study sites ((a)-(e)), showing
the seasonal dynamics of DIN (mmol m−3). For station PAP, the DIN shown is the overall profile, and
in L4, the in situ DIN concentration is only available at the surface. The boxplot shows the ensemble
monthly means. Blue cross is the in situ observation, red open circle, black dot, and blue stars are the
ensemble mean, median, and the default run respectively. The blue box is the 75th (top) and 25th (bottom)
quartiles. The red line is the median. The whiskers are the ensemble minimum and maximum mean of
averaged DIN. In station PAP, the in situ data is only collected from 2002-2004 and L4 from 2000-2007.

the default run, ensemble mean, and median underestimate the peak, shown in Figure 3.11(a). However

for amplitude, the observation is within the interquartile range, although the ensemble mean, median,

and the default run still underestimating the amplitude, unlike that in the original run. The observation of

bloom initiation is still within the interquartile range, with the ensemble median showing similar timing

as the observation (both in 20th April). The ensemble captures the observation on other metrics, such

as the timing of the bloom peak, duration and termination, shown in Figure 3.11(b) and (c). This might

be due to the broader range of ensemble that is produced from using the MEDUSA parameter instead

of the modified parameter ensemble. For example, the initiation timing from the MEDUSA parameter

ensemble occurs between March to early July, whereas the modified parameter range is only between

March to early May. The most striking difference is in termination, where the MEDUSA parameter

ensemble produces termination range between late May to November, and the modified parameter only

covers termination time between June to October.

Indeed, using the MEDUSA parameters have improved the NRR values, RMSE, and correlation coef-

ficients for surface chlorophyll and profile, but not DIN. The RMSE and bias for DIN are higher com-

pared to using the modified parameters, as well as its NRR, indicating a narrow ensemble spread. Bias in
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Figure 3.7: Annual mean of surface chlorophyll when changing only one process at a time (blue box),
overlain with annual mean of all ensemble members (green box) at five oceanographic stations. Ensemble
mean and median plotted in the figure (shown in red open circle and black closed circle), are the from
the 128 ensemble members.

chlorophyll is also higher than that in the original run using modified parameters. Nonetheless, G2 still

produced lower chlorophyll concentrations. The mortality functions that produced high chlorophyll and

low DIN are also similar to that in the modified parameter.

3.1.4 Station PAP using in situ DIN as initial condition

The in situ DIN is only available from mid-2003 to mid-2005, and are not available at all depths (from

7-400 m) for every in situ measurements, therefore we initialised the DIN using test station data from

50◦N 20◦W. Here, we averaged all the available DIN at each depth and used it as the initial conditions.

The ensemble is run using the modified parameters in 1D MEDUSA. The inter-annual and seasonal mean

are shown in Figure 3.12. In terms of chlorophyll, the satellite observation for the seasonal and inter-

annual mean are always within the ensemble range, as shown in Figure 3.12(a) and (b) respectively. This

results in the NRR being closer to unity in for annual mean (NRR= 1.05), and profiles (NRR= 1.07),

although the surface chlorophyll is deemed too wide, summarised in Table 3.4. In terms of DIN, the

inter-annual mean has an NRR value of 1.01, close to unity, as the in situ are always within the ensemble

range, and there are only three data points available. However, in the seasonal means of DIN, shown
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Figure 3.8: Phytoplankton phenology metrics at the five stations. Blue cross is the in situ, red, black, and
blue dots are the ensemble mean, median, and the default run respectively. The timings and concentra-
tions are averaged annually from January 1998 to December 2007.

in Figure 3.12(c), during months of high concentrations, the ensemble underestimate this. Unlike using

the MEDUSA parameters (Section 3.1.3), when the model is initialised using in situ DIN, the ensemble

can capture the decline of in situ DIN concentration between March to June, but not the increase in July.

This mismatch of pattern, therefore narrows the ensemble spread to 1.38.

Using the DIN input from the in situ data has enhanced the correlation coefficient in terms of DIN and

reduced the RMSE compared to the original run and using MEDUSA parameters. The ensemble range

for mean chlorophyll and DIN means are lower, especially for DIN, where the range for the means is

now less than half of the original run, summarised in Table 3.4. The low DIN concentration is expected

as the in situ DIN, have lower concentration, and therefore reducing the ensemble range. Similar to using

the test station data as initial conditions, the RMSE is lower in the ensemble mean and median compared

to the default run, as well as the correlation coefficient. This is also similar to the chlorophyll profile and

surface, although, in default run, the correlation is significantly lower than the one in Table 3.1. This run

also simulated lower chlorophyll means compared to the in situ, especially in the ensemble mean and

median, as indicated by the negative bias. The NRR value for the chlorophyll profile is also reduced,

from 1.20 to 1.07. However, the mean in situ chlorophyll is underestimated by the ensemble mean and

median, summarised in Table 3.4.

Similar to that in section 3.1.3 and using the original run, G2 still produced lower chlorophyll concentra-
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Table 3.2: Surface annual mean and phytoplankton phenology from in situ, ensemble mean, median,
and default run. The range and NRR in the bracket are the values for changing the functional form one
process at a time (shown on Figure 3.7).

Stations Annual Initiation Bloom Peak Height Amplitude Duration Termination
Mean (mg m−3) Time (mg m−3) (mg m−3) (mg m−3)

PAP Ens mean 0.61 01 Apr 07 May 2.07 0.96 95 26 Jul
Range ±0.70(0.58) ±51 ±45 ±2.98 ±1.63 ±99 ±124
NRR 1.26 (1.37) 1.14 1.31 1.08 1.09 1.42 1.60
Ens med 0.55 12 Apr 15 May 2.03 0.95 87 22 Jul
Default run 0.71 03 Apr 05 May 2.1 0.96 99 21 Aug
in situ 0.44 20 Apr 03 Jun 1.52 0.44 95 24 Jul

ALOHA Ens mean 0.07 21 Mar 21 Apr 0.14 0.047 62 15 Aug
Range ±0.13(0.11) ±89 ±119 ±0.28 ±0.11 ±95 ±119
NRR 0.84 (1.17) 1.35 1.29 0.97 1.19 1.56 1.28
Ens med 0.063 26 Mar 02 May 0.14 0.05 85 24 Aug
Default run 0.10 14 Mar 18 Apr 0.25 0.096 66 10 Aug
in situ 0.084 08 May 26 May 0.14 0.048 47 23 Jun

BATS Ens mean 0.047 02 Mar 12 Apr 0.1 0.043 89 06 Jul
Range ±0.14(0.11) ±187 ±174 ±0.42 ±0.19 ±116 ±198
NRR 1.40 (1.39) 1.18 1.17 1.42 1.42 1.08 1.20
Ens med 0.038 28 Feb 06 Apr 0.08 0.033 95 02 Aug
Default run 0.091 06 Mar 25 Apr 0.29 0.13 65 19 Jun
in situ 0.17 25 Feb 29 Mar 0.58 0.27 93 28 May

Cariaco Ens mean 0.61 20 May 22 Jul 1.09 0.38 133 30 Sep
Range ±1.53(1.29) ±101 ±66 ±2.61 ±0.86 ±63 ±61
NRR 0.78 (0.90) 1.48 1.40 1.39 1.42 1.88 1.55
Ens med 0.37 22 May 14 Jul 0.83 0.34 110 06 Sep
Default run 0.46 21 May 22 Jul 0.98 0.39 122 19 Sep
in situ 0.61 16 Mar 21 Apr 2.39 1.15 76 01 Jun

L4 Ens mean 1.65 13 May 06 Jun 3.25 1.13 64 17 Aug
Range ±2.48(2.14) ±100 ±82 ±3.12 ±1.50 ±78 ±167
NRR 1.00 (1.36) 1.49 1.42 1.32 1.48 1.22 1.19
Ens med 1.49 18 May 07 Jun 3.09 1.13 70 18 Sep
Default run 2.03 19 Apr 08 Jun 3.73 1.3 94 11 Aug
in situ 1.20 09 Mar 11 Apr 3.58 1.64 80 28 May

tions, and combining G1 with ρhζl,ρqζq, and ρhζs produce high chlorophyll profile concentrations which

coincide with high RMSE. This has also been observed in the surface, although the RMSE is slightly

higher, with the addition of ensemble members that contain ρlζq and G1 to have high chlorophyll con-

centrations > 0.6 mg m−3. In DIN, using functional form combinations mentioned above, produce lower

DIN concentration. Unlike the original run, we have not observed high DIN when combining U4 and G2,

and overall, the ensemble produced lower chlorophyll with smaller range (see Table 3.4).

In terms of phenology, using in situ DIN as the initial condition, produces ensemble interquartile range

that captures the satellite-derived chlorophyll, instead of overestimating the peak of the bloom, with the

default run produces closer peak height (1.20 mg m−3) to the in situ (1.52 mg m−3), compared to the

ensemble median and mean. The observed amplitude is also within the ensemble interquartile range,

unlike the modified parameter ensemble. In terms of the timing of initiation, and bloom, the ensemble
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Figure 3.9: Seasonal and inter-annual mean of surface chlorophyll ((a) and (b)) and DIN ((c) and (d))
when running the ensemble MEDUSA using the original MEDUSA parameter. Blue cross is the in situ,
red, black, and blue dots are the ensemble mean, median, and the default run respectively.

Table 3.3: Mean, correlation, RMSE, bias, and NRR for station PAP when the ensemble is run using
MEDUSA parameters. The numbers in italic are statistical metrics from the ensemble run using the
modified parameters.

Station PAP
DIN chlorophyll surface chlorophyll

r RMSE Bias Mean r RMSE Bias Mean r RMSE Bias Mean
Ens mean 0.20 4.09 -3.08 8.99 0.50 0.25 0.08 0.32 0.48 0.32 0.04 0.40

(±0.15) (±1.82) (±4.20) (±4.27) (±0.68) (±0.41) (±0.68) (±0.75) (±0.42) (±0.70) (±0.86) (±0.86)
0.23 3.26 0.61 6.59 0.42 0.32 0.06 0.48 0.45 0.51 0.22 0.66

Ens median 0.19 4.08 -2.16 8.90 0.60 0.26 0.110 0.29 0.54 0.32 0.09 0.36
0.23 3.16 0.54 6.38 0.49 0.29 0.003 0.42 0.54 0.46 0.15 0.60

def run 0.19 3.72 -2.98 8.07 0.53 0.25 0.04 0.36 0.4 0.33 0.01 0.43
0.21 3.32 -0.20 5.64 0.28 0.40 0.18 0.59 0.36 0.57 0.30 0.74

In situ 5.83 0.39 0.44
NRR 1.25 1.33 1.20 1.11 1.29 1.02

median can reproduce the observed initiation timing. Similar to the original run, the default run is

outside the interquartile range of the initiation. For bloom time, the ensemble mostly produces earlier

timing (between mid-April to June) compared to the observation (in 4th June), as seen in Figure 3.11(b),

with the ensemble median showing the closest bloom timing to the observation (30th May). However,

for termination of the bloom, the observation is within the ensemble interquartile range, but all the mean,

median, and default run show later termination time. Compared to the original run, the initiation, bloom,

and termination time from this ensemble are ∼3 days narrower than the original run. The observed

duration of the bloom is also within the interquartile range, with the mean of the ensemble producing the

closest duration, similar to the original run discussed in section 3.1.2.

Overall, using the in situ DIN concentration to initialise the model improves the DIN and chlorophyll

RMSE and correlation coefficient, as well as the chlorophyll profile’s NRR, but makes the DIN and
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Figure 3.10: Mean chlorophyll profile (a), surface (b), and DIN (c), along with their RMSE ((d), (e), and
(f) respectively) in station PAP when the ensemble is run using MEDUSA parameters. X-axis describe
the combination of nutrient uptake (U) and grazing (G), and the y-axis describe the combination of
phytoplankton (ρ) and zooplankton (ζ ) mortality.

Table 3.4: Mean, correlation, RMSE, bias, and NRR for station PAP when the initial condition is the
mean in situ DIN, using the modified parameters. The numbers in italic are the statistical metrics from
the ensemble run using the modified parameters.

Station PAP
DIN chlorophyll surface chlorophyll

r RMSE Bias Mean r RMSE Bias Mean r RMSE Bias Mean
Ens mean 0.26 2.77 -0.76 5.1 0.5 0.27 -0.08 0.29 0.44 0.32 -0.046 0.4

(±0.06) (±0.87) (±1.85) (±1.90) (±0.57) (±0.37) (±0.50) (±0.54) (±0.31) (±0.48) (±0.60) (±0.59)
0.23 3.26 0.61 6.59 0.42 0.32 0.06 0.48 0.45 0.51 0.22 0.66

Ens median 0.26 2.77 -0.71 5.04 0.6 0.26 -0.11 0.32 0.47 0.32 -0.087 0.36
0.23 3.16 0.54 6.38 0.49 0.29 0.003 0.42 0.54 0.46 0.15 0.60

def run 0.24 3.14 -1.37 4.44 0.16 0.34 0.043 0.44 0.11 0.45 0.037 0.48
0.21 3.32 -0.20 5.64 0.28 0.40 0.18 0.59 0.36 0.57 0.30 0.74

In situ 5.83 0.39 0.44
NRR 1.25 1.38 1.20 1.07 1.29 0.9

surface chlorophyll NRR too narrow and broad, respectively. However, it reduces the ranges of mean

DIN, chlorophyll profile, and surface. The general effect of perturbing functional forms are still very

similar to that in the original run, apart from DIN where using G2 and U4 does not produce high (>9

mmol m−3) DIN concentration. The NRR for DIN is also considerably narrow compared to the original

run.

These two exercises show the importance of parameter adjustment and initial condition when running the

biogeochemical model at a specific site. In terms of concentrations and seasonality, using the modified

parameters and using the in situ DIN as initial condition yield a better match to the in situ chlorophyll

profile, and satellite-derived chlorophyll. However, for DIN, the seasonality is better captured, and the

ensemble range for both DIN and chlorophyll are broader when using the modified parameter and test
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Figure 3.11: Phytoplankton bloom phenology at station PAP using in situ DIN (N) and MEDUSA pa-
rameters (M). Annual mean, peak, and amplitude of the bloom is shown on (a), the timing of initiation,
bloom peak, and termination are shown in (b), and duration in (c). Blue cross is the in situ, red, black,
and blue dots are the ensemble mean, median, and the default run respectively. M denote the spread from
the ensemble that use MEDUSA parameters and N denote the ensemble that uses in situ DIN as initial
condition.

data as an initial condition.

3.2 Oligotrophic Ocean

3.2.1 Low nutrients in the euphotic zone and DCM

The oligotrohpic region is represented at stations ALOHA and BATS. As discussed in section 1.6, this

region is characterised by the scarcity of nutrients at the euphotic zone, but may be plentiful at deeper

depths (Dave and Lozier, 2010; Lipschultz, 2001). High DIN levels (> 1.0 mmol m−3) are only found

below ∼ 150 m depth, shown in Figure 3.14(d) and (j) for ALOHA and BATS respectively. The annual

means of the averaged DIN profile in the top 200 m are 0.68 mmol m−3 and 0.80 mmol m−3 for ALOHA

and BATS respectively. In station ALOHA, an increasing trend of inter-annual in situ averaged DIN

profile (r = 0.69, p < 0.03) has been observed, shown on Figure 3.5(b). In the oligotrophic region,

seasonality have not been observed in both chlorophyll and DIN. However, there are low chlorophyll

(< 0.1 mg m−3) months that have been observed in July-October, as shown in Figure 3.4(b) and (c).

Another feature of the oligotrophic ocean is a deep chlorophyll maximum (DCM) that occurs below the

mixed layer, when the chlorophyll concentration in the surface is low (Fennel and Boss, 2003; Letelier,

Karl, Abbott and Bidigare, 2004). At both stations, the DCM is observed ∼ 75m at BATS and ∼ 125m

at ALOHA and continuously occurs throughout the year.
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Figure 3.12: Seasonal and inter-annual mean of surface chlorophyll ((a) and (b)) and DIN ((c) and (d))
when running the ensemble using the in situ DIN. Blue cross is the in situ, red, black, and blue dots are
the ensemble mean, median, and the default run respectively.

The ensemble

The ensemble mean has reproduced DIN concentration distribution in station ALOHA as seen in Figure

3.14(c) and (d). The ensemble range decreases as the depth increases for DIN, with a high ensemble

range found at depths between 3-50 m, Figure 3.14(f) and (l). However, at BATS, the DIN concentration

in the top 200 m, Figure 3.14(i), has significantly higher DIN concentration (> 1.0 mmol m−3) than the

in situ. This consequently leads to a higher annual mean of DIN, and overestimation in monthly, Figure

3.6(c) and inter-annual variability, Figure 3.5(c) of averaged DIN profile, for all the ensemble members.

This higher averaged DIN profile concentration has also been observed at ALOHA, whereby both the

ensemble mean and median have annual means of > 0.9 mmol m−3. The increasing trend in DIN (r =

0.67, p < 0.03) has also been observed in 28.9% of the ensemble members, which uses G2 as its grazing

function.

The DIN concentrations at both oligotrophic stations are mostly overestimated by the ensemble mean/median,

and the opposite has been observed in chlorophyll. At BATS all of the ensemble members overestimate

chlorophyll profile, surface, and integrated. From Figure 3.18(a) and (b) a low chlorophyll profile means

(< 0.08 mg m−3) are produced from ensemble members that combine G2 with ρlζl , ρlζq, ρlζs, ρqζh, and

Ue, which coincides with high RMSE, shown in Figure 3.18(e) and (f).

The ensemble always encompass the in situ chlorophyll concentrations at the top 100m in ALOHA,

and all depth at BATS, shown on Figure 3.14(k) and (e), although the ensemble mean and median un-
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Figure 3.13: Mean chlorophyll profile (a), surface (b), and DIN (c), along with their RMSE ((d), (e), and
(f) respectively) in station PAP when the ensemble is run using MEDUSA parameters. X-axis describe
the combination of nutrient uptake (U) and grazing (G), and the y-axis describe the combination of
phytoplankton (ρ) and zooplankton (ζ ) mortality.

derestimate the in situ chlorophyll concentrations. DCM has also been observed at both stations in the

ensemble mean. However, the depths at which the DCM is simulated by the ensemble means are slightly

shallower, 70-150 m in ALOHA, but at similar depth in BATS. The ensemble at these stations show no

continuous DCM, shown on Figure 3.14(a) and (g) for ALOHA and BATS respectively, despite contin-

uous DCMs from the in situ. The depth of the DCM coincides with the higher ensemble range, with the

range decreasing with depth after the DCM depth.

High chlorophyll vertical profile means at both stations are produced from ensemble members that com-

bine UhG1 and UtG1. High DIN profile means are produced when Ue and Us are combined with any

mortality functions, summarised in Figure 3.20(a) and (b). Combining these uptake functions with G2

will also increases the mean DIN concentration even further, and therefore increase the RMSE in station

BATS. Nevertheless, since overestimation of mean DIN concentration occurs in most of the ensemble

members, and therefore the ensemble mean, the NRRs are high for both ALOHA and BATS (NRR=1.38

and 1.40 respectively).

For integrated chlorophyll in the oligotrophic region, the ensemble mean and median have smaller RM-

SEs and a better correlation coefficient, compared to the default run. The NRR for the integrated chloro-

phyll is closer to 1 compared to the surface and chlorophyll profiles. From Figure 3.14, in 1999, there

is an increase of chlorophyll concentration due to a surge in DIN. This makes the integrated primary

production in 1999 overestimated the in situ value, shown in Figure 3.15, although most of the year the

in situ is within the interquartile range.



96 Chapter 3. The effect of structural sensitivity in a marine biogeochemical model

Figure 3.14: Time series (from January 1998-December 2007) of ensemble mean and in situ, and range
of chlorophyll and DIN concentrations at oligotrophic stations. Station ALOHA is shown on (a)-(f) and
BATS is shown on (g)-(l). White solid line in (a) and (g) represents mixed layer depth. (e), (f), (k), and
(l) are the range of chlorophyll ((e) for ALOHA and (k) for BATS) and DIN ((f) for ALOHA and (l)
BATS) over the depth. The blue and red dots represent the default run and the in situ mean concentration
over the depth. The range is obtained by averaging the chlorophyll and DIN concentrations of each
ensemble members over the time series at each depth. Black dots in (e), (f), (k), and (l) are the mean
of the ensemble. Ensemble mean chlorophyll profiles (shown on (a) and (g)) and DIN ((c) and (l)) are
obtained from all of the ensemble members. in situ chlorophyll are shown in (b) and (h), and DIN are
shown in (d) and (j), for ALOHA and BATS respectively.

Default run

The default run also produces deep chlorophyll maxima and overestimates the DIN concentration at the

top ∼150m at both stations, however, compared to the ensemble mean, the default run always produces

lower DIN concentrations. This makes the DIN concentration from the default run closer to the in situ

observation, especially in May, June, and December at ALOHA, shown in Figure 3.6. Consequently,

bias and correlation of DIN at ALOHA and BATS for the default run is either similar or better than the

ensemble mean and median.

In terms of chlorophyll, unlike the ensemble mean and median, the default run is very close to the in

situ chlorophyll concentrations at the top 75m, especially at ALOHA. However, the DCM produced the

default run is also not as continuous as the in situ chlorophyll for both ALOHA and BATS, although
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Figure 3.15: Mean integrated primary production averaged over 200m that are available in (a) ALOHA
and (b) Cariaco, and (c) the annual mean. Blue cross is the in situ, red, black, and blue dots are the
ensemble mean, median, and the default run respectively. The NRR for ALOHA and Cariaco are 1.12
and 0.80 respectively.

the concentration is higher than the ensemble mean and median, Figure 3.14(e) and (k). The depth

of the DCM at ALOHA from the default run, occurred in ∼80m, shallower than the in situ, but at

BATS the DCM produced by the default run is at a similar depth, and but still underestimates the in situ

concentration, shown in Figure 3.14(k). Below 100m, the default run underestimates the chlorophyll

concentration at ALOHA, making the bias and correlation for the default run better than the ensemble

mean and median, summarised in Table 3.1. However, at BATS, in the top ∼ 40m, are overestimated

by the ensemble, but below that depth, the default run produces higher chlorophyll, as seen in Figure

3.14(k). This also makes the default run produces better bias, RMSE, and correlation for chlorophyll

profile, compared to the ensemble mean and median.

3.2.2 Surface Chlorophyll

At station ALOHA, shown in Figure 3.16, for the surface chlorophyll, the RMSEs from the ensemble

mean and median are lower compared to the chlorophyll profile. The surface mean concentrations from

the ensemble mean/median are also closer to the in situ concentration, summarised in Table 3.1. En-

semble members with low surface chlorophyll means are consistent with the profile averaged values,

although high surface chlorophyll errors also coincide with high surface mean, summarised in Figure

3.19(a) and (f). The low RMSEs for surface chlorophyll at ALOHA from ensemble mean and median

are also reflected in the NRR (1.07, see Table 3.1), and the ensemble almost always encompasses the in

situ observations, as seen on Figure 3.16. At BATS, most of the ensemble members underestimate the

in situ surface chlorophyll, similar to that in the profile. This could be seen from its surface time series

where the in situ almost always overestimate the ensemble mean and median, especially during bloom

period in 2004, Figure 3.17. This in turns produces high bias and RMSE for ensemble mean and median,

as well high NRR.



98 Chapter 3. The effect of structural sensitivity in a marine biogeochemical model

At ALOHA the range for inter-annual means has low NRR (0.84), lower than the overall time series

mean. However, if we only allow one process function to change in each ensemble member, whilst

keeping the other processes with their default function, the new ensemble produces higher NRR (1.17),

and the in situ annual mean is no longer within the inter-quartile range, as shown on Figure 3.7 and

summarised in Table 3.2. In the interannual mean range, at both stations, although most of the ensemble

members underestimated the in situ concentrations, most of the year, in situ surface chlorophyll is within

the ensemble range. For the seasonal variability, from June to September, the ensemble at both ALOHA

and BATS underestimate the in situ concentrations (the ensemble mean goes as low as 0.045 and 0.022

mg m−3 for ALOHA and BATS respectively), shown in Figure 3.4(b) and (c). However at months of

high chlorophyll, (> 0.1 mg m−3) the ensemble can capture the in situ.

The default run in oligotrophic regions generally produces higher chlorophyll and lower DIN concentra-

tions compared to the ensemble mean and median. Default run also matches better with in situ data as

the correlation coefficient, r is higher at both stations. However, at BATS due to the high chlorophyll

concentrations, the default run shows better RMSE, correlation, and bias. In the interannual mean at

ALOHA, in 2000, 2001, 2003, and 2004, and at BATS in 2002, the in situ is very close to the default

run, which may explain the low bias.

3.2.3 Phenology at the oligotrophic regions

The observed initiation times at ALOHA show more inter-annual variability which is common in this

station (Lipschultz, 2001) , and may occur in June, August and October, as well as in December and

January. This causes the average observed initiation time to end up in May. The chlorophyll at ALOHA,

Figure 3.4(b), shows peak highs (> 0.1 mg m−3) in June, August, and September as well as December

and January. At BATS, the initiation occurs mostly between January and February, although in 2002,

the initiation occurred in October. Bloom peaks generally occur a month later, and the terminations

vary between April and May, apart from 2002 when it was in December. The height of the peak and

amplitude at ALOHA are 0.14 and 0.05 mg m−3 respectively. At BATS these metrics have slightly

higher chlorophyll concentrations, of 0.60 and 0.28 mg m−3 for peak and amplitude respectively. The

duration of the bloom at ALOHA is rather short compared to other stations, ∼ 50 days, whereas BATS

is ∼ 90 days.

At ALOHA Figure 3.8(a) shows the ensemble run having initiation times between late January and April

instead, so the observations fall outside the ensemble range, Figure 3.8(b), and the ensemble does not

show as strong inter-annual variability as the observation, as seen on Figure 3.16. The ensemble at

BATS has the largest range of phenological timings, especially in termination time, and this matches the
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Figure 3.16: (a) in situ surface chlorophyll at station ALOHA overlain with the ensemble 75th and 25th

percentile (blue shade), ensemble mean (cyan), and default run (dark cyan). Statistical metrics associated
with the ensemble mean’s surface chlorophyll such as range, bias, and RMSE are shown on (b), (c), and
(d) respectively

observations better. For bloom initiation, the in situ timing is within the inter-quartile range and only

three days earlier than the ensemble median. However, since the earliest peak occurs in mid-January in

the ensemble, the peak bloom time from the ensemble at BATS are usually later than in situ. Nonetheless,

the ensemble estimates of bloom peaks for 30◦N, which agrees with a study by Racault et al. (2012), who

identify early April as the peak bloom time. Although the ensemble range of peak bloom time at BATS

is high (174 days), the NRR =1.17, as the ensemble does not cover all the in situ timings.

At ALOHA ensemble bloom peak and amplitude inter-quartile ranges encompass the observations, with

ensemble mean and median being very close to the observation. However, at BATS, the in situ obser-

vations for bloom peak and amplitude are outside the ensemble range, consistent with section 3.2.2,

where ensemble range underestimates in situ chlorophyll concentration. The observed bloom duration at

ALOHA and BATS are within the ensemble range, although the inter-quartile range at ALOHA shows

longer bloom durations. For bloom termination, both stations show later termination, with the ensemble
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Figure 3.17: (a) in situ surface chlorophyll at station BATS overlain with the ensemble 75th and 25th

percentile (blue shade), ensemble mean (cyan), and default run (dark cyan). Statistical metrics associated
with the ensemble mean’s surface chlorophyll such as range, bias, and RMSE are shown on (b), (c), and
(d) respectively.

mean being almost two months late and a month late for ALOHA and BATS respectively. However, at

ALOHA, located at 22◦N, the ensemble median for termination at the end of August agrees well with

the observations from Racault et al. (2012).

3.3 Coastal

Coastal zones are represented by stations Cariaco and L4, with in situ observations showing strong

seasonality, in Figure 3.22(b), (d), (g), and (h). In this section, station Cariaco and L4 are going to be

separated into two subsections, because the two stations are situated at different regions, Cariaco in the

tropical, where nutrients supply to the euphotic zone is driven by upwelling in subsection 3.3.1, and L4

in the subpolar regions where the phytoplankton growth is mostly light-limited in subsection 3.3.2
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Figure 3.18: Chlorophyll profile 10-year means ((a)-(d)) and its RMSEs ((e)-(h)) at four oceanographic
station from all of the ensemble members. Station L4 is not included as chlorophyll data is only taken at
the surface. These are arranged by the lowest chlorophyll (top left) mean to the highest (bottom right),
depending on the oceanographic regions.

3.3.1 DIN and Chlorophyll variability at Cariaco

The ensemble

At Cariaco, highest mean observed DIN profile concentration (> 7.5 mmol m−3) at the top 200 m is ob-

served in March and July, and lowest (< 5.5 mmol m−3) in November, see Figure 3.6(d), as the upwelling

controls the DIN concentration. The in situ profiles at Cariaco show high chlorophyll concentrations (>1

mg m−3) within the upper 30 m between December-February (see Figure 3.22(b)) coinciding with the

rise of DIN from depth to ∼30 m, seen in Figure 3.22(d), increasing the DIN concentration to ∼ 5 mmol

m−3 from < 1 mmol m−3.

At Cariaco seasonal variability is absent from the ensemble for both chlorophyll and DIN, especially

in the surface 3.21, which may be due to the absence of upwelling due to capping of vertical velocity.

However the DIN bias have been massively reduced to 0.61 and 0.51 mmol m−3 for the ensemble mean

and median respectively, summarised on Table 3.1, compared to before the capping (for the ensemble
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Figure 3.19: 10-year mean and RMSE of surface chlorophyll (mg m−3) at five stations from all ensemble
members. The first panel ((a)-(e)) shows surface chlorophyll mean and RMSEs are shown on the second
panel ((f)-(j)). Concentrations and RMSEs are arranged by the lowest chlorophyll (top left) mean to the
highest (bottom right), depending on the oceanographic regions. For station PAP, the sequence is sorted
based on coastal station. The y-axis shows combination of uptake (Uh,Us,Ue, and Ut) and grazing (G1
and G2), and x-axis shows combinations of phytoplankton (ρ) and zooplankton (ζ ) mortalities.

mean the bias was 5.28, see Table 2.3). There are only two years simulating downwelling of DIN, in 2001

and between 2005-2006, shown in Figure 3.22(c), but this occurred in most years on the observation,

shown in Figure 3.22(d). The chlorophyll concentration is almost constant (above 0.7 mg m−3) in the

upper 30 m and at the surface (see Figure 3.21), apart from a decline in concentration to ∼ 0.5 mg m−3,

followed by a sharp chlorophyll peak in the winter (December-January) in 2007, shown in Figure 3.4(d)

and in Figure 3.22(a). Despite this discrepancy, the ensemble has captured the in situ chlorophyll and

DIN profiles at all depth. The NRRs for chlorophyll and DIN profiles are 1.19 and 1.25, respectively.

The ensemble mean for chlorophyll profile at Cariaco produced the smallest bias, compared to other

stations, summarised in Table 3.1. A decline of chlorophyll was noted at Cariaco from 2004 (Taylor

et al., 2012), and this is captured by the ensemble mean and median (r = -0.72, p < 0.05, r = -0.66, p <

0.05 respectively).

At Cariaco although surface chlorophyll seasonality is not well reproduced, the ensemble range is wide
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Figure 3.20: 10-year mean and RMSE of DIN (mmol m−3), at five stations from all ensemble members.
The first panel ((a)-(e)) shows DIN mean and RMSEs are shown on the second panel ((f)-(j)). Concen-
trations and RMSEs are arranged by the lowest chlorophyll (top left) mean to the highest (bottom right),
depending on the oceanographic regions. For station PAP, the sequence is sorted based on coastal station.
The y-axis shows combination of uptake (Uh,Us,Ue, and Ut) and grazing (G1 and G2), and x-axis shows
combinations of phytoplankton (ρ) and zooplankton (ζ ) mortalities.

so that in situ concentrations mostly fall within it, apart from August and November, summarised in

Figure 3.4(d) and 3.21. The annual mean of surface chlorophyll and averaged DIN in the top 200 m are

also within the ensemble range, Figure 3.3(f) and 3.5(f), with the NRR 0.78 and 1.15 for chlorophyll and

the averaged DIN profile respectively. Weak positive correlations, small RMSEs, and bias are found for

ensemble mean surface chlorophyll at Cariaco, summarised on Table 3.1, which has improved the default

run. Similar to the oligotrophic stations, the integrated chlorophyll shows better correlation with in situ

measurements, compared to both surface and chlorophyll profiles, with results summarised in Table 3.1.

The overestimation of DIN and chlorophyll are produced when the model uses ρlζq, ρhζl , ρqζq, and ρhζs

combinations as these functional forms produced high chlorophyll means (> 0.8 mg m−3 in Cariaco

profile, with higher RMSEs, primarily when Us is also used. Higher DIN concentrations in Cariaco (>5

mmol m−3) with high RMSEs (> 3.4 mmol m−3) are also associated with the same ensemble members,

summarised in Fig 3.20(c). From Table 3.1, at Cariaco in situ surface chlorophyll concentrations, are
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Figure 3.21: (a) in situ surface chlorophyll at station Cariaco overlain with the ensemble 75th and 25th

percentile (blue shade), ensemble mean (cyan), and default run (violet). Statistical metrics associated
with the ensemble mean’s surface chlorophyll such as range, bias, and RMSE are shown on (b), (c), and
(d) respectively.

slightly overestimated by the ensemble mean, but most other ensemble outputs are underestimated, ex-

cept for ensemble members that use the combinations above. Unlike the oligotrophic regions, these high

chlorophyll concentrations in the coastal stations coincide with higher RMSE (> 1.7 m−3).

Default Run

At Cariaco, the DIN concentration from the default run is slightly lower than the ensemble mean and

median as shown in Figure 3.22(f), especially at the top 75m, but starts to overestimate the ensemble

mean below this depth. Default run also shows very close DIN concentration to the in situ observation,

making the bias slightly lower than the ensemble mean. For chlorophyll, the default run shows lower

concentrations, as shown in Figure 3.22(e), at the top 30m, but then exceeds the ensemble mean con-

centrations below that depth. Although during times of high chlorophyll, such as in 2003 and 2007, the

default shows almost similar concentration as the ensemble mean, shown in Figure 3.5(d), and 3.6(d).
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Figure 3.22: Time series of chlorophyll and DIN profile of ensemble mean, their range, and in situ
concentrations at the coastal stations Cariaco (a-f) and L4 (g-h) from January 1998-December 2007. (a)
and (c) show chlorophyll and DIN ensemble mean at Cariaco respectively. White solid line in (a) is
the mixed layer depth. (e) and (f) show ranges of chlorophyll and DIN concentrations at each depth,
respectively. The black dots are the mean of the ensemble. These range are obtained form the 10-year
mean concentrations at each depth. Since in situ chlorophyll and DIN were taken at the surface in station
L4, only surface time series were shown in (g-h). The grey shades on chlorophyll, shown in (g), and
DIN, shown in (h) time series show the range of chlorophyll and DIN concentrations. Blue and red dots
are in situ concentrations for chlorophyll and DIN respectively.

Although the bias for chlorophyll profile from the default run is higher than the ensemble mean, in sur-

face chlorophyll, the decline is captured by the default run, although not as sharp as the ensemble mean

and median (r =-0.35, p < 0.05). Overall, in this station, the default run shows poorer results compared

to the ensemble mean and median, at most statistical metrics.

3.3.2 DIN and chlorophyll variability in light-limited L4

The ensemble

Similar to in situ Cariaco, the seasonality of DIN is also observed at L4, where high concentrations

(> 8 mmol m−3) occurs between November-February, with very low values (∼0.1 mmol m−3), during

summer months (Smyth et al., 2010). For chlorophyll sharp peaks of chlorophyll are observed during

spring (March-April) and fall (September), coinciding with the sharp decline of DIN between March and

July (from ∼6 in March to 0.22 mmol m−3 in July), shown in Figure 3.6(e), resulting in an annual mean
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of 2.40 mmol m−3 and 1.20 mg m−3 for DIN and chlorophyll respectively. During non-bloom periods,

chlorophyll is observed from 0.09-2 mg m−3, with peak concentrations up to 6.4 mg m−3.

At L4 the ensemble shows seasonality although the inter-quartile range often overestimates the surface

DIN concentrations, especially during the sharp decline in spring and summer, shown in Figure 3.6(e). In

terms of interannual mean, only in 2001 and 2002, the in situ is outside range. As explained previously,

there are two bloom events in station L4 (Smyth et al., 2010). However, these are not well represented by

the ensemble as it only simulates one peak between May-June, summarised in Figure 3.4(e). However,

if only diatom chlorophyll concentration is shown, the two bloom events are captured, especially in the

default run shown in Figure 3.23. Similar to the observation from Smyth et al. (2010), spring bloom is

dominated by the diatoms, as shown in Figure 3.23(a). However, the non-diatoms in the ensemble tend

to bloom in the summer and other times when blooms are not supposed to occur 3.23(b), which may

cause the discrepancy in the seasonal variability at L4. The ensemble also shows higher concentration

range during non-bloom periods (ensemble range from 0.28-3.13 mg m−3), which is likely caused by

the non-diatoms, so that the surface chlorophyll during periods of very low concentration (for example

in January 2001 and May 2003) is not fully captured by the ensemble interquartile range.

Figure 3.23: (a) In situ surface total chlorophyll at station L4 (yellow) and the ensemble 95th and 5th (grey
shade) percentile, ensemble mean (black), and default run (dark cyan) of diatom surface chlorophyll. (b)
Similar to (a), but the non diatom

The annual mean of the full ensemble has NRR=1.00 at L4, with the in situ chlorophyll close to the

ensemble median (see Figure 3.3(e)). If the ensemble is reduced to single process perturbations the NRR

increases to 1.36, and the in situ data is no longer within the ensemble range, shown on Figure 3.7.

Similar to Cariaco, the overestimation of DIN and chlorophyll, therefore higher RMSEs, are produced

when the model uses ρlζq, ρhζl , ρqζq, and ρhζs, summarised in 3.20(e)
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Default Run

The default run shows similar seasonality as the ensemble mean, and produces higher total monthly

chlorophyll and interannual means than the ensemble mean or median, shown in Figure 3.4(e). Due to

the high chlorophyll concentration, the bias and RMSE are high, but, the default run produces a higher

correlation coefficient compared to the ensemble mean and median. In terms of DIN, the default run

produces lower DIN concentration than the ensemble mean and median, which are closer to the in situ

concentration, therefore, producing lower bias and RMSE, as seen on Table 3.1. The default run pro-

duces a higher concentration of diatoms than 90% of the ensemble, but for non-diatoms concentrations,

the default run produces almost similar concentration as the ensemble mean, shown in Figure 3.23.

As discussed previously, the diatom concentration from the default run produces two distinct peaks of

chlorophyll 3.23(a).

3.3.3 Phytoplankton Phenology

For coastal stations L4 and Cariaco, the in situ initiation typically happens in mid-March, with peak

bloom timing in April for both stations. At Cariaco the mean peak height is 3.5 mg m−3, with mean

amplitude 1.15 mg m−3, shown in Figure 3.8(c) and (d). At L4, the mean peak height is slightly higher

(3.6 mg m−3), with a higher amplitude (1.64 mg m−3). Both stations have nearly similar bloom duration,

of 76 and 80 days for Cariaco and L4 respectively. This makes the termination times for both stations

very similar, which happen in June.

The ensemble means show later initiation, with the 75th and 25th spanning mid April to end of May

for Cariaco, and between early and mid May for L4. However, the overall ensemble range covers the

observed initiation, in Fig 3.8(a). This later timing is also clear in peak bloom times for both stations,

shown on Figure 3.8(b), whereby in L4, the inter-quartile range of the bloom occurs mostly in June,

and the ensemble range for Cariaco, between the end of May and early August. Consequently, the in

situ observations for Cariaco and L4 both falls outside the ensemble range. Figure 3.4(e) shows that the

bloom at L4 is simulated by the ensemble one to two months later.

At Cariaco the ensemble mean peak height (1.09 mg m−3) and amplitude (0.38 mg m−3) reach less than

half of the in situ values (2.39 mg m−3 and 1.15 mg m−3, for peak and amplitude, respectively), which

makes the in situ concentration fall outside the inter-quartile range for peak height and amplitude. This

underestimate of the peak and bloom amplitude, results in NRR of 1.40 and 1.39 respectively. At L4

chlorophyll peaks are within the inter-quartile range, and amplitudes are within the full ensemble range.

The bloom duration at Cariaco is also overestimated (up to 143 bloom days) and this, along with the
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late initiation of the bloom, results in a three month late termination. Cariaco is the only station with

peak bloom time, duration, and termination outside the ensemble range, due to the lack of chlorophyll

seasonality, as noted in section 3.3, also resulting in higher NRR values. At L4 the duration of the bloom

is within the ensemble range, however, since the initiation and bloom timing of the inter-quartile range

is later than the observation, the inter-quartile range also shows later termination time.

3.4 Summary and Discussion

In this chapter, structural sensitivity associated with the mathematical formulation of the processes in

an intermediately complex biogeochemical model have been investigated. This is done by generating

its ensemble outputs of chlorophyll and DIN. The ensemble consists of 128 ensemble members, each

with different process function combinations. In order to maintain phenomenological similarity, these

functions are calibrated using non-linear least squares, while keeping the maximum process rates fixed

and using the range of concentrations that have been observed across all of the stations. We have chosen

nutrient uptake, zooplankton grazing, and plankton mortalities to vary, as these are the core processes of

every marine biogeochemical model, from the simplest to the most complex. Through this approach, we

provide a perturbed biology ensemble conditioned upon structural uncertainties in model formulation.

Applying structural sensitivity in the 1-D framework has also allowed a large range of process variability

to be explored for several different oceanographic regions, and with minimal computational cost. The

results are compared with a single default run, and in situ observations at five oceanographic stations.

From these assessments, we find that small perturbations in model structure can produce a wide range of

results regarding chlorophyll and nutrient concentration as well as phytoplankton phenology. Compared

to parametric sensitivity studies in biogeochemical models, studies of structural sensitivity are much

more limited.

Our findings reveal that in all regions, the Holling Type II (G2) grazing function lowers the chlorophyll

concentrations especially at low concentrations, which has also been observed by Anderson et al. (2010)

. The nutrients respond in the opposite direction with enhanced DIN concentrations. This is expected as

at low concentrations, using the G2 function will graze more phytoplankton, as shown on Figure 2.3(b).

Even when fitting for a phytoplankton concentration range similar to oligotrophic regions (0.001-0.5

mmol m−3) is applied, higher grazing rate with G2 is still apparent in lower concentrations (< 0.2 mmol

m−3).

Pairing G2 with the linear (ρl) mortality of phytoplankton, which constantly removes phytoplankton

regardless of concentration, will reduce the chlorophyll concentration even further; but the opposite
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happens when G2 is paired with linear zooplankton mortality. Yool et al. (2011) has similarly shown

that using a linear mortality causes the biggest changes in phytoplankton concentrations compared to

quadratic and sigmoidal forms. In contrast, the default phytoplankton (ρh) and sigmoidal zooplankton

mortality (ζs) produce the highest chlorophyll concentrations in all regions, similar to the experiment

from Yool et al. (2011). If we use less than half of the current maximum mortality for both ρl and ζl ,

then the deviation in phytoplankton concentrations from the default run is less apparent. For example,

mean surface chlorophyll obtained from running an ensemble member with UhG1ρlζl at station ALOHA,

using µnd ,µd ,µmi= 0.04 day−1 and µme= 0.08 day−1, is 0.12 mg m−3 (default function is 0.11 mg m−3),

up from 0.07 mg m−3. This shows that structural sensitivity to some extent captures the parametric

sensitivity as well. However compared to the lower maximum mortality, the current parameter set shows

lower error during the fitting process, and in order to be consistent with other functional forms, the

current parameter set is used.

For nutrient uptake, the exponential (Ue) and sigmoidal (Us) forms are inefficient as ensemble members

which contain these functions produce low chlorophyll and especially high DIN (DIN) concentrations,

as shown on Figure 3.19(a), (b), 3.20(a), and (b). This is very apparent in oligotrophic regions. Even

though the functional forms have been optimised, the largest deviations occur when DIN is < 1 mmol

N m−3, shown in Figure 2.3(a). This deviation still occurs when the concentration range is reduced to

0.001 - 5 mmol m−3. However, the effect is not as noticeable as when using G1 or G2.

Stations that produce high chlorophyll concentrations also have high ensemble range, for example, at

Cariaco where chlorophyll concentration is high, despite the discrepancy with in situ seasonality, the

ensemble range still covers the in situ concentrations and the chlorophyll profile at Cariaco has an NRR

value close to 1. However for annual mean chlorophyll and primary production (Figure 3.3(d) and

3.15(b)) the ensemble spread appears too large. Even in the reduced 11 member ensemble where only one

process is changed, the range still covers 80% of the full ensemble range of the surface chlorophyll annual

mean, see Table 3.2 and Figure 3.7. This emphasises that perturbing functional forms will produce a large

range of model results. In some cases, this reduced range may be statistically more meaningful than the

full range. For example, compared with the full ensemble, the reduced ensemble range for Cariaco’s

annual-mean chlorophyll gives an NRR closer to unity. Therefore, it may be possible to systematically

reduce the number of ensemble members, whilst retaining a realistic ensemble range, which will reduce

computational costs.

In the depth profiles, most of the stations capture the chlorophyll well, but DIN concentrations are mostly

overestimated, especially at the oligotrophic stations. At Cariaco the best match between in situ DIN

and chlorophyll with the ensemble range have been observed. However, mismatch between seasonal

patterns in the observations and the ensemble has been shown in this station, which is mostly caused



110 Chapter 3. The effect of structural sensitivity in a marine biogeochemical model

by the physical dynamics. At Cariaco the upwelling of nutrients that feeds the phytoplankton is not

well simulated by the vertical velocity, especially after the capping process described in section 2.5.1.

This emphasises that despite using the ensemble approach, a coupled-biogeochemical model is only as

good as its physical model (Doney, 1999), as the physical components such as mixing and upwelling

dictate the seasonal pattern, phytoplankton community structure, and primary production (Sinha et al.,

2010). Furthermore, in situ studies in Cariaco have shown that diatoms should be present in this station

(Taylor et al., 2012; Pinckney et al., 2015), however all of the ensemble members, including the default

run produce no diatoms. A further study in comparing the chlorophyll distribution in the water column

between perturbing the physical input and the biogeochemical equations may improve our understanding

on how the two perturbations produces alternative simulations.

At most stations, the ensemble mean produced lower RMSE and higher DIN correlations with in situ

compared to the default run, as shown in Table 3.1. This suggests that the structural ensemble is also

likely to produce a mean field closer to the observation than a single-structure model that has not been

specifically tuned to one station. However for chlorophyll concentration the default run has higher cor-

relation coefficient and lower bias than the ensemble mean and median, especially in the oligotrophic

regions. This may be because using default function, the model produces higher chlorophyll and lower

DIN than the ensemble mean and median, and in the oligotrophic regions the ensemble tend to overesti-

mate DIN and underestimate the chlorophyll. Reducing the number of ensemble members, in a further

study, may improve the bias and correlation in ensemble mean and median, as some of the ensemble

members contribute to this high bias, especially those which uses ρl and G2.

Even though at some stations, such as BATS, the in situ surface chlorophyll is underestimated by most

ensemble members and the ensemble median and mean RMSE is higher for the monthly means (Figure

3.4(c)), the in situ or satellite-derived chlorophyll values (during months of high chlorophyll) are within

the ensemble range. For example at PAP, ALOHA, Cariaco and L4 (with some exceptions in summer

months) (see Figure 3.4(b)), the in situ and satellite derived chlorophyll are generally within the ensemble

range. We further note that, considerable model bias such as lower modelled concentrations of chloro-

phyll, compared to the in situ data, has been observed for the default 3-D MEDUSA model itself, e.g., in

the subtropical gyre (Yool et al., 2011). This may be due to the absence of DIN fixers and picoplankton

in MEDUSA, which cause the increase of plankton concentration in the summer (White et al., 2015),

or due to the fact that the phytoplankton uptake equation in MEDUSA does not allow phytoplankton to

acclimatise in the oligotrophic region through optimum uptake kinetics (Smith et al., 2009; Yool et al.,

2011), making this process inefficient.

Apart from the model’s state variables such as chlorophyll and nutrient concentrations, we have looked

into the model-derived phytoplankton phenology because of its importance to marine ecosystems. For
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example the timing of phytoplankton blooms affect the survival of zooplankton and fish larvae, as ob-

served by Cushing (1990). The timing of the blooms has also been shown to control the variability of

pCO2 in the sub-polar region (Bennington et al., 2009).

There are some relatively small differences in the timing of phenological events between the ensemble

mean/median, and the default run, ranging from a couple of days to a couple of weeks, as shown in Table

3.2. However the timing of initiation, bloom peak, and termination show wide ensemble inter-quartile

ranges for all stations and can lie between ∼20 and 100 days earlier than the in situ timing, apart from

stations PAP and ALOHA, see Figure 3.8(b). For this reason at most stations the observed phenology

metrics fall within the full ensemble range. The ensemble range also mostly encompasses the in situ

peak and amplitudes, shown on Figure 3.8(c).

Despite having a reliable spread in the annual mean, stations such as L4 show some mismatch in phyto-

plankton phenology against observations. In situ initiation, bloom timing, and duration at L4 are earlier

than most of the ensemble members, although still lying within the ensemble range. Some ensemble

mean timings (termination and peak bloom time) in this station are similar to the satellite observations

at this latitude (Racault et al., 2012). When in situ chlorophyll is fitted with a smooth curve, the high-

est peak mostly occurs during spring (March-April). But model metrics, including ensemble mean and

median, are noisy, and peaks mostly fall in the summer (May-July), which makes the in situ timing falls

in the lower end of the ensemble range. Moreover, at L4 distinct phytoplankton blooms occur twice a

year: first in spring and the second in autumn (Smyth et al., 2010). These blooms are sometimes well

simulated, e.g. in Figure 3.22(g) and especially when only diatom bloom is simulated 3.23(a), but are

not as distinct as the in situ measurements, due to the variability of the model. Apart from the high

non-diatom chlorophyll concentration during non-bloom periods (see Figure 3.3.2(b)), these discrepan-

cies may also be caused by the way zooplankton select their prey in MEDUSA. In a study by Sailley

et al. (2014) grazing selection based on total prey concentration can result in rapid nutrient turn-over,

which leads to a single bloom peak, but if the selection is based on the stoichiometry of C:N, the nutri-

ents would regenerate more slowly leading to two chlorophyll peaks. However, the difference in peak

timing does not affect the duration of the blooms, and the in situ duration is well within the ensemble

inter-quartile range. Furthermore, the ensemble also simulated that the spring bloom is dominated with

diatoms, which is consistent with the observation (Smyth et al., 2015). More generally, discrepancies

in predicting bloom timing by large-scale biogeochemical models are reported in many studies, e.g.,

Henson et al. (2017) and Kostadinov et al. (2017). Henson et al. (2017) shows that compared with the

satellite data, the 3-D MEDUSA 2.0 (Yool et al., 2013) model estimates spring blooms starting∼50 days

late, and southern hemisphere subtropical blooms starting ∼50 days earlier.

By generating an ensemble of 7 CMIP5 models, Kostadinov et al. (2017) highlighted that the difference



112 Chapter 3. The effect of structural sensitivity in a marine biogeochemical model

in bloom timing between the model ensemble and satellite-derived chlorophyll is typically >1 month

over most of the ocean. This agrees with our study (see, Table 3.2), as most of our ensemble members

have earlier bloom initiation dates, and the difference between the ensemble mean and in situ bloom

timing, e.g. PAP and L4, are more than one month. Additionally, the whole ensemble range produced

by this study provides an uncertainty range for the timing of phytoplankton blooms. The ensemble range

almost always encompasses the observed annual mean, peak height, and amplitude. Therefore it may

be suitable to use the ensemble model in order to forecast these phenological aspects, by running the

ensemble in 3-D. Further, it may also be possible to improve the accuracy of the ensemble range, by

systematically removing certain ensemble members in a future study.

In this chapter, we have shown that using a perturbed biogeochemistry ensemble, MEDUSA is able to

encompass the in situ and satellite observation of chlorophyll, and reduced the RMSE from the default

run, without optimising the parameters. This study also emphasises that ensemble simulations can be de-

signed to represent and estimate the uncertainty in an ocean biogeochemical model, as well as capturing

the observations.

Finally, the unresolved biases between in situ observations and sometimes the entire ensemble of results,

such as the phytoplankton peak timings at L4, emphasises that the inclusion of some missing processes,

such as active prey selection, may be needed to improve the performance of the model (Friedrichs et al.,

2007; Kriest et al., 2010; Sailley et al., 2014). Additionally functional forms which describe chemostat

experiments, such as the droop function are not as structurally sensitive as the logistic equations (Aldebert

et al., 2018), such as Monod and Holling type III, that are used in MEDUSA. Furthermore nutrient uptake

adaptation (Smith et al., 2009) may improve the chlorophyll simulation at the oligotrophic stations.

We did not include equations that allow such selection or species, as this study tries to ensure that

all the equations have similar properties to the default MEDUSA, in order to show that perturbing the

structure of the model equations can result in different plankton and nutrient dynamics. Comparing the

performance of greater model complexity and the ensemble method is beyond the scope of this study.

Furthermore, the mismatch of the phenology between the ensemble and the in situ observation, such

as that in station Cariaco, may be largely caused by the physical input, which drives the upwelling and

mixing process, therefore controlling the seasonal pattern of the phytoplankton (Doney, 1999; Sinha

et al., 2010).



Chapter 4

Reducing the ensemble and generating

perturbed physics ensemble

4.1 Introduction

From the previous chapter, MEDUSA has been run with fewer ensemble members whereby in each

member, we only change one process function, while keeping the other processes in their default func-

tions. From this experiment, the new ensemble covers at least 80% (observed in station BATS) of the

original ensemble range in terms of an annual mean of surface chlorophyll, which shows that in the

full 128 members ensemble, some members produce almost similar mean annual means concentrations.

Therefore it is possible to reduce the ensemble, in order to minimise the computational time and cost,

especially in a fully coupled physics-biogeochemical model in a 3D system, but still retaining the range,

and may even improve the bias and RMSE. In this chapter, the method of reducing the ensemble and the

selected members will be described in section 4.2–4.3.3.

Additionally, one of the essential inputs in running a marine biogeochemical model, is the physical

input, as it determines the distribution and movements of nutrients and therefore affects other model

compartments (Doney, 1999; Friedrichs et al., 2006; Sinha et al., 2010). The second part of this chapter

will explain the method of generating a perturbed physics ensemble, especially the vertical velocity,

which determine the nutrient supply to other biogeochemical compartments. The discrepancy between in

situ and modelled chlorophyll have been observed when directly assimilating ocean general circulation

model to force the biogeochemical model, due to spurious vertical velocity (Ourmières et al., 2009;

Raghukumar et al., 2015; Ford and Barciela, 2017). The method of perturbing the physics is described

in section 4.4. Furthermore, the perturbed physics ensemble will be quantified using statistical metrics

113
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and surface interannual means and compared with the reduced perturbed biogeochemistry ensemble.

To examine which perturbation (biogeochemistry or physics) produces more spread and variability, in

this chapter, we will also explore when both biogeochemistry and physics are perturbed. The reduced

ensemble is used to perturbed the biogeochemistry instead of the full 128-member ensemble for this

experiment. The results of perturbing the physics, and both biogeochemistry and physics are explained

in section 4.5.

4.2 Reducing the ensemble

This method aims to retain the RMSEs between the observation and the ensemble, despite reducing

the ensemble. In the previous chapter, we have calculated the RMSEs of chlorophyll and DIN. Here,

principal component analysis (PCA) is applied to the RMSEs so we can group ensemble members that

are clustered together. Using k-means cluster, and calculating the ensemble members that are closest to

each centroid, it is possible to select the ensemble members that best represent the full (128 members)

ensemble, which may also retain the RMSE. Before applying PCA, we normalised the RMSEs, due to

the difference in units between chlorophyll (mg m−3) and DIN (mmol m−3). This is done by dividing

the RMSE of an ensemble member by the standard deviation of the overall RMSEs:

√
1
n Σn

i=1

(
mi− fi

)2

σ
(4.1)

where n is the number available days of in situ concentration, mi, is the modelled concentration, fi is the

observed concentration, and σ is the standard deviation of the full ensemble’s RMSE.

After normalising the RMSEs, we then apply PCA to the normalised RMSE (nRMSE) of chlorophyll and

DIN, at every station, resulting in ten principal scores. In the scores, there are differences of (1) RMSE

between different ensemble members, (2) regions (abyssal plain, oligotrophic, and coastal), (3) DIN,

and (4) chlorophyll. The scores are then plotted into a three-component scores plot, showing how each

ensemble members are clustered together. We then use k-means cluster, to group the ensemble members

that are closer together, identify each cluster member, and select one that is closest to the centroids as the

member which best represent a cluster. If a 10 clusters score plot is applied, then ten members will be

selected as representative of the full (128) ensemble. The k-means distance between clusters is decided

using squared Euclidean distance, whereby each centroid is the mean of the points in that particular

cluster. We applied 20, 15, 13, 12, 11, 10, 9, 8, 7, 6 and 5 clusters (regions), as the typical ensemble

members in a climate model are between 20 to 10 (Murphy et al., 2007). The k-means clustering is
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applied independently to the full ensemble members, and we do not reduce the larger clusters into a

smaller one. We also calculate the percentage of range coverage between the full ensemble and selected

ensemble members.

In the previous ensemble runs, the model results that deviate the most from the default run is when linear

plankton mortality is applied. This is consistent with the observation of Yool et al. (2011). To avoid

this discrepancy, if the ensemble member that is the closest to centroids contains linear mortality, the

ensemble will be replaced. However, this member must be relatively close to the centroids. If the cluster

only has linear mortality, the functional form is not changed. We will explore the effect of replacing

linear mortality in section 4.3.2 and 4.3.3.

4.3 Results from reducing the ensemble

The result section will be separated into several subsections. In subsection 4.3.1, we will explore how

reducing the ensemble members will affect the ensemble range and the RMSE. Furthermore we will

look on which ensemble shows better range coverage of the full ensemble members. The effect of

replacing these ensemble members with non-linear mortality is explored in subsection 4.3.2. Finally,

the comparison between the ensemble means of the reduced ensembles, and the full ensemble will be

explored in section 4.3.3

4.3.1 The range and RMSEs of the new ensembles

When we apply the k-mean cluster to the score plot, fewer clusters will result in regions where ensemble

members within that region are far apart. For example, in Figure 4.1(a) and (b), in region six and seven,

respectively, the cluster members could be split into two regions instead of one. This results in centroids

that do not represent the spread of the PCA and its clusters very well, as the centroid is further away from

ensemble members. The squared euclidean distance calculates the centroids from the mean of the points

in that cluster (Mathworks), which makes the centroid point further from the ensemble. The Figure

also shows that there are no clear individual functional forms that are clustered together, apart from the

combination of linear phytoplankton with quadratic zooplankton mortalities, and trigonometric uptake

with Holling type II grazing (please refer to Table 4.1 for functional forms associated with the ensemble

numbers).

From Figure 4.2(a), the nRMSEs of chlorophyll and DIN from the full ensemble are often lower than the

reduced ensemble, especially at non-oligotrophic stations. The average nRMSEs between chlorophyll



116 Chapter 4. Reducing the ensemble and generating perturbed physics ensemble

Table 4.1: Functional form combinations for Figure 4.1. The first and second letters show the phyto-
plankton and zooplankton mortalities respectively. Following the mortalities, nutrient uptake function
is stated, and the zooplankton grazing function appears last. m h, l, q, and s denotes the hyperbolic,
linear, quadratic, and sigmoidal mortality respectively. The default grazing is left blank and holling type
II grazing is abbreviated to holII

1 hh default 33 hs default 65 ls default 97 qs default
2 hh default holII 34 hs default holII 66 ls default holII 98 qs default holII
3 hh exponential 35 hs exponential 67 ls exponential 99 qs exponential
4 hh exponential holII 36 hs exponential holII 68 ls exponential holII 100 qs exponential holII
5 hh sigmoidal 37 hs sigmoidal 69 ls sigmoidal 101 qs sigmoidal
6 hh sigmoidal holII 38 hs sigmoidal holII 70 ls sigmoidal holII 102 qs sigmoidal holII
7 hh trigonometric 39 hs trigonometric 71 ls trigonometric 103 qs trigonometric
8 hh trigonometric holII 40 hs trigonometric holII 72 ls trigonometric holII 104 qs trigonometric holII
9 hl default 41 lh default 73 qh default 105 sh default

10 hl default holII 42 lh default holII 74 qh default holII 106 sh default holII
11 hl exponential 43 lh exponential 75 qh exponential 107 sh exponential
12 hl exponential holII 44 lh exponential holII 76 qh exponential holII 108 sh exponential holII
13 hl sigmoidal 45 lh sigmoidal 77 qh sigmoidal 109 sh sigmoidal
14 hl sigmoidal holII 46 lh sigmoidal holII 78 qh sigmoidal holII 110 sh sigmoidal holII
15 hl trigonometric 47 lh trigonometric 79 qh trigonometric 111 sh trigonometric
16 hl trigonometric holII 48 lh trigonometric holII 80 qh trigonometric holII 112 sh trigonometric holII
17 hq default 49 ll default 81 ql default 113 sq default
18 hq default holII 50 ll default holII 82 ql default holII 114 sq default holII
19 hq exponential 51 ll exponential 83 ql exponential 115 sq exponential
20 hq exponential holII 52 ll exponential holII 84 ql exponential holII 116 sq exponential holII
21 hq sigmoidal 53 ll sigmoidal 85 ql sigmoidal 117 sq sigmoidal
22 hq sigmoidal holII 54 ll sigmoidal holII 86 ql sigmoidal holII 118 sq sigmoidal holII
23 hq trigonometric 55 ll trigonometric 87 ql trigonometric 119 sq trigonometric
24 hq trigonometric holII 56 ll trigonometric holII 88 ql trigonometric holII 120 sq trigonometric holII
25 sl default 57 lq default 89 qq default 121 ss default
26 sl default holII 58 lq default holII 90 qq default holII 122 ss default holII
27 sl exponential 59 lq exponential 91 qq exponential 123 ss exponential
28 sl exponential holII 60 lq exponential holII 92 qq exponential holII 124 ss exponential holII
29 sl sigmoidal 61 lq sigmoidal 93 qq sigmoidal 125 ss sigmoidal
30 sl sigmoidal holII 62 lq sigmoidal holII 94 qq sigmoidal holII 126 ss sigmoidal holII
31 sl trigonometric 63 lq trigonometric 95 qq trigonometric 127 ss trigonometric
32 sl trigonometric holII 64 lq trigonometric holII 96 qq trigonometric holII 128 ss trigonometric holII
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and DIN from all the oceanographic region, Figure 4.2 (f) shows that 10, 7, and 6 ensemble members,

has smaller nRMSEs compare to the full ensemble. This may be due to the low nRMSE in chlorophyll,

compare to the larger reduced ensemble. Figure 4.2(c)–(e) show that reducing the ensemble may increase

the nRMSEs.

Figure 4.1: Principal component scores for different functional forms in three components, using 11
regions, and the centroids. 81% of the scores are available on the first three component, therefore the
plot is separated into three planes, X-Y (a), X-Z (b), and Y-Z (c). The colour denotes the different
regions, cross denotes the centroids, and the numbers denotes the ensemble members (please see Table
4.1 for functional forms combination and its corresponding numbers). Data points that has black border
are ensemble members which only one process functional forms combination is changed whilst keeping
other processes at its default function.

In terms of range, it is expected that the fewer the ensemble members, the lower the coverage. This have

been observed for the chlorophyll at the oligotrophic stations, PAP, and L4, summarised in Table 4.2

and Figure 4.3. However, in station Cariaco, the range coverage is always above 90% both chlorophyll

profile and surface.

4.3.2 The effect of replacing linear mortalities to the RMSEs and range

It is known that the linear closure term shows the most deviation compared to other functional forms

(Yool et al., 2011). The function tends to produce unforced oscillation in simple model (Steele and

Henderson, 1992; Edwards and Yool, 2000). In this subsection, ensemble members with plankton linear

mortality that are the closest to the centroids are replaced with another ensemble member that does

not contain linear mortality. If in a cluster all ensemble members contain linear mortality, then the
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Figure 4.2: Mean nRMSEs from all the stations (a to e) and the averaged DIN (orange) and chlorophyll
(blue) mean nRMSE from all the stations (f), from the full ensemble (128 members) to five members that
are closest to the centroids.

Table 4.2: Percentage coverage of ensemble range for chlorophyll, DIN profile, and surface chlorophyll,
from the full ensemble to 5 ensemble members. L4 does not have in situ chlorophyll profile, therefore
excluded from the range calculation.

Stations Range%
20 reg 15 reg 13 reg 12 reg 11 reg 10 reg 9 reg 8 reg 7 reg 6 reg 5 reg

Chlorophyll Profile
Aloha 89.10 96.26 85.36 91.15 91.15 67.49 60.05 60.05 60.05 60.05 61.69
BATS 77.91 95.69 73.21 92.94 92.94 57.52 52.28 52.28 52.28 52.28 46.60
Cariaco 99.80 99.80 98.62 98.70 98.70 97.53 97.53 94.57 95.95 95.95 96.42
L4
PAP 87.13 88.83 80.23 88.83 88.83 73.92 63.45 73.99 73.99 73.99 73.99

DIN Profile
Aloha 84.22 77.42 70.80 62.53 61.89 62.28 61.89 60.79 62.28 41.44 46.61
BATS 91.55 99.95 86.89 97.56 97.56 80.45 80.45 76.39 76.39 76.39 65.67
Cariaco 84.17 83.94 83.71 89.25 89.25 88.78 89.25 89.48 87.35 87.35 69.57
L4 94.46 75.54 73.81 75.45 75.45 73.71 73.71 65.77 65.77 65.77 89.09
PAP 88.32 81.89 76.85 81.89 81.89 75.08 75.86 80.63 80.63 80.63 80.63

Surface Chlorophyll
Aloha 87.75 92.78 87.05 91.48 91.48 81.04 59.98 61.98 61.98 61.98 58.25
BATS 78.06 97.94 75.26 94.85 94.85 60.68 53.31 53.31 53.31 53.31 46.40
Cariaco 98.47 98.47 98.53 98.64 98.64 98.70 98.70 94.30 94.82 94.82 92.61
L4 95.48 94.48 96.56 92.80 92.80 94.88 94.88 59.57 59.57 59.57 63.99
PAP 88.93 87.54 76.34 83.42 83.42 67.57 67.39 78.55 78.55 78.55 84.54

representative member is kept.

Although the lowest overall nRMSE is shown in 10, 7, and 6 members, shown in Figure 4.2, these

members show low range coverage, summarised on Table 4.2. Therefore, in this subsection, we use 15,

11, 10, and 7 members in order to encompass the various ranges and RMSEs. From Figure 4.3(a), it is



4.3. Results from reducing the ensemble 119

often that the range coverage from the replaced linear mortalities (hereafter RLM) ensembles show little

difference compared to the original ensemble members. The nRMSEs from RLM ensembles are slightly

lower than the reduced ensembles. The biggest difference is observed at 7 ensemble members, whereby

the nRMSE reduced from 4.83 to 4.80. Shown in Figure 4.4.

Figure 4.3: Range of DIN profile (a), surface chlorophyll (b), and profile (c) means from the original
ensemble members to five ensemble members. The dashed line denotes replacing ensemble members
with linear with ensemble members with non-linear mortalities on 15, 11, 10, and 7 ensemble members.

Replacing the linear mortalities lower the chlorophyll nRMSE at most stations, apart from station L4,

summarised in Figure 4.5(c). At some stations, replacing the linear mortalities do not affect the nRMSE.

For example, at BATS and Cariaco, using 11 and 10 members, respectively, replacing the linear mortality

produce the same nRMSEs. However, RLM ensembles do not always produce lower DIN nRMSE. For

example, at BATS and Cariaco, higher nRMSE is produced from RLM ensemble below 15, Figure 4.6(b)

and (d). RLM ensembles produce a slightly lower range for DIN profile, apart from the 15RLM and

7RLM. At most of the stations, the smaller the ensemble members, the more significant the difference of

DIN range between the two ensembles are, summarised in Table 4.3.

Replacing the linear mortality reduces the range at most stations because this functional form deviates the

most from the default mortality. However, at L4 15, 11, and 7 RLM resulted in a higher range (from 75%

to 82%, see Table 4.3), compared to retaining linear mortality. At PAP, the ranges of RLM ensembles

are higher in 15 and 7 ensembles, compared to other ensembles.

For the chlorophyll profile, at most of the stations, there is no significant difference between the ranges
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Figure 4.4: Mean nRMSE from all the oceanographic stations. The dashed line denotes reduced ensem-
ble with replaced linear mortality on 15, 11, 10, and 7 ensemble members.

of RLM and reduced ensembles, summarised in Table 4.3. Replacing the linear mortalities have reduced

the chlorophyll nRMSEs, both the surface and profile. RLM ensembles produce lower range coverages

apart from, 11 RLM which shows no difference. The nRMSEs of chlorophyll profile have been improved

when linear mortalities are replaced. However, the range coverage, especially in 15 ensemble members,

is reduced.

From these results, when the ensemble is reduced to below 11 members, the range coverages can fall

below 70% (Table 4.2) and replacing linear mortalities reduce the nRMSEs, summarised in Figure 4.4

and Table 4.3. The range coverages from RLM ensembles are also lower than the reduced ensembles.

RLM ensemble that mostly retains the range is 11 members, Table 4.3. By using 11 RLM, it is possible

to have high range coverage and also low nRMSEs.

4.3.3 Other statistical metrics in the reduced ensembles

From the previous subsection, 11 members ensemble shows a good range coverage, and lower nRMSE

for chlorophyll even when the linear mortality is replaced. Here we will explore other statistical met-

rics, apart from range and RMSEs in different regions. In this subsection, along with the 11 members

ensemble, we will use the ensemble means of ensembles which show high coverage (15 members) and

low nRMSEs (7 regions).
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Figure 4.5: Mean nRMSE for chlorophyll from all the oceanographic stations (a to e). Subfigure (f)
shows the mean chlorophyll nRMSE from all stations. The orange dashed line denotes reduced ensemble
with replaced linear mortality on 15, 11, 10, and 7 ensemble members.

Figure 4.6: Mean nRMSE for DIN from all the oceanographic stations (a to e). Subfigure (f) shows the
mean DIN nRMSE from all stations. The orange dashed line denotes reduced ensemble with replaced
linear mortality on 15, 11, 10, and 7 ensemble members.
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Table 4.3: Percentage of range coverage between original ensemble members that are closest to the
centroids and those which other mortalities are used instead of linear mortalities.

Stations Range%
15 RLM 15 reg 11 RLM 11 reg 10 RLM 10 reg 7 RLM 7 reg

Chlorophyll Profile
Aloha 90.55 96.26 91.15 91.15 67.49 67.49 60.05 60.05
BATS 95.65 95.69 92.94 92.94 57.45 57.52 52.28 52.28
Cariaco 97.90 99.80 98.70 98.70 98.70 97.53 95.95 96.80
L4
PAP 88.83 88.83 88.83 88.83 73.92 73.92 73.99 69.70

DIN Profile
Aloha 73.93 77.42 57.37 61.89 58.83 62.28 62.28 57.37
BATS 99.96 99.95 97.56 97.56 73.55 80.45 76.39 67.24
Cariaco 73.48 83.94 89.02 89.25 88.78 88.78 87.35 88.53
L4 81.89 75.54 81.89 75.45 71.76 73.71 65.77 60.51
PAP 84.49 81.89 75.45 81.89 73.41 75.08 80.63 72.68

Surface Chlorophyll
Aloha 90.74 92.78 91.48 91.48 81.04 81.04 61.98 67.04
BATS 97.87 97.94 94.85 94.85 60.68 60.68 53.31 53.31
Cariaco 95.33 98.47 98.64 98.64 98.64 98.70 94.82 92.18
L4 92.46 94.48 92.80 92.80 92.80 94.88 59.57 44.38
PAP 82.13 87.54 83.42 83.42 67.57 67.57 78.55 55.53

At PAP, correlations from the reduced ensemble means are either similar to the full ensemble (DIN), or

worse (surface and profile chlorophyll). From Table 4.4, using 7, 7RLM or 11RLM ensembles produce

better or similar bias as the full ensemble in terms of chlorophyll profile and surface, and 7, 11, or 11RLM

for DIN at station PAP. None of the reduced ensembles shows better DIN biases compared to the default

run.

At ALOHA, the full and reduced ensemble means for DIN correlations do not differ much. At BATS, the

correlations from the full ensemble are improved. Most of the reduced ensemble produce higher RMSEs

for DIN compare to the full ensemble at the oligotrophic stations. However, using 7 RLM at ALOHA

and 11 members at BATS produce better RMSEs compare to the full ensemble. Chlorophyll profile

correlation has also been improved by the reduced ensemble at both stations, although the default run

still shows a better match. At BATS, the ensemble means from 11, 11 RLM, 15, and 15 RLM produce

similar bias as the full ensemble. However, at ALOHA, most of the ensembles produce similar bias as

the full ensemble. For the surface chlorophyll, all the reduced ensemble, apart from 7 members, produce

better or similar correlations and biases compared to the full ensemble at both stations, summarised in

Figure 4.4. These further shows that reducing the ensemble can still retain and even improve the bias

and correlations of the ensemble mean. Therefore at the oligotrophic stations, better correlations, lower

RMSE, and bias are produced when using 11, 11 RLM, and 7 ensemble members.

At the coastal stations, the correlation between in situ DIN and the ensemble means are always above
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70%. At Cariaco, the reduced ensemble shows higher (15 RLM and 11 RLM) or similar DIN correlations

compare to the full ensemble means. At L4, the DIN correlation from 11 members is better than the full

ensemble but lower than the default run, summarised in Table 4.4. At Cariaco, the reduced ensembles

produce worse biases than the full ensemble for both DIN and chlorophyll. However, at L4, all the

reduced ensembles produce better biases than the full ensemble, especially 11 members for both DIN

and chlorophyll.

Most of the reduced ensembles presented here produce better or similar chlorophyll profile correlation

and bias as the full ensemble at both stations. However, reduced ensembles that show higher correlations

than the full ensemble produce higher biases and RMSEs than the full ensemble, Table 4.4. From these

calculations 7, 11, and 11 RLM for surface chlorophyll produce better statistical metrics.

4.3.4 Chosen ensemble members

From the results in the previous sections, from Table 4.4 the ensemble means from 11 RLM shows better

RMSEs and bias. This ensemble also mostly retains the range from the full ensemble. We therefore

chose 11 RLM ensemble members to represent the full ensemble. The functional form combinations are

as follows:

1. hh default holII (Uh G2 ρhζh)

2. hh trigonometric holII (Ut G2 ρhζh)

3. hq sigmoidal holII (Us G2 ρhζq)

4. ll exponention holII (Ue G2 ρlζl)

5. ls trigonometric (Ut G1 ρlζs)

6. ql hyperbolic (Uh G1 ρqζl)

7. sl hyperbolic holII (Uh G2 ρsζl)

8. sl exponential holII (Ue G2 ρsζl)

9. sl sigmoidal (Us G1 ρsζl)

10. sq sigmoidal (Us G1 ρsζq)

11. sq trigonometric holII(Ut G2 ρsζq)
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4.4 Generating the noise

As stated in the previous chapters, the marine biogeochemical model is also sensitive to the physical

oceanography inputs, especially the mixed layer depth and vertical velocity. The latter dictates the avail-

ability of nutrients in the upper water column (> 200m), which is often poorly known. As shown in

Chapter 2, spurious vertical velocity has shown to alter the DIN distribution in the water column. This

affects the chlorophyll concentration. Thus, we chose to vary the vertical velocity input of the 1-D model

by adding random noise with different strength.

The vertical velocity is obtained from 5-day averaged NEMO-FOAM (Storkey et al., 2010), which has

been capped (see chapter 2 section 2.5.1 for further details) to minimise overestimation in nutrients.

This is a common problem when directly assimilating physical data into an ocean biogeochemical model

(Raghukumar et al., 2015; Ford and Barciela, 2017). The vertical velocity noise (Nvd ) is generated by

multiplying random noise (Rands) with the monthly anomaly. The anomaly is calculated by subtracting

the 5-day mean vertical velocity (vd , where d is the date-month-year), from the monthly mean (m̄), and

then multiplied by a random number (Rands) generated by python at each depth level. This can be

summarised as:

Nvd = (m̄− vd)×Rands (4.2)

This will results in 6 perturbed vertical velocity profiles for each month. The random numbers that we

use here define the perturbation strength, which can be categorised into, low (random numbers generated

between -0.5 and 0.5), medium (between -1 and 1), and high (between -2 and 2). The difference in

perturbation strength is applied to examine how these noises can affect the model dynamics. In order

to add this noise to the 5-day averaged vertical velocity, we randomise the assignment of the noise to a

certain 5-day averaged vertical velocity profile to make the overall noisy vertical velocity more variable.

For example, if Nvd is generated from the v140199 then this may be added to v150600. Therefore the new

noisy vertical velocity (vNd ) for a certain date could be summarised as:

vNd = Rand(Nvd )+ vd (4.3)

where Rand(Nvd ) is the randomise noise that has been assigned to a certain vertical velocity. This is

generated again 11 times, both for the noises and the vertical velocity assignments, which forms 11

ensemble members, where each member has different vertical velocity. The ensemble is run using the

default MEDUSA functional forms for the perturbed physics. For perturbing both biogeochemistry and
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physics, the perturbed biogeochemistry ensemble discussed in 4.2 is run using the perturbed vertical

velocity generated using equation 4.3. An example of the vertical velocity profile can be seen in Figure

4.7

Figure 4.7: Vertical velocity profiles (m s−1) from January 2000 to December 2002 at station ALOHA
for the perturbed physics ensemble when random number between -1 and 1 is used. The title of each
sub-figure represents the default run and ensemble members.

4.5 Error statistics from different perturbation strength

In this section we will compare the spread of interannual mean of chlorophyll concentrations from per-

turbing the (i) functional forms (perturbed biogeochemistry ensemble, PBE), (ii) vertical velocities by

adding noises (perturbed physics ensemble, PPE), and (iii) both the functional forms and vertical ve-

locities (perturbed biogeochemistry and physics ensemble, PBPE). The different perturbation strengths

of the vertical velocity are shortened to PPE-low, PPE-medium, and PPE-high. Similar perturbation

strength abbreviations are also applied for the PBPEs. We will also compare the new ensemble mean and

median with the default run and observations. For completeness, in this section, we include the default

run to all of the ensembles, including the reduced PBE, making all the ensembles having 12 members

instead of 11. The abyssal plain is described in section 4.5.1, oligotrophic region in 4.5.2, and coastal

stations are described in 4.5.3.
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Figure 4.8: Range of surface chlorophyll interannual mean when perturbing the biological equations (a-
e) and adding noise to vertical velocities (f-j) at five different oceanographic stations. Perturbing only the
functional forms are shown in purple, adding noise between ± 0.5, 1, and 2 are shown in yellow, orange,
and blue respectively. Y-axis shows the year the ensembles are run
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Figure 4.9: Range of surface DIN interannual mean when perturbing the biological equations (a-e) and
adding noise to vertical velocities (f-j) at five different oceanographic stations. Perturbing only the func-
tional forms are shown in purple, adding noise between ± 0.5, 1, and 2 are shown in yellow, orange, and
blue respectively. Y-axis shows the year the ensembles are run
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Table 4.5: Statistical metrics comparing the default run and the mean and median of the original perturbed
biogeochemistry ensemble (reduced to 12 members), only adding to the vertical velocities (PPE), and
both perturbing functional forms and adding noises (PBPE) with the observation from PAP station. The
noises that are used are random numbers between ± 0.5, ± 1, and ± 2). The numbers that are in bold
are the lowest bias and RMSE, and the highest correlation.

chlorophyll profile (mg m−3) DIN profile (mmol m−3) surface chlorophyll (mg m−3)
Station median mean default in situ median mean default in situ median mean default in situ
PAP r 0.297 0.395 0.279 0.227 0.230 0.206 0.337 0.345 0.363

RMSE 0.382 0.320 0.404 3.217 3.231 3.323 0.539 0.565 0.566
Bias -0.152 -0.079 -0.177 -0.248 -0.682 0.202 -0.270 -0.274 -0.300
mean 0.560 0.556 0.594 0.423 6.138 6.005 5.639 5.815 0.715 0.718 0.745 0.447
Range 0.617 1.995 0.567

PBPE r 0.308 0.340 0.279 0.223 0.227 0.206 0.337 0.345 0.363
noise= 0.5 RMSE 0.362 0.370 0.404 3.197 3.176 3.323 0.539 0.565 0.566

Bias -0.139 -0.132 -0.177 -0.307 -0.208 0.202 -0.270 -0.274 -0.300
mean 0.552 0.556 0.594 0.423 6.175 6.145 5.639 5.815 0.714 0.721 0.745 0.447
Range 0.637 1.960 0.580
r 0.272 0.273 0.279 0.208 0.209 0.206 0.369 0.366 0.363

PPE RMSE 0.403 0.403 0.404 3.301 3.335 3.323 0.565 0.566 0.566
Bias -0.172 -0.172 -0.177 0.145 0.071 0.202 -0.301 -0.302 -0.300
mean 0.595 0.595 0.594 0.423 5.670 5.745 5.639 5.815 0.746 0.747 0.745 0.447
Range 0.052 1.101 0.069

PBPE r 0.303 0.331 0.279 0.230 0.236 0.206 0.354 0.351 0.363
noise= 1 RMSE 0.356 0.362 0.404 3.119 3.075 3.323 0.524 0.554 0.566

Bias -0.127 -0.125 -0.177 0.125 -0.006 0.202 -0.257 -0.265 -0.300
mean 0.547 0.545 0.594 0.423 5.698 5.829 5.639 5.815 0.702 0.709 0.745 0.447
Range 0.540 4.085 0.497

PPE r 0.272 0.273 0.279 0.208 0.209 0.206 0.369 0.366 0.363
RMSE 0.403 0.403 0.404 3.301 3.335 3.323 0.565 0.566 0.566
Bias -0.172 -0.172 -0.177 0.145 0.071 0.202 -0.301 -0.302 -0.300
mean 0.585 0.581 0.594 0.423 5.410 5.450 5.639 5.815 0.730 0.736 0.745 0.447
Range 0.096 2.737 0.138

PBPE r 0.318 0.325 0.279 0.226 0.221 0.206 0.365 0.365 0.363
noise=2 RMSE 0.340 0.356 0.404 3.220 3.226 3.323 0.512 0.550 0.566

Bias -0.117 -0.116 -0.177 -0.161 -0.260 0.202 -0.250 -0.268 -0.300
mean 0.536 0.535 0.594 0.423 5.982 6.081 5.639 5.815 0.695 0.713 0.745 0.447
Range 0.632 2.825 0.616

PPE r 0.266 0.273 0.279 0.209 0.206 0.206 0.374 0.385 0.363
RMSE 0.391 0.385 0.404 3.284 3.316 3.323 0.552 0.550 0.566
Bias -0.153 -0.147 -0.177 0.161 0.120 0.202 -0.290 -0.293 -0.300
mean 0.575 0.568 0.594 0.423 5.647 5.688 5.639 5.815 0.735 0.738 0.745 0.447
Range 0.225 3.657 0.228

4.5.1 Abyssal Plain

Statistical metrics

At PAP, after the addition of default run into the ensemble, the PBE mean and median shows higher

correlations, lower bias and RMSEs for surface and chlorophyll profile compared to the default run.

For chlorophyll profile, the PPE shows lower bias and RMSE compared to only running the default

form using unperturbed vertical velocities, and the bias reduces further as the noise increases. PPE-

high produces ensemble mean with the highest correlation, although the RMSE and bias are also high.

However, chlorophyll ranges from PPEs, regardless of the noise, are always lower than the PBE.

PBPE medium and high produce higher ranges than PBE. The highest range for both chlorophyll surface

and profile is produced by PBPE-high. In terms of the surface chlorophyll, PBPE-high also produces the
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lowest bias and RMSE, for both the ensemble mean and median, summarised in Table 4.5. PBPE-high

also produces the highest range of surface chlorophyll. Although the DIN RMSEs from the ensemble

mean and median from the reduced PBE are lower than the default run, the biases are still higher than

the default. When the vertical velocity is perturbed, in PBPE-medium, the lowest DIN bias and RMSE

are produced.

Interannual mean range of DIN and chlorophyll

From Figure 4.9(a), a sharp increase in the interannual mean range have been observed at PAP. Although

there is no significant increase in interannual DIN concentration from the default run, some of the PPE

members show a significant sharp increase in interannual DIN concentration (e.g. in PPE-high, r =0.89,

p < 0.05) and a significant decrease over the years (r = −0.81, p < 0.05). This resulted in the strong

increase in interannual mean range of DIN, especially in PPE-medium and high (r > 0.93, p < 0.05),

shown in Figure 4.10. The figure also shows that the higher the noise, the larger the interannual spread it

garners, Figure 4.9(a). Compared to the PBE range, the PPE-high and medium produce a higher range,

especially after 1999. The surface chlorophyll also follows the increasing trend of surface DIN (r > 0.85,

p < 0.05 for all the ensembles), with the PPE-high garnering the largest range.

Figure 4.10: DIN interannual mean from perturbing the vertical velocity using the highest perturbation
strength (between -2 to 2), calculated from January 1998 to December 2007. The grey lines show ensem-
ble members that produce insignificant trend, whereas the orange and blue line show ensemble members
that produce significant increase and decrease respectively. Y-axis shows the year the ensembles are run
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The lowest chlorophyll range for all the perturbed physics ensembles have been produced on the first

year, 1998, for chlorophyll. The ensemble members from PPE-high can produce up to 12.9% higher and

16.5% lower annual mean chlorophyll than the default run. However, the chlorophyll range of the PPE

ensembles is still lower than the original reduced ensemble.

Similar to the PPEs, a significant increase in annual DIN mean over the years in some of the PBE

members (r > 0.47, p < 0.05), however, there is no significant decrease. This makes the PBE range

also increases (r = 0.81, p > 0.05). Now that both PBE and PPE show an increase in DIN range and

concentration, the PBPE ranges also show an increase over the years, regardless of the perturbation

strength (r > 0.86, p < 0.05). However, the highest overall DIN range is garnered from PBPE-medium

(2.90 mmol m−3) instead of PBPE-high (2.80 mmol m−3), Figure 4.9(f).

The interannual mean of surface chlorophyll from some of the PBE members also increases significantly

over the year (r > 0.64, p < 0.05), but the range shows no significant increase. However, the range

from PBPE-low also shows a significant increase in range over the years (r = 0.65, p < 0.05), but using

higher perturbation strength, the PBPEs show no significant trend, Figure 4.8(f). The spreads also do

not increase as the noise increases. These might be caused by none of the PBE and PBPE members

showing a decrease in the interannual mean. Larger range is produced from PBPE-low (0.61 mg m−3)

than PBPE-medium (0.53 mg m−3). But PBPE-medium produces lower ensemble range compared to

the original ensemble (0.59), especially from 2002 to 2007. Similar to PPE, the highest range of surface

chlorophyll annual mean is produced from PBPE-high and the ensemble members can produce up to

51.9% higher and 37.8% lower annual mean than the default run.

In the PBE, in 2002, 2003, 2005, and 2006 in situ surface chlorophyll concentrations are overestimated by

the ensemble, and in 1999, the observed chlorophyll is close to the ensemble mean, median, and default.

PPE produces ensemble mean and median close to the reduced ensemble’s, Figure 4.11(a) to (c), making

only at 1999 the in situ is within the ensemble range, for all the three ensembles. For the PBPE, years

when in situ observations are within the ensemble range are similar to the reduced ensembles, apart from

in 2004, where the in situ is within PBPE-high range, Figure 4.11(f)..

4.5.2 Oligotrophic

Statistical Metrics

In the oligotrophic stations, the default run often produces better correlation coefficient and bias, espe-

cially for chlorophyll profile and surface. At ALOHA, in the reduced ensemble, the chlorophyll profile

RMSEs from the ensemble mean and median are lower than the default run. Unlike at PAP, the PBPEs
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Figure 4.11: Interannual surface mean at station PAP from January 1998 to December 2007. B, P, and
D denote when the ensemble that results from perturbing the functional forms, vertical velocity, and
both functional forms and vertical velocities respectively. (a), (b), and (c) shows the perturbed biology
ensemble compared with adding noises between ± 0.5, 1, and 2, respectively, to the vertical velocities.
(d), (e), and (f) compares perturbed biology ensemble with both perturbing functional forms and adding
noises between ± 0.5, 1, and 2, respectively, to the vertical velocities. Red open circle, black dot, blue
star, and blue cross show ensemble mean, median, default run, and in situ observation of chlorophyll
concentrations.

do not reduce the RMSE, although PBPE-medium produced the highest chlorophyll range compared to

other perturbations. As the default run already produces low bias and high correlation coefficient, PPE-

medium ensemble mean shows the highest correlation, and PPE-high ensemble mean shows the lowest

bias for the chlorophyll profile.

At ALOHA, for surface chlorophyll, the highest correlation is produced from PPE-high shown in Table

4.6. PBPE-high produces the lowest RMSE and bias. However, PBPE-medium produces the highest

surface chlorophyll range. For the integrated chlorophyll, the PBE median still produces the highest

correlation and lowest bias. For RMSEs, the PBPE-high produces the lowest RMSEs of the integrated

chlorophyll. Similar to the surface chlorophyll, the highest range is produced from the PBPE-high.

The default run has also produced low bias for DIN compared to the full ensemble at ALOHA. Perturbing

physics, like that in PPE-medium, produces better bias than the default run, summarised on Table 4.6.

The PBPE-low produces better RMSE and DIN. Despite producing higher RMSE and bias than the PBE,
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the highest correlation coefficient is produced from PBPE-high, summarised on Table 4.6. Although

producing high bias and RMSE, the largest spread for DIN is produced from PPE-high.

At station BATS, chlorophyll profile, surface, and integrated from the default run produced low RMSE

and bias compared to the full ensemble. Lower bias and RMSE are observed from the ensemble mean

of PPE-high for all the chlorophyll metrics. Adding noise to the PBE would increase the range, and

therefore the highest range for chlorophyll profile, surface, integrated, and DIN profile is produced from

PBPE-high as seen in Table 4.6. The default run produces low DIN bias, RMSE, and high correlation.

The RMSEs and biases increase with the perturbation strength. However, PPE-high produces the highest

correlation. This makes the smallest RMSE and bias for DIN profile are still produced from the default

run.

Figure 4.12: Interannual surface mean at station ALOHA from January 1998 to December 2007. B, P
and, D denote when the ensemble that results from perturbing the functional forms, vertical velocity, and
both functional forms and vertical velocities. (a), (b), and (c) shows the perturbed biology ensemble com-
pared with adding noises between ± 0.5, 1, and 2, respectively, to the vertical velocities. (d), (e), and (f)
compares perturbed biology ensemble with both perturbing functional forms and adding noises between
± 0.5, 1, and 2, respectively, to the vertical velocities. Red open circle, black dot, blue star, and blue
cross show ensemble mean, median, default run, and in situ observation of chlorophyll concentrations.
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Table 4.6: Statistical metrics comparing the default run and the mean and median of the original perturbed
biogeochemistry ensemble (reduced to 12 members), only adding to the vertical velocities (PPE), and
both perturbing functional forms and adding noises (PBPE) with the observation from stations ALOHA
and BATS. The noises that are used are random numbers between ± 0.5, ± 1, and ± 2). The numbers
that are in bold are the lowest bias and RMSE, and the highest correlation.

Station chlorophyll profile (mg m−3) DIN profile (mmol m−3) surface chlorophyll (mg m−3) integrated chlorophyll (mg m−2)
median mean default in situ median mean default in situ median mean default in situ median mean default in situ

ALOHA r 0.282 0.277 0.309 0.776 0.775 0.772 0.266 0.244 0.288 0.752 0.729 0.727
RMSE 0.092 0.092 0.093 1.056 1.049 1.068 0.046 0.046 0.065 2.581 2.664 4.152
Bias 0.052 0.053 0.032 -0.654 -0.650 f-0.590 -0.003 -0.001 -0.020 0.030 0.191 -1.000
mean 0.071 0.069 0.090 0.123 1.154 1.150 1.091 0.501 0.088 0.085 0.105 0.084 4.485 4.324 5.515 4.515
Range 0.095 0.232 0.116 9.674

PBPE r 0.273 0.272 0.309 0.777 0.776 0.772 0.248 0.243 0.288 0.733 0.723 0.727
noise= 0.5 RMSE 0.093 0.093 0.093 1.046 1.032 1.068 0.047 0.046 0.065 2.619 2.678 4.152

Bias 0.053 0.054 0.032 -0.648 -0.639 -0.590 -0.002 0.000 -0.020 0.130 0.249 -1.000
mean 0.069 0.068 0.090 0.123 1.148 1.139 1.091 0.501 0.087 0.084 0.105 0.084 4.385 4.266 5.515 4.515
Range 0.092 0.358 0.109 9.920

PPE r 0.309 0.310 0.309 0.766 0.766 0.772 0.290 0.291 0.288 0.723 0.723 0.727
RMSE 0.099 0.099 0.093 1.418 1.419 1.068 0.081 0.080 0.065 4.115 4.098 4.152
Bias 0.027 0.027 0.032 -0.836 -0.835 -0.590 -0.025 0.025 -0.020 -0.929 -0.902 -1.000
mean 0.089 0.089 0.090 0.123 1.080 1.079 1.091 0.501 0.103 0.103 0.105 0.084 5.827 5.821 5.515 4.515
Range 0.022 0.296 0.023 7.841

PBPE r 0.255 0.264 0.310 0.776 0.779 0.772 0.240 0.260 0.288 0.729 0.740 0.727
noise= 1 RMSE 0.094 0.093 0.093 1.043 1.059 1.068 0.047 0.047 0.065 2.660 2.729 4.152

Bias 0.054 0.051 0.032 -0.640 -0.665 -0.590 -0.003 0.004 -0.020 0.037 -0.058 -1.000
mean 0.069 0.072 0.090 0.123 1.140 1.166 1.091 0.501 0.088 0.088 0.105 0.084 4.478 4.573 5.515 4.515
Range 0.133 0.427 0.166 20.080

PPE r 0.315 0.314 0.309 0.772 0.775 0.772 0.295 0.300 0.288 0.728 0.736 0.727
RMSE 0.093 0.093 0.093 1.063 1.077 1.068 0.065 0.065 0.065 4.150 4.182 4.152
Bias 0.034 0.032 0.032 -0.589 -0.607 -0.590 -0.020 0.021 -0.020 -1.025 -1.122 -1.000
mean 0.090 0.091 0.090 0.123 1.360 1.379 1.363 0.501 0.105 0.106 0.105 0.084 5.540 5.637 5.515 4.515
Range 0.034 0.471 0.049 11.545

PBPE r 0.260 0.263 0.310 0.774 0.788 0.772 0.228 0.250 0.288 0.735 0.753 0.727
noise= 2 RMSE 0.094 0.093 0.093 1.033 1.090 1.068 0.044 0.043 0.065 2.532 2.429 4.152

Bias 0.055 0.054 0.032 -0.625 -0.699 -0.590 -0.001 0.000 -0.020 0.189 0.185 -1.000
mean 0.067 0.068 0.098 0.123 1.125 1.199 1.091 0.501 0.085 0.084 0.105 0.084 4.326 4.330 5.945 4.515
Range 0.069 0.942 0.084 15.920

PPE r 0.297 0.294 0.309 0.767 0.780 0.772 0.281 0.305 0.288 0.692 0.731 0.727
RMSE 0.098 0.097 0.093 1.416 1.487 1.068 0.078 0.079 0.065 5.103 5.164 4.152
Bias 0.030 0.024 0.032 -0.823 -0.909 -0.590 -0.023 0.031 -0.020 -1.239 -1.740 -1.000
mean 0.093 0.099 0.090 0.123 1.324 1.409 1.091 0.501 0.108 0.117 0.105 0.084 5.754 6.255 5.515 4.515
Range 0.052 0.953 0.117 6.255

BATS r 0.190 0.205 0.228 0.521 0.536 0.561 0.230 0.264 0.289 0.421 0.422 0.436
RMSE 0.324 0.320 0.306 1.436 1.410 1.181 0.331 0.327 0.311 51.629 51.018 48.330
Bias 0.119 0.109 0.066 -1.194 -1.169 -0.849 0.110 0.103 0.066 16.837 15.596 9.901
mean 0.054 0.064 0.107 0.173 1.809 1.784 1.464 0.615 0.055 0.063 0.099 0.166 7.065 8.307 14.002 23.902
Range 0.165 0.909 0.156 14.385

PBPE r 0.221 0.205 0.228 0.528 0.538 0.561 0.280 0.267 0.289 0.461 0.424 0.436
noise=0.5 RMSE 0.323 0.319 0.306 1.445 1.422 1.181 0.329 0.326 0.311 51.344 50.900 48.330

Bias 0.117 0.107 0.066 -1.207 -1.184 -0.849 0.109 0.101 0.066 16.657 15.381 9.901
mean 0.056 0.066 0.107 0.173 1.822 1.799 1.464 0.615 0.056 0.065 0.099 0.166 7.245 8.521 14.002 23.902
Range 0.163 0.875 0.155 15.136

PPE r 0.228 0.230 0.228 0.562 0.563 0.561 0.290 0.293 0.289 0.435 0.437 0.436
RMSE 0.305 0.305 0.306 1.188 1.195 1.181 0.311 0.311 0.311 48.314 48.252 48.330
Bias 0.066 0.065 0.066 -0.859 -0.867 -0.849 0.066 0.065 0.066 9.818 9.716 9.901
mean 0.107 0.108 0.107 0.173 1.473 1.481 1.464 0.615 0.100 0.101 0.099 0.166 14.084 14.186 14.002 23.902
Range 0.013 0.182 0.012 2.345

PBPE r 0.148 0.202 0.228 0.537 0.540 0.561 0.171 0.269 0.289 0.373 0.424 0.436
noise=1 RMSE 0.328 0.319 0.306 1.444 1.421 1.181 0.334 0.326 0.311 52.256 50.887 48.330

Bias 0.125 0.107 0.066 -1.209 -1.183 -0.849 0.117 0.101 0.066 17.690 15.326 9.901
mean 0.048 0.066 0.107 0.173 1.824 1.798 1.464 0.615 0.049 0.065 0.099 0.166 6.212 8.576 14.002 23.902
Range 0.189 0.728 0.180 15.423

PPE r 0.233 0.233 0.228 0.565 0.565 0.561 0.299 0.298 0.289 0.444 0.443 0.436
RMSE 0.305 0.305 0.306 1.223 1.205 1.181 0.310 0.310 0.311 48.163 48.224 48.330
Bias 0.064 0.065 0.066 -0.904 -0.884 -0.849 0.064 0.065 0.066 9.562 9.726 9.901
mean 0.109 0.108 0.107 0.173 1.518 1.498 1.464 0.614 0.102 0.101 0.099 0.166 14.340 14.176 14.002 23.902
Range 0.034 0.561 0.032 7.468

PBPE r 0.200 0.193 0.228 0.544 0.543 0.561 0.302 0.258 0.289 0.448 0.423 0.436
noise= 2 RMSE 0.322 0.317 0.306 1.434 1.486 1.181 0.327 0.323 0.311 51.133 50.360 48.330

Bias 0.114 0.099 0.066 -1.196 -1.255 -0.849 0.108 0.093 0.066 16.259 14.265 9.901
mean 0.059 0.074 0.107 0.173 1.812 1.871 1.464 0.616 0.058 0.072 0.099 0.166 7.643 9.637 14.002 23.902
Range 0.210 1.099 0.207 21.633

PPE r 0.243 0.238 0.228 0.570 0.570 0.561 0.318 0.310 0.289 0.457 0.450 0.436
RMSE 0.303 0.303 0.306 1.217 1.266 1.181 0.308 0.308 0.311 47.813 47.846 48.330
Bias 0.061 0.059 0.066 -0.895 -0.952 -0.849 0.061 0.060 0.066 9.128 8.927 9.901
mean 0.112 0.114 0.107 0.173 1.511 1.567 1.464 0.615 0.104 0.106 0.099 0.166 14.774 14.975 14.002 23.902
Range 0.114 1.014 0.059 9.611
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Interannual ranges of DIN and chlorophyll

Similar to the original PBE run, the ranges produced by the ensembles at the oligotrophic stations are

the lowest. For the PPEs, the ranges of surface DIN show a strong increase over the time series for PPE-

medium and high at both stations (r = 0.72 and r = 0.82, p < 0.05 respectively for ALOHA and r = 0.74

and r = 0.75, p< 0.05, respectively for BATS). This may be because two of the PPE-high members show

a significant increase in DIN interannual mean at ALOHA (r > 0.73, p < 0.05), while the rest of the

PPE-high members show no significant trend, shown in Figure 4.13. Similarly, two of the PPE-medium

members also show increasing DIN interannual mean, and the rest are decreasing, but these trends of

increasing and decreasing DIN interannual means are insignificant. At BATS, an ensemble member

from PPE-high shows a significant increase in DIN concentration over the year (r = 0.59, p < 0.05),

but the rest of the members show no significant trend. These lead to an increase in the surface DIN

interannual range.

Figure 4.13: DIN interannual mean calculated from January 1998 to December 2007, from perturbing the
vertical velocity using the highest perturbation strength (between -2 to 2). The grey lines show ensemble
members that produce insignificant trend, whereas the orange and blue line show ensemble members that
produce significant increase

The chlorophyll interannual mean range for PPE also shows an increase throughout the time series at

both stations (r = 0.80, p < 0.05 for all of the ensembles at ALOHA and r =0.87 and r = 0.79, p <

0.05 for the PPE-medium and high, respectively at BATS). However, there is no significant trend in PBE
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surface chlorophyll range. This increasing trend from PPE-high, Figure 4.8(b), exceeds the range of

the reduced ensemble from 2003 to 2007, making the PPE-high garnering larger spread than the PBE.

The ensemble member from PPE-high at ALOHA can produce 70% higher and 6.53% lower surface

chlorophyll annual mean than the default run, meaning that perturbing the vertical velocity produced

ensemble members with mostly high DIN concentration at ALOHA. Similar to ALOHA, at BATS, the

higher the noises of the PPE, the higher the range produced, Figure 4.8(c), however, the PPE-high range

is not as high as the PBE. From the PPE-high at BATS, the ensemble member can produce up to 41%

higher or 21% lower chlorophyll annual mean than the default run.

The PBE interannual mean range for DIN at BATS shows a significant increase (r = 0.83, p < 0.05),

but not in ALOHA. The DIN ranges from PBPEs increase with the perturbation strength, for example

the PBPE-medium and PBPE-high at ALOHA (r = 0.87 & r = 0.90, p < 0.05, respectively for PBPE

medium and high). PBPE-high also produces the largest spread, Figure 4.9(g). At BATS since the PBE

already shows an increasing trend, all the PBPE ensembles follow this trend (r > 0.79, p < 0.05). PBPE-

low at BATS produces the highest overall surface DIN annual mean range (1.55 mmol m−3), followed

by PBPE medium and PBPE high (1.51 and 1.38 mmol m−3, respectively), summarised in Figure 4.9.

In contrast to the DIN range, there is no clear trend of the interannual mean range of the surface chloro-

phyll from PBPE at both stations, apart from PBPE-high (r= 0.674, p < 0.05) at ALOHA. PBPE-high

and medium exceed the ensemble spread produced from PBE at both stations, summarised in Figure

4.8(g) and (h). The ensemble members from PBPE-high can produce up to 114.6% higher and 91%

lower than surface chlorophyll annual mean than the default run at BATS. Using PBPE-high at ALOHA,

the ensemble members can produce 20% higher and 70% lower surface chlorophyll annual means than

the default run. However, PBPE-medium can garner 104.4% higher and 70% lower surface annual mean

than the default run.

At ALOHA the in situ interannual means are always within the ensemble range of the PBE. The observed

chlorophyll concentrations are mostly higher than the ensemble mean or median. Since default run

produces higher chlorophyll concentrations and therefore closer to the in situ, increasing the noise also

increases the range, and therefore it captures most of the in situ interannual means, Figure 4.12(b) and (c).

PBPEs captured the in situ chlorophyll concentrations regardless of the noise strength, Figure 4.12(d).

As explained in the previous paragraph, PBPE-high produces less range compared to only adding PBPE-

medium, as the latter produces higher upper adjacent than PBPE high.

At BATS in situ is within the range only in a few years, Figure 4.14(a). Most of the in situ concentrations

are underestimated by the original PBE. The PPE-low produced very small range, which in turns makes

the interannual means of surface in situ chlorophyll never within the range. However, PPE-high produces
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Figure 4.14: Interannual surface mean at station BATS from January 1998 to December 2007. B, P, and
D denote when the ensemble that results from perturbing the functional forms, vertical velocity, and both
functional forms and vertical velocities. (a), (b), and (c) shows the perturbed biology ensemble compared
with adding noises between ± 0.5, 1, and 2, respectively, to the vertical velocities. (d), (e), and (f)
compares perturbed biology ensemble with both perturbing functional forms and adding noises between
± 0.5, 1, and 2, respectively, to the vertical velocities. Red open circle, black dot, blue star, and blue
cross show ensemble mean, median, default run, and in situ observation of chlorophyll concentrations.

enough spread in 2003, 2005, 2006, and 2007, to encompass the in situ concentrations, Figure 4.14(c).

The ensemble range has been improved when both biogeochemistry and physics are perturbed, especially

in PBPE-medium and high. In the original PBE, in 1998 and 1999, in situ interannual means are not

within the ensemble range, and this has been improved by the PBPE, Figure 4.14(e) and (f).

4.5.3 Coastal

Statistical metrics

Table 4.7 summarised the statistical metrics for all the ensemble produced from varying functional forms,

adding noises to the vertical velocities, and applying both to the model for the coastal stations. At

Cariaco, the default run shows lower bias for both chlorophyll profile and surface, compared to the
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Table 4.7: Statistical metrics comparing the default run and the mean and median of the original perturbed
biogeochemistry ensemble (reduced to 12 members), only adding to the vertical velocities (w), and both
perturbing functional forms and adding noises (PBPE) with the observation from the coastal stations
(Cariaco and L4). The noises that are used are random numbers between ± 0.5, ± 1, and ± 2). The
numbers that are in bold are the lowest bias and RMSE, and the highest correlation.

chlorophyll profile (mg m−3) DIN profile (mmol m−3) surface chlorophyll (mg m−3) integrated chlorophyll (mg m−2)
Station median mean default in situ median mean default in situ median mean default in situ median mean default in situ
Cariaco r 0.090 0.157 0.112 0.757 0.785 0.762 0.230 0.316 0.223 0.314 0.437 0.336

RMSE 1.278 1.276 1.266 3.203 2.970 3.291 0.865 0.865 0.865 18.983 17.812 18.712
Bias 0.210 -0.313 0.180 -0.521 -0.879 -0.589 0.141 -0.123 0.087 4.324 -3.288 3.862
mean 0.545 1.068 0.576 0.755 5.298 5.657 5.367 4.777 0.367 0.631 0.421 0.508 8.195 15.808 8.657 12.519
Range 1.905 2.264 0.921 16.396

PBPE r 0.101 0.155 0.112 0.750 0.786 0.762 0.241 0.315 0.223 0.319 0.433 0.336
noise= 0.5 RMSE 1.286 1.277 1.266 3.288 2.970 3.291 0.871 0.866 0.865 18.932 17.859 18.712

Bias 0.141 -0.315 0.180 -0.652 -0.886 -0.589 0.109 -0.124 0.087 3.222 -3.336 3.862
mean 0.614 1.071 0.576 0.755 5.429 5.663 5.367 4.777 0.399 0.632 0.421 0.508 9.298 15.855 8.657 12.519
Range 1.924 2.299 0.934 16.417

PPE r 0.107 0.106 0.112 0.762 0.762 0.762 0.220 0.219 0.223 0.332 0.330 0.336
RMSE 1.267 1.267 1.266 3.254 3.218 3.291 0.865 0.864 0.865 18.757 18.782 18.712
Bias 0.187 0.190 0.180 -0.523 -0.464 -0.589 0.091 0.093 0.087 3.984 4.023 3.862
mean 0.614 1.071 0.576 0.755 5.429 5.663 5.367 4.777 0.399 0.632 0.421 0.508 9.298 15.855 8.657 12.519
Range 0.237 1.547 0.113 0.684

PBPE r 0.073 0.151 0.112 0.755 0.784 0.762 0.222 0.311 0.223 0.287 0.424 0.336
noise= 1 RMSE 1.286 1.264 1.266 3.074 2.842 3.291 0.869 0.857 0.865 19.172 17.798 18.712

Bias 0.193 -0.272 0.180 -0.329 -0.593 -0.589 0.133 -0.103 0.087 4.058 -2.679 3.862
mean 0.563 1.028 0.576 0.755 5.106 5.370 5.367 4.777 0.375 0.611 0.421 0.508 8.462 15.198 8.657 12.519
Range 1.969 3.030 0.963 20.256

PPE r 0.093 0.092 0.112 0.755 0.755 0.762 0.205 0.202 0.223 0.311 0.307 0.336
RMSE 1.274 1.274 1.266 3.120 3.084 3.291 0.867 0.867 0.865 19.033 19.056 18.712
Bias 0.232 0.229 0.180 -0.106 -0.048 -0.589 0.114 0.112 0.087 4.640 4.605 3.862
mean 0.614 1.071 0.576 0.755 5.429 5.663 5.367 4.777 0.399 0.632 0.421 0.508 9.298 15.855 8.657 12.519
Range 0.126 1.102 0.063 0.826

PBPE r 0.071 0.138 0.112 0.754 0.776 0.762 0.227 0.309 0.223 0.304 0.435 0.336
noise=2 RMSE 1.284 1.254 1.266 2.988 2.729 3.291 0.867 0.846 0.865 18.956 17.560 18.712

Bias 0.173 -0.233 0.180 -0.082 -0.035 -0.589 0.134 -0.072 0.087 3.931 -1.955 3.862
mean 0.582 0.989 0.576 0.755 4.859 4.812 5.367 4.777 0.374 0.580 0.421 0.508 8.588 14.475 8.657 12.519
Range 1.963 4.116 1.010 19.420

PPE r 0.074 0.068 0.112 0.715 0.746 0.762 0.185 0.187 0.223 0.292 0.294 0.336
RMSE 1.288 1.284 1.266 3.212 3.011 3.291 0.873 0.869 0.865 19.322 19.230 18.712
Bias 0.274 0.254 0.180 0.728 0.670 -0.589 0.143 0.130 0.087 5.363 5.096 3.862
mean 0.614 1.071 0.576 0.755 5.429 5.663 5.367 4.777 0.399 0.632 0.421 0.508 9.298 15.855 8.657 12.519
Range 0.435 3.483 0.219 2.410

L4 r 0.713 0.714 0.718 0.234 0.274 0.309
RMSE 2.721 2.615 2.668 1.078 1.143 1.276
Bias -1.221 -1.017 -1.123 -0.462 -0.673 -0.834
mean 4.176 3.972 4.078 2.955 1.802 2.013 2.173 1.340
Range 3.063 2.418

PBPE r 0.710 0.713 0.718 0.246 0.268 0.309
noise= 0.5 RMSE 2.689 2.634 2.668 1.065 1.152 1.276

Bias -1.145 -1.057 -1.123 -0.455 -0.682 -0.834
mean 4.100 4.012 4.078 2.955 1.795 2.022 2.173 1.340
Range 3.603 2.364

PPE r 0.718 0.716 0.718 0.310 0.308 0.309
RMSE 2.654 2.670 2.668 1.265 1.279 1.276
Bias -1.092 -1.114 -1.123 -0.820 -0.835 -0.834
mean 4.047 4.069 4.078 2.955 2.179 2.192 2.194 1.340
Range 1.237 0.592

PBPE r 0.698 0.715 0.718 0.237 0.274 0.309
noise= 1 RMSE 2.642 2.553 2.668 1.042 1.110 1.276

Bias -0.936 -0.860 -1.123 -0.411 -0.624 -0.834
mean 3.891 3.815 4.078 2.955 1.751 1.964 2.173 1.340
Range 3.740 2.356

PPE r 0.711 0.717 0.718 0.314 0.312 0.309
RMSE 2.563 2.571 2.668 1.170 1.204 1.276
Bias -0.830 -0.905 -1.123 -0.703 -0.744 -0.834
mean 3.785 3.860 4.078 2.955 2.042 2.084 2.173 1.340
Range 1.635 0.755

PBPE r 0.707 0.706 0.718 0.228 0.254 0.309
noise=2 RMSE 2.468 2.597 2.668 1.037 1.094 1.276

Bias -0.303 -0.896 -1.123 -0.399 -0.576 -0.834
mean 3.258 3.851 4.078 2.955 1.739 1.916 2.173 1.340
Range 5.670 1.969

PPE r 0.700 0.711 0.718 0.287 0.298 0.309
RMSE 2.577 2.587 2.668 1.169 1.237 1.276
Bias -0.749 -0.892 -1.123 -0.669 -0.769 -0.834
mean 3.704 3.847 4.078 2.955 2.009 2.108 2.173 1.340
Range 4.164 2.031
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reduced PBE mean and median. However, the PBE mean produces the highest correlation compared to

other ensembles. For the chlorophyll profile, PBPE-medium produces the highest range. The PBPE-high

ensemble mean and median produce the lowest RMSE and bias, respectively.

For surface chlorophyll at Cariaco, the highest range is recorded from PBPE-high, and its ensemble

mean produced the lowest RMSE and bias. The PPEs produce higher bias of chlorophyll compared to

the default run. The biases of these ensemble means and medians get higher as the perturbation strength

increases. For integrated chlorophyll, PBPE-medium produced the lowest RMSE and bias, compared to

other ensembles and also produced the highest range.

For the DIN profile at Cariaco, the original PBE mean already has a higher correlation coefficient com-

pared to the default run. However, its bias is higher than the default and ensemble median. PBPE-high

ensemble means produced the lowest RMSE and bias. Additionally, the highest range is produced from

PBPE-high. Similar to the previous stations, the range of DIN from the PPE increases with the perturba-

tion strength. Furthermore, PPE-high produces a higher range than PBE.

At L4, the in situ observation is only available in the surface. Compared to the default run, the ensemble

mean and median of the reduced PBE shows lower correlations, but better RMSEs and bias for both DIN

and chlorophyll. Unlike Cariaco, the range of surface chlorophyll is at its highest from PBE. However,

the ensemble median from PBPE-high produced the lowest RMSE and bias, summarised in Table 4.7.

The PPE-medium produces better the correlation between the in situ and ensemble mean and median,

compared to the default run.

In terms of surface DIN, only perturbing the vertical velocity worsen the ensemble mean and median cor-

relations, compared to default run, which produces the highest correlation. The PBPE-medium produces

the lowest RMSE and bias compared to other ensembles. Similar to Cariaco, the highest DIN range is

produced from PBPE-medium.

Interannual ranges of DIN and chlorophyll

Similar to the other stations, the DIN interannual mean range from the PPE-medium and PPE-high at

L4 increases throughout the time series (r =0.80 and 0.73, for PPE-medium and high, respectively p <

0.05), despite the PBE range showing a decline over the years, shown in Figure 4.9(e). The range also

increases as the noise gets stronger, with PPE-high producing higher DIN annual mean than PBE (range

4.08 mmol m−3 and 3.95 mg m−3 for PPE-high and PBE, respectively). At L4, for both the PBE-

medium and high most of the ensemble members show a significant decrease in the DIN interannual

mean. However, some members show an insignificantly weak increase in surface interannual DIN range.
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Figure 4.15: Interannual surface mean at station L4 from January 1998 to December 2007. B, P, and D
denote when the ensemble that results from perturbing the functional forms, vertical velocity, and both
functional forms and vertical velocities. (a), (b), and (c) shows the perturbed biology ensemble compared
with adding noises between ± 0.5, 1, and 2, respectively, to the vertical velocities. (d), (e), and (f)
compares perturbed biology ensemble with both perturbing functional forms and adding noises between
± 0.5, 1, and 2, respectively, to the vertical velocities. Red open circle, black dot, blue star, and blue
cross show ensemble mean, median, default run, and in situ observation of chlorophyll concentrations.

These members may cause an increasing range of interannual DIN in L4. The PPE DIN interannual

range in Cariaco has no significant trend, and the overall annual mean range increases with noise. In

terms of chlorophyll interannual mean, the higher the PPE noise, the larger the ensemble spread at both

Cariaco and L4. However, at Cariaco, all PPE ranges have no significant trend, shown in Figure 4.8d.

At L4, PPE-high can produce up to 42.9% higher and 31.6% lower annual mean than the default run.

Similarly, at Cariaco, the ensemble members from PPE-high can produce up to 33.4% higher and 43.6%

lower surface chlorophyll annual mean than the default run.

At L4, the DIN annual mean range of PBPE increases with noise, (ranges for PBPE-low, medium, and

high are 3.64, 3.69, and 5.43, respectively). The interannual ranges of DIN from PBPEs also increase

throughout the time series, (r > 0.77, p < 0.05, for all of the ensembles). This increasing interannual

DIN range has been observed from the PBE (r = 0.94, p < 0.05), Figure 4.9(j). Similar to perturbing the

physics, the increase in range over the year are caused by some ensemble members that show increasing

DIN interannual mean concentration while most of the members show significant depletion, shown in
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Figure 4.16: DIN interannual mean calculated from January 1998 to December 2007, from perturbing
both the vertical velocity and biogeochemistry using the highest perturbation strength (between -2 to 2).
The red lines show ensemble members that produce decreasing DIN interannual mean, whilst blue lines
show ensemble members that produce insignificant increase in DIN interannual mean.

Figure 4.16. At Cariaco, the range of PBPE for DIN does not increase with noise, nor with the time series,

shown in Figure 4.9(i). In chlorophyll, despite using the highest perturbation strength, no meaningful

trend of the range over the time series is produces at Cariaco.

Chlorophyll annual mean ranges from PBPEs do not always increase as the perturbation strength in-

creases at L4. In Figure 4.8(j), all of the PBPE range also produced decreasing trend (r <−0.93, p< 0.05

for all the PBPEs), similar to PBE (r =−0.95, p < 0.05). Most of the ensemble members in PBPE show

a strong decreasing trend in the surface chlorophyll interannual mean r <−0.67, p < 0.05, and although

one of the members show a weak, insignificant increase, this does not affect the interannual mean range.

The smallest range at L4 have been observed from PBPE-high, followed PBPE-medium, and PBPE-

low. At Cariaco, the surface chlorophyll interannual range from PBPEs do not show any significant

trend. At both coastal stations, the chlorophyll interannual mean ranges from perturbing both physics

and biogeochemistry show opposite trend to DIN, summarised in Figures 4.9(i), (j), 4.8(i), and (j). The

ensemble members from PBPE-high can produce up to 50.8% higher and 48.3% lower annual mean than

the default run, but PBPE-low can produce up to 76.5% higher surface chlorophyll annual mean than the
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default run (but only 43% lower). At Cariaco, the ensemble members from PBPE using the highest noise

can produce a lot higher annual mean than the default run (up to 262.6% higher and 77.6% lower surface

chlorophyll annual mean).

In station L4, when the functional forms are perturbed, apart from the year 2000 the in situ interannual

mean is within the ensemble range, and are often within the interquartile range, Figure 4.15. Since the

default run has mostly higher chlorophyll concentrations compared to the ensemble mean and median,

the ensemble spread from PPE-small overestimated the in situ observation throughout the time series

4.15(a). However, increasing the noise to medium makes the in situ observation is within the ensemble

interquartile range from 2003, Figure 4.15(c). The interquartile ranges in 2003, 2005, 2006, and 2007

are higher than PBE-high. The PBPE-high discussed above, and shown in Figure 4.8(j) shows the lowest

range. This low range results in the in situ observation always within the ensemble range, Figure 4.15(f).

Figure 4.17: Interannual surface mean at station Cariaco from January 1998 to December 2007. B, P, and
D denote when the ensemble that results from perturbing the functional forms, vertical velocity, and both
functional forms and vertical velocities. (a), (b), and (c) shows the perturbed biology ensemble compared
with adding noises between ± 0.5, 1, and 2, respectively, to the vertical velocities. (d), (e), and (f)
compares perturbed biology ensemble with both perturbing functional forms and adding noises between
± 0.5, 1, and 2, respectively, to the vertical velocities. Red open circle, black dot, blue star, and blue
cross show ensemble mean, median, default run, and in situ observation of chlorophyll concentrations.

At Cariaco, in situ surface chlorophyll interannual mean is always within the PBE range, Figure 4.17.

Unlike that in L4, the default run is lower than the PBE mean. This makes perturbing the vertical veloc-
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ities mostly underestimates, apart from in 2007, the in situ concentrations, especially in the year 2005,

whereby the ensemble ranges are at their narrowest compared to the other years for all the ensembles

produced from PPE, Figure4.17(a) to (c). Following PBE, the PBPEs the in situ interannual means are

within the ensemble range. In situ concentrations that are within the PBE interquartile range stay within

the PBPEs ranges, regardless of the perturbation strength.

4.6 Summary

We have explored two sources of uncertainties in a biogeochemical model; uncertainty in the choice of

process equations, and the physical inputs. Here, the vertical velocity is chosen as the physical input

representation, as it controls the availability of nutrients to the phytoplankton and therefore may affect

the bias in anthropogenic CO2 uptake (Doney et al., 2004). From the model runs, perturbing the verti-

cal velocity using three different perturbation strengths show that generally, the higher the perturbation

strength, the larger the range it would garner.

At most of the stations, perturbing the vertical velocity using medium and high noises produce an in-

creasing trend of interannual DIN and hence the chlorophyll ranges. A few of the PPE members that

produced opposing trend than the majority of the members may be the cause for the increase. For exam-

ple, the majority of the PPE-high members in L4 show a weak increase (r < 0.5) but other members show

a slight decrease in interannual means (r > -0.5). Therefore, the range over the time series increases. At

PAP, the increase in interannual range is caused by two PPE-high members that show opposing trends

(sharp increase and decline), while other ensemble members show insignificant trends.

The ensemble means from the PPEs also produce better correlations and bias for chlorophyll than PBE.

At oligotrophic stations, PPEs have produced better correlations and biases than the default run (e.g.

chlorophyll profile and surface correlations from PPE-high at BATS are 0.243, and 0.318 mg m−3, re-

spectively, and the default run is 0.228 and 0.289 mg m−3 for chlorophyll profile and surface respec-

tively). In the interannual means of surface chlorophyll, only the PPEs produce less spread than PBE and

therefore does not garner enough range to encompass the in situ concentrations. At stations where the

default run produces smaller bias than the PBE mean, the PPE-high produces enough spread for the en-

semble to encompass the in situ concentrations. The PPE-high tends to produce a wider spread towards

the end of the time series. Consequently, the in situ concentrations are almost always within the range at

the end of the year.

Compared to the reduced PBE, the PPEs have not produced as much chlorophyll spread. However, in

PPE-medium and PPE-high, the DIN profile spreads are larger than the PBE (e.g. at PAP, the range of
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DIN profile from PBE is 1.99 mmol m−3, and PPE-medium is 2.74 mmol m−3). Perturbing the vertical

velocity changes the nutrient availability in the upper water column in different ensembles and perturbing

the functional forms change the interaction strength between nutrient, phytoplankton, and zooplankton

compartments interact. Therefore PBE produces larger spread than PPE. For the statistical metrics, at

most of the stations, the RMSE of DIN and chlorophylls from PBE means are better than perturbing the

vertical velocity, although the correlations are improved. Only PPE-high produces large enough range to

encompass the in situ surface chlorophyll interannual mean. Since the PPE-high spread increases over

the year, the ensemble sometimes produced bigger spread than the PBE towards the end of the year.

Generally, the pattern of the interannual mean range from PBPE follows the PBE. Similar to only per-

turbing the vertical velocity, PBPE-high often produces the largest spread. Ensemble means from PBPEs

generally produce better bias, r, and RMSE at the coastal and abyssal plain stations, Table 4.5 and 4.7,

compared to the PBE. Since the pattern of PBPE is similar to PBE, the in situ surface chlorophyll an-

nual means are often within the ensemble spread if the perturbed biogeochemistry ensemble has already

encompassed the in situ and produced larger spread than PBE. Therefore according to these results, per-

turbing both can produce larger spread and also slightly better statistical metrics, without having high

computational cost. At most of the stations, we have observed an increasing trend over the year from

PBPE. However, the interannual chlorophyll range does not always follow similar trend as DIN (e.g.

Figure 4.8(f) and 4.9(f)). This may be due to perturbing the biogeochemistry has a stronger effect on

chlorophyll. Additionally at the coastal stations and BATS, an opposing trend have been observed from

the two interannual means, (e.g. Figure 4.9(i) with 4.8(i) and 4.9(j) with 4.8(j)).

To explore further about the three different perturbations and the opposing trend of DIN and chlorophyll,

we need to investigate the characteristic signatures of PBE, PPE, and PBPE. According to an earlier

study, the physical input (Friedrichs et al., 2006) profoundly influences phytoplankton and DIN distri-

bution in the water column. In the next chapter, the effect of perturbing the biogeochemistry in DIN,

chlorophyll, and zooplankton distributions are going to be quantified. Furthermore, the characteristic

signatures will be explored in the next chapter.

Perturbing with low noise does not show much difference. However, using high perturbation strength

often produces a steady increase in DIN concentration. Therefore, in the next chapter, the medium noise

is chosen for PPE and PBPE.
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5.1 Introduction

As discussed in the previous chapters, ocean biogeochemical models have been developed to understand

how the ocean ecosystem responds to the changes in both the physics and the biogeochemistry (Doney

et al., 2012; Yool et al., 2013; Butenschön et al., 2016). Key uncertainties that affect ocean biogeochem-

ical models include physical processes, with vertical mixing and upwelling of nutrients often poorly

known (Doney, 1999; Sinha et al., 2010; Friedrichs et al., 2006), and the various choices for the math-

ematical formulations of the biological process for nutrient uptake, zooplankton grazing, and plankton

mortality (Gentleman et al., 2003; Anderson et al., 2010; Adamson and Morozov, 2013). These pro-

cesses are described by functional forms relating them to concentrations of plankton and nutrients, as

well as changes in temperature and light.

Choosing different physical environments can strongly affect simulations of chlorophyll distribution

through the water column (Friedrichs et al., 2006), as well as regional distributions of phytoplankton

functional types in the surface ocean (Sinha et al., 2010). Additionally, varying the physical ocean mod-

els can produce±25% variations in future (2100) anthropogenic CO2 uptake (Doney et al., 2004). When

the structure of an ocean biogeochemical model, especially the choice of the functional forms repre-

senting biogeochemical processes, strongly determine the model dynamics (Edwards and Yool, 2000;

Fussmann and Blasius, 2005). For example, when the grazing function alone is altered from Holling

type II to Holling type III (both of which are common in the literature) three times higher phytoplankton

3This chapter is based on parts of the paper Anugerahanti, P., Roy, S. and Haines, K. (2019), Perturbed Biology and Physics
signatures in an ocean biogeochemical model ensemble, Frontiers in Marine Science. (In review).
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concentrations have been produced (Anderson et al., 2010). Impacts of altering mortality are shown in

both uncoupled NPZ models (Steele and Henderson, 1992; Edwards and Yool, 2000) and coupled ocean

biogeochemical models (Yool et al., 2011). As shown by Yool et al. (2011), choosing a linear mortality in

intermediately complex ocean biogeochemical model, can double the diatom biomass in high latitudes,

compared to other functions. So the uncertainties arising from both physical and biogeochemical for-

mulations contribute to the discrepancies between the models and observations (Anderson, 2010; Allen

et al., 2010).

One way of accounting for multiple sources of uncertainty in ocean biogeochemical model simulations

is to move away from deterministic simulations towards ensemble results which can be designed to de-

liver a probability distribution of outcomes. Perturbed physics ensembles have been used to estimate the

uncertainties of climate projections (Tinker et al., 2015; Subramanian and Palmer, 2017) or forecasting

the climate probabilistically (Tebaldi and Knutti, 2007; Murphy et al., 2007). Ensembles are also regu-

larly used to quantify uncertainties in data assimilation applications (Anderson, 2001; Moradkhani and

Meskele, 2010; Roy et al., 2012) to allow weighting of model results compared with new observations.

From the previous chapter, differences between the range produced by the PBE and PPE in surface DIN

and chlorophyll interannual range and other statistical metrics have been observed.

This chapter explores the variability that may arise in an intermediately complex 1-D ocean biogeochem-

ical model by generating ensembles from perturbing (i) PBE, and (ii) PPE, and (iii) PBPE, especially

within the water column. We will quantify the variability generated by the perturbed ensembles, identify,

and distinguish the characteristics from different biological and physical perturbations based on several

biogeochemical property metrics. From these characteristics, we can explore how the different pertur-

bations may affect the model dynamics. Since the ocean biogeochemical model behaviour varies across

different biogeographical provinces (Kriest et al., 2012), similar to the previous chapter, the model is run

at five monitored ocean sites that span from coastal to oligotrophic regions.

This chapter is organised as follows: Brief descriptions of the metrics are explained in section 5.2. The

basic diagnostics of the ensemble which relates to the bulk properties followed by the effect of perturba-

tions in deep chlorophyll maxima are discussed in section 5.3. The different characteristic signatures of

the PBE and PPE are described and discussed in section 5.4.

5.2 Ensemble metrics

Generating the three ensembles has been described in Chapter 4, and is summarised in Figure 5.1. This

chapter will highlight the key properties of the model ensembles which we use to compare with obser-
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Figure 5.1: Schematic diagram showing how the ensembles are generated. The arrows in the top part rep-
resent the different functional forms which describe the key biogeochemical processes. These functions
are similar in shape and have been tuned to enhance their similarities using non-linear least squares. We
have chosen 4 functional forms for nutrient uptake; (hyperbolic (Uh), sigmoidal (Us), exponential (Ue),
and trigonometric (Ut)). We use 4 forms for zooplankton (ζ ) and phytoplankton mortalities; (hyper-
bolic (ρh), linear (ρl), quadratic (ρq), sigmoidal (ρs)), and two functional forms for zooplankton grazing
(Holling type III (G1) and Holling type II (G2)), resulting in 128 functional combinations including the
default run. These are reduced to 12 to minimise the computational cost, as described in the supplemen-
tary material. The arrows at the bottom represent varying vertical velocities which generate the PPE. The
PBPE is the combination of the two.
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vations at the 5 oceanographic stations. The spread of the annual means of dissolved inorganic nitrogen

(DIN mmol m−3), chlorophyll (mg m−3), and zooplankton (mmol m −3) concentrations are the basic di-

agnostics throughout the water column. At the oligotrophic stations deep chlorophyll maxima (DCM) is

a common feature that occurs below the mixed layer when surface chlorophyll concentration is low (Fen-

nel and Boss, 2003; Letelier, Karl, Abbott and Bidigare, 2004). The DCM evolution is explored by its

maximum depth and concentration over the winter (December-January-February), spring (March-April-

May), summer (June-July-August), and fall (September-October-November). The range of DCM depth,

timing of maximum depth, and concentration are examined for both the PPE and PBE, and whether the

in situ observations of these quantities lie within the ensemble ranges. Additionally at stations which are

situated in the North Atlantic, both diatoms and non-diatoms are simulated by the model. As suggested

in Chapter 3 section 3.4, at stations L4 and PAP, we will examine how perturbing the vertical velocity and

process equation may affect the distribution of dominant phytoplankton type in the water column. This

is done by comparing the concentration of diatom and non-diatom chlorophyll at each depth for each day

of the simulation. The dominant PFT is selected when the chlorophyll concentration has exceeded 60%

of the total chlorophyll (e.g. if the concentration of diatom has reached 60% of the total chlorophyll,

then diatom is the dominant PFT).

We also examine the correlated variability of DIN, chlorophyll, and zooplankton anomaly concentrations

across different ensemble members, during bloom and non bloom-periods (e.g. bloom period at PAP oc-

curred between May and July as shown in Chapter 2 and 3). The anomaly is calculated by subtracting

the concentrations of phytoplankton, zooplankton, and DIN from the concentrations of the ensemble

mean, then the correlation is calculated between the compartments from the mean of each of the ensem-

ble members. Also the phytoplankton fractions in nitrogen is shown. From these metrics, it is possible

to determine signatures of the processes which have been changed within the ensembles. The anomaly

correlations along with these fractional metrics give an indication of the processes involved in the tem-

poral changes seen from the in situ observations, suggesting it may be possible to infer which processes

(physical, biological, or both) may be responsible.

5.3 The effect of perturbing biogeochemistry, physics, and both

5.3.1 The range of DIN, chlorophyll, and zooplankton concentration at depth

From Chapter 3, we have seen that the PBE mostly encompasses the in situ surface chlorophyll concen-

trations at all of the stations. However, in the oligotrophic stations, the DIN concentrations are overes-

timated by the ensemble. Although the ensemble has been reduced, the in situ chlorophyll at all of the
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Figure 5.2: Ensemble range of annual mean of chlorophyll (a to d), DIN (e to h), and zooplankton (i
to l) profiles between 1998 to 2007 at BATS (a, e, and i), ALOHA (b, f, and j), PAP (c, g, and k), and
Cariaco (d, h, and l). Blue cross, red, yellow, black, and green dots denote the mean concentrations
from the default run, in situ, the ensemble mean of PPE, PBE, and perturbing both biogeochemistry and
physics. For station PAP, the annual mean is taken form 2004 for DIN and 2003 for chlorophyll. Station
L4 profiles are not shown because in situ data is only available in the surface.
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stations are still within the ensemble range. In terms of DIN, the ensemble at the oligotrophic stations

still produces ranges that overestimates the in situ concentrations in most depth. For other stations, the

ensemble ranges can still capture the in situ chlorophyll and DIN, similar to the full ensemble.

Perturbations to the vertical velocity used for the PPE, produce relatively little spread in the bulk prop-

erties (e.g. the total concentration of DIN, chlorophyll, and zooplankton) at each depth. The immediate

impact should be seen in the concentrations of DIN at upper ocean levels but in the biologically active top

(∼75m) the PPE range does not change significantly although it widens at depth (Figure 5.2) showing

that the vertical velocity variations are having an impact below the biologically active layers. However

this does not have a big impact on bulk properties (Figure 5.2). These bulk properties have also been

seen to be fairly insensitive when different ocean general circulation models have been coupled with the

same ocean biogeochemical model (e.g., Sinha et al. (2010)).

The spreads generated by perturbing both physics and biology (i.e., PBPE) are mostly only slightly wider

than for PBE alone, at least in the biologically active zone. Below this layer, the ensemble from PPE,

especially in the oligotrophic stations produces larger spread (Figure 5.2(e) and (f)). However at Cariaco

and PAP, the PBPE produces slightly larger DIN spread than PPE and PBE, even below the biologically

active depths (Figure 5.2(g) and (h)). The spreads generated by perturbed physics alone are therefore

mostly insufficient to encompass the in situ observations, especially for chlorophyll. In contrast the

observed concentrations of chlorophyll at all five stations, from surface to deep water, are mostly within

the PBE range (Figure 5.2(a)-(d)), suggesting that the full range of biological production through a strong

nutrient gradient can be obtained by perturbing the biological processes equations.

Discrepancy between observations and ensemble simulation

If we consider individual stations, as discussed in Chapter 3, at Cariaco good agreement is found for

DIN between the in situ and all the ensembles; PBE, PPE, and PBPE. However, at the oligotrophic

stations BATS and ALOHA, a large mismatch between the observed and modelled DIN is apparent (Fig-

ure 5.2(e)–(h)). Similar to the results in Chapter 3, the observed DIN in the top 150m (Figure 5.5(e)–(f))

are beyond the ranges produced by either PBE or PBPE. This discrepancy in the oligotrophic stations

indicates that uptake process is insufficient at low nutrient concentrations, leaving high DIN concen-

trations along with an underestimation of chlorophyll, (Yool et al., 2011; Cox and Kwiatkowski, 2013;

Kwiatkowski et al., 2014) similar to the results in Chapter 3. Furthermore, at ALOHA the range pro-

duced by the PBE and PBPE is not wide enough to encompass the in situ maximum chlorophyll depth

(∼ 110m). The PBPE and PBE produce maximum ranges at∼ 80m, therefore at greater depths, the light

availability is even lower, and therefore low phytoplankton growth rate is simulated, despite higher DIN
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concentrations at this depth. Meanwhile, at BATS, the oligotrophic conditions have not been simulated

well by the ensemble, where at the top ∼ 75m, the DIN concentration is a magnitude higher than the in

situ. However, the in situ chlorophyll concentration at BATS is within the ensemble range. This may

be due to the 1-D model not simulating the input temperature well, making the nutrient uptake at BATS

done inefficiently.

Compared to the previous run in Chapter 3, the in situ DIN concentrations at station PAP that are within

the full ensemble (at the top ∼40 m, Figure 3.1) are now outside the PBE range, shown in Figure 5.2(g).

The observed DIN profile does not show an increase in DIN concentrations with depth. However, the

model ensembles do show nutrients increasing with depth, such that DIN concentration is underestimated

near the surface (at <75m), and overestimated at depth >120m (Figure 5.2(g)). From Figure 5.3, the DIN

concentrations are not sampled evenly at different depths. This might be due to the quality-controlled

DIN concentrations only being available at certain times and depths, and lateral advection that occurred

between 2003 and 2004, which increases the DIN concentration below ∼150m (Hartman et al., 2015).

The in situ DIN profile shown in Figure 5.2(g) shows little variation with depth, unlike the ensemble

simulation. However, the chlorophyll, shown in Figure 5.4, has more samples that are quality controlled

at different depths and times.

Figure 5.3: Monthly mean of in situ DIN (nitrate plus nitrite) at station PAP. The samples are taken
between 2002 to 2004, in a sensor frame at 30m, which samples within deep chlorophyll maxima .

5.3.2 DCM at the oligotrophic stations

One of the characteristics of the oligotrophic regions is its DCM that occurs during months of low

surface chlorophyll. The PBE and PPE members differ considerably in terms of DCM generations (e.g.
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Figure 5.4: Monthly mean of in situ chlorophyll-α derived from the fluorescence at station PAP. The
samples are taken between 2003 to 2005, in a sensor frame at 30m, which samples within deep chloro-
phyll maxima .

Figure 5.5 which shows chlorophyll distributions from 4 different members at BATS and ALOHA). The

DCM is seen in all members for part of each year with considerable variability in maximum chlorophyll

concentration and depth. In the observations, the deepest DCM always occurs in the summer and is

shallowest in winter (Mignot et al., 2014). Similar to the range in the concentrations, the range of DCM

depths from PBE is larger than PPE, with the observed DCM depths generally within the ensemble range

with shallower DCM depths observed in BATS (e.g. the deepest DCM depths at ALOHA, PBE range

40-118m, PPE range 88-102m and in situ depth=114m, and at BATS PBE range 69-103m, PPE range

75-85m, and in situ depth = 93m, see Table 5.1). Both PBE and PPE members reproduce the observed

shallowest DCM timings at both stations, however most of the PBE and all of the PPE members have the

deepest DCM later in the autumn. The PBPE members mostly follows the pattern and timings of PBE,

although the DCM depth range is slightly wider (e.g. at ALOHA, PBPE range= 66-114m, and at BATS

PBPE range= 66-103m). The chlorophyll patterns from PPE members remain similar to the default run

(e.g. all the PPE members showing the deepest DCM in fall at both stations, and the shallowest depth for

the PPE members at BATS don’t differ much see Table 5.1) and those PPE members that show weaker,

or stronger negative vertical velocity than the default produce a slightly less prominent DCM.

Although the nutrient availability for the PBE is unchanged, the chlorophyll distribution and continuity of

DCM depends on processes such as nutrient uptake, zooplankton grazing, and phytoplankton mortalities

strength, and therefore it differs across ensemble members (e.g Figure 5.5(b) and (g)). Since DCMs occur

at depth where the phytoplankton growth rate is in balance with the loss (Fennel and Boss, 2003; Cullen,

2014), variations in DCM depths, pattern, and continuity in PBE are therefore due to different loss and
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Table 5.1: Maximum and minimum DCM depths and its timing of occurrence (see 5.2 for the months
associated with the seasons) for PBE, PPE, and PBPE members. The DCM is obtained from the mean
monthly chlorophyll and averaging the depth of the chlorophyll maximum between the three months to
determine the timing of the deepest or shallowest DCM

Stations
ALOHA BATS

Minimum Season Maximum Season Minimum Season Maximum Season
depth (m) depth (m) depth (m) depth (m)

in situ 91.67 Winter 114.00 Summer 47.00 Winter 92.67 Summer
ensemble
member PBE
default 67.67 Winter 91.67 Fall 34.33 Winter 78.33 Fall
UhG2ρhζh 33.67 Winter 114.00 Fall 41.00 Winter 85.00 Summer
UtG2ρhζh 33.67 Winter 118.33 Fall 38.67 Winter 95.33 Summer
UsG2ρhζq 27.33 Spring 118.33 Fall 48.33 Spring 103.00 Summer
UeG2ρlζl 3.00 Fall 39.67 Summer 43.00 Summer 88.67 Winter
UtG1ρlζs 27.00 Winter 75.00 Summer 50.33 Summer 74.33 Winter
UhG1ρqζl 67.67 Winter 88.33 Fall 27.00 Spring 78.33 Fall
UhG2ρsζl 76.00 Spring 102.33 Fall 41.33 Spring 88.33 Summer
UeG2ρsζl 30.33 Winter 98.67 Fall 38.67 Spring 85.00 Fall
UhG1ρsζl 27.00 Winter 88.33 Fall 21.33 Winter 69.00 Fall
UhG1ρsζq 27.00 Winter 91.67 Fall 23.33 Winter 69.00 Fall
UtG1ρsζq 66.33 Spring 91.67 Fall 32.33 Winter 78.33 Fall

PPE
1 66.33 Spring 88.33 Fall 34.33 Winter 78.33 Fall
2 64.33 Winter 88.33 Fall 34.33 Winter 78.33 Fall
3 67.67 Winter 91.67 Fall 34.33 Winter 78.33 Fall
4 67.67 Winter 91.67 Fall 34.33 Winter 75.00 Fall
5 69.33 Spring 95.00 Fall 34.33 Winter 78.33 Fall
6 71.00 Winter 95.00 Fall 34.33 Winter 78.33 Fall
7 64.33 Winter 88.33 Fall 36.00 Spring 85.00 Fall
8 71.00 Winter 102.33 Fall 34.33 Winter 78.33 Fall
9 67.67 Winter 91.67 Fall 34.33 Winter 78.33 Fall
10 67.67 Winter 88.33 Fall 34.33 Winter 78.33 Fall
11 40.33 Winter 98.67 Fall 34.33 Winter 78.33 Fall

PBPE
UhG2ρhζh 33.67 Winter 114.00 Fall 41.00 Winter 82.00 Summer
UtG2ρhζh 29.67 Spring 85.00 Summer 38.67 Winter 95.33 Summer
UsG2ρhζq 11.67 Spring 114.00 Fall 45.33 Winter 103.00 Summer
UeG2ρlζl 3.00 Fall 66.33 Summer 43.00 Summer 88.67 Winter
UtG1ρlζs 14.00 Spring 75.00 Summer 53.00 Summer 75.33 Fall
UhG1ρqζl 64.33 Winter 81.67 Fall 24.67 Spring 75.00 Fall
UhG2ρsζl 76.00 Spring 102.33 Fall 39.67 Winter 88.33 Summer
UeG2ρsζl 33.67 Winter 95.00 Fall 38.67 Spring 85.00 Fall
UhG1ρsζl 30.33 Winter 88.33 Fall 21.33 Winter 69.00 Fall
UhG1ρsζq 38.00 Winter 88.33 Fall 21.33 Winter 66.00 Fall
UtG1ρsζq 67.67 Winter 91.67 Fall 9.00 Winter 75.00 Fall
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Figure 5.5: Chlorophyll distribution in the water column from 1st January 2000 to 31st December 2002
at station BATS (a to e) and ALOHA (f to j). White solid lines are the mixed layer depth. The default run
is shown in (a) and (f) for BATS and ALOHA respectively. Different ensemble members from perturbing
the biogeochemistry with their functional forms combinations are shown in (b), (c), and (d), for ALOHA,
and (g), (h), and (i) for BATS. (e) and (j) are observed chlorophyll from BATS and ALOHA, respectively.

growth rates throughout euphotic depths. In oligotrophic regions, the nutrient supply is low in the top ∼

150m (see Figure 5.2(e) and (f)) so that PBE members with high grazing and mortality rates under low

nutrient and chlorophyll conditions (e.g. Holling type II (G2), hyperbolic (ρh), and linear phytoplankton

mortality (ρl), see Figure 2.3 for the grazing and mortality curves), have higher losses in the top 75m.

At greater depths, nutrient is plentiful allowing phytoplankton growth to exceed the loss rate, giving a

deeper DCM. Therefore, a slightly larger maximum DCM depth range in PBPE may be caused by the

additional net upwelling from perturbing the physics which brings the maximum depth and for members

with more downwelling, a deeper maximum DCM depth.

When the mixed layer depth becomes deeper, a balance cannot be achieved as light becomes a limiting

factor and therefore the DCM concentration is not prominent below the mixed layer depths (see Figure

5.5(b) and (g)). Furthermore, the nutricline depth at BATS is shallower than ALOHA (∼ 90m and ∼

150m for BATS and ALOHA respectively, see Figure 5.2(e) and (f)), which makes the DCM depth

at BATS shallower than ALOHA, as summarised in Table 5.1. These results suggest that perturbing

the biogeochemistry can result in much greater variability in the evolution and continuity of the DCM,

compared to perturbing the physics alone. This agrees with an earlier study which shows that in a 1-

D biogeochemical model without data assimilation, the chlorophyll and zooplankton distribution in the

water column is more sensitive to varying the model structure (in terms of complexity), compared to

varying the physical forcings (Friedrichs et al., 2006). Furthermore, when perturbing both physics and

biogeochemistry, the effect of perturbing the latter predominantly determines the ensemble spread and
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chlorophyll distribution (see Appendix B for PPE and PBPE DCM distributions).

5.3.3 Dominant PFT in the water column

Figure 5.6: Distribution of dominant phytoplankton type at station L4 in 2003. The PBE results are
shown in (a) to (e) and PPE in (e) to (h). Light blue and light brown denotes non diatoms and diatoms,
respectively as dominant (concentration is larger than 60% of the total chlorophyll) phytoplankton type
in the water column. Brown denotes that none of the PFT reached 60% of the total concentration.

As discussed previously, it has been shown that the regional distribution of dominant PFT is affected

when the physical oceanography input is altered (Sinha et al., 2010) as well as when the process equation

is perturbed (Anderson et al., 2010). Although our study cannot perform the global distribution study of

phytoplankton group, it is possible to see the water column distribution of phytoplankton. The range of

diatoms and non-diatoms chlorophyll concentrations from PPE is not as large as the PBE (e.g. diatom

chlorophyll ranges from PPE and PBE at PAP are 0.058 mg m−3 and 0.555 mg m−3, respectively, and

diatom chlorophyll ranges from PPE and PBE at L4 are 0.127 mg m−3 and 1.176 mg m−3). These results

show that the PBE still produces a broader range than the PPE, even in the bulk properties of the different

PFTs. Furthermore the 1-D model can reproduce the occurrence of diatoms in these regions and as the

dominant phytoplankton type at L4, especially during bloom timing, as seen in Figure 5.6.

As described in the method section, we define the dominant PFT as the chlorophyll concentration of

the PFT that exceeds 60% of the total chlorophyll (diatoms + non-diatoms) concentration. At L4, depth

distributions of the dominant PFT varies between PPE members, as shown in Figure 5.6(e) to (h). Sim-

ilarly, when the biogeochemical equations are perturbed, the depth distribution of PFT also varies even

more between members, summarised in Figure 5.6(a) to (e). Both the PPE and PBE agree that between

April and July, the dominant PFT is diatoms, which coincides with the bloom timing, and during autumn

(August to October), the dominant PFT is the non-diatoms. However, one of the PBE members shown
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here does not show dominant diatoms between April to July, instead it occurs in early May throughout

the water column, and confined between ∼25m to 50m in June, shown in Figure 5.6(c). All the PPE

members, on the other hand, always show continuous diatom domination between April to June. There

are also instances where the dominant non-diatoms only occurs at a certain depth. For example, during

fall, non-diatom domination occurs at the top ∼30m, but below this depth, there is no dominant phyto-

plankton (Figure 5.6(b)). This also occurs in PPE; in September, at the top ∼15m, there are no dominant

PFT in August, but below that depth, non-diatoms dominate (Figure 5.6(g)).

Figure 5.7: Chlorophyll profiles of non-diatom (a to h) and diatoms (i to p) at station L4 form the PPE
(a to d for non-diatoms and i to l for diatoms) and PBE (e to h for non-diatoms and m to p for diatoms)
members in 2003. Default run chlorophyll distributions are shown in (a), (e), (i), and (m).

Upon further investigations, the distribution of non-diatoms do not differ much within different PPE

members, compared to the diatoms (see Figure 5.7(a) to (d)). This result agrees with that in Sinha

et al. (2010) and Holt et al. (2014), where both studies show that the mixing intensities affects the

diatoms concentrations and therefore its distributions. In PBE, the distributions of both non-diatoms and

diatoms vary across different members, compared to PPE, similar to that in the DCM distributions shown

previously.

Similar to L4, the distribution and timing of dominant PFTs at PAP vary across different PBE members.

In the default run, the diatom domination only occurs between May and June and is confined within

∼70 to 100m, which coincides with the bloom timing at station PAP. In other PBE members shown in

Figure 5.8(b) and (d), the diatom domination can occur from May until August, which coincides with the
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bloom time. However, in Figure 5.6(c), the diatom dominance only occurred between June and July and

was confined within ∼50 to 80m. The depth distribution and the longevity of the dominant PFTs also

varies across different PBE members, for example, between ∼140-150m the diatom domination occurs

longer than in the shallower depths (Figure 5.8(b) and (d)). Additionally, in Figure 5.8(c), unlike other

members shown here, the functional form combinations produces non-diatom as the dominant species

between May to July, below ∼120m.

The distribution of dominant PFT between the PPE members, do not vary as much as in PBE, as shown

in Figure 5.8(e) to (g), where most of its ensemble members show similar dominant PFT distribution as

the default run. However, in Figure 5.8(h), diatom domination occurs from the surface to ∼110m.

Figure 5.8: Distribution of dominant phytoplankton type at station PAP in 2003, form PBE (a to e) and
PPE (e to h). Light blue and light brown denotes non diatoms and diatoms, respectively as dominant
(concentration is larger than 60% of the total chlorophyll) phytoplankton type in the water column.
Brown denotes that none of the PFT reached 60% of the total concentration.

Between PPE members, the difference in the dominant phytoplankton type depth distribution and occur-

rence may be due to the difference in mixing strength between the vertical velocity ensemble members.

This may also explain the discrepancy between L4 and PAP, which may be caused by the difference in

the magnitude of vertical velocity. At L4 and PAP, the mean default vertical velocities within top 50m

from 1998 to 2007 is -0.0031 m s−1 and 0.00091 m s−1, respectively. Therefore when the noise is added,

the perturbation is stronger in L4, which may make the discrepancy in the distribution of PFT between

PPE members more noticeable.

For PBE members, as explained in the previous subsections, these differences in dominant phytoplankton

type distribution may be due to the difference in the interaction strength between the various functional

forms combinations. For example when the mortality function is altered (Figure 5.6 (a) and (b) as well
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as 5.6 (a) and (b)), the distribution of diatoms can change drastically, because using G2 would result in a

lower grazing rate when the concentration of phytoplankton is low, so that during winter to early spring

the concentration of non-diatoms in ensemble member UhG2ρhζh is lower than the default run. Similarly

these lower concentrations also occurs in diatoms, although not as distinctive as the non-diatoms (Figure

5.7 (m) and (n) and 5.9) (m) and (n)). The discrepancy between diatoms and non-diatoms may be due

to non-diatoms being grazed by both microzooplankton and mesozooplankton, and diatoms only being

grazed by the mesozooplankton. This further shows that perturbing the biogeochemistry provides larger

variability even for the dominant PFT distributions.

Figure 5.9: Chlorophyll profiles of non-diatom (a to h) and diatoms (i to p) at station PAP form the PPE
(a to d for non-diatoms and i to l for diatoms) and PBE (e to h for non-diatoms and m to p for diatoms)
members in 2003. Default run chlorophyll distributions are shown in (a), (e), (i), and (m).

When both the biogeochemical process equations and vertical velocity are perturbed together, the PBPE

members produce almost similar results to the PBE (see Appendix B for the dominant PFT distributions).

Therefore, the difference in PFT distributions shown in Sinha et al. (2010) may vary more sharply across

different ensemble members when applying PBE to a 3-D ocean biogeochemical model.
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5.4 Signatures and Characteristics in PBE and PPE

5.4.1 Correlations between nutrient, phytoplankton, and zooplankton anomalies

In this subsection, we calculate the anomaly correlations between the different model compartments,

such as non-diatoms, diatoms, DIN, silica, mesozooplankton, and microzooplankton. This will give

some insights on how different patterns of the ensemble observed in section 5.3 are generated. We

choose station PAP and L4 as both stations produces diatoms and therefore it is possible to fully compare

between different PFTs and nutrients.

Anti-correlations in PBE and PBPE

From Figures 5.10(a) and (b), perturbing the biogeochemistry produces opposing pattern between DIN

and non-diatoms, as well as silica and diatoms, resulting in anti-correlations between nutrients and phy-

toplankton, as well as phytoplankton and zooplankton. When both the biogeochemistry and physics are

perturbed, anti-correlations between model compartments are also observed. During the bloom period,

the anti-correlations are often stronger than the non-bloom period, summarised in Table 5.2, for both

ensembles. Between the two types of zooplanktons, stronger positive correlations are observed during

the bloom period compared to non-bloom period, showing how the two zooplankton types have similar

dynamics. However, there are no strong correlations between the two phytoplankton types; at PAP anti-

correlations have been shown between diatoms and non-diatoms, but at L4, during the bloom period,

weak positive correlations have been produced.

The anti-correlations between nutrients, phytoplankton, and zooplankton occur because perturbing the

biogeochemistry changes the way biogeochemical compartments interact with each other, without al-

tering the nutrient concentration in the euphotic zone. For example, one functional forms combination

that produces a higher concentration of phytoplankton would result in low nutrients or low zooplankton.

Additionally, functional forms that produce high grazing would result in high nutrient and zooplankton

concentration. These trade-offs produce the ensemble spread from perturbing the biogeochemistry.

At both stations, negative correlations have been observed between diatoms and non-diatoms, in PBE

and PBPE. As we can see from Figures 5.7 and 5.9, non-diatoms usually occur when diatoms concen-

trations are low, such as during early winter and summer, especially when the ensemble uses G1 and ζl .

This makes the correlations between diatoms and non-diatoms negative. However, between zooplankton

types, the correlations are positive. This may be because both mesozooplankton and microzooplankton

consume non-diatoms and detritus, which may result in similar dynamics. For example, at PAP, there
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Figure 5.10: Anomalies of different PBE and PPE members in 2005. The lines represented in these
panels show surface DIN, silicate, diatom, non-diatom, mesozooplankton, and microzooplankton during
bloom and non-bloom periods at L4. Left and right panels show the PBE and PPE anomalies, respec-
tively. The y-axis denotes the ensemble members (see Table 5.2 for the correlation coefficient)

is only one prominent bloom simulated by the ensemble, which makes the correlation between the two

zooplankton types stronger during bloom compared to non-bloom period. However at L4, the bloom

timings of diatom and non-diatom are different (see Figure 3.23 in Chapter 3 and Smyth et al. (2010)),

which makes the correlations less strong during spring bloom (dominated by diatoms), compared to the

non-bloom period, where both zooplankton concentrations decrease. The difference in correlations be-

tween phytoplankton types may occur due to different half-saturation constants and nutrient types that

are consumed by diatoms and non-diatoms.

The results from Table 5.2 also further emphasises that when both biogeochemistry and physics are per-

turbed, the correlations between anomalies are more similar to PBE than PPE. However, the PBPE often

produces weaker correlations compared to the PBE. This might be due to the increasing or decreasing

nutrient supply which enhances or reduces the phytoplankton, and therefore zooplankton concentrations,

which may weaken the strength of the correlations.



5.4. Signatures and Characteristics in PBE and PPE 161

Table 5.2: Correlation table between the anomalies of DIN, silicate (sil), diatom (diat), non-diatoms
(non-diat), mesozooplankton (mesozoo), and microzooplankton (micorozo) at station PAP and L4. The
correlation are calculated from 1999-2003, for bloom period, and non-bloom period. The noise that is
used for PBE and PPE is between -1 and 1. The correlations that are written in bold denotes the bloom
period and the non bloom period is written next to it. Italicised correlations are non significant.

Station
PAP Din Sil Diat Non Diat Mesozoo Microzoo
PBE
DIN 1
Sil (-0.24, -0.11) 1
Diat (0.029, -0.19) (-0.89, -0.74) 1
Non Diat (-0.7, 0.41) (0.76, 0.2) (-0.70, -0.59) 1
Mesozoo (0.76, 0.68) (-0.055, -0.14) (-0.18, -0.40) (-0.44, 0.58) 1
Microzoo (0.6, 0.54) (-0.21, -0.48) (-0.21, 0.48) (0.12, -0.65) (0.64, 0.48) 1
PPE
DIN 1
Sil (0.81, 0.95) 1
Diat (0.89, 0.90) (0.92, 0.91) 1
Non Diat (0.88, 0.91) (0.75, 0.85) (0.91, 0.85) 1
Mesozoo (0.8, 0.93) (0.53, 0.86) (0.74, 0.89) (0.81, 0.95) 1
Microzoo (0.76, 0.90) (0.78, 0.81) (0.91, 0.85) (0.93, 0.98) (0.68, 0.97) 1
PBPE
DIN 1
Sil (0.099, 0.05) 1
Diat (-0.16, -0.26) (-0.85, -0.62) 1
Non Diat (-0.40, 0.047) (0.77, 0.42) (-0.69, -0.44) 1
Mesozoo (0.67, 0.67) (-0.055, -0.061) (-0.21, -0.47) (-0.43, 0.095) 1
Microzoo (0.53, 0.32) (-0.18, -0.44) (-0.12, 0.12) (-0.62, -0.13) (0.64, 0.39) 1
Station
L4 Din Sil Diat Non Diat Mesozoo Microzoo
PBE
DIN 1
Sil (0.61, 0.23) 1
Diat (-0.67, -0.23) (-0.86, -0.84) 1
Non Diat (-0.56, -0.65) (-0.15, 0.35) (-0.18, -0.42) 1
Mesozoo (0.81, 0.81) (0.30, -0.22) (-0.31, -0.22) (-0.73, -0.88) 1
Microzoo (0.73, 0.9) (0.73, 0.04) (-0.81, -0.001) (-0.11, -0.79) (0.63, 0.92) 1
PPE
DIN 1
Sil (0.95 ,0.99) 1
Diat (0.99 ,0.97) (0.93 ,0.95) 1
Non Diat (0.8 ,0.98) (0.78 ,0.97) (0.77 ,0.91) 1
Mesozoo ( 0.99 ,0.98) (0.92 ,0.98) (0.99 ,0.97) (0.79 ,0.96) 1
Microzoo (-0.0042, 0.96) (0.02, 0.74) (-0.046, 0.7) (0.58, 0.82) (0.0043, 0.67) 1
PBPE
DIN 1
Sil (0.51, 0.35) 1
Diat (-0.63, -0.32) (-0.84, -0.82) 1
Non Diat (-0.45, -0.38) (0.33, -0.4) (-0.28, -0.24) 1
Mesozoo (0.73, 0.7) (0.12, -0.23) (-0.28, -0.10) (-0.75, -0.84) 1
Microzoo (0.82, 0.87) (0.68, 0.10) (-0.78, -0.05) (0.19, -0.61) (0.71, 0.88) 1
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Positive correlations in PPE

For PPE, shown in Figure 5.10(c) and (d), it is clear that the anomaly patterns of nutrients, phytoplankton,

and zooplankton follow each other, therefore producing strong positive correlations, summarised in Table

5.2. The correlation strength is higher during the non-bloom period, opposite to the PBE anomaly.

Strong positive correlations occur because perturbing the vertical velocity also perturbed the availability

of nutrients in the euphotic zone, as summarised in Figure 5.1. Therefore if the overall vertical velocity in

ensemble results is an upwelling, the nutrient in the euphotic zone increases, which results in the rise of

phytoplankton and therefore zooplankton concentrations, making the correlations mostly positive. The

difference between how much nutrients is available in the euphotic zone garners the PPE spreads.

The stronger correlation during non-bloom period occurs because, during the bloom period the nutrient

concentration is low as the phytoplankton uptake rate is high. During this period, the zooplankton graz-

ing rate is also high. The combination of high grazing and low nutrients would result in the reduction

of phytoplankton concentrations. This makes the nutrients, zooplankton, and phytoplankton anomaly

correlations more ‘negative’ during the bloom period compared to non-bloom period. Distinctive cor-

relations during the two periods are shown between microzooplankton and DIN, silicon, diatoms, and

mesozooplankton, (shown in Figure 5.2). This may occur because during bloom period, the decline in

nutrients coincides with the rise in microzooplankton. The main diet of microzooplankton is non-diatom,

therefore the during the diatom bloom, the microzooplankton coincides with the increasing diatoms and

mesozooplankton at the later part of the bloom.

5.4.2 Ratios and distribution of nitrogen between different compartments

In section 5.3.1, at the oligotrophic stations, a poor match between in situ DIN and chlorophyll have

been observed. Furthermore, from the previous section, from the anomaly, the correlation between nu-

trients and phytoplankton types are negative, as the interaction between these compartments vary across

different ensemble members. In this subsection, the ratio between Chl:DIN, Zoop:Chl, phytoplankton

nitrogen and DIN+phytoplankton nitrogen (P:PD) are going to be explored. This is done to ensure

whether the ratios from in situ observation have been represented well by the ensemble at different sta-

tions. Furthermore, calculations of these ratios are done to ensure that perturbing the biogeochemistry

has altered the interaction strength between different model compartments by looking at the proportions

between the food and consumer ratio and also how the model currency (nitrogen) is distributed to other

compartments.
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Surface ratios

Figure 5.11: Boxplots showing the DIN:Chl and Zoop:Chl between the PPE and PBE calculated from the
surface annual mean (from 1st January 1998 to 31st December 2007) and during bloom and non-bloom
period. The mean ratio is shown in black cross. The means between PBE and PPE do not show much
difference in the coastal and abyssal plain stations.

Figure 5.11 shows the ratios of Chl:DIN and Zoop:Chl from the ensembles in boxplots at all of the

stations at the surface. The mean ensemble ratios of Chl:DIN are similar between PBE and PPE at all

the stations apart from BATS, where PPE mostly shows a slightly larger mean ratio, Fig. 5.11(a). This

may be due to the Uh used in PPE showing relatively high uptake of DIN at the oligotrophic condition,

making the Chl to DIN ratio higher in PPE. For Zoop:Chl, the PPE mean ratio is lower than PBE,

especially at the oligotrophic regions. The G1 function used in PPE shows low grazing rate at low

phytoplankton concentrations (such as in the oligotrophic stations). This results in lower PPE Zoop:Chl

means at oligotrophic stations.

In terms of the range, PBE produces a wider range, Fig. 5.11. The highest Chl:DIN is often similar

to the lowest Zoop:Chl. The functional forms that show the maximum ratio varies with the region.

At the oligotrophic region, an ensemble member that combines G1 and ρq would yield low grazing

and low phytoplankton mortality rate when plankton concentration is low. Combining it with ζl would

further enhance the chlorophyll concentration, resulting in a maximum Chl:DIN. Consequently, the same

ensemble member produces minimum Zoop:Chl. Combining low uptake rate Us with high grazing rate

G2, then combining these functions with relatively high phytoplankton mortality ρh at low concentration,
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would result in low Chl:DIN ratio, but high Zoop:Chl ratio.

At the coastal stations, nutrients and therefore phytoplankton are more plentiful. However there are

some differences between Cariaco and L4, for example, the chlorophyll mean at L4 is higher compared

to Cariaco (ensemble mean= 1.96 and 1.05 mg m−3 respectively), and the opposite for DIN (ensemble

mean= 0.628 and 4.531 mmol m−3 for L4 and Cariaco, respectively) and zooplankton (mean=1.156

mmol m−3 and 0.548 mmol m−3 for Cariaco and L4, respectively). Furthermore, the seasonality at

Cariaco ensemble is not as strong as that in the light-limited L4. Therefore these two stations would have

different functional form combinations for the maximum and minimum ratios. At higher phytoplankton

concentrations (>1.5 mg m−3), G2 produced a lower grazing rate. Combining this function with low

phytoplankton mortality rate such as ρs would yield high Chl:DIN ratio. The minimum Chl:DIN is

produced when the ensemble contains ζq, as low zooplankton mortality would produce low chlorophyll

concentrations. Similar annual maximum and minimum Chl:DIN have been observed for both coastal

stations. However, at L4 during the non-bloom period, where phytoplankton is low, using ρs and G1

would result in low mortality and grazing rate, respectively, resulting in maximum Chl:DIN. Changing

the functions to ρh and G2 produces minimum Chl:DIN during the non-bloom period.

At station PAP, similar to L4, different ensemble members produce maximum Chl:DIN in different pe-

riods. During non-bloom and in the annual means, the maximum Chl:DIN is produced from similar

ensemble members as the oligotrophic stations. However, during bloom time, the ensemble member is

similar to that in the coastal stations, as the chlorophyll concentrations are high. The minimum Chl:DIN

ensemble member is similar to the coastal station for all the seasons and annual mean. In terms of

Zoop:Chl, the maximum and minimum ratios are similar to station Cariaco. These discussions further

show that the changes in Zoop:Chl or Chl:DIN can be traced back to determine which functional forms

are responsible for the changes. By using the ensemble approach, this method may be implemented when

investigating the change in the observed ratios.

Although the ranges obtained by the PBE are large, at the oligotrophic stations, the in situ show almost

a magnitude higher Chl:DIN ratio. The underestimation of the ratio further shows the overestimation of

DIN at both stations, and therefore the nutrient uptake inefficiency in MEDUSA, despite perturbing the

functional forms. At in situ ALOHA, the highest Chl:DIN ratio is observed during the bloom period,

but at BATS the highest ratio is produced during the non-bloom period. These differences may occur

due to during bloom period both DIN and chlorophyll are at their highest concentrations, but during

the non-bloom period the mean in situ chlorophyll is higher than DIN (0.05 mg m−3 and 0.008 mmol

m−3 for in situ ALOHA). This relatively high chlorophyll is due to the occurrence of diazotroph or

nanophytoplankton in the summer where the nutrient is low (White et al., 2015). At the coastal stations

the Chl:DIN ratio from the in situ observations are within the ensemble range, especially in the annual
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means. During the bloom period, both in situ ratio shows lower Chl:DIN ratio compared to non-bloom,

even at Cariaco, where the ensemble does not produce distinct seasonality compared to the observation.

This approach may be used as new metrics to show how well ensemble results of a model could represent

the in situ conditions of a particular biogeographical region.

At some of the stations, the zooplankton to chlorophyll ratios do not show the typical bloom and non-

bloom ratio. During the bloom timing, the zooplankton:chlorophyll ratio should be small, as the chloro-

phyll is at its highest concentration, and zooplankton concentration has not caught up with the rise of

chlorophyll, and the opposite during non-bloom period. This pattern is apparent at BATS, L4, and PAP,

but not at ALOHA and Cariaco, where the opposite has been observed Fig.5.11(b). This may occur

because, at ALOHA and Cariaco, the bloom and non-bloom periods produced by the model are not very

distinct.

Phytoplankton to total nitrogen ratios in the surface

Figure 5.12: Monthly averaged phytoplankton nitrogen proportion from phytoplankton + DIN (P:PD) at
four oceanographic stations on the surface. The top and bottom panel show the phytoplankton proportion
from PBE and PPE, respectively. Each lines represent the ensemble members. The observation is shown
in blue and the error bars are derived from the standard deviations of the monthly P:PD. The nitrogen
from phytoplankton is calculated using the chlorophyll to nitrogen ratio from the default run, and the
calculation is described in Yool et al. (2011).

Similar to Figure 5.11, Figure 5.12(a) and (b) emphasises that the proportion of nitrogen in phytoplank-
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ton is seen to vary sharply from member to member in the PBE, especially at oligotrophic stations

where the ordering of members is also seen to change. This occurs because the strength of mortal-

ity and grazing varies depending on the steepness of the curve of the functional forms, which dictates

how each ensemble member distributes nitrogen at different times. For example in Figure 5.12(a), be-

tween ensemble members with trigonometric uptake, Holling type III grazing, linear phytoplankton, and

sigmoidal zooplankton mortality (UtG1ρlζs) and sigmoidal uptake, Holling type III, sigmoidal phyto-

plankton, and quadratic zooplankton mortality (UsG1ρsζq), overlaps in June. This is because sigmoidal

mortality shows a lower rate at low phytoplankton concentrations, but the rate increases rapidly when the

concentration increases, and linear phytoplankton mortality always produces high mortality rate, making

the phytoplankton proportion from UtG1ρlζs decreases more rapidly at low phytoplankton proportions.

The crossing of members at station BATS may be caused by the DIN concentration that coincides with

when the uptake rate functional forms cross with each other, meaning that some functional forms would

have a more rapid increase in uptake rate than others (see Figure 2.3 in Chapter 2).

In contrast, the PPE shows very little variability in nitrogen fractions across the whole ensemble, sum-

marised in Figure 5.12(e) and (f). At the oligotrophic stations, the observed phytoplankton nitrogen

fractions are always > 0.7, indicating that most of the time, this region is nutrient-limited. Similar to

Figure 5.11, the ensemble underestimated the phytoplankton fraction, despite generating a large range.

However there are two ensemble members can match the phytoplankton fractions: the default run and

UhG1ρhζl (see Figure. 5.12 (b)). This is because the hyperbolic uptake function has a higher nutrient

uptake rate at low nutrient concentrations, compared to other functional forms.

Furthermore, the underestimation of the phytoplankton fraction may be due to the half-saturation con-

stant being too high for oligotrophic regions. An earlier experiment shows the half-saturation constant

for a rectangular hyperbolic formula at the oligotrophic region is ∼0.24 mmol m−3 (Laws, 2013), mak-

ing the nutrient uptake functional form for default MEDUSA (0.5 mmol m−3 for DIN) is inefficient in

nutrient-limited regions. This may also explain the overestimation of DIN in the oligotrophic regions.

The spread obtained by PBE at the Coastal region, Figure 5.12(c) and (d), is enough to encompass the in

situ observations and its standard deviations, especially in seasonally strong regions such as L4 (Figure

5.12(c))). In this station, light is the limiting factor for most of the month, which also controls the nutrient

uptake rate, which makes the PBE and PPE follow the pattern of the observation, even when nutrients

becomes limiting in the summer. In different months, the in situ phytoplankton fraction falls on different

ensemble members of PBE, (e.g. from October-March, the in situ phytoplankton fraction generally falls

within ensemble members that produces overall low phytoplankton growth rate at low concentrations

(such as UtG2ρlζs and UhG2ρhζh) and from April to September, falls within members that shows high

phytoplankton growth rate and high zooplankton loss (such as UhG1ρsζl and UhG2ρqζl). This follows the
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North Atlantic bloom studies, where the phytoplankton proportions and growth rates change over the year

(Behrenfeld et al., 2013; Behrenfeld and Boss, 2014; Roy et al., 2012), as it is controlled by nutrients,

light, and mixed layer conditions, e.g. in the summer, the growth rate of phytoplankton is in equilibrium

with loss rate as nutrient depletes and grazing rate is high (Behrenfeld et al., 2013; Behrenfeld and Boss,

2014).

These results suggest that the PBE generates enough spread to encompass the uncertainty within the

observed phytoplankton fraction if the region is seasonally strong, and also explains the variations of

growth and loss rate in phytoplankton. We can also see that none of the single PBE members fully cap-

tured the observation throughout the year, therefore using a single set of functional forms, is not sufficient

to capture in situ and its uncertainty. This also emphasises that the PPE, cannot capture the variability

in phytoplankton fractions. As discussed above, ensemble members that captured the in situ fractions

are time-dependent, as the ensemble members behave differently depending on the concentration of nu-

trients, phytoplankton, and zooplankton, especially in seasonally strong regions. Therefore, for further

applications such as a probabilistic modelling approach the weighting of uptake, grazing, and mortality

process functions can be dependent on time.

5.5 Summary

We have run three different ensembles from 1-D MEDUSA, which are generated from perturbing the

biology (PBE) and physics (PPE). The ensemble spread, chlorophyll distributions, and characteristics of

the ensembles are explored. The PBE and PBPE generally produce a larger spread of the chlorophyll

annual means compared to PPE and encompass the in situ concentrations. Below the biologically active

region, the PPE produces larger spread than PBE and PBPE, as below this depth there are less biological

activities and nutrient supply is dependent on the PPE. For the chlorophyll distributions, we used the time

evolution of DCM as the ensemble metrics and it shows that across different ensemble members, the PBE

and PBPE produces a larger spread of DCM depths compared to PPE, with different chlorophyll patterns.

This is because the PBE produces more variable loss and growth rate of phytoplankton at different

nutrient supply. This makes perturbing the biogeochemistry produces a stronger effect than physics when

both factors are perturbed. Perturbing the biogeochemistry can also affect the distribution of diatoms and

non-diatoms in the water column. Additionally, at a station where vertical velocity is strong, such as L4,

perturbing the vertical velocity can change the distribution of the dominant phytoplankton type in the

water column.

The characteristics between PBE and PPE are examined using the correlations between the ensemble
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members and the proportion of phytoplankton nitrogen. Within the PPE members, the biogeochemical

compartments tend to vary together with strongly positive correlations with nutrient supply, whereas,

in PBE, the nutrients and phytoplankton have negative correlations, as perturbing the biogeochemistry

changes the interaction strength of phytoplankton, zooplankton, and nutrients at different concentrations.

Across different members, the PBE produces a larger spread of phytoplankton nitrogen proportions at

different times and therefore larger ensemble spread than the PPE. This shows that the PBE produces a

better representation of uncertainty in biogeochemical variables. The metric also shows that where phy-

toplankton is light-limited, the functional forms generally perform better, as the observed phytoplankton

proportions show similar patterns to the PBE and PPE. Ensemble members that captured the in situ frac-

tions are time-dependent, as the ensemble members behave differently depending on the concentration

of nutrient, phytoplankton, and zooplankton, especially in seasonally strong regions. Therefore, for ap-

plications in probabilistic modelling the weighting of uptake, grazing, and mortality process functions is

time dependent.
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General Discussion

6.1 Summary

In this thesis, we have presented a method in generating a perturbed biogeochemisty ensemble, gener-

ated by altering the biogeochemical process equations, which have been tuned to the default functional

forms. It has been shown that altering the model process equation can alter model dynamics in a predator

and prey model (Fussmann and Blasius, 2005; Flora et al., 2011; Adamson and Morozov, 2013) more

than varying the parameters. We implement this method first in a 0D NPZ model generated by Edwards

and Brindley (1996). The results show that altering the biogeochemical process formulations can change

the model dynamics of the NPZ model, especially when the grazing function is altered from sigmoidal

to hyperbolic-type functions. Sigmoidal grazing functions (such as Holling type III and Sigmoidal II)

produce the highest phytoplankton concentrations, with the longest period of oscillations and signifi-

cantly higher amplitudes because after tuning, the maximum grazing rate is lower than other hyperbolic

functions and lower grazing rate when phytoplankton concentration is > 0.1 gC L−1.

Further, we examine whether structural sensitivity also applies to a more complex model. Indeed, in an

earlier study by Anderson et al. (2010); Yool et al. (2011), altering the grazing and mortality function

can produce different bulk properties of chlorophyll. However, these studies do not thoroughly exam-

ine when core biogeochemical processes, such as phytoplankton nutrient uptake, zooplankton grazing,

and plankton mortality, are perturbed together, or individually. In this study, we choose MEDUSA, an

intermediately complex operational biogeochemical model which is also the ocean biogeochemical com-

ponent of the UK-ESM1. MEDUSA is essentially an NPZD model, with three nutrient compartments

(DIN, Silica, and Iron), two phytoplankton (non-diatoms and diatoms), and two zooplankton partitioned

by size (microzooplankton and mesozooplankton), shown in Figures 2.1a and 2.1b. Therefore the un-

169
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derlying biogeochemical process is similar to that of an NPZD model, such as phytoplankton nutrient

uptake, zooplankton grazing, and plankton mortality.

The ensemble is generated by altering the key biogeochemical processes default functions of MEDUSA

with alternative functional forms; four nutrient uptakes, two zooplankton grazings, and four phytoplank-

ton and zooplankton mortalities equations, totalling in 128 ensemble members, which have been de-

scribed in Chapter 2. These functional forms are chosen as they have been used in other biological

models and also are phenomenologically similar. For example, in the default MEDUSA, zooplankton

grazing is modelled using the Holling Type III function, which has a saturating response, with a max-

imum grazing rate and a half-saturation coefficient. Another common functional form that is used in a

biogeochemical model is the Holling type II, which has a similar saturating curve. In order to minimise

computational cost, we used a 1-D version of the MEDUSA model that is provided by the software Mar-

MOT. The 1-D run is then compared with five different stations which represent various biogeographical

regions; ALOHA and BATS for oligotrophic (or trade winds), Cariaco and L4 for coastal, and PAP for

the abyssal plain region at the North Atlantic, which can be grouped with the westerlies (Longhurst et al.,

1995) or the subarctic gyre (Ducklow, 2003).

Using statistical metrics (such as range, correlation, RMSE, and bias) to compare chlorophyll and DIN

from the model output with in situ observations as well as phytoplankton phenology to examine the

model dynamics, the ensemble has shown to capture most of the in situ and satellite-derived chlorophyll

concentration, which are explained in Chapter 3. The ensemble is also likely to produce a mean field

closer to the observation than a single structure model that has not been tuned to one station. The

widest and smallest range are observed in the coastal and oligotrophic stations, respectively. Among

the five stations, station ALOHA has shown the most reliable spread (for the surface and integrated

chlorophyll and bloom peak height), as well as station L4 (for inter-annual mean) according to the NRR.

Changing Holling Type III grazing to Holling Type II lowers the chlorophyll concentrations, especially

at the oligotrophic stations, with the nutrients responding in the opposite direction. Pairing Holling Type

II with linear phytoplankton mortality will reduce the chlorophyll concentration even further. For the

nutrient uptake, exponential and sigmoidal forms show inefficient phytoplankton uptake, which results

in low chlorophyll concentrations and high nutrient concentration. From this study, we can see that

some of the sensitivity that have been observed in the simple NPZ model has been carried on to the

more complex model, altering phytoplankton mortality in intermediately complex model affecting the

chlorophyll dynamics more.

To examine how structural sensitivity affects model dynamics, we use phytoplankton phenology as a

model metric. The difference of the phenological timing between the ensemble mean/median and the

default run ranges from a couple of days to weeks. The timing of initiation, bloom peak, and termination
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also show wide ensemble inter-quartile ranges for all stations which can lie between ∼20 and 100 days

earlier than the in situ timing, making the observed phenology metrics fall within the full ensemble

range. The in situ peak and annual means are also mostly captured by the ensemble. However, at the

coastal stations, the phenology timings are not well captured. These discrepancies may be due to the poor

representation of the physical environment at Cariaco, where the ensemble does not simulate upwellings

of nutrients. Furthermore, the way zooplankton select their prey in the model, does not take account

of the stoichiometry of C:N, making the double peaks in L4 not simulated well (Sailley et al., 2014).

From these results, given that the physical oceanography aspect is well modelled, and the equations are

theoretically justified, it is possible to use the ensemble approach to forecast these phenological aspects.

Furthermore, it may also be possible to improve the accuracy of the ensemble spread by systematically

removing ensemble members, which also reduces the computational cost.

We then systematically reduced the ensemble by using PCA and k-means cluster to select the members

that are most representative of the full ensemble, in Chapter 4. The 12 members ensemble, including

the default run, have been selected, and the reduced ensemble has retained most of the spread, RMSEs

and biases from the original run. A perturbed physics ensemble has also been generated, to compare the

spread between the reduced ensemble with the perturbed physics ensemble (PPE), where vertical velocity

is varied using different noise strength. This is done because the physical input to the biogeochemical

model has been shown to affect the chlorophyll distribution more than perturbing the model complexity

(Friedrichs et al., 2006; Raghukumar et al., 2015). Additionally, to see which perturbation affects the

model results more, the reduced ensemble is run using the perturbed vertical velocity ensemble, resulting

in a perturbed biology physics ensemble (PBPE).

When the physical oceanography is perturbed, the higher the perturbation strength, the larger the range it

would garner as vertical velocity controls the availability of nutrients for phytoplankton. Using the high-

est perturbation strength, some ensemble members produced an increasing DIN concentration over the

time series due to a more intense upwelling. Additionally, this increase in surface DIN and chlorophyll

concentration has also been shown in the spin-up run in Chapter 2, which suggests that the vertical ve-

locity has a tendency to increase the surface DIN over the time series. However, perturbing only vertical

velocity produces less range compared to perturbing the biogeochemistry, and therefore not garnering

enough spread to capture to the in situ concentration. Furthermore, when both the biogeochemistry and

vertical velocity are perturbed together, the spread becomes larger than only perturbing the biogeochem-

istry, although the pattern of the chlorophyll follows that of the perturbed biogeochemistry ensemble

(PBE). Perturbing both biogeochemistry and physics also produce better bias, correlation, and RMSE at

stations where high chlorophyll concentrations are expected. In the PBE and PBPE, opposing trends of

interannual range between DIN and chlorophyll have been observed.
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Upon further investigation in Chapter 5, the narrow DIN range produce by PPE is observed only at

the biologically active region (up to ∼75m), but below this depth, the PPE range for DIN is larger

than PBE and PBPE. But for chlorophyll and zooplankton, the PBE and PBPE ranges are still larger

than PPE. To investigate which perturbation affects chlorophyll distribution, the time evolution of deep

chlorophyll maxima (DCM) that has been observed in oligotrophic regions such as BATS and ALOHA,

is used as an ensemble metric. The PBE members produced various chlorophyll depth distribution and

consequently more variable maximum DCM depth (see Figure 5.5 and Table 5.1) compared to perturbing

the physics, with the PBPE producing a similar pattern to the PBE. In order to understand how the

perturbed biogeochemistry garners its range, the characteristics of both PBE and PPE ensembles are

examined using the anomalies between the NPZ compartments.

Within the PPE members, the biogeochemical compartments (nutrient, zooplankton, and phytoplankton)

tend to vary together with strongly positive correlations especially during the non-bloom period, whereas

for PBE the correlation between nutrients and phytoplankton is negative, especially during the bloom pe-

riod. This is because perturbing the biogeochemistry changes the interaction strength of phytoplankton,

zooplankton, and nutrients, but perturbing the physics only changes how much nutrients are available in

the euphotic zone. Furthermore, during the bloom period, the nutrient supply is utilised more by phy-

toplankton, making the anti-correlation for PBE stronger, but correlation for PPE weaker. This further

shows that PBE produces a better representation of uncertainty in biogeochemical variables. Neverthe-

less, the ensemble generally performs better in light-limited region, as it shows a similar pattern to the in

situ, and always captures the in situ phytoplankton nitrogen proportion. Because ensemble members are

behaving differently depending on the availability of light, the concentration of nutrients, phytoplankton

and zooplankton, ensemble members that captured the in situ fractions are time-dependent, especially at

light-limited regions.

In the next sections, the effect of altering the functional forms and the ensemble spread between the two

different perturbations will be discussed in the next two sections.

6.2 Altering the functional forms

Altering the functional forms of MEDUSA such as zooplankton grazing and mortality have been done

previously (Steele and Henderson, 1992; Edwards and Yool, 2000; Anderson et al., 2010). Our study

includes perturbing both the mortality and grazing, as well as the nutrient uptake function. Generally

functions whose curves show the most distinctive shapes compared to the default run formulation would

deviate the most. For example, as discussed in Chapter 3, using sigmoidal uptake at the oligotrophic sta-
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tions produces less chlorophyll (for example at ALOHA, the mean surface chlorophyll is 0.085 mg m−3

from Us) compared to other functional forms (mean surface chlorophyll from Uh, Ut , and Ue are > 0.098

mg m−3 at station ALOHA), because the sigmoidal function produces a lower uptake rate compared to

the default uptake at low nutrient concentration and other uptake functions. However, phytoplankton

uptake functions that are used here are not sufficient for the oligotrophic regions, as in situ nutrients and

chlorophyll are almost always overestimated and underestimated, respectively, by the ensemble. This is

because the phytoplankton in the oligotrophic regions are more adapted to low nutrients, and therefore

having a lower half saturation constant than MEDUSA (Laws, 2013). In order to capture the nutrient

uptake process better, it is also possible to use optimal uptake kinetics, where phytoplankton can accli-

matise to the DIN concentration in the ocean (Smith et al., 2009, 2016a). However, using our current

method of optimisation, it is impossible to apply optimal uptake kinetics into the ensemble, as the half

saturation constant is dependant on other parameters such as maximum nutrient affinity.

Although altering the phytoplankton nutrient uptake can affect the chlorophyll and DIN concentrations,

altering the zooplankton mortality to linear affects the model dynamics and results even more, where the

chlorophyll concentration deviates more from the default run compared to using the quadratic function

(for example chlorophyll concentration for linear, quadratic, and default are 1.02, 0.68, and 0.70 mg

m−3 respectively at station PAP). These large deviations have also been produced in the previous study,

which examines how changing zooplankton mortality functional forms can affect an NPZ model dynam-

ics (Steele and Henderson, 1992; Edwards and Yool, 2000). As discussed in Chapter 3, when linear

phytoplankton mortality is used, low chlorophyll concentrations have also been observed (for example at

station PAP phytoplankton linear, quadratic, and default mortality chlorophyll concentrations are 0.52,

0.78, and 0.70 mg m−3, respectively). We have also shown that to some extent, structural sensitivity

captures the parametric sensitivity as well, because when the mortality rate is halved from the optimised

parameter (summarised in Table 2.1), the chlorophyll concentration does not differ much compared to

the default function.

Linear is the most distinctive of all the functional forms that were used to describe plankton mortality, and

it produces oscillations in the NPZ model (Steele and Henderson, 1992). As shown in both the MEDUSA

and NPZ model, the linear function does show some discrepancy compared to the default run. However,

in Chapter 3, when the maximum mortality rate for the linear function is halved, the mean chlorophyll

becomes closer to the default run. This shows that changing the parameter value can make the ensemble

member result more similar to the default run, and therefore ‘hiding the underlying model problems’

(Anderson and Mitra, 2010). However, using the current parameter, linear mortality increases the range,

which has been shown in Chapter 4. When the principal component scores are grouped using k-means

cluster, there are a few clusters where all members contain linear zooplankton mortality, which made
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some of the ensemble members in the reduced ensemble still contain some linear mortality functions. If

all ensemble members that contain linear functions are removed, the spread becomes∼20-25% narrower

(for example, the full ensemble range of mean surface chlorophyll at ALOHA= 0.127 mg m−3, no linear

ensemble= 0.098 mg m−3).

It has been emphasised that the correct formulation is essential in a deterministic model (Flynn and Mi-

tra, 2016; Anderson, 2019). Yet, this study shows that we are not supposed to lean on only one set of

functional forms. As seen in Chapter 5, none of the single functional forms can capture all the biolog-

ical details at a different place and time. Therefore we cannot rely on one functional form (regional

versus temporal modelling), which is why we have not given preference to one set of functional forms.

However, it is still important for the equations that are used in the ensemble to at least correctly cap-

ture the mechanism of grazing or mortality, since simplicity in the equation is a virtue, but only when

it is meaningful and can be applied to further our understanding of ocean ecosystem (Anderson, 2019).

Furthermore, perturbing the equation is not enough. As stated previously in Chapter 1, limit cycle oscil-

lation is more common in the parameter space to occur in the linear, compared to quadratic, hyperbolic,

or sigmoidal mortality (Edwards and Yool, 2000). Therefore before generating a perturbed biogeochem-

istry ensemble, it is important to taken into account the parameter values for linear phytoplankton and

zooplankton mortalities.

Another process that affects the model dynamics in MEDUSA when perturbed is the zooplankton graz-

ing, where Holling type II (Class I, G2) shows significantly lower chlorophyll concentration than the

sigmoid zooplankton grazing, especially in the oligotrophic regions, where the chlorophyll at station

ALOHA from Holling type II is less than half of that in Holling type III (Class III, G1). Our study con-

curs with Anderson et al. (2010), which has shown that altering zooplankton grazing between two classes

in a more complex model have altered both the bulk properties of chlorophyll as well as the distribution of

the phytoplankton type. These classes have been discussed in Gentleman et al. (2003), in which various

zooplankton grazing functional forms are partitioned into three different classes. In this study we used

two classes: class I, which describe no switching of prey, and class II, where the prey switching is done

passively due to density dependent behaviours. Because of these different descriptions of formulations,

it is expected that the two grazing functions would produce different model results. However, unlike the

previous study by Anderson et al. (2010), where using G1 grazing would result in lower diatoms during

spring time than G2. In our study, using G1 produces a higher concentration during spring time than G2

(surface diatoms chlorophyll means for G1 and G2 are 1.16 and 1.09 mg m−3, respectively, at station

L4). The two grazing functions also produced two different bloom timing for the total chlorophyll con-

centrations, with G1 generally producing an earlier bloom than G2 (see Figures 5.7 and 5.9 subfigures

(e),(f),(m),(n)), which shows that the model dynamics have changed. However both studies agrees that
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the total chlorophyll from G1 is higher than G2, and mesozooplankton concentration from G1 is higher

than G2 whilst the opposite is produced for microzooplankton. These differences between the two studies

may be caused by the parameter assignment in Anderson et al. (2010) and MEDUSA, and the fact that

there are three different phytoplankton groups in PlankTOM5.2, and only two in MEDUSA-1.0. Fur-

thermore, this study only changes the half saturation constant in order to ensure the similarities between

functional forms and is run in 1-D with only two stations, located in the NADR and NECS, that produces

the diatom. In Anderson et al. (2010), all parameters are kept the same for all functional forms and the

model is run in 3-D, making the mean concentration of diatoms and mixed phytoplankton more disperse,

as there are more regions that are averaged.

It has been demonstrated by Gentleman et al. (2003), that changing parameters can influence the assumed

dynamics, meaning that sensitivity to parameter values indicates sensitivity to behavioural assumptions

that are unsupported. Indeed, equations such as Michaelis-Menten and the sigmoidal are not theoretically

justified to describe multiple grazing uptake (Flynn and Mitra, 2016). In Disk equation, the handling time

h, and successful attack rate a, are explicitly represented in the equation and assumes that the zooplankton

attack and handle only one resource at a time, and that these rates are resource dependent. Meanwhile

in the Michaelis-Menten type equation, instead of attack and handing rates, there are maximum grazing,

half saturation constant, and the weight of the prey preference. This makes the Michaelis-Menten type

equation overparameterised (Gentleman, 2002) and also makes the handling rate similar for all prey

types, because in Michaelis-Menten type grazing equation the maximum grazing rate, gmax is equal to 1
h .

Additionally the passive selection in sigmoidal or even the Disk equation itself will lead to nonoptimal

intake when the multiple resources are of a different quality (Gentleman et al., 2003), making all the

common biogeochemical models susceptible to structural sensitivity. Again, this shows that we are not

supposed to depend on one set of functional forms, especially for grazing where changing the process

equation affects the biogeochemical model dynamics the most.

Indeed, making the grazing function more realistic has been proven to improve model-data misfits (Sail-

ley et al., 2014), however in this thesis, we look for equations that have a similar curve and parameters,

and also examine how structural sensitivity can affect the model dynamics. Therefore, from our en-

semble results, similar to the pilot study using a simple NPZ model, it is clear that MEDUSA is most

structurally sensitive to the plankton mortalities and the grazing function, especially when two differ-

ent classes are used alternatively. This is perhaps due to the similar reason in the pilot study where

these equations are present in almost all of the model compartments, and how G2 and linear mortality

have significantly different rates, especially when phytoplankton abundance is low, compared to other

functional forms. Varying the parameter values that control the rates of the NPZ processes may also

garner better ensemble range that captures in situ observation, especially at the oligotrophic stations, as
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parameter values are not portable (Ward et al., 2013). In this study, the parameters are chosen in order

to ensure the phenomenological similarity to the default MEDUSA run and emphasise how functional

forms with similar shape of function can garner a large range. It is also expected in this study that the

ensemble will generate a large range, because although these functions are generated from experiments

(Laws, 2013; Gentleman et al., 2003), these functional forms are simplified, and therefore more prone

to structural sensitivity than functions that explicitly represent a chemostat-like environment (Aldebert

et al., 2018). However, the ensemble range garnered from these uncertainties have shown to capture the

in situ observations, especially at the coastal and light limited stations, where the standard deviation has

also been mostly captured by the ensemble (see Figure 5.12). This shows that without altering much of

the parameter values, the ensemble can capture the in situ observations. Furthermore, implementing a

more accurate zooplankton grazing function where prey selectivity is done actively, such as the one that

is described in Sailley et al. (2014), would introduce more parameter uncertainty, as these equations have

more parameters than the classic Holling type II and III grazing function.

Although some of the process functional forms in MEDUSA are questionable (Kwiatkowski et al., 2014),

as discussed in Chapter 5, altering the process equations has produced a large spread because it also alters

the distribution of nitrogen, which is the model currency, to other compartments, namely phytoplankton,

zooplankton, and DIN. At the coastal stations, the standard deviation of the observations are also within

the ensemble spread, as shown in Figure 5.12. It also suggests that using a single set of functional forms

is not sufficient to capture in situ and its uncertainty. In the next section we will further discuss the

ensemble spread, both when perturbing the biogeochemical process equation, as well as physical input.

6.3 Ensemble spread: perturbed biogeochemistry and physics

In this study, we are not looking for the best set of functional forms that can reproduce the in situ obser-

vations, but we take into account the whole ensemble range. Perturbing the biogeochemistry has been

shown to encompass the in situ observation, both the phytoplankton bloom phenology and chlorophyll

concentration. We use the normalised RMSE ratio (NRR) which indicates how large the spread of the

ensemble is. The NRR from the full ensemble indicates a narrow ensemble apart from the surface and

integrated chlorophyll at station ALOHA, and some of the phenology metrics at various stations (see

Table 3.2). This shows that although the in situ are captured, the ensemble might produce more members

which show lower concentrations than in situ, therefore making the ensemble too narrow. From Chapter

3, it has been shown that the default run is mostly outside the interquartile range of the ensemble, or close

to the upper quartiles of chlorophyll or lower quartiles of DIN, in seasonal, interannual, annual, and the

depth profiles, instead of the ensemble mean. This is because the default run produces higher chloro-
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phyll and lower DIN, especially in the oligotrophic regions. Furthermore, from Table 3.1, the bias from

the default run is often lower than the ensemble mean and median, which makes the ensemble narrow,

according to the NRR. However these metrics depend on the ratio of the time averaged RMSE of the

ensemble mean to the mean RMSE of the ensemble members, making the NRR contain the bias infor-

mation from the ensemble members. If the bias is removed from the NRR, the NRR is still narrow. For

example at station L4, the NRR for surface chlorophyll is 1.21, but when the model bias is removed from

the ensemble, NRR becomes lower (1.15), and adding errors narrows the ensemble even more (NRR=

1.30). Therefore the NRR itself is not a very good metric to measure whether the ensemble has a good

spread to encompass the in situ, especially if the model contains high bias, such as the 1-D MEDUSA.

This also further shows that some of the ensemble members produce almost similar results, for example

ensemble members that combine sigmoidal uptake, with any nonlinear zooplankton mortality, and G2

would produce similar mean surface chlorophyll results (0.033 mg m−3 at station ALOHA), despite the

different phytoplankton mortality. Almost similar ensemble members results are expected as changing

some functional forms, such as zooplankton grazing and altering plankton mortality to linear can affect

the model dynamics more than other functions, which makes altering other functions, such as changing

phytoplankton mortality from default to quadratic, will not affect the model results significantly. This

has been shown on the scores plot in Chapter 4, Figure 4.1, where scores of RMSEs from different

members are clustered together. Therefore it is necessary to reduce the ensemble, by selecting ensemble

members that are representative of each cluster. Furthermore a 3-D marine biogeochemical model will

require more computational power than the current 1-D model to run, making this step necessary in order

to apply the PBE to a 3-D model. The reduced PBE have shown to mostly retain the properties of the

full ensemble, and even produced better correlations, RMSE, and bias, compared to the full ensemble.

However, in terms of the ensemble range, the reduced PBE has a slightly lower range compared to the

full ensemble, especially at station PAP. This lower range causes the ensemble to not capture some of the

in situ concentrations, (see Figure 4.11).

Compared to perturbing the vertical velocity - where essentially the physical oceanography input is

perturbed and the model is run using the default functional forms, the reduced ensemble still mostly

produced a higher range - regardless of the perturbation strength, especially in chlorophyll. The PPE

members mostly follow the pattern of the default run, with a slight change in the NPZ concentrations.

The default model uses functional forms that are more optimal for phytoplankton growth, which makes

the default run often produces better bias and correlations at oligotrophic stations, but at regions where

chlorophyll concentration is high (such as the coastal and abyssal plain stations), the chlorophyll bias

is higher in the default run than the ensemble mean and median. As the default run is showing more

optimal nutrient uptake, on its own, the DIN biases in the default run are lower than the ensemble mean,
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making the correlation and bias of the default run often improved by the ensemble mean from perturbing

the physics using small or medium noise. With a high perturbation strength, at certain stations, the DIN

range is higher than perturbing the biogeochemistry (see Figure 4.9(a), (b), and (e)). The high DIN range

is produced because the higher the perturbation strength, the higher the vertical velocity range. The range

of DIN concentrations increase strongly at most of the stations over the years. These are caused by some

ensemble members producing an overall increase in the DIN interannual mean due to the overall up-

welling from vertical velocity, whilst the majority of the ensemble members show insignificant increase

in DIN interannual mean (or the majority of the ensemble members show an insignificant decrease in

DIN whilst some show a significant increase), as shown in Figures 4.10 and 4.13. This in turns produce

an increasing trend of DIN range, especially when the perturbation strength is high.

The vertical velocity controls the nutrient supply, and as shown in section 2.5.3, the original NEMO-

FOAM output has been shown to mostly increase nutrient concentration throughout the time series, apart

from station BATS and L4. Even when the model is spun up for 50 years, shown in Figure 2.9, the

DIN concentration increases throughout the time series, meaning that the vertical velocity may have a

net upwelling. Therefore, when high noise is added to the vertical velocity, at stations which show an

increase in nutrients with time would also produce similar results, which may explain why some members

show an increase in DIN. This increase in nutrients may also be caused by the inefficient phytoplankton

nutrient uptake, as the maximum rate is similar across all uptake functional forms. Furthermore, in a 1-D

model, there is no horizontal velocity, which may also make the nutrients increase on the upper water

column. Due to this increase in nutrients, using a high perturbation strength would make the simulation

unrealistic.

These nutrient enhancements also lead to an increase in chlorophyll mean towards the end of the time

series. This means the PPE often only covers the in situ concentration for the last few years of the

time series, especially when the perturbation strength is high (between -2 and 2). However using small

(between -0.5 to 0.5) perturbations do not produce much change, and therefore rarely capture the in

situ concentration, which leads us to use the medium noise (between -1 and 1) for the PPE in Chapter

5. Meanwhile perturbing the biogeochemistry produces a consistently large range throughout the time

series. This further show that perturbing the physics, despite various perturbation strengths, does not

garner a large enough range to cover the in situ concentration at different times and regions. Due to

the ‘stronger’ effect of perturbing the biogeochemistry, when vertical velocity is perturbed together with

the biogeochemical equations, the effect of perturbing the biogeochemistry is more dominant, where

the pattern of DIN, chlorophyll, and zooplankton concentration, as well as distributions follow the PBE.

This is somewhat concurrent to the earlier study by Friedrichs et al. (2006) and Sinha et al. (2010),

where without data assimilation, changing the physical oceanography inputs, which includes the vertical
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velocity and mixed layer depth, do not change much of the chlorophyll and zooplankton. However, below

the biologically active depth (below 75m-100m), the DIN range is higher when the vertical velocity is

perturbed.

Although the PBE DIN range is high on the surface, most of the ensemble members overestimate the

DIN concentrations in the water column, as discussed in the previous subsection. This overestimation

caused an underestimation in the Chl:DIN ratio (Figure 5.11) and also of the nitrogen proportions in the

water column (Figure 5.12(a) and (b)), where the in situ nitrogen proportion can go up to 1, and the

highest ensemble member can only produce up to 0.85. High phytoplankton nitrogen proportion means

that the nutrient uptake is very efficient in that all of the DIN is transferred into phytoplankton nitrogen.

This further shows inefficient the nutrient uptake process is in MEDUSA. We can also use this proportion

as a metric for optimum DIN uptake in the ocean.

Despite the underestimation of phytoplankton nitrogen proportion, some of the PBE members can cap-

ture the observed nitrogen proportions, as well as its standard deviations, especially during the non-bloom

period. This shows an improvement to the model, as the default MEDUSA run underestimated the back-

ground observed chlorophyll (Yool et al., 2011, 2013). Furthermore, although the in situ nitrogen pro-

portions at all of the stations produce large temporal variability, the PBE spread can mostly encompass

the variability, particularly in light-limited regions. At station Cariaco, despite the poor match between

the in situ and modelled chlorophyll concentrations, the PBE spread is so large that the observed nitrogen

proportions are generally within the range, showing that even with some mismatch in the phytoplankton

phenology, the PBE spread can still capture the observation. However, our PPE cannot produce as much

spread as the PBE. These results suggest that at non-oligotrophic and light limiting regions, PBE may be

able to provide better uncertainty representation in the observation. This may be helpful in applications

such as probabilistic modelling and data assimilation.

In Sinha et al. (2010), the distribution of phytoplankton groups differ between two different ocean general

circulation model, shown in Figure 1.4. These differences might be caused by the difference in mixing

strength: OCCAM with its higher mixing produces more diatoms in the North Atlantic, North Pacific,

and Southern Oceans compared to NEMO. In Chapter 5, we have also demonstrated that at station L4,

when the vertical velocity is perturbed, the distribution of dominant phytoplankton types throughout the

water column differ between different ensemble members, and these differences are comparable to PBE

members. However, at PAP where the phytoplankton concentrations are half of that in L4, although the

distribution of dominant phytoplankton types are affected by the vertical velocity (see 5.8(a) to (d)), the

differences between PPE members are not as noticeable as the PBE. As discussed in Chapter 5, these

differences between the two stations may be caused by the magnitude of vertical velocity. The distri-

bution of dominant phytoplankton type shows that both the vertical velocity and the interaction strength
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between NPZ compartments can change the distribution of dominant phytoplankton type. However the

discrepancy between the PPE members may depend on the concentration of the phytoplankton, or the

magnitude of the vertical velocity. This metric shows the importance of the vertical velocity in control-

ling the phytoplankton distribution, although perturbing the biogeochemistry still shows a larger effect

on both concentration as well as phytoplankton types distribution in the water column, which agrees with

the previous studies (Anderson et al., 2010).

In Chapter 1, an earlier study has shown that phytoplankton production is affected by sub-mesoscale

processes (Lévy et al., 2001). In order to enhance productivity in the oligotrophic gyre, eddy-induced

nutrient pumping is needed. High resolution is needed in order to simulate eddy-induced nutrient pump-

ing in the physical oceanography model (McGillicuddy et al., 2003). In this model, the vertical velocity

is obtained from NEMO output and NEMO-FOAM with 1/4◦ resolution with 63 depth levels. Running

PPE by perturbing the vertical velocity, using similar method described in Chapter 4, in higher resolu-

tion (e.g 1/12◦ with 75 depth levels) may produce different results as sub-mesoscale processes, such as

eddies and fronts, can be represented by the physical oceanography model, which can be applied in the

3-D MEDUSA-2.0.
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Conclusion and Future Direction

It is known that the marine biogeochemical model has many sources of uncertainty, such as the model

parameters, physical oceanography input, and the model structure, such as its equations and complexity.

Our study highlights the importance of conducting structural sensitivity analyses, resulting from altering

the model biogeochemical equations, in addition to parameter sensitivity analyses, by including math-

ematical functions that and capture sufficient information of the key biogeochemical processes known

from experimental studies. Since the deterministic functions alone cannot capture all the details of the

biogeochemical processes at different regions (Anderson et al., 2010), we have also introduced a method

whereby instead of having only one deterministic default model output, we use an ensemble generating

a range of possible outcomes arising from alternative model structures. Using this method, the ensem-

ble of perturbations generally encompass the in situ observations, especially at stations which are light

limited. This is because perturbing the biogeochemical process functions altered the interaction strength

between the model compartments, which are shown in how the nitrogen is distributed differently within

the model compartments, for different ensemble members. Our study also emphasises that a single set

of functional forms is not sufficient to capture the in situ and its uncertainty.

The ensemble is further reduced systematically, while still retaining the statistical metrics and ensemble

range. Reducing the ensemble is done to minimise the computational time further and also improving

the bias. We have also generated a perturbed physics ensemble, where the vertical velocity that controls

the availability of nutrients to phytoplankton are perturbed. The reduced ensemble has retained the range

of the full ensemble and also improved the correlations and bias. Compared to reduced PBE, perturb-

ing the physics does not generate as large spread and cannot always encompass the in situ observations.

Although the chlorophyll distribution is affected by the physics, in the perturbed physics ensemble, the

variability in the chlorophyll distribution is not as noticeable as perturbing the biogeochemistry. We

have also examined the characteristics of both ensembles. The perturbed physics generates its range by
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altering the nutrient supply to the phytoplankton, which makes the biogeochemical compartments within

the PPE members vary together with strongly positive correlations with nutrient supply. The opposite

is observed form PBE, where nutrients and phytoplankton compartments have negative correlations be-

cause perturbing the biogeochemistry alter the interaction strength of phytoplankton, zooplankton, and

nutrients at different concentrations. We have also observed that, because of the way PBE alters the

interaction strength of the model compartments, the ensemble members that captured the in situ are also

time-dependent.

From these conclusions, our study shows promise that an ensemble of a single biogeochemical model

resulting from perturbing the biogeochemical processes may produce meaningful prediction range of its

state variables. Therefore it is possible to apply this method on other operational models, and also data

assimilation with satellite-derived chlorophyll, which will be explained further in the next section.

7.1 Limitations and Future Directions

We have shown how perturbing the functional forms, and vertical velocity (physics) affect the model

dynamics: from the bulk concentrations of chlorophyll and DIN, as well as the distribution of dominant

phytoplankton types in the water column. However, there are some limitations of the study and further

improvement that can be made to explore the effect of structural sensitivity and to utilise this uncertainty

even further.

7.1.1 3D Perturbed biogeochemistry ensemble

This study is restricted on a 1-D framework, focusing on chlorophyll and DIN at five oceanographic

stations. There are other regions we have not explored, such as the monsoon and polar regions, where

drastic changes will occur due to climate change. We can explore the structural sensitivity in more

regions by running the PBE on a 3-D framework, which can be further classified using the Longhurst

biogeographical provinces (Longhurst et al., 1995). Furthermore, we have not assessed the effect of

structural sensitivity on PFT distribution in the global ocean in this study, and this can be done by running

the PBE on a 3-D framework. Applying PBE to the more recent model, MEDUSA-2.0 will also allow

us to explore the effect of structural sensitivity on other variables that are not available in MEDUSA 1.0,

such as the primary production, CO2, and alkalinity. This can be taken further to show the uncertainties

in the projections of CO2 and alkalinity in the ocean under different climate scenarios, which is one of

the objectives of the model inter-comparison project (Kwiatkowski et al., 2014).
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Running the marine biogeochemical model in a 3-D framework may also produce a better representation

of the DIN distributions in the water column, due to the explicit horizontal advection, eddies, and fronts

that are available in 3-D models. This can improve the DIN and chlorophyll distributions and phenology

in regions where the intrusion of deep nutrient-rich waters occurs below the euphotic layer, such as

Cariaco (Walsh et al., 1999). However, there are some challenges when it comes to running the ensemble

on a 3-D framework. Firstly, we have to take into account of the GCM resolution as the 3-D model will be

run together with a GCM (such as NEMO). Eddy-induced nutrient pumping can be simulated in a super

fine resolution (Popova et al., 2006), but this will make the computational cost expensive. Therefore a

suitable resolution has to be decided before running the 3-D PBE so we can reach a balance between

computational cost and capturing important physical processes. Another extension of this study is to

compare the default deterministic 3-D MEDUSA-2.0 run in finer resolution with 3-D PBE MEDUSA-

2.0 run in standard 1/4◦ resolution, and which model run can reproduce better in situ observation using

similar metrics as that in Chapter 3.

In this thesis, we only perturbed one physical parameter, which is the vertical velocity. There are other

essential physics variables that can affect phytoplankton growth, such as the MLD (both the strength and

depth), downwelling shortwave radiation, and temperature. Perturbing these physical oceanography vari-

ables on a 3-D framework would thoroughly assess the effect of perturbing the physics to biogeochemical

model variables, particularly the distribution of chlorophyll, different PFTs, and nutrients.

Apart from the physical input, to initialise the biogeochemical fields, such as DIN, Oxygen, and silicate,

we need observation data. We can obtain this data from World Ocean Atlas and model outputs, similar

to the MEDUSA-2.0 original run (Yool et al., 2013). Varying initial conditions can also affect the model

results, as shown in Chapter 3 at station PAP. The model sensitivity with initial conditions can be explored

further using other in situ data such as the Bio-Argo float. Comparing the ensemble with observations can

also be done using the World Ocean Atlas and also satellite-derived chlorophyll. To compare the global

PFT distribution, we can utilise satellite-derived products (e.g. Hirata et al. (2011) and Roy et al. (2011))

to directly compare the distribution of diatoms and non-diatoms between the ensemble, default run,

and observations. Furthermore, we can also examine how structural sensitivity can affect the emergent

relations between phytoplankton community and chlorophyll using the method of De Mora et al. (2016).

However, in the current 1-D experiment, some of the PBE members do not produce diatoms even in L4

or PAP.

Apart from using satellite-derived chlorophyll for direct comparison with 3-D PBE, it is possible to

utilise satellite-derived chlorophyll for data assimilation.
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7.1.2 Data Assimilation

As discussed in Chapter 1 section 1.5, it is possible to utilise the uncertainty estimate from a model,

and improve its skill. There are two main methods in data assimilations, and one of them is to use the

model trajectory that best fits the data. The PBE and PBPE have provided sufficient error estimates, and

their ensemble means and medians have mostly reduced the RMSE of the default run. Therefore it is

possible to apply the trajectory method using the PBE and PBPE as the different trajectories. Previous

data assimilation studies have used ocean colour (Ford et al., 2012; Ford and Barciela, 2017) and both

ocean colour with in situ data (Ciavatta et al., 2014) to be assimilated with the biogeochemical model

trajectories. In these studies, the trajectories are generated by varying the model parameters. The PBE

and PBPE have shown to produce better uncertainty estimates than varying the vertical velocity, which

may be useful when applied to data assimilation.

One of the advantages of perturbing the biogeochemistry is that we do not have to optimise the parameter

values too much. However, we can also combine both the structural as well as parametric uncertainty as

described in Aldebert and Stouffer (2018), where Bayesian statistic is used to vary the parameter values.

This approach may provide even better uncertainty estimates compared to only varying the model process

equation.

In an earlier study, the PISCES model has been used to study the efficiency of iron fertilisation. However,

there are still some significant uncertainties that need to be explored further using observational data

and models (Aumont and Bopp, 2006). A study by Watson et al. (2008), suggests that to reduce the

uncertainties in the effects of iron fertilisation, assimilating in situ data and remote sensing products

with model is required. In our current study, we have not explored the iron compartment of MEDUSA.

A further study may include how structural sensitivity may affect the iron dynamics and assimilate in

situ iron data with the model. Data assimilation and a high-resolution ensemble NEMO-MEDUSA can

be used to plan the locations and timing of future in situ iron fertilisation, as well as quantifying the

uncertainties.

Optimised vs unoptimised runs in 1-D model

It has been shown in a previous study that in a 1-D marine biogeochemical model, after objectively

optimising the model, changing the physical forcings can produce greater changes in model dynamics

such as the chlorophyll and zooplankton distribution (Friedrichs et al., 2006). It is unknown whether the

ensemble will show a larger range and more variable chlorophyll and zooplankton distributions if we

optimised each of the reduced PBE members, instead of only optimising the default model. Then, we
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can determine whether perturbing the physical input can produce a larger range than the optimised PBE.

Although more laborious, this effort may reduce the current model bias and also explore whether ocean

biogeochemical model is more sensitive to the choice of functional forms or the physical model input

after data assimilation.

To extend this experiment, we can include other functional forms that we have not currently chosen, such

as the Disk equation, or the droop cell quota, which is less structurally sensitive compared to the Monod

equation in MEDUSA (Aldebert et al., 2018). Another possible addition is to use a different physical

oceanography model output (such as the GOTM model, which is made for 1-D models (Butenschön

et al., 2016)) to see how different physical oceanography models can affect the biogeochemical model

results. Similar metrics that are in Chapter 2, can be used to compare the range produced from altering

the process equations and physical oceanography input.

7.1.3 Bloom Experiment

In Chapter 2 section 2.8, we have discussed the two hypotheses on the bloom initiation. In the disturbance

recovery hypothesis, the bloom initiation occurred in early winter (Behrenfeld et al., 2013), but in the

critical depth hypothesis, the initiation happens in early spring (Sverdrup, 1953). In PBE, the bloom

phenology is represented probabilistically. This means that we obtain the initiation and termination of

the bloom as a range. Using the ensemble approach means that the model can produce earlier or later

timings than the observation, which may be useful to investigate the disturbance recovery hypothesis

described in Behrenfeld et al. (2013).

The bloom study by Behrenfeld and Boss (2014) has not taken into account the species succession and

selective grazing, which may lead to a bloom initiation (Behrenfeld et al., 2013; Behrenfeld and Boss,

2014). However, in situ studies have reported that the phytoplankton bloom occurs due to the increase

in phytoplankton group (Steinberg et al., 2001; Smyth et al., 2015; Pinckney et al., 2015). Our study has

shown that during the bloom period at the North Atlantic stations, the PFT dominance has changed from

smaller non-diatoms to diatoms, as shown in Chapter 5. This may allow us to investigate further how

species succession during bloom initiation occurs. Furthermore, a study has also shown that by adding

disturbance into the model simulation, the diversity index of phytoplankton increases (Smith et al., 2016).

To investigate the biogeochemical aspect of the bloom initiation, we can apply the ensemble method into

a model with more PFT representations than MEDUSA, such as PlankTOM (Le Quere et al., 2005). It

is also possible to investigate different grazing selection by applying PBE because the ensemble allows

us to apply different selective grazing types in the model. In this thesis, have included Class 1 (no prey

switching) and 2 (passive switching). Additionally, we can include active switching models (Class 3,
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described in Gentleman et al. (2003)), to extend the grazing strategies. This phytoplankton bloom study

can also be extended to examine the effect of structural sensitivity in zooplankton, which we have not

explored thoroughly in this thesis.

Increasingly, models are used as tools to support decision making. Using an ensemble-based model

can be useful in providing alternative simulations from the ‘default’ model. When devising a climate-

adaptation plan, we can use the ensemble-based model so that various method of mitigations can be

developed for the range of possible model outcome. As PBE shows a large range of outcomes, altering

functional forms to generate ensembles in other biological models may be used as decision-making tools.



Appendix A

Running MarMOT 1.1-alpha

The simulation in MarMOT is controlled by input tables or item tables that contain one or more instances
of a particular input item, such as the model parameter and physical forcings. When simulating the model
in various different regions, the input tables are combined according to the case table, which defines a
simulation case, characterised by specific combinations of input data for a specific region or ensemble.
The simulation case is identified by a site name, if the model is run in different regions, or ensemble
numbers, if the input parameters are varied. The MarMOT runs the biogeochemical model according
to the specifications from the input case table. The model output can be selected according to user
requirements and is provided in a file containing the output tables. These input tables will be explained
in more detail in section A.

In order to run the model, a set up script containing the ”experiment control table” is used. This file
contains the location of input files that are going to be used and the output files, which are the model
results on the surface (outtdayf) and throughout the water column (outktdayf), as well as the
variables files (outtdayvarf and outdktdayvarf), where model output we want to see in the
table can be specified. The input files, which are written in ASCII format, consist of:

• Parameter set item table, where MEDUSA parameters, simulation options, site information, and
the time period of model run is defined. The input command to write the script is written in qcr
font.

– model3f = Lists of MEDUSA parameters and values.

– optionf = Contains the code for simulation options; which models are used, both the
ecosystem model number and also the photosynthesis light limitation and attenuation model,
and advection and diffusion schemes. MEDUSA’s model code is number three. The recom-
mended advection scheme is monotonic upstream scheme for conservative laws (MUSCL,
number two), and diffusion scheme is implicit (number one). In this study, we use the rec-
ommended advection schemes (model=3, advection= 2, diffusion=1).

– taxisf = Time axis and the year length in days. When running the model in 1998 daily, we
can specify the base year (baseyear) as 1998, and year length (yearlen) of 365 days.

– timeperiodf = Time period of the model run, where start and finish times are defined.
Therefore in this script, if the model starts in 1998 and is run for 10 years, the start year
(startyear) is 1998, the start of the day (startday) is 1, the last calendar year of the
model run (finyear) is 2007, and the last day of the model run (finday) in year 2007
will be 365.

– environf = Site information, including maximum depth, both in level (kmax) and meters
(maxdepth), latitude, and longitude, both in degrees (◦N and ◦S)and NEMO coordinates (j
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and i). The site is identified as jAAAiBBB, where AAA is the j-coordinate and BBB is the
i-coordinate on the NEMO grid.

• Gridded domain items, where depth level and initial conditions are defined. For this gridded
domain items there will be two files, the first one is where the total depth level or initial conditions
are specified, and the second one is the input files for each day or both depth and day, and is saved
in ‘.dat’ format.

– zlevelf = Depth levels and real depth in meters. The first file contains the start of depth
level, k1, depth increments kstep, and total depth nk. The second file will contain the
actual depth levels k, which could range from 1 to 75, and its real depth in meters zbot.

– initf = Initial condition for biogeochemical tracers at each depth level. The first file con-
tains the name of the site, specified in environ, the k1, kstep and nk. The second
file contains all initial conditions for all the state variables, for example DIN, silicate, iron,
phytoplankton, chlorophyll, and zooplankton concentrations including the site, k, i, j.

– ftf = Input for physical forcing, such as mixed layer depth (mld) and solar radiance (sol),
and iron (Fe) time series. The first one is the name of the site, along with the start tmin and
end of the run tmax, as well as the timestep nt. The second one is the actual input data, that
has been specified for each day.

– fktf = Input for physical forcing at each depth level, such as vertical velocity (w), vertical
eddy diffusivity (vdc), and temperature (temp). Similar to the ftf, the first file contains the
site name, tmin, tmax, nt, kstep, and nk. The second one is the physical forcing
inputs for each day and depth.

• Input case table, where the sites are identified.

– casef Site identification and number if running at multiple sites

Examples of these input files are described in the next section. After locating the directory of the script,
the model is then run by calling this script after typing marmot in the terminal, and a user interface will
appear. The interface will confirm all the input and output tables that have been specified in the script
(e.g. test3). These are summarised in Figure A.1. A template of input files stated above can be generated
in the MarMOT interface when no script is called. The output data that is included in the outtdayf and
outktdayf includes the case variables (if run in multiple sites), time, depth, profile forcing variables
(such as w and vdc), and the biogeochemical tracers (such as chlorophyll, DIN, silica, and zooplankton
concentrations).

The MarMOT runs the biogeochemical model according to the specification from the input case table,
where the sites are identified. In our run, we identify each stations separately. Here we use station
ALOHA and the default run as an example.

A.1 Experimental control table script

Experiment control table describes the location of the input tables, and is describe below:

NAME VALUE
model3f in16/param phzh # the parameter files
optionf in aloha/option aloha # option file
taxisf in/taxis base1998 # base year and year length
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Figure A.1: Screenshot from MarMOT user interface. Here, we call the script ‘test3’ which describes
the locations of all the input tables, such as the parameter table (pset medusa default), site informations
(environ), and the output files on the surface (dscal medusa) and throughout the depth (dprof medusa).
Other gridded domain such as fkt2 is used when a perturbation term used to represents the effect of
horizontal flux divergence, which is not used in this study.
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timeperiodf in aloha/tperiod 98 # start and finish times
environf in aloha/environ aloha # site information
zlevelf in aloha/zlevel # depth levels
initf in aloha/init 1998 aloha 3 # initial conditions
ftf in aloha/aloha base98 # physical forcing input
fktf in aloha/fkt aloha 1998 2 # physical forcing for each levels
casef in aloha/case aloha # site identification
outoptionf out aloha3/option aloha2 # simulation options
outtdayf out aloha3/dscal aloha3 def # output file for surface
outtdayvarf outvar/simvar t medusa # output variables for surface
outktdayf out aloha3/dprof aloha3 def # output file for profiles
outktdayvarf outvar/simvar kt medusa # output variables for surface

A.2 MEDUSA parameters (model3f)

NAME VALUE

rcchlminndia 20 # minimum C to Chl ratio for non-diatoms (gC/gChl) [=1/xthetam]

frcchlmindiat 1 # minimum C to Chl ratio for diatoms relative to non-diatoms

[=xthetam/xthetamd]

rsinpdiatmin 0.2 # minimum diatom Si:N ratio [=xsin0]

rsinpdiatmax 5 # maximum diatom Si:N ratio [=1/xnsi0]

rcnphy 6.625 # phytoplankton C:N ratio (molC/molN) [=xthetap]

rcnzmi 6.625 # microzoo. C:N ratio (molC/molN) [=xthetazmi]

rcnzme 6.625 # mesozoo. C:N ratio (molC/molN) [=xthetazme]

rcndet 6.625 # detritus C:N ratio (molC/molN) [=xthetad]

rfen 30e-6 # phytoplankton Fe:N ratio (molFe/molN) [=xrfn]

alphachlndia 15 # chl. specific initial slope of P-I curve for non-diatoms (gC/

gChl/ (W/m2)/d) [=xaln]

falphachldiat 0.75 # chl. specific initial slope of P-I curve for diatoms rel-

ative to non-diatoms [=xald/xaln]

photmax0ndia 0.8 # maximum growth rate for non-diatoms at 0 degC (/d) [=xvpn]

fphotmax0diat 1.0 # maximum growth rate for diatoms relative to non-diatoms at

0 degC [=xvpd/xvpn]

ursininf 1.5 # hypothetical growth ratio at infinite Si:N ratio [=xuif]

kdinndia 0.5 # half-sat. conc. for DIN uptake by non-diatoms (mmolN/m3 ) [=xnln]

fkdindiat 1.5 # half-sat. conc. for DIN uptake by diatoms relative to non-

diatoms [=xnld/xnln]

ksidiat 0.75 # half-sat. conc. for Si uptake by diatoms (mmolSi/m3 ) [=xsld]

kfendia 0.00033 # half-sat. conc. for Fe uptake by non-diatoms (mmolFe/m3 )

[=xfln]

fkfediat 2.03 # half-sat. conc. for Fe uptake by diatoms relative to non-diatoms

[=xfld/xfln]

gmaxzmi 1 # microzoo. maximum grazing rate (/d) [=xgmi]

fgmaxzme 1 # mesozoo. maximum grazing rate relative to microzoo [=xgme/xgmi]
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kgzmi 0.8 # microzoo. grazing half-sat. conc. (mmolN/m3 ) [=xkmi]

fkgzme 0.375 # mesozoo grazing half-sat. conc. relative to microzoo. [=xkme/xkmi]

fgmessy 0.2 # micro/mesozoo. grazing inefficiency [=xphi]

betan 0.69 # micro/mesozoo. N assimilation efficiency [=xbetan]

offbetac 0 # C assim. efficiency offset as frac. of max. [=(xbetac-xbetan)/(1-

xbetan) OR (xbetac-xbetan)/xbetan]

kc 0.8 # micro/mesozoo. net C growth efficiency [=xkc]

prfzmilive 0.75 # grazing preference of microzoo. for live food (=non-diatoms)

[=xpmipn]

prfzmelive 0.85 # grazing preference of mesozoo. for live food [=xpmepn+xpmepd

+xpmezmi]

cprfzmep 0.5882 # grazing preference of mesozoo. for phyto. given live food

[=(xpmepn+xzmepd) / (xpmepn+xpmepd+xpmezmi)]

cprfzmepndia 0.3 # grazing preference of mesozoo. for non-diatoms given phy-

toplankton [=xpmepn/ (xpmepn+xpmepd)]

metapndia 0.02 # non-diatom metabolic loss rate (/d) [=xmetapn]

fmetapdiat 1 # diatom metabolic loss rate relative to non-diatoms [=xmetapd/xmetapn]

fmetazmi 1 # microzoo. metabolic loss rate relative to non-diatom phyto. [=

xmetazmi/xmetapn]

fmetazme 1 # mesozoo. metabolic loss rate relative to microzoo. [=xmetazme

/ xmetazmi]

mortmaxpndia 0.1 # non-diatom maximum mortality rate (/d) [=xmpn]

kmortpndia 0.5 # non-diatom mortality half-sat. conc. (mmolN/m3 ) [=xkphn]

fmortmaxpdiat 1 # diatom maximum mortality rate relative to non-diatoms [=xmpd/xmpn]

fkmortpdiat 1 # diatom mortality half-sat. conc. relative to non-diatoms [=xkphd

/ xkphn]

fmortmaxzmi 1 # microzoo. maximum mortality rate relative to non-diatom phyto.

[=xmzmi/xmpn]

fkmortzmi 1 # microzoo. mortality half-sat. conc. relative to non-diatom phyto.

[=xkzmi/xkphn]

fmortmaxzme 2 # mesozoo. maximum mortality rate relative to microzoo. [=xmzme

/xmzmi]

fkmortzme 1.5 # mesozoo. mortality half-sat. conc. relative to microzoo. [=xkzme

/xkzmi]

remin0 0.016 # detrital nitrogen remineralisation rate at 0 degC (/d) [=xmd]

rfedust 0.014 # soluble iron fraction of aeolian dust deposition [=xfe sol]

sedfe 0 # iron input from sediment (mmolFe/m2/d) [=xfe sed]

ligand 1e-3 # total ligand concentration (mmol/m3 ) [=xLgT*1e-3]

kfelig 1e5 # dissociation constant for (Fe + ligand) (/(mmolFe/m3 )) [=xk FeL*1e3]

scavfe 1e-3 # scavenging rate of "free" iron (/d) [=xk sc Fe]

ffastmortdiat 0.75 # fast-sinking fraction of diatom mortality losses [=xfd-

frac1]

ffastmortzme 1 # fast-sinking fraction of mesozoo. mortality losses [=xfdfrac2]
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rco3fast90 0.02 # polar CaCO3 to organic C ratio [=xcaco3a]

rco3fast0 0.1 # equatorial CaCO3 to organic C ratio [=xcaco3b]

rprotca 0.07 # calcium carbonate protection ratio (gC/gC) [=xprotca]

rprotsi 0.026 # biogenic silicon protection ratio (gC/gSi) [=xprotsi]

lfastc 188 # excess organic C dissolution length scale (m) [=xfastc]

lfastca 3500 # calcium carbonate dissolution length scale (m) [=xfastca]

lfastsi 2000 # biogenic silicon dissolution length scale (m) [=xfastsi]

sidiss 0.006 # diatom frustule dissolution rate (/d) [=xsdiss]

sinkdet 3 # detritus gravitational sinking rate (m/d) [=vsed*86400]

attenwaterg 0.0232 # downwelling attenuation due to water in blue-green band

(/m) [=xkg0]

attenwaterr 0.225 # downwelling attenuation due to water in red band (/m) [=xkr0]

attenupigg 0.074 # downwelling attenuation due to 1 mg/m3 of pigment in blue-

green band (/m) [=xkgp]

attenupigr 0.037 # downwelling attenuation due to 1 mg/m3 of pigment in red band

(/m) [=xkrp]

attenexpigg 0.629 # exposant for pigment (mg/m3 ) absorption in blue-green band

[=xlg]

attenexpigr 0.674 # exposant for pigment (mg/m3 ) absorption in red band [=xlr]

rchlpig 0.7 # chl. to total pigment ratio [=rpig]

photmaxtdep 1 # temperature-dependent phytoplankton max. growth (0: off, 1:

on) [=jphy]

mortfnpndia 3 # non-diatom mortality functional form (1: linear, 2: quadratic,

3: hyperbolic, 4: sigmoid) [=jmpn]

mortfnpdiat 3 # diatom mortality functional form (1: linear, 2: quadratic,

3: hyperbolic, 4: sigmoid) [=jmpd]

mortfnzmi 3 # microzoo mortality functional form (1: linear, 2: quadratic,

3: hyperbolic, 4: sigmoid) [=jmzmi]

mortfnzme 3 # mesozoo mortality functional form (1: linear, 2: quadratic, 3:

hyperbolic, 4: sigmoid) [=jmzme]

remintdep 1 # temperature-dependent detrital remineralisation (0: off, 1: on)

[=jmd]

photopt 1 # implementation of photosynthesis (0: external, 1: internal) [=jphot]

dsinkopt 1 # implementation of detrital sinking (0: external, 1: internal)

[=jsink]

dustopt 0 # conversion of dust to soluble iron (0: external, 1: internal) [=jdust]

logopt 0 # log output to stdout (0: off, 1: on) [=lwp]
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A.3 Option

Contains the information about which model is used, the advection, and diffusion schemes

NAME VALUE

model 3 # ecosystem model number
advection 2 # advection scheme (0-2)
diffusion 1 # diffusion scheme (0-1)

0 means no advection or diffusion scheme, 1 is implicit in diffusion scheme and upstream scheme in
advection. Model 1 is an NPZD model by Oschlies and Garçon (1999) and 2 is the HadOCC model by
Palmer and Totterdell (2001).

A.4 Taxis and Timeperiod input files

The taxis file defines the time axis origin, year length if fixed and whether to use periodic annual forcing.
The default axis starts at year 1 with periodic 365 day forcing. The file is describe below

NAME VALUE

baseyear 1998 # first calendar year of time axis
yearlen 365 # year length if fixed (days)

The timeperiod file specifies the start and finish times for the simualtion.

NAME VALUE

startyear 1998 # first calendar year of model run
startday 1 # first day of model run in year
finyear 2007 # last calendar year of model run
finday 365 # last day of model run in yea

A.5 Environment parameter set item

This table give time invariant values that are typically dependent on the station or site, including max-
imum depth, latitude, and any constant forcing parameter, but in this study we use set the forcing to
zero.

site kmax maxdepth j i lat lon nom lat nom lon
j518i593 58 4786.8 518 593 22.86 -158 22.75 -158

A.6 Vertical grid item

gridded domain item referenced to the depth level, k, specifying up to 500 depth levels. Omitting this
item causes the simulation to be run for a single level stretching from the surface to the deepest depth.
There are two files, zlevel and zlevel.dat. The former is describe below:
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NAME VALUE

k1 1
kstep 1
nk 37

The gridded file for 37 levels is described below: k zbot

1 6.06386
2 12.2693
3 18.6396
4 25.2019
5 31.9875
6 39.0331
7 46.3811
8 54.0804
9 62.1881
10 70.7699
11 79.9018
12 89.6715
13 100.18
14 111.543
15 123.893
16 137.382
17 152.183
18 168.492
19 186.529
20 206.544
21 228.812
22 253.642
23 281.371
24 312.367
25 347.026
26 385.768
27 429.036
28 477.285
29 530.972
30 590.55
31 656.452
32 729.078
33 808.779
34 895.848
35 990.502
36 1092.87
37 1203.01

A.7 Initial conditions

Gridded domain item referenced to the depth level, defines initial profiles of primary tracers and or com-
position ratios. The content first file, init aloha 3 are:
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site k1 kstep nk
j518i593 1 1 37

The example for the second file is shown in Figure A.2

A.8 Physical forcing inputs

There are two different physical forcing inputs: scalar and profile forcing items. The former is referenced
to the time dimension and the latter is referenced to the t and k dimensions. For the ensemble runs in
this study, the scalar input includes mixed layer depth (mld), solar radiation (sol), and iron (fe), along
with the site name and time, t. The profile inputs consist of vertical velocity (w), temperature temp, and
vertical diffusivity coefficient (vdc). The content of the first files, both for scalar (aloha base 98)
and profile (fkt aloha 3) are similar to the initial condition file. The example of the second scalar
file is described below:

site t sol mld fe
j518i593 2.5 140.71327 47.72704178 0.0004
j518i593 7.5 146.21756 49.65932862 0.0004
j518i593 12.5 156.7739 54.49843682 0.0004
j518i593 17.5 153.771 55.7928273 0.0004
j518i593 22.5 156.3096 55.55119066 0.0004
j518i593 27.5 170.19339 55.12459587 0.0004
j518i593 32.5 178.98274 56.73110492 0.0004
j518i593 37.5 189.388 57.32757672 0.0004
j518i593 42.5 189.94858 57.89794809 0.0004
j518i593 47.5 189.65088 57.3974245 0.0004
j518i593 52.5 189.26494 57.21076073 0.0004
j518i593 57.5 203.13962 51.07504236 0.0004
j518i593 62.5 223.67441 39.96556252 0.0004
j518i593 67.5 230.46655 30.23758777 0.0004
j518i593 72.5 238.89502 22.66889391 0.0004
j518i593 77.5 242.10495 20.22570286 0.0004
j518i593 82.5 215.51154 27.10937347 0.0004
j518i593 87.5 218.82249 41.94496904 0.0004
j518i593 92.5 245.53812 56.62015939 0.0004
j518i593 97.5 247.20531 75.53160781 0.0004
j518i593 102.5 250.83928 87.60096881 0.0004
j518i593 107.5 258.49155 85.57904512 0.0004
j518i593 112.5 258.11212 79.18016596 0.0004

As described in Chapter 2 the iron deposition value is obtained from (Mahowald et al., 2009) and is kept
constant. However this is not simulated by the model at all stations. For the profile forcing item, the
example is shown below. Note that this is only the first five-day averaged input:

site t k vdc w temp
j518i593 2.5 1 864000 -0.05286443 24.06920242
j518i593 2.5 2 864000 -0.085447322 24.06922054
j518i593 2.5 3 849650.9354 -0.129893747 24.06923771
j518i593 2.5 4 815080.3802 -0.158311353 24.06925297
j518i593 2.5 5 790592.9672 -0.161882514 24.06926727
j518i593 2.5 6 652346.981 -0.151942787 24.06927681
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j518i593 2.5 7 473786.8629 -0.08423283 24.06927776
j518i593 2.5 8 9.604214999 0.021365698 24.06927299
j518i593 2.5 9 8.069029043 0.124905545 24.06926155
j518i593 2.5 10 1.006594225 0.203718756 24.06923294
j518i593 2.5 11 0.880308071 0.23515804 24.06899071
j518i593 2.5 12 0.864 0.248250412 23.72561264
j518i593 2.5 13 0.864 0.352519538 23.05021095
j518i593 2.5 14 0.864 0.195539412 22.44806957
j518i593 2.5 15 0.864 0.081666453 21.81431198
j518i593 2.5 16 0.864 0.073316538 21.12526035
j518i593 2.5 17 0.864 0.087504472 20.41242981
j518i593 2.5 18 0.864 0.100361777 19.66542912
j518i593 2.5 19 0.864 0.090112173 18.76627064
j518i593 2.5 20 0.864 0.060468195 17.60260677
j518i593 2.5 21 0.864 0.020820152 16.13798523
j518i593 2.5 22 0.864 -0.009596932 14.4914546
j518i593 2.5 23 0.864 -0.026308592 12.81142092
j518i593 2.5 24 0.864 0.000615318 11.22957325
j518i593 2.5 25 0.864 0.01186705 9.798433304
j518i593 2.5 26 0.864 0.051218655 8.544034004
j518i593 2.5 27 0.864 0.071805221 7.498681068
j518i593 2.5 28 0.864 0.098379366 6.645936489
j518i593 2.5 29 0.864 0.132428608 5.969537258
j518i593 2.5 30 0.864 0.335099775 5.439800501
j518i593 2.5 31 0.864 0.401625174 4.997122049
j518i593 2.5 32 0.864 0.530076729 4.61379385
j518i593 2.5 33 0.864 0.621780285 4.266488552
j518i593 2.5 34 0.864 0.667716526 3.947635889
j518i593 2.5 35 0.864 0.701440061 3.651248097
j518i593 2.5 36 0.864 0.715424639 3.370245814
j518i593 2.5 37 0.864 0.703022569 3.100137234

A.9 Output files

There are several output files from MarMOT that are specified in the experiment control table. The first
one is the simulation options, which summarises the option (the choice of biogeochemical model, advec-
tion, and diffusion schemes) and environment parameter set item. The ’simvar’ files are the summary of
output variables from the simulation, with simvar t medusa and simvar kt medusa containing
the scalar and profile variables. Both files contain similar information, however in the scalar file, primary
production, solar radiation, and soluble iron are simulated, but the depth level is not. The example for
simvar t medusa is shown below:

NAME VALUE

t 1 # time from t axis origin (days)
tmid 0 # time from t axis origin at time step mid-point (days)
year 0 # calendar year
tofyr 0 # time since start of calendar year (days)
z 1 # depth at level mid-point (m)
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zbot 0 # depth at bottom of level (m)
sol 1 # surface solar irradiance forcing (W/m2)
fedust 1 # aeolian input of soluble iron (mmolFe/m2/d)

vdc 1 # vertical diffusion coefficient forcing (m2/d, depth zbot)
w 1 # vertical velocity forcing (m/d, upward, depth zbot)
temp 1 # temperature forcing (degC)
din 1 # dissolved inorganic nitrogen (mmolN/m3 )
pndia 1 # non-diatom phytoplankton nitrogen (mmolN/m3 )
pdiat 1 # diatom nitrogen (mmolN/m3 )
zmi 1 # microzooplankton nitrogen (mmolN/m3 )
zme 1 # mesozooplankton nitrogen (mmolN/m3 )
det 1 # detrital nitrogen (mmolN/m3 )
dsi 1 # dissolved silicon (silicic acid) (mmolSi/m3 )
dfe 1 # dissolved iron (mmolFe/m3 )
rcchlndia 0 # non-diatom C:Chl ratio (gC/gChl)
rcchldiat 0 # diatom C:Chl ratio (gC/gChl)
rsinpdiat 0 # diatom Si:N ratio
chlndia 1 # non-diatom chlorophyll (mg/m3 )
chldiat 1 # diatom chlorophyll (mg/m3 )
pdiatsi 1 # diatom silicon (mmolSi/m3 )
pprod 1 # level mean primary production (mmolC/m3 /d)
sinkflxc 0 # sinking particle flux of carbon (mmolC/m2/d, downward, depth
zbot

Variable names that are set to 0 means that the variable is not shown in the output.

Another output files are dprof aloha3 def and dscal aloha3 def. The example files are shown
in Figures A.3 and A.4, respectively.
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Appendix B

Phytoplankton Distribution

Figure B.1: Chlorophyll distribution in the water column from 1st January 2000 to 31st December 2002
at station BATS (a to e) and ALOHA (f to j) from selected PBPE members. White solid lines are the
mixed layer depth. The default run is shown in (a) and (f) for BATS and ALOHA respectively. Different
ensemble members from perturbing the biogeochemistry with their functional forms combinations are
shown in (b), (c), and (d), for ALOHA, and (g), (h), and (i) for BATS. (e) and (j) are observed chlorophyll
from BATS and ALOHA, respectively.

201
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Figure B.2: Similar to Figure B.1, but from PPE members

Figure B.3: Distribution of dominant phytoplankton type at station L4 in 2003, form PBPE (a to e)
and PBE (e to h). Light blue and cream denotes non diatoms and diatoms, respectively as dominant
(concentration is larger than 60% of the mean total chlorophyll) phytoplankton type in the water column.
Brown denotes that none of the PFT reached 60% of the mean total concentration.
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Figure B.4: Chlorophyll profiles of diatom (a to h) and non-diatoms (i to p) at station L4 form the PBE
(a to d for non-diatoms and i to l for diatoms) and PBPE (e to h for non-diatoms and m to p for diatoms)
members in 2003. Default run chlorophyll distributions are shown in (a), (e), (i), and (m).

Figure B.5: Similar to B.3, but at PAP.
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Figure B.6: Similar to B.4, but at PAP
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