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Highlights 14 

1. A novel, simply formulated crop model with quantified uncertainties successfully predicts 15 

wheat yields at research sites in China.  16 

2. The model captures the time course of GPP and variations in biomass and yield across sites 17 

and between years. 18 

3. Sensitivity analyses and future projections indicate a positive response of wheat yield to rising 19 

CO2, partially counteracted by a negative response to warming. 20 



Data statement 21 

The climate and flux data from WeiShan can be obtained by contacting Huimin Lei 22 

(leihm@tsinghua.edu.cn). The flux data for YuCheng , the climate, LAI, crop data used the in this 23 

manuscript are publicly available from the National Ecosystem Research Network of China CNERN 24 

(http://www.cnern.org.cn/). All climate data driving the PC model runs for future and the model outputs 25 

of LPJmL, EPEIC, GEPIC are publicly available from Inter-Sectoral Impact Model Intercomparison 26 

Project-2b (ISIMIP2b: https://www.isimip.org/protocol/#isimip2b/). The PC model code will be 27 

available from Mendeley data. 28 

Abstract 29 

Climate exerts a major influence on crop development and yield. Despite extensive modelling efforts, 30 

there is still considerable uncertainty about the consequences of a changing climate for the yields of 31 

major crops. Existing crop models are complex and rely on many assumptions and parameters, 32 

motivating a quest for more parsimonious models with stronger theoretical and empirical foundations. 33 

This paper presents a prototype of such a model for wheat, informed by measurements of gross primary 34 

production (GPP), biomass and yield at research sites across the wheat-growing regions of China. First, 35 

GPP was predicted using a recently developed first-principles model driven only by climate, carbon 36 

dioxide (CO2) concentration, and light absorbed by leaves. Modelled GPP was shown to agree well 37 

with eddy-covariance measurements. Second, the data were used to show that above-ground biomass 38 

(AB) is proportional to time-integrated GPP, and that grain yield shows a saturating relationship with 39 

AB. Simple empirical equations based on these findings were combined with modelled GPP to predict 40 

yield, including propagated errors due to parameter uncertainty in both the GPP model and the 41 



empirical equations. The resulting ‘hybrid’ model, applied in a variety of climates, successfully 42 

predicted measured interannual variations in AB and yield. Third, the model was extended to include 43 

a phenology scheme, a mass-balance equation relating mean leaf area index to accumulated GPP over 44 

growth phase, and an independently observed response of leaf mass-per-area to CO2. Sensitivity 45 

analyses and scenario runs with this extended model showed a positive but saturating (at ~600 ppm) 46 

response of yield to rising CO2, consistent with experimental evidence. This positive effect was 47 

partially counteracted by a net negative response of yield to increasing temperature, caused by 48 

increasing photorespiration and an accelerated growth cycle. 49 

1. Introduction 50 

An adequate food supply is an essential basis for economic development and social stability in the 51 

context of increasing population and continuing anthropogenic climate change (Porter et al., 2014). As 52 

one of the world’s four major crops (with maize, rice and soybean), wheat provides about a quarter of 53 

the world’s cereal production (FAOSTAT, 2018) which, in turn, provides two-thirds of human caloric 54 

intake (Zhao et al., 2017). Wheat was introduced from the Near East and been cultivated in China since 55 

the late 6th to early 5th millennium BP (Betts et al., 2014). China is now both the largest producer and 56 

the largest consumer of wheat (Wang et al., 2009). Current wheat production in China exceeds 134 Mt 57 

of grain per year. This is more than 17% of the total global wheat production, and about 22% of the 58 

total cereal production of China (FAOSTAT, 2018). Thus, even a small fluctuation in China's wheat 59 

production could potentially impact not only the Chinese economy but also global food security. 60 

The growth and harvestable yield of wheat are determined by environmental factors (Asseng et 61 

al., 2004) but also strongly influenced by management (He et al., 2015). Light, CO2, temperature, water 62 



and nutrient availability define the basic conditions for the growth and development of the crop. Light 63 

and CO2 directly affect photosynthesis (Gerbaud and Andre, 1980); temperature further influences 64 

growth and development processes including germination, anthesis and harvest (Asseng et al., 2011; 65 

He et al., 2015; Liu et al., 2018; Porter and Gawith, 1999; Tao et al., 2012); water and nutrient 66 

availability principally influence foliage cover (Nielsen and Halvorson, 1991; Pan et al., 2019) and 67 

therefore the absorption of light for photosynthesis. However, the basic conditions of wheat growth, 68 

especially temperature and CO2 concentration, are changing. Temperatures in China have risen by 69 

1.2˚C over the past few decades (Cao et al., 2017; Piao et al., 2010) and continued warming is expected 70 

in the coming decades (Kirtman et al., 2014). Winter is warming faster than summer (Piao et al., 2010; 71 

Wu et al., 2017) and this situation is potentially unfavorable to the production of wheat (Brooking, 72 

1996). On the other hand, atmospheric CO2 already exceeds 400 ppm, more than 40% above its pre-73 

industrial level and is expected to continue rising (Collins et al., 2014). For C3 crops (including wheat) 74 

the effect of rising CO2 level on photosynthesis is positive (Ainsworth and Rogers, 2007; Boylan, 2016; 75 

Sage et al., 1989), leading to higher photosynthetic productivity and potentially also grain yield 76 

(Lawlor and Mitchell, 1991). Improved management practices (e.g. fertilization, irrigation)  and crop 77 

breeding have also contributed to increased wheat yield (Qin et al., 2015; Yu et al., 2019) under current 78 

climate conditions, and this trend is expected to continue.  79 

The combined effects of changes in climate, CO2 and management are highly uncertain (Challinor 80 

and Wheeler, 2008) and numerical models are needed to project future trends in yield in different 81 

regions, and thereby to facilitate adaptation in the food production system. Such models should 82 

integrate knowledge from experiments and observations with theoretical understanding. Crop models 83 

have been under development for at least 40 years, and there are now many models with the technical 84 



capacity to simulate the growth and development of wheat (Blanc, 2017; Huang et al., 2016; Palosuo 85 

et al., 2011). However, current crop models require detailed input information that is challenging to 86 

collect over large scales and potentially subject to change in a dynamic environment. Moreover, inter-87 

model comparisons have revealed large differences between model predictions of both current yields 88 

and future trends (Liu et al., 2019; Nelson et al., 2014; Ostberg et al., 2018). This situation parallels 89 

that for natural vegetation models (Prentice et al., 2015), and suggests that current crop models contain 90 

untested and potentially incorrect assumptions. Recently, however, progress has been made in 91 

developing simpler vegetation models, based on theoretical principles but drawing extensively on 92 

empirical data to test each model component (Franklin et al., 2017; Wang et al., 2017). Here we adopt 93 

this novel approach to develop a prototype model to predict wheat growth and yield.  94 

The starting point for this model (‘PC’, for P crop: see Fig. 1) was the universal C3 primary 95 

production model ‘P’ (Stocker et al., 2019; Wang et al., 2017). The P model is a theoretically derived 96 

and extensively tested light use efficiency (LUE) model that predicts gross primary production (GPP) 97 

as a function of climate, absorbed light and CO2 on time steps of a week to a month. Further model 98 

development and testing of the PC model, presented here, used measurements of GPP, biomass and 99 

yield at research sites across the wheat-growing regions of China. In the first step of the analysis, the 100 

original P model was applied to predict GPP at two flux-tower sites situated in wheat crops in order to 101 

test its performance. In the second step, simple empirical equations were fitted to experimental data at 102 

several field research sites in order to relate accumulated GPP to aboveground biomass (AB), and AB 103 

to grain yield. These equations were combined with the P model to predict yields for different sites and 104 

years; these predictions were compared to observed yields. Uncertainties in predicted yields due to key 105 

parameters of the P model, and to the fitted coefficients of the empirical equations, were quantified. In 106 



the third step, the model was extended to represent the responses of yield to environmental change by 107 

the inclusion of (a) a general scheme to predict phenology, (b) a mass-balance equation quantifying 108 

leaf area index (LAI) consistent with a given GPP, and (c) an observed relationship between leaf mass-109 

per-area (LMA) and the CO2 concentration experienced during crop growth. These extensions allowed 110 

modelled light absorption to be influenced by changes in growing-season length, and changes in 111 

modelled GPP to feed back to LAI. The extended model was applied at six field sites to project future 112 

wheat yields under different combinations of increasing CO2 and temperature, in a sensitivity analysis 113 

for combinations of CO2 and temperature increase, and in alternative scenario runs for future CO2 and 114 

temperature change. 115 

2. Material and methods 116 

2.1 The P model 117 

The P model is based on the standard biochemical model of C3 photosynthesis (Farquhar et al., 118 

1980), with additional formulations that allow photosynthetic capacities and stomatal behaviour to 119 

acclimate to environmental conditions on weekly to monthly time scales (Wang et al., 2017). 120 

Instantaneous photosynthetic rates according to the standard model are the lesser of the electron 121 

transport-limited rate (AJ) and the carboxylation-limited rate (AC). AC is proportional to the Rubisco 122 

capacity (Vcmax). In the P model, Vcmax is assumed to acclimate to growth conditions such that the two 123 

rates are co-limiting under average daytime conditions (Maire et al., 2012; Smith et al., 2019). AJ is 124 

proportional to the absorbed photosynthetic photon flux density (PPFD) at low PPFD, increasing with 125 

PPFD towards a light-saturated rate that is proportional to the electron-transport capacity (Jmax). In the 126 

P model, acclimation of Jmax parallels that of Vcmax and their ratio is set to maximize the benefit (AJ) 127 



minus the cost of maintaining Jmax. Both AC and AJ are functions of the leaf-internal CO2 partial 128 

pressure (ci), whose ratio (χ) to the ambient CO2 partial pressure (ca) is determined by stomatal 129 

responses to the relative rates of carbon gain and water loss. In the P model, χ is determined by the 130 

least-cost criterion (Prentice et al., 2014), which minimizes the combined costs of maintaining the 131 

Rubisco and water transport capacities. The three constraints (on Vcmax, Jmax and χ) lead to an 132 

expression for weekly to monthly GPP under field conditions that has the mathematical form of a LUE 133 

model. That is, accumulated GPP is proportional to absorbed PPFD: 134 

GPP = Φ0Iabsm√[1 − (c* / m)2 / 3]                                          (1a) 135 

where 136 

m = (ci − Γ*) / (ci + 2Γ*)                                                (1b) 137 

ci / ca = Γ* / ca + (1 − Γ* / ca) ξ / (ξ + √D)                                             (1c) 138 

ξ = √[β (K + Γ*) / 1.6η*]                                            (1d) 139 

Here, Φ0 is the intrinsic quantum yield (mol CO2 mol−1); Iabs is the PPFD intercepted and absorbed by 140 

the canopy (mol m−2 s−1); ca is the ambient atmospheric CO2 partial pressure (Pa); Γ* is the 141 

photorespiratory compensation point (Pa); η* is the viscosity of water, relative to its value at 25 ˚C 142 

(dimensionless); D is the vapour pressure deficit (Pa); K is the effective Michaelis-Menten coefficient 143 

of Rubisco (Pa); and c* = 0.41 and β = 146 are dimensionless constants, where c* has been estimated 144 

from observed Jmax:Vmax ratios and β from observed stable carbon isotope ratios (Wang et al., 2017). 145 

The P model thus calculates GPP as the product of Iabs, which is the product of incident PPFD and 146 

fAPAR (the fraction of incident PPFD absorbed by foliage) and LUE. LUE is the product of Φ0, m and 147 



the square-root term in equation (1a). The parameters Γ*, η* and K depend on temperature (Bernacchi 148 

et al., 2001; Wang et al., 2017) and Γ* and K depend on atmospheric pressure (Farquhar et al., 1980). 149 

The inputs to the model are air temperature (T), relative humidity (RH), incident PPFD, fAPAR, 150 

elevation (to calculate atmospheric pressure) and ca (the product of the current year’s mole fraction of 151 

CO2 with atmospheric pressure). When driven by satellite-derived fAPAR data, the model has been 152 

shown to reproduce monthly GPP well at eddy-covariance flux tower sites in natural vegetation 153 

worldwide (Stocker et al., 2019; Wang et al., 2017) and geographic patterns, seasonal cycles and 154 

interannual variability of GPP at flux tower sites located in different biomes, including croplands 155 

(Balzarolo et al., 2018). 156 

 157 

Figure 1: The structure of the PC model. ΣGPP: accumulated gross primary production over 158 

growing season (g C m−2); N: total application of nitrogen (kg N hm−2). LAI: leaf area index 159 

(dimensionless). φ: light use efficiency (%). ∑I: the sum of incident light over the growth phase (mol 160 



photo m�2). k: a dimensionless constant, (k = 0.5).  η: the fraction of ΣGPP allocated to leaves 161 

(dimensionless). LMA: leaf mass per area (g m�2). Climate here comprises temperature, relative 162 

humidity and incident photosynthetic photon flux density. Boxes with grey dash line indicate the 163 

already published model or known information, whereas the boxes with blue dash line indicate the 164 

new model and its extension developed here. 165 

We ran the P model on a weekly time step. The model has already been shown to work well on a 166 

ten-daily time step (Balzarolo et al., 2018). We applied the ‘BRC’ model set-up (Stocker et al., 2019), 167 

which differs from the original published version (Wang et al., 2017) by incorporating an observed 168 

temperature-dependence of Φ0 (Bernacchi et al., 2003): 169 

Φ0 = (0.352 + 0.021T − 0.00034T2) / 8                                               (2) 170 

2.2 Sites and field data 171 

Data from 12 agricultural sites in the main wheat-growing area of China (see Fig. 2) were used 172 

for the second step of model development and testing (see Table 1 and Table 2). More than 90% of 173 

wheat production occurs in the areas where these sites are located (Wang et al., 2009), so they are 174 

representative of the environmental conditions for wheat production in China. 175 



 176 

Figure 2: Locations of sites providing experimental data. 177 



Table 1: Background information about the sites. 178 

Site Code 
Longitude 

(E, °) 

Latitude 

(N, °) 

Elevation 

(m) 

Mean annual air  

temperature  

(℃) 

Mean annual  

precipitation 

(mm) 

WeiShan WS 116.83 36.23 20 13.3 532 

YuCheng YC 116.57 36.82 22 13.2 530 

ChangShu CS 120.7 31.55 3.1 16.6 1321.2 

ChangWu CW 107.68 35.23 1220 9.1 580 

LuanCheng LC 114.68 37.88 50.1 12.2 536.8 

FengQiu FQ 114.4 35 67 13.9 605 

YanTing YG 105.45 31.27 420 17.3 836 

HaiLun HL 125.92 47.45 240 4 550 

LaSa LA 91.33 29.67 3688 6 425 

LinZe LZ 100 39.35 1384 1.5 550 

NaiMan NM 120.7 42.92 358 5 425 

ShaPotou SP 104.95 37.45 1250 9.6 1250 



Table 2: Data details and use. √: data are available; a: sites were used to test the P model; b: sites were used to derive the GPP to AB 179 

relationship; c: sites were used to derive the AB to yield relationship; d: sites were used to test the final model. * Τwo years (2004-2005) during 180 

the data span are available for the flux data at YuCheng. 181 

Site code Data span 
PPFD 

(mol m−2 day−1) 

T 

(℃) 

RH 

(%) 

CO2 

(ppm) 
LAI 

Elevation 

(m) 

AB 

(g m−2) 

Yield 

(g m−2) 

Fertilization  

Irrigation 

Wheat  

variety 

Flux data 

(g C m−2 day−1) 
Usage 

WS 2006 √ √ √ √ √ √     √ a 

YC 2004-2015 √ √ √ √ √ √ √ √ √ √ √* a, b, c, d 

CS 2004-2015 √ √ √ √ √ √ √ √ √ √  c, d 

CW 2004-2015 √ √ √ √ √ √ √ √ √ √  c, d 

FQ 2004-2015 √ √ √ √ √ √ √ √ √ √  c, d 

LC 2004-2015 √ √ √ √ √ √ √ √ √ √  c, d 

YG 2004-2015 √ √ √ √ √ √ √ √ √ √  c, d 

HL 2005-2006  √    √ √ √ √ √  c 

LS 2004-2015  √    √ √ √ √ √  c 

LZ 2006  √    √ √ √ √ √  c 

NM 2006  √    √ √ √ √ √  c 

SP 2006  √    √ √ √ √ √  c 



Two flux tower sites (WeiShan, YuCheng; see Table 2 and Fig. 2) were used to test the GPP 182 

predictions. One full year of observations from WeiShan (2006) and two years of observations from 183 

YuCheng (2004, 2005) were available. The climate data (PPFD, T and RH) and canopy coverage (here 184 

estimated from LAI by Beer’s law), required as input to the P model, were obtained from on-site 185 

measurements for WeiShan provided by the original authors (Lei and Yang, 2010)  and downloaded 186 

from the National Ecosystem Research Network of China (CNERN: http://www.cnern.org.cn/) for 187 

YuCheng. CO2 concentrations used are the annual global average obtained from the United States 188 

National Oceanic & Atmospheric Administration (NOAA: 189 

https://www.esrl.noaa.gov/gmd/ccgg/trends/). 190 

There are no data on AB or grain yield from WeiShan, although this information is available for 191 

YuCheng. We therefore used the two years of data from YuCheng to derive the relationship between 192 

GPP and AB. We obtained experimental data from ten additional agricultural sites providing 193 

information on AB and grain yield from CNERN. CNERN also provided data on climate (including 194 

PPFD, T and RH), LAI, dates of the growing period, wheat varieties planted and management practices 195 

(including irrigation and the supply of total nitrogen, phosphate and potassium) for all of these sites. 196 

However, the records cover different periods (see Table 2): some sites only have data for one year (LZ, 197 

SP, NM); one site has data for two years (HL); the remaining sites have records spanning multiple 198 

years (CS, CW, FQ, LC, YG, LS). We used all the available data from these ten sites and YuCheng 199 

together (584 data points) to estimate the allocation relationship between AB and grain yield. We used 200 

data from six sites (CS, CW, FQ, LC, YG, YC) with records for more than two years to test the final 201 

model. We could not use the Lasa site for testing because there are no LAI data from this site. 202 

Climate data were pre-processed on a weekly time step, with PPFD summed and T and RH 203 

averaged. Then vapour pressure deficit (D, kpa) was calculated according to the following equation 204 

(Campbell and Norman, 2012): 205 

D = 610.8 exp[17.27T ⁄ (T+237.3)] (100 − RH) / 100                                                       (3) 206 



The fraction of absorbed photosynthetically active radiation was estimated by Beer’s law (Monsi, 1953) 207 

from LAI: 208 

fAPAR = 1 – exp(–k · LAI)                                                       (4) 209 

where k is a dimensionless constant, assigned a generic value of 0.5. LAI was measured several times 210 

over the growing season, but the times of measurement varied from year to year and site to site. The 211 

LAI data used as input to test the P model (WS 2006, YC 2004-2005) are based on eight to ten 212 

observations at each site over growing season. We interpolated the data to weekly mean values using 213 

a polynomial regression of LAI against time. Measurements of LAI at the sites used to test the crop 214 

model (PC model) were made more sporadically (less than five observations per growing season) and 215 

therefore inadequate for polynomial regression. We derived LAI values for PC model test from the 216 

MODIS LAI product (MCD15A3H: 4-day time-step and 500m resolution, 217 

https://modis.gsfc.nasa.gov/). Since MODIS severely underestimates the observed LAI at the six test 218 

sites, we calculated the relationship between observed and MODIS LAI by linear regression and used 219 

the slope of this regression to rescale the MODIS LAI data and derive weekly mean LAI. 220 

2.3 Derivation of allocation relationships  221 

We hypothesized that a fixed proportion (ε) of accumulated GPP during the growing season would 222 

be allocated to above-ground biomass (AB). We calculated GPP accumulation (ΣGPP) from the 223 

beginning of the growing season to the day when AB was measured, then derived an empirical 224 

relationship between AB and ΣGPP by linear regression. We used the slope of this linear regression as 225 

an estimate of ε. 226 

We hypothesized that grain yield should increase, monotonically but not necessarily linearly, with 227 

AB, and that this relationship might be influenced by wheat varieties and management practices. Non-228 

linear regression was used to derive an empirical relationship between grain yield and AB, taking 229 



account of the effect of nitrogen supply and wheat variety on the relationship, meanwhile testing the 230 

effects of irrigation and the application of phosphate and potash. Non-linear regression was performed 231 

using a mixed-effects model in the nlm package of R. The form of the fitted equation is as follows: 232 

Yield = (a · N + b) [1 – exp(c · AB)] + d                                                                    (5) 233 

where N is the total application of nitrogen (kg N hm−2), and a, b, c and d are parameters to be fitted. 234 

Wheat variety was considered as a random effect added to parameter b, thus allowing maximum yields 235 

to differ by variety. The potential effects of other factors (irrigation, precipitation, mean temperature 236 

during the growth season) were tested by examining the residuals from this regression. To check the 237 

goodness of fit of the non-linear regression, linear regression was also performed both using all the 238 

data together, and for each variety separately. The root mean squared error (RMSE) and Akaike 239 

Information Criterion (AIC) were calculated as an indicator of the goodness of fit of each model. 240 

2.4 Model evaluation 241 

We tested the performance of the PC model by comparing interannual variations in predicted and 242 

observed AB and grain yield over multiple years at the six test sites (CS, CW, FQ, LC, YC, YG), using 243 

meteorological observations from each site to drive the model. The simulated accumulated GPP during 244 

the growing season was allocated to AB using the fixed ratio (ε) obtained by linear regression, and AB 245 

at harvest was allocated to grain yield using the non-linear relationship described above (Equation 5). 246 

The growing season was defined as the period when mean daily temperature was above 0°C. 247 

Interannual variation in yield provides an independent test of the model as no information on 248 

interannual variability was used in the derivation of empirical relationships used in the model. 249 

There are two sources of uncertainty in the model predictions: the input data (climate and LAI) 250 

and the model parameters. We assumed the input data were reliable and focused on parameter 251 

uncertainty. We considered each of the sources of uncertainty in the individual equations in the P model 252 



independently, and combined these uncertainties using the standard error propagation formula 253 

(Prentice and Thomas, 2018): 254 

u2(y) = ∑i (∂f / ∂xi)2 u2(xi)                                                                         (6) 255 

where u(y) is the standard uncertainty (of GPP or AB or yield), ∂f / ∂xi is the sensitivity to variable xi 256 

(obtained by differentiating the individual equations), and u(xi) is the standard uncertainty of xi. 257 

2.5 Model extension 258 

2.5.1 Phenology scheme 259 

The phenology scheme for wheat was adopted from the LPJmL4 model (Bondeau et al., 2007; 260 

Schaphoff et al., 2018). Sowing and maturity dates were obtained from the datasets provided in the 261 

global gridded crop model inter-comparison project (Elliott et al., 2015). A phenological scalar (fPHU) 262 

ranging from 0 at sowing to 1 at harvest was computed:  263 

fPHU = ∑1
n(Tm−Tb) / PHU                                                                 (7) 264 

where n is the number of days from sowing, Tm is the daily mean air temperature (˚C) and Tb is the 265 

base temperature (here 0˚C) and used to determine LAI development, using a sigmoid curve during 266 

the growth phase and a quadratic curve during the senescent phase. (In the absence of water and 267 

nutrient stresses, LAI is assumed to follow this optimal curve. During the growth phase: 268 

fLAImax = fPHU / [fPHU + exp(l1−l2 · fPHU )]                                   (8) 269 

where LAI is a time-dependent fraction (fLAImax) of maximum LAI (LAImax), and l1 and l2 are the first 270 

and second inflection points. During the senescence phase: 271 

fLAImax = [(1 − fPHU)2 / (1 − fPHUsen )2] (1 − fLAImax-harvest) + fLAImax-harvest                                              (9) 272 



where !!"#$%&  is the fraction of PHU when senescence begins, and fLAImax-harvest is the fraction of 273 

maximum LAI at harvest (here fixed to zero). The fPHU values corresponding to the l1 and l2 inflection 274 

points were derived from Figure 4 in Bondeau et al. (2007) and the parameter values of l1 and l2 were 275 

calculated for these fPHU values using the method of Neitsch et al. (2011).  We used values for the l1 276 

and l2 inflection points of 0.89 and 10, respectively. 277 

2.5.2 Dynamic leaf area index 278 

Prognostic calculation of LAI was enabled by fitting a linear relationship between leaf biomass 279 

and AB based on data from the field sites, then solving for LAI in the mass-balance equation: 280 

(LMA / η) · LAI = φΣI [1 – exp(–k · LAI)]                                                                                       (10) 281 

where η is the fraction of ΣGPP allocated to leaves, LMA is the leaf mass-per-area (g m−2), φ is the 282 

modelled LUE (the ratio of modelled GPP, following equation (1), to absorbed PPFD), and ΣI is the 283 

accumulated incident PPFD (mol photon m−2). k is a dimensionless constant (k = 0.5). Equation (10) 284 

indicates that the LAI demand (left hand side) must equal to its supply (right hand side). The LAI 285 

demand represents the allocation of accumulated GPP to canopy to support a certain level of LAI. The 286 

LAI supply represents the carbon accumulation supported by a certain level of LAI. η was estimated 287 

from the observed data on leaf biomass and ΣGPP from the YuCheng site in 2004 and 2005, LMA was 288 

set at 35.7 g m−2 corresponding to the mean observed value at YuCheng and allowed to increase linearly 289 

with CO2 using the observed slope (0.05 g m−2 per ppm) from Thilakarathne et al. (2013). 290 

2.6 Model application 291 

2.6.1 Sensitivity analysis  292 

Using 2005 as a baseline (baseline temperature is the weekly mean temperature over the growing 293 

season and baseline CO2 is 380 ppm), we ran simulations with the extended model, including 294 



prognostic phenology and dynamic LAI and LMA, with temperature increasing by 0.05° increments 295 

up to 5° above the baseline temperature and CO2 concentration increasing by increments of 5 ppm up 296 

to 500 ppm above the baseline CO2 concentration. These changes were superimposed on the weekly 297 

mean temperatures and on the annual CO2 concentration. All other inputs (radiation, relative humidity, 298 

management practices and wheat variety) were fixed at their 2005 values.  299 

2.6.2 Future scenarios  300 

We used the model to examine the consequences of potential future climate changes on wheat 301 

yields, following the protocol used by the Inter-Sectoral Impact Model Intercomparison Project-2b 302 

(ISIMIP2b: https://www.isimip.org/protocol/#isimip2b/). Climate data, including daily mean 303 

temperature, photosynthetically active radiation (assumed to be half of downward shortwave radiation) 304 

and relative humidity from the MIROC5 simulations, and CO2 concentrations, for two scenarios 305 

(RCP2.6 and RCP6.0) were used to run the PC model at six test sites (CS, CW, FQ, LC, YC, YG) from 306 

2006 to 2099. Management practices and wheat varieties were unchanged from 2005.   307 

The LPJmL (Bondeau et al., 2007; Muller and Robertson, 2014; Schaphoff et al., 2018), GEPIC 308 

(Liu et al., 2007) and PEPIC (Liu et al., 2016) crop models have been used to simulate future wheat 309 

yields in ISIMIP2b. We compared our future projections of yield with results from these three models. 310 

In ISIMIP2b, these models ran simulations with full irrigation and no irrigation. In order to eliminate 311 

the effect of variable water supply, we compared our results with those from the full-irrigation run. We 312 

extracted simulated wheat yields at our six test sites from the results of each model for the RCP2.6 and 313 

RCP6.0 scenarios. Further information about these three models, including input data, leaf area, 314 

phenological development, yield formulation and stresses considered, is given in Table S1.  315 



3. Results  316 

3.1 Modelled versus observed GPP 317 

Predicted weekly GPP values were consistent with the observations from the flux towers, both in 318 

their magnitudes (Fig. 3a) and their patterns over the growing season (Fig. 3b). Observed and predicted 319 

GPP were highly correlated (R2 = 0.81, RMSE = 10.1 g C m−2 week−1) and the slope of the relationship 320 

was close to 1:1 (slope = 1.07 ± 0.08) with a non-significant offset (intercept = 0.79 ± 4.67 g C m−2 321 

week−1). 322 

 323 

Figure 3: Comparison of predicted and observed gross primary production at two sites. (a) 324 

Scatterplot. The thick black line is the linear regression. The grey number is not significant; (b) GPP 325 

during the growing season (weekly sums). WS-2006, YC-2005 and YC-2004, represents WeiShan in 326 

2006, YuCheng in 2005 and YuCheng in 2004, respectively.  327 



3.2 The relationship between AB and GPP 328 

A strong linear relationship (Fig. 4) was shown between AB and accumulated GPP (r = 0.92) with 329 

an estimated 72% (slope, ε = 0.72) of accumulated GPP allocated to AB. The intercept was statistically 330 

significant, but small enough to be neglected.  331 

 332 

Figure 4: The proportion of accumulated gross primary production (GPP) allocated to 333 

aboveground biomass. The data are observations during the wheat growth season at YuCheng from 334 

2004 to 2005. All values were accumulated from green-up to measurement time. 335 

3.3 The relationship between yield and AB 336 

Yield was shown to be a saturating function of AB (Fig. 5a). Nitrogen addition affected the overall 337 

level of allocation (Fig. 5b), with higher nitrogen supply causing high allocation to AB. The 338 

relationship was affected by wheat variety, and a saturating relationship can also be shown within each 339 

of the varieties that covers a large range of AB (range > 1800 g m–2), with a substantially smaller 340 

RMSE and AIC compared to linear fits (Fig. S1). Moreover, the slopes of linear regressions fitted to 341 

each variety separately decline with the mean value of AB for the variety (Fig. 7 and Fig. S2). In other 342 

words, at the high end of AB values, the increment in yield diminishes with the increment in AB. These 343 



results indicate that the non-linear, saturating relationship of yield to AB applies generally, both within 344 

and across varieties. 345 

 346 

 347 

Figure 5: Results of the mixed-effects model. (a) Yield versus aboveground biomass (AB). Pink 348 

line is linear regression and black line is non-linear regression. (b) Yield trend with AB, including the 349 

effect of nitrogen addition. The solid line is the fitted curve of yield with AB at high nitrogen level 350 

(pure nitrogen added = 300 kg hm−2) and the dotted line is at low nitrogen level (pure nitrogen added 351 

= 100 kg hm−2). The open and closed circles represent the observations with total application of pure 352 

nitrogen at levels above and below 200 kg hm–2, respectively. (c) Scatterplot including AB and nitrogen 353 

as predictors. (d) Scatterplot including AB, nitrogen and variety as predictors. Grey numbers are non-354 

significant. 355 



 356 

Figure 6: The relationship between residuals and wheat varieties. (a) Without the random 357 

effect of variety; (b) with this effect. Each box represents a wheat variety. The red line is zero and the 358 

black dots are outliers. 359 

 360 

Figure 7: The fitted slope and mean value of aboveground biomass based on the linear 361 

regression of yield against aboveground biomass within each variety. (See Fig. S2 for the separate 362 

linear regressions.)  363 

The comparison between simulated and observed yields improved when variety was taken into 364 

account (Fig. 5c compared to Fig. 5d). Residuals of the non-linear regression were reduced (Fig. 6), 365 

and the correlation between predicted and observed yield improved (R2 increased from 0.68 to 0.83). 366 

Irrigation, mean temperature over the growing season, and the supply of phosphate and potassium had 367 



no significant effects on the relationship between AB and yield (P�0.05) on yield (Fig. S3), indicating 368 

that the first-order effects of these factors are already subsumed in AB. 369 

3.4 Model evaluation 370 

3.4.1 Prediction of AB and yield variations 371 

The model captured the pattern of interannual variation in AB (see Fig. 8) and, although there 372 

were some anomalous years, the predicted AB was generally within the range of the observations. The 373 

correlation between predicted and observed AB was moderate (r = 0.40). The simulated and observed 374 

yields matched reasonably well (r = 0.61) and interannual variations in grain yield were captured (Fig. 375 

9 and Table S2), with observations almost always within the uncertainty range of the predictions. 376 

 377 

Figure 8: Comparisons of observed and modelled aboveground biomass. (a) Interannual 378 

variation at four sites: ChangShu, ChangWu, YuCheng, YangTing. (b) Scatterplot of predicted and 379 

observed AB at all sites.  380 



 381 

Figure 9: Comparisons of observed and modelled yield. (a) Interannual variations at four sites: 382 

ChangShu, ChangWu, YuCheng, YangTing. (b) Scatterplot of predicted and observed yield at all sites.  383 

3.4.2 Uncertainty analysis 384 

Uncertainty in model predictions could originate either in the input data (climate, LAI) or in the 385 

model. We assumed that the input data were reliable, and used YuCheng 2005 as a case study to analyse 386 

the uncertainties due to the following model parameters:  387 

• The two most uncertain quantities (β, c*) in the P model (Prentice and Thomas, 2018). β is the 388 

ratio of the unit costs for the maintenance of carboxylation and transpiration capacities, 389 

evaluated at 25˚C. It determines the value of the ratio of leaf-internal to ambient CO2 (an index 390 

of stomatal behaviour) under standard conditions. c* is the unit cost of maintaining electron-391 

transport capacity and determines the extent to which optimum carboxylation capacity is 392 

lowered because of the cost of maintaining an equivalent capacity for electron transport 393 

(Equation 1). 394 

• The proportionality constant (ε) between biomass and accumulated GPP. 395 

• The four main parameters (a, b, c, d) from the formula relating yield to AB (Equation 5).  396 



The calculated uncertainties with respect to different model parameters for predicted GPP and 397 

yield are shown in Fig. 10. When the parameters were varied by ± 10%, the total uncertainty of 398 

predicted GPP was ~9%. The largest source of this uncertainty (~6%) was associated with the 399 

parameter c*, which is an important control on the magnitude of simulated GPP. This parameter also 400 

contributes substantially (~4%) to the uncertainty in simulated yield. The other parameter contributing 401 

substantially (~7%) to this uncertainty is the main slope parameter (b), which is the principal control 402 

over the yield attained for a given biomass. 403 

 404 

Figure 10: The impact of parameter uncertainty on the prediction of GPP accumulation and 405 

yield. YuCheng 2005 was selected as a case study. Triangles represent GPP and dots represent yield. 406 

The x-axis represents the progressive inclusion of ± 10% uncertainty in successive parameters, 407 

indicated by their symbols. 408 

3.5 Model extension and application 409 

3.5.1 Testing the phenology scheme 410 

The phenology scheme was shown to reproduce seasonal patterns of LAI today (Fig. 11) 411 

reasonably well (R2 = 0.84). 412 



 413 

Figure 11: Observed versus predicted leaf area index (LAI) with the LPJmL4 phenology 414 

scheme. The inset shows the observed (circles, green is mean value) and predicted (line) seasonal time 415 

course of LAI at the YuCheng site in 2005. The grey number is not significant. 416 

3.5.2 The relationship between leaf biomass and accumulated GPP 417 

A strong linear relationship (r = 0.94) was found between leaf biomass and accumulated GPP, 418 

allowing us to estimate η = 0.32 (Fig. 12) and thereby solve equation (10) for mean LAI over growth 419 

phase. 420 

 421 



Figure 12: The proportion of gross primary production (GPP) allocated to leaves. The data 422 

are observations during the wheat growth phase in 2004 and 2005 at YuCheng. All values were 423 

accumulated from green-up to measurement time. 424 

Projections of changing LAI as a function of CO2 concentration are shown in Figure 14b and 425 

Figure S4. Modelled LAI increases in response to increasing CO2, but when the effect of increasing 426 

LAI on LMA is considered, the increase is much smaller and reaches a maximum at around 600 ppm. 427 

This behaviour is consistent with the maximum yield enhancement indicated by raised CO2 428 

experiments, as summarized in the meta-analysis by Broberg et al. (2019). 429 

3.5.3 Sensitivity analyses 430 

Modelled grain yields increase with rising CO2 concentration, and decrease with increasing 431 

temperature, when other variables are kept fixed (Fig. 13). Higher temperature shortens the growing 432 

season (Fig. 14d) leading to a reduction in total absorbed light. In addition, the response of modelled 433 

LUE to rising temperature follows a unimodal curve (see Fig. 14c) such that increasing temperature 434 

above the optimum reduces GPP (Long, 1991). Lower GPP means lower yield. On the other hand, 435 

rising CO2 monotonically increases LUE, GPP and yield; and rising GPP leads to rising LAI, 436 

amplifying this effect. But the net effect of CO2 is limited by an increase in LMA. 437 

For these scenarios and sites, the modelled positive effect of rising CO2 concentration on yield 438 

was greater than the negative effect of increasing temperature. However, the modelled reductions in 439 

yield caused by rising temperature differed among the sites (Fig. 13). Modelled wheat yields in warmer 440 

regions today, like YG and CS, are more sensitive to warming than cooler regions such as LC. 441 



 442 

Figure 13: The response of predicted yield to rising CO2 and increasing temperature at six 443 

sites. Dots mean increasing on temperature and mean rising on CO2 concentration in the last decade 444 

(2090-2099) comparing with the first decade (2006-2015) under two future scenarios (RCP2.6, the 445 

black dot, and RCP6.0, the red dot). The temperature is the mean value over growing season. 446 

 447 



Figure 14: The response of light use efficiency (LUE), leaf area index (LAI) and growing 448 

season length (GS) to CO2 concentration and temperature (T). Using the climate and CO2 449 

measurements from YuCheng 2005 as a baseline condition. (a) The response of LUE change to CO2 450 

increment. (b) The response of LAI change to CO2 increment. Solid line includes the effect of CO2 on 451 

LMA; dash line excludes this effect.  (c) The response of LUE to temperature. (d) The response of 452 

changes in growing season length to temperature increment.  453 

3.5.4 Comparison with future scenario runs by other crop models 454 

We compared future scenarios with the PC model to ISIMIP2b model runs performed with the 455 

same scenarios using complex crop models. PC and LPJmL simulated contemporary yields reasonably 456 

well across all the sites, but the PEPIC and GEPIC models showed unrealistically low yields except at 457 

site CS. PC showed an increase in wheat yield ~6.6% in the RCP2.6 and ~15.1% in the RCP6.0 458 

simulations by the end of the 21st century (Fig. 15). Although the different crop models predict different 459 

absolute magnitudes of wheat yields, the trend and the interannual variations are similar among all 460 

models. Moreover, the magnitude of increase shown by PC is similar to that shown with LPJmL. All 461 

models showed increases in wheat yield at individual sites over the 21st century, with the exception of 462 

the PEPIC model at the YG site.  463 

 464 



Figure 15: Comparison of different crop models: future scenarios at six sites. The climate 465 

data to drive the crop models were derived from the MIROC5 climate model. Lines represent modelled 466 

interannual yield trends; Points represent measured yields.  467 

4. Discussion 468 

The P model has been extensively tested against GPP derived from flux measurements in natural 469 

vegetation (Stocker et al., 2019; Wang et al., 2017) and has also been shown to perform well in 470 

simulating the GPP of croplands (Balzarolo et al., 2018). The present study has confirmed that the P 471 

model can predict the GPP of irrigated and fertilized wheat crops in China (Fig. 3); that above-ground 472 

crop biomass can be modelled as a fraction of accumulated GPP (Fig. 4); and that yield can be modelled 473 

as a saturating function of AB (Fig. 5). Further extensions and tests of the model in a wider range of 474 

environmental and economic settings will be needed to allow application to model wheat crops under 475 

water and/or nutrient stresses (which are expected to result in different relationships among GPP, AB 476 

and yield), or in a wider range of climates. 477 

The ratio of above-ground biomass production to GPP is typically 0.41 (natural) to 0.53 (managed) 478 

for forests, ~0.2 for natural grasslands and 0.6 to 0.7 for managed grasslands (Campioli et al., 2015). 479 

Values of this ratio, up to ~0.8, have been found for intensively managed crops (Campioli et al., 2015; 480 

Chen et al., 2018; Huang et al., 2018). The value of 0.72 estimated in our study is in the upper part of 481 

the expected range. This is not unreasonable. As an annual crop, wheat does not require strong roots 482 

for support. In addition, the study sites are irrigated (to eliminate water stress) and fertilized (to reduce 483 

or eliminate nutrient stress), so the below-ground carbon allocation needed to acquire nutrients and 484 

water is minimal. Modern varieties of wheat are highly efficient in converting GPP to biomass because 485 

selective breeding has aimed to increase the GPP allocation to biomass, and ultimately to grain. 486 

Most crop models assume that grain yield is a fixed proportion of above-ground or total biomass, 487 

the so-called harvest index (HI) (Donald, 1962; Hay, 1995). However, the grain yield data analysed 488 



here follow a saturation function with AB (Fig. 5), so that HI declines with increasing AB. The level 489 

of AB at which saturation occurs is largely determined by the wheat variety (Fig. 6 and Fig. S1). The 490 

maximum yield given by (a · N + b) in equation (5) is influenced by the wheat variety and the amount 491 

of nitrogen added. The actual yield is also determined by the amount of biomass accumulated and, 492 

therefore, by the GPP during the growing season – which depends on CO2, climate, canopy 493 

development and incident PPFD. The negative intercept (d) quantifies the requirement for a certain 494 

minimum biomass accumulation before any carbon is allocated to seeds. When a linear regression was 495 

fitted instead of a saturating function, the estimate of d became positive, which is biologically 496 

impossible as it suggests a positive yield when AB is zero (Fig. S2).  497 

It follows from this simple empirical representation of the experimental data that improving grain 498 

yield is not simply a case of adding more fertilizer (which also comes with significant monetary and 499 

environmental costs). Moreover, yields will also not automatically increase in proportion to the effect 500 

of CO2 on photosynthesis, because the saturating nature of this relationship implies a “diminishing 501 

return” on increases in AB. The differences among varieties are potentially important here. They 502 

suggest that a key target for crop improvement should be the ability of the plants to allocate more 503 

carbon to grain as AB increases, and thereby to profit from higher CO2 levels. 504 

Both the current level and the trend in yield over the 21st century simulated by the PC model are 505 

similar to that shown by the LPJmL model (Fig. 15). This similarity is probably due to the fact that the 506 

LPJ component of LPJmL, is also, ultimately, based on the standard model of photosynthesis and the 507 

acclimation of Vcmax – the latter process now supported by a wealth of evidence (Smith et al., 2019). 508 

However, the PC model is simpler, has fewer parameters and is more transparent, with major 509 

advantages both for the credibility of the results and the ease with which uncertainties can be quantified 510 

and traced to their source. 511 

Quantification of prediction uncertainties in complex models requires extensive computation to 512 

estimate the sensitivity to their many parameters. In contrast, the PC model consists of a single central 513 



equation (1a), which can readily be differentiated with respect to its (far fewer) parameters. This 514 

process allows uncertainties to be attached to predictions without excessive computational demands 515 

and allows the major sources of uncertainty to be pinpointed. We have shown that the parameter c*, 516 

related to the metabolic costs of maintaining electron transport capacity, and parameter b, related to 517 

the potential maximum yield, accounts for a large fraction of the prediction uncertainty (Fig. 10) – 518 

indicating the importance of further work to improve these aspects of the model. 519 

Studies have suggested that rising temperatures could greatly reduce the grain yield of wheat 520 

(Asseng et al., 2014; Asseng et al., 2011; Zhao et al., 2017; Zhao et al., 2016), because of the shortened 521 

growing season. However, many studies have neglected the effects of rising CO2 on C3 photosynthesis, 522 

which has the potential to mitigate the impact of rising temperatures on production by improving LUE, 523 

particularly as the temperature optimum shifts to higher temperatures with rising CO2. The effects of 524 

elevated CO2 have been shown by Free Air Carbon dioxide Enrichment (FACE) experiments, with 525 

positive impacts on wheat yields and net assimilation rates (Broberg et al., 2019).  526 

The primary mechanism by which increasing CO2 increases GPP is through the improvement of 527 

LUE. This mechanism is amplified by the positive feedback by which increased GPP allows greater 528 

LAI, which in turn implies greater light absorption and GPP. On the other hand, LMA increases with 529 

CO2, resulting in a diminished response and, according to our model, a peak of the positive response 530 

of LAI to CO2 above ~600 ppm (Fig. 14b and Fig. S4). However, we see no peak in the positive 531 

response of yield to CO2.  This appears to be because fAPAR is comparatively insensitive to changes 532 

in LAI at the high end. However, according to our simulations, a positive but saturating response of 533 

yield and LUE to CO2 are found at high CO2 levels (Fig. 13 and Fig. 14a). This appears to be 534 

inconsistent with the yield response shown in the meta-analysis of enhanced CO2 experiments by 535 

Broberg et al. (2019). However, the response shown in that paper is small, solely derived from chamber 536 

rather than FACE experiments, and seems to reflect the reduced sensitivity of higher yield wheat 537 

varieties to CO2 changes.  538 



The magnitude of yield enhancement simulated by our model is consistent with the findings of 539 

Broberg et al. (2019) for the mid-range of wheat yields. Field warming experiments, summarised in 540 

Zhao et al. (2016), show negative responses of yield to warming of between 0.5 to 3.0°C at individual 541 

sites in northwestern and northern China, with an average response of −4.4% per °C in northwestern 542 

China to −2.8% per °C in northern China. Across our study sites (which are in the same region), we 543 

predict a net negative response to increased temperature of between −2.3 and −5.7 per °C. This 544 

response is caused by the reduction in the length of the growing season and the negative impact of 545 

temperature on LUE. The modelled response of yield to combinations of raised CO2 and temperature, 546 

as shown by sensitivity analysis, reflects a combination of net positive effects of CO2 and net negative 547 

effects of rising temperature. Scenario runs show that, under the scenarios tested, the positive effects 548 

of CO2 on yield however outweigh the negative effects of temperature, consistent with the findings of 549 

other crop models for China (Liu et al., 2019). Warmer regions are more sensitive to warming than 550 

cooler regions (also consistent with Liu et al. (2019)), indicating that wheat production in warmer 551 

regions of China will be more challenged by climate change.  552 

 553 

5. Conclusions 554 

The yield of irrigated and fertilized wheat crops at research sites across the wheat-growing region 555 

of China was simulated successfully using a parsimonious model based on a combination of first-556 

principles theoretical considerations governing GPP with empirical analyses of the relationships 557 

amongst GPP, AB and yield. The model reproduced the general magnitude and patterns of interannual 558 

variability in both AB and yield. When driven by future climate and CO2 scenarios, it produced results 559 

similar to those of the most credible of the more complex crop models.  560 

The model also provided insights into how wheat yields may respond to global environmental 561 

change. The effect of rising CO2 on photosynthesis does not imply proportionately increased yield. 562 

The model results suggested that the positive response of yield to rising CO2 may saturate at around 563 



600 ppm. The model also predicted a negative effect of warming on wheat yields. Sensitivity analysis 564 

showed this negative effect to be stronger in regions with warmer climates today. Nonetheless, in 565 

common with other crop models, the simulations indicated an increase of ~6.6% in wheat yields under 566 

the RCP2.6 and ~15.1% under the RCP6.0 scenarios of future CO2 and climate.  567 
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