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Abstract We present two new solar wind origin classification schemes developed indepen-
dently using unsupervised machine learning. The first scheme aims to classify solar wind
into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified” which does not fit
into either of the previous two categories. The second scheme independently derives three
clusters from the data; the coronal-hole and streamer-belt winds, and a differing unclassified
cluster. The classification schemes are created using non-evolving solar wind parameters,
such as ion charge states and composition, measured during the three Ulysses fast latitude
scans. The schemes are subsequently applied to the Ulysses and the Advanced Composi-
tional Explorer (ACE) datasets. The first scheme is based on oxygen charge state ratio and
proton specific entropy. The second uses these data, as well as the carbon charge state ratio,
the alpha-to-proton ratio, the iron-to-oxygen ratio, and the mean iron charge state. Thus, the
classification schemes are grounded in the properties of the solar source regions. Further-
more, the techniques used are selected specifically to reduce the introduction of subjective
biases into the schemes. We demonstrate significant best case disparities (minimum 8%,
maximum ~22%) with the traditional fast and slow solar wind determined using speed
thresholds. By comparing the results between the in- (ACE) and out-of-ecliptic (Ulysses)
data, we find morphological differences in the structure of coronal-hole wind. Our results
show how a data-driven approach to the classification of solar wind origins can yield results
which differ from those obtained using other methods. As such, the results form an impor-
tant part of the information required to validate how well current understanding of solar
origins and the solar wind match with the data we have.
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1. Introduction

The solar wind comprises streams of ionised particles which travel nearly radially from
the Sun through the heliosphere. From the earliest in sifu observations, it was clear that
the solar wind could be broadly classified into two types, fast and slow (Neugebauer and
Snyder, 1966; Stakhiv et al., 2015). This duality was found to extend beyond the local solar
wind speed, but is present in the elemental composition and ion charge states of the solar
wind, indicating very different coronal source properties of fast and slow wind (von Steiger
et al., 2000; Geiss, Gloeckler, and Von Steiger, 1995). Fast wind is found to originate from
coronal holes (Sheeley, Harvey, and Feldman, 1976). These are magnetically open regions
of the corona where the plasma can freely escape, meaning that coronal holes appear dark in
EUYV emission. The formation and release of the slow wind is a current area of research, but
it originates from the vicinity of closed coronal magnetic structures such as the streamer belt
(Antiochos et al., 2011; Ko et al., 2006; Xu and Borovsky, 2015; Brooks, Ugarte-Urra, and
Warren, 2015). At solar minimum, coronal holes cover the polar regions, with the streamer
belt confined close to the solar equator. At solar maximum, the coronal field is far less
ordered. The resulting variation of the solar wind speed can be seen in Figure 1 of McComas
et al. (2013). Despite the breakdown of the latitudinal dependence at solar maximum, there
is still a good separation between streams of different speeds. This suggests that despite the
activity, the source regions remain isolated from one another, and there is not significant
mixing of the streams.

While appealing, the traditional two-type solar wind paradigm is not unique, with a num-
ber of different observationally-determined solar wind types proposed. A two-type scheme
has been proposed by Zhao, Zurbuchen, and Fisk (2009), a three-type scheme has been pro-
posed by Stakhiv et al. (2015), a four-type scheme has been proposed by Xu and Borovsky
(2015) and been built upon using machine learning by Camporeale, Care, and Borovsky
(2017), and even a six-type scheme has been proposed by Zhao et al. (2017). Furthermore,
Heidrich-Meisner and Wimmer-Schweingruber (2018) have proposed a two-type classifica-
tion scheme, and a two—seven type scheme (depending on interpretation) using the k-means
clustering algorithm (MacQueen, 1967) implemented using the C++ library, Shark (Igel,
Heidrich-Meisner, and Glasmachers, 2008). In each of these categorisation schemes the
properties of each solar wind type are quantitatively different from one another, an essential
factor when performing statistical studies of heliospheric phenomena driven by the solar
wind.

The Zhao, Zurbuchen, and Fisk (2009) scheme sought to classify the solar wind into
coronal-hole wind or non-coronal-hole wind. Stakhiv et al. (2015) classified the solar wind
into coronal-hole wind, wind due to magnetic reconnection at the boundary of large scale
streamers, and a boundary wind which originates from the edges of coronal holes. Xu and
Borovsky (2015) described a scheme which encompasses coronal-hole wind, sector-reversal
region wind emitted from the top of helmet streamers, and streamer-belt wind. The streamer-
belt wind is comprised of two types: pseudostreamers and helmet streamers. These occur
when two loop arcades separate a pair of like-signed coronal holes, and when a single loop
arcade separates two coronal holes of opposite polarity, respectively (Panasenco and Velli,
2013; Owens, Crooker, and Lockwood, 2014). Zhao et al. (2017) split the solar wind into six
types: coronal hole, active region, quiet Sun, active-region boundary, coronal-hole boundary,
and helmet streamer. The regions in this case are not determined by coronal signatures in the
solar wind, but instead by direct mapping to the Sun. A ballistic method is used to map to
the solar source-surface, and then an extrapolation is made using the potential-field source-
surface model (Altschuler and Newkirk, 1969; Schatten, Wilcox, and Ness, 1969) to map to
the photosphere.
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As part of the Machine Learning Techniques for Space Weather book (Camporeale,
Wing, and Johnson, 2018), Heidrich-Meisner and Wimmer-Schweingruber (2018) present
a systematic analysis of applying a simple unsupervised machine learning algorithm, k-
means, to the classification of solar wind types. A variety of parameter spaces are inves-
tigated (13 different sets are used), as is the choice of the number of clusters for which
the algorithm should search. The first k-means scheme proposed is a coronal hole versus
slow wind scheme, whilst the second uses k-means to find seven clusters (where the num-
ber of clusters to find was a data-driven choice). The latter scheme provides results which
are significantly more open to interpretations. The authors state that they find: two coronal-
hole wind classes, though one may comprise interplanetary coronal mass ejection (ICME)
plasma; one primary slow solar wind class; and four potential sub-classes of slow solar wind,
where two are compressional/rarefaction regions surrounding a stream interaction, another
is very slow, dense and cool wind, and the final is even more dense, has high charge states
and is cool (though again, this may represent undetected ICMEs).

Aside from the growing evidence that the simplistic solar wind speed categorisation
scheme is not adequate for distinguishing solar source regions, there is a more direct rea-
son that such a scheme is not appropriate for many of the datasets that exist: co-rotating
interaction regions (CIRs). CIRs are the compression regions that form when high-speed
solar wind streams catch up to low-speed streams as they travel through the heliosphere.
Since coronal-hole wind (CHW) and streamer-belt wind (SBW) typically show latitudinal
dependence, CIRs do not tend to form everywhere. Instead, there is a tendency towards the
ecliptic plane due to the inclination of the solar rotation axis (Crooker et al., 1999; Borovsky
and Denton, 2016). The result is that much of the solar wind in the ecliptic plane undergoes
interaction of high- and low-speed streams. Such mixing causes high-speed streams to slow
down and slow-speed streams to speed up. Thus, speed is not the most reliable means to
distinguish different coronal sources.

The scientific motivation behind the current work is to provide two new solar wind clas-
sification schemes. They will be developed using unsupervised machine learning techniques
so as to reduce scientific subjectivity. By using novel techniques which have their own
unique biases, this work will provide new information towards validation or benchmarking
of existing solar wind classification models. As with any scientific work, the total removal
of any subjective influence is near impossible. Our methods hope to address the scientific
subjectivity in the determination of classification boundaries, and number of solar wind
types. The Bayesian Gaussian Mixture (BGM) scheme addresses the former point, whilst
the Uniform Manifold and Projection (UMAP) scheme addresses both.

2. Data

For this analysis, data from the Ulysses spacecraft’s (Wenzel et al., 1992) Solar Wind Obser-
vations Over the Poles of the Sun (SWOOQOPS, Bame et al., 1992) and magnetometer (Balogh
et al., 1992) instruments have been primarily used. The motivation for this usage is that,
unlike in-ecliptic spacecraft such as the Advanced Composition Explorer (ACE), Ulysses
has a polar solar orbit and enables sampling of the pure CHW during the high-latitude phase
of the mission at solar minimum. The Ulysses mission contains three ‘fast latitude scans’,
which are periods at perihelion when the spacecraft covers almost the full solar latitude range
in a relatively short amount of time (approximate dates: 15/08/94 —20/08/95, 01/11/2000 —
01/11/2000, and 01/02/07 —01/02/08.). Particularly for the two solar minimum fast latitude
scans, solar wind types can be well separated by their latitudinal dependence. The lati-
tude scans comprise *3 years worth of total data, whilst the whole dataset is ~19.5 years
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(1990 -2009). The data are mean-resampled into three-hourly steps to match the cadence of
the compositional data. In practice, this yields 8227 (8139) latitude-scan data points, 46893
(45463) total Ulysses data points and 38108 (23665) ACE data points for the BGM (UMAP)
scheme. The UMAP scheme has fewer points due to a larger parameter space; the whole data
point must be discarded if any one parameter is bad.

Solar Wind lon Composition Spectrometer (SWICS, Gloeckler et al., 1998), Solar Wind
Electron Proton Alpha Monitor (SWEPAM, McComas et al., 1998) and magnetometer
(Smith, Heureux, and Ness, 1998) data from ACE (Gloeckler et al., 1998) are also used.
As ACE is confined to the ecliptic plane (at the first Lagrange point, L1, just upstream of
Earth), it rarely samples the CHW without it first interacting with SBW.

The classification scheme developed from the Ulysses data will be applied to ~13 years
of ACE data (1998-2011). This will allow more statistical insight into the link between solar
wind source regions and space-weather events. All the Ulysses and ACE data are mean-
resampled into three-hourly data.

Since solar wind speed is a poor parameter choice for classification, other parameters
must be used. In order to relate properties to the coronal source conditions, parameters
should ideally remain constant as the solar wind flows from the Sun. For this task, ion charge
state ratios are the obvious choice, since they are well known to be non-evolving parameters
after a few solar radii (Pagel, 2004; Geiss, Gloeckler, and Von Steiger, 1995). The reason
for this is that the electron mean free path becomes so large that interactions are negligible
(Owocki, Holzer, and Hundhausen, 1983). Between the Ulysses and ACE spacecraft, the
common charge state and composition measurements are: O’*/0%", C*"/C3*, Fe/O, <
dre >, and He?* /H' (where fractions signify the relative density ratio). Further to these,
Burlaga, Mish, and Whang (1990) describe how the proton specific entropy, S,, is a good

stream signature since it only diverges 10% between 1-5 AU (S, = ;%).

3. An Intuitive Classification Scheme

Many studies of the classification of the solar wind often rely on scientists’ intuition. Xu
and Borovsky (2015) (and by proxy Camporeale, Care, and Borovsky, 2017) state that their
method of determining classification boundaries is that they are “chosen by eye”. Zhao, Zur-
buchen, and Fisk (2009) base their identification of ICMEs (Cane and Richardson, 2003) on
the work of Richardson (2004), who state their choice of parameter boundaries are “some-
what arbitrary”. Such expert intuition is undoubtedly valuable, but extending this intuition
from the abstract to the mathematical is a necessary progression.

In order to enable comparison with the machine learning approaches introduced below,
we essentially reproduce the threshold approach in two-parameter space. The chosen pa-
rameters are O’+/0%" and Sp. These parameters are chosen based on the work of Zhao,
Zurbuchen, and Fisk (2009) and Xu and Borovsky (2015), respectively. The methodology
is as follows. Firstly, we take the log of our data and then plot the occurrence density. By
visually inspecting the result, we see groupings within the data. These groupings are subse-
quently separated by placing a line (linear in log-space) to divide them. This dividing line
forms the classification boundary between the two groupings. Not only does such a model
allow for investigating the physical premise of the classification schemes introduced subse-
quently, but it will also be used as a benchmark to show that further results are not wholly
unique to more complicated methods.

Figures 1a and 1b present two identical occurrence density plots of the whole Ulysses
dataset, wherein two populations are clearly visible (the colourbar is log scaled). The panels
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Figure 1 The intuitive classification scheme with comparison to classical speed-threshold methods. Panels
a and b show occurrence density plots of &19.5 years of Ulysses data as a function of o™t/ 0%t and Sp.
Note the logarithmic colourbar scale. Each plot shows a different threshold chosen to separate the two main
solar wind populations, assumed to represent coronal-hole and streamer-belt winds. Panels ¢ and d present
this classification in linear space. The coronal-hole wind is represented by low o't / 0%t and high S, and
vice versa for the streamer-belt wind. Finally, panels e and f present the resulting mis-classification of solar
wind using the speed-threshold method, in terms of the absolute error.

include a different choice of threshold line which plausibly separates the populations in
the data. Thresholding has been performed twice to highlight the fact that the result is not
specific to a given threshold. Figures 1c and 1d show the results of the classification in
linear space. Despite being a simplistic classification scheme, there are benefits to its use; it
is transparent and based on parameters which are known indicators of solar source regions,
thus reducing the impact of solar wind stream interaction. From panels a, b, ¢ and d it is
inferred that the data found to the left (right) of the classification thresholds are CHW (SBW)
due to their lower (higher) charge state ratios and higher (lower) proton specific entropy.

We make a simple comparison to demonstrate how the classical speed-threshold scheme
does not well-capture the origins of the solar wind, as compared to the intuitive scheme.
The Ulysses data are divided into fast- and slow-stream wind according to various speed
thresholds. We calculate the proportion of points in each case where the results of the speed-
threshold scheme do not agree with the results of the intuitive scheme. The total number of
discrepant points is divided by the total number of points in the data used, giving a fraction
describing the relative difference between the speed-threshold and intuitive schemes. This
is shown in Figures le and 1f.

Whilst differences can be seen due to individual thresholds used in the two intuitive
schemes, it is their similarity which is of most import. Specifically, both show comparative
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inaccuracies of the speed-threshold scheme greater than 10% for all speed thresholds. Al-
ready, this simple scheme highlights the potential shortfalls of the speed-threshold scheme.

4. Machine Learning Schemes

Whilst the intuitive scheme is undoubtedly useful, it still contains subjective decisions about
which parameters to use, the number of solar wind types to identify, and the decision bound-
aries. Here, more objective (data-driven) and mathematical methods are presented. Unsuper-
vised machine learning will be used to create two new classification schemes; with reduced
subjectivity and more algorithmic reproducibility. The latter point specifically contrasting
the choice of decision boundaries by eye.

Machine learning (ML) can be split into two main categories; supervised and unsuper-
vised. Supervised ML describes the techniques which produce and optimise a function to
map from an input (data) to an output (class label), given a set of example (training) input-
output pairs (Russell and Norvig, 2009). By contrast, unsupervised ML describes the subset
of techniques which are used to determine effective ways of mathematically separating data
with no predetermined class labels. Instead of a boundary function being optimised by a pre-
dictive performance metric, the optimisation is often focussed on improving the separation
of data clusters. In this way, unsupervised ML can be applied to data with less bias, allowing
for groupings in the data to be found mathematically rather than being influenced by what
one may expect to find a priori. Unsupervised ML is a data-driven approach to classification.
Its purpose is to determine an underlying structure in the data and find quantitative separa-
tions between discrete regions. As such, the algorithms find that which is already present in
the data (subject to algorithm specific limitations).

The first new scheme will allow for the determination of a third solar wind category. This
category represents data which is difficult to assign to either CHW or SBW, and hence be
referred to as unclassified data. The second proposed scheme will independently determine
the number of solar wind categories.

To cluster the whole Ulysses dataset is a bad idea for several reasons: as previously
mentioned, there is limited pristine data; clustering is computationally expensive; and, it is
inefficient for classifying new data (since the clustering would have to be re-performed).
To address these issues, the clustering is performed on the three latitude scans. This al-
lows the clustering to be performed only on the more pristine data, with higher latitudinal
dependence; provides a more manageable dataset for clustering, reducing computational
complexity; and ensures the ability to classify any new data efficiently.

Subsequently, the results of the clustering are applied to classify ~19.5 years of Ulysses
data and ~13 years of L1 ACE data. The independence of the classifications from solar wind
speed allow them to be applied to the ACE dataset despite significant solar wind stream
interactions.

5. The Bayesian Gaussian Mixture Scheme

Some of the literature regarding solar wind classification is built upon classification bound-
aries which are chosen subjectively (e.g. “arbitrarily” or “by eye”). We present a Bayesian
Gaussian Mixture (BGM) classification scheme which uses unsupervised machine learn-
ing to mathematically determine the optimum data-driven decision boundary between solar
wind types (subject to the suitability of the Gaussian assumption).
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The BGM algorithm iteratively fits a Gaussian mixture (McLachlan and Peel, 2000) to
the data. During each iteration, variational inference is implemented to do two things: firstly,
find the probability of each point being generated by the mixture; and secondly, refit the
mixture to the points using information from the prior distributions (Attias, 2000; Bishop,
2006) (for further information regarding variational inference, see Appendix A). Once con-
vergence has been reached, the algorithm outputs the cluster label for each point (i.e. the
label of the Gaussian in the mixture to which it belongs), and the information describing
the distributions (e.g. mean and variance). The latter information is extremely useful, as it
allows for the Gaussian mixture to be stored, removing the need to run the algorithm every
time. With the Gaussian mixture stored, application to data classification is straightforward:
firstly, each new data point is mapped into the pre-established normalised space; then, the
posterior probability of each component Gaussian given the data point is calculated (further
detail given in Appendix A, or see e.g. Gelman et al., 2013); and finally the point is assigned
to the component with the highest probability of generating it (as per Camporeale, Care,
and Borovsky, 2017). The BGM is here applied using the algorithm from the scikit-learn
package available for python (Pedregosa et al., 2011).

We do not use k-means as Heidrich-Meisner and Wimmer-Schweingruber (2018) have
done. From the standpoint of the objective functions being optimised by k-means and the
BGM (as opposed to the algorithms used to attempt the optimisation), k-means is strictly
a special case of a Gaussian mixture model. That is, if you choose a Gaussian mixture
with K components and fix the Gaussians to be spherical (scalar multiple of the identity
for covariance) then the means of the maximum-likelihood estimate for the mixture are the
centroids that minimise the distance from the data to the centroids. Algorithmically k-means
and the BGM method use different optimisation techniques, but philosophically k-means is
a subset of a Gaussian mixture model. Using a BGM rather than k-means allows for non-
circular clusters to be appropriately described using ellipses, by relaxing the restriction that
the Gaussians must be spherical.

To test the validity of the above arguments against using k-means, we have investigated
how the results differ from the BGM scheme. Overall, the results from k-means are qualita-
tively the same as those from the BGM (i.e. the majority of data are assigned the same class
in both schemes), but with drawbacks. Such drawbacks include an apparent increase in the
mis-classification of Ulysses CHW data, and incongruent speed distributions for the unclas-
sified data between Ulysses and ACE. These differences are due to the comparatively poor
way of determining classification boundaries, and the changes in the objective functions be-
ing optimised. These differences both highlight that k-means is less suited to classification
in the way we have applied the BGM.

The BGM approach allows probabilistic classifications, antithetical to the intuitive
scheme. Whilst fitting Gaussians to data is a common practice, there is the inherent short-
fall of the approximation becoming less valid as a dataset diverges from being normally
distributed. As such, whilst we may be more objective in the fitting procedure and gain in-
formation (e.g. probabilities), the results must always be considered carefully in terms of the
validity of the Gaussian assumption.

Despite the BGM producing probabilistic results, this study will use hard decision bound-
aries. Points will be assigned to the Gaussian which most likely generated it. Such an
approach is entirely adequate for comparing between different solar wind classification
schemes (since most others use hard boundaries). In theory, problems may arise if there
were many data points yielding comparable (60% or 40%) probabilities of belonging to
multiple classes, but in our case fewer than 1-in-10 data points have probabilities below
90%. Hence, minimal data are affected by our use of hard boundaries.
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Each parameter in the dataset is normalised to a zero mean and unit standard deviation to
reduce any bias that the heteroscedasticity of the variables could introduce to the algorithm.
The method of normalisation is through the standard score:

x—
=1"# (1

(e

Here x’ is the normalised value, x is the initial value, p is the mean of the population, and
o is the standard deviation of the population.

The BGM algorithm does require user-specified parameters. i) The number of compo-
nents in the mixture. Since this study focuses on classifying the solar wind into coronal-hole
and streamer-belt wind whilst accounting for data which is difficult to classify, the algo-
rithm is set to fit a three-component Gaussian mixture to the data. ii) The precision prior on
the mean distribution. The motivation of this research is to avoid incorporating bias where
possible. Therefore, the prior was set to be flat, allowing all possible mean positions to be
equally weighted. iii) The number of initialisations. The algorithm was set to perform clus-
tering with 30 random initialisations of the means to ensure that the convergence was not
on a local maximum/minimum. The result with the largest value of the lower bound of the
likelihood is kept. Convergence is reached when the change in likelihood is less than 107>
between iterations. Higher values of the likelihood correspond to higher degrees of confi-
dence that the model could produce the data (see e.g. Gelman et al. (2013) for a detailed
description of likelihood). As such, by choosing the model with the highest lower bound,
the baseline degree of confidence is highest.

The Gaussian mixture best describing the data can be described by the three-component
means [4{_3 (0™ /06+, Sp), covariances cov;_3 (0™ /06+, Sp) and their respective weight-
ings. In the normalised space the means and covariances are as follows:

1 = (~0.3779,0.6252), covy = ( 5000 ~ 0012,

12 = (04235, —1.1145), cov, = ( %710 " 00%),

113 = (3.2836, —0.0057), covs = (500 o).

and the weights are 0.6238, 0.3497, and 0.0265, respectively.

Figure 2a presents the results of applying the BGM clustering algorithm to the latitude-
scan data, and 2b shows how the clusters map to the solar wind speed and proton tempera-
ture. The combination of the two parameters used allow the clustering to map the solar wind
well to either coronal holes or the streamer belt. Cluster one, with low average ot / o+
and high average S, represents CHW. Cluster two, with higher average 0’*/0°" and lower
average S,, represents SBW. Cluster three is thus the unclassified data. The projection of
the clustering into the solar wind proton speed and temperature shows clearly that the clus-
tering is capturing distinct populations. The interaction of CHW and SBW can be seen by
the overlapping of the two groups along the speed axis.

To investigate the stability of the clustering, the procedure was performed a further 300
times using random sub-samples of 90% of the data. Upon completion of each iteration, the
mean value of each component Gaussian was recorded. Once completed, the standard devi-
ations and inter-quartile ranges of the distributions of means are calculated. If the clustering
had found a local maximum/minimum in the data, we would expect there to be significant
differences between the results of a single run compared with the statistical results of many
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Figure 2 Classification with the BGM scheme. Panel a presents the results of Bayesian Gaussian Mixture
algorithm clustering on the normalised O+ /0% and § p data. The plot has been trimmed in both x and y to
better display clusters one and two, as such a small number of data points from clusters two and three are not
shown. Panel b presents the projection of the clustered data into solar wind proton speed and temperature.

Table 1 The results of three-hundred 90% sub-sample runs of the Bayesian Gaussian Mixture algorithm on
the fast latitude-scan Ulysses data. The values in brackets after the component number indicate the number
of data points being included (some are excluded due inconsistent labelling). 1 is the mean of the individual
component means. o is the standard deviation of the means, the value in brackets represents the inter-quartile
range. All values of the mean, standard deviation, and inter-quartile range are given in the normalised space.

Sub-sampled Bayesian Gaussian Mixture Model

Component one (296) Component two (296) Component three (300)
o7+ 0%+ w —0.3778 0.4235 3.281
o 0.0002(0.0003) 0.0052(0.0064) 0.128(0.165)
Sp " 0.6251 —1.115 —0.0093
o 0.0022(0.0028) 0.003(0.005) 0.0704(0.0984)

runs. The results of the analysis are presented in Table 1. The BGM algorithm does not sys-
tematically label the Gaussians and so eight of the recorded mean values were incorporated
into the incorrect group, and thus removed.

The proportionally small standard deviations and inter-quartile ranges signify that the
clustering is stable, and that the individual runs do not deviate greatly from the average
values. The means of the component Gaussians used to classify the data in the normalised
space are [—0.3779, 0.6252], [0.4235, —1.115], and [3.284, —0.0057] for clusters one, two,
and three, respectively. Comparing these values to those presented in Table 1, we see that
they are very much in-line with the standard behaviour.

5.1. BGM Scheme: Application

The clustering described above has been used to develop a solar wind classification scheme,
based on the fast latitude-scan subset of the Ulysses data. In this section we will apply the
classification scheme to the whole Ulysses and ACE datasets.

5.1.1. Ulysses
Figure 3 presents the results of the classification of the whole Ulysses dataset. In Figure 3a
one can see how the SBW (cluster two) appears to deviate from a Gaussian. On the con-

trary (though less obvious from the plot) is that the CHW (cluster one) is well approximated
by a Gaussian, especially in comparison to the SBW. However, a significant portion of the
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Figure 3 Panel a presents the results of applying the BGM fast-latitude-scan classification to the whole
Ulysses dataset, shown in the o'+ /06+ and S space. Cluster one, two, and three represent CHW, SBW,

and unclassified data, respectively. Panel b shows the mis-classification of the data using a simple speed
threshold, both including and excluding unclassified data (as determined by the BGM technique).
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Figure4 The results of applying the BGM scheme to the whole ACE dataset, and the subsequent comparison
to taking speed thresholds. Panels a and b are presented in the same format to Figure 3. Cluster one, two, and
three represent CHW, SBW, and unclassified data, respectively.

data that we might consider to be difficult-to-classify has been captured as such by the algo-
rithm. When compared with taking simple speed thresholds, Figure 3b, there is a minimum
of ~22% disparity in the results. Again, this is highly suggestive that the traditional method
falls short of adequate for many applications. Also shown in Figure 3b is the disparity when
the unclassified data are ignored. This has been included to allow a more like-for-like com-
parison (since both schemes can be considered two-type schemes). In this way the disparity
is reduced to ~6%, suggesting that the speed threshold captures the cores of the clusters.
Nonetheless, the speed-threshold scheme oversimplifies the classification of solar wind data,
and importantly gives too much confidence to the classification of borderline data.

5.1.2. ACE

Figure 4 presents the results of the BGM classification of the whole ACE dataset. In Fig-
ure 4a there are considerable difference as compared with the Ulysses data; as expected,
there is significantly less CHW (cluster one) and more SBW (cluster two). When com-
pared with simple speed-threshold classification, Figure 4b shows that there is a minimum
~18% disparity in the results. Again, ignoring the unclassified data, the disparity is reduced;

though, the same issues persist.
5.2. BGM Scheme: Analysis
To view the way in which the classification of the Ulysses data maps to velocity and solar

latitude, a McComas et al. (2013) style visualisation is presented in Figure 5a. Both the
latitudinal and speed dependent nature are clearly present. These dependent variables have
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Figure 5 The BGM classification of the whole Ulysses dataset. Panel a presents the projection of the BGM
classification scheme onto radial plots of solar wind speed and Ulysses heliospheric latitude. Panel b presents
the fraction of each classification type in each of the octet segments of the plot. Each plot represents an orbit
of Ulysses around the Sun, with the ecliptic plane in the east-west direction. In both panels, time increments
clockwise, starting from aphelion at 8.6 degrees below east. The first and third plots of panels a and b are the
orbits where perihelion occurred at solar minimum, whilst in the middle plots, perihelion occurred at solar
maximum.

not been used in the classification scheme, but the correlation is expected. Capturing the
predicted behaviour shows that the initial choice of parameters is well-informed.

Figure 5b shows that the unclassified data is skewed towards the aphelion of the orbit. It
is worth noting that, due to the slower motion of the spacecraft, there is considerably more
data per latitudinal increment at aphelion than other portions of the orbit. After accounting
for the expected increase in unclassified data, there remains a significant disparity in the
distribution of unclassified data. The aphelion regions of the orbit present more unclassified
data than the perihelion regions.

Figure 6a presents the speed distributions of the three BGM classifications from Ulysses
data. Note that these speeds were not used in the classification in any way. The SBW shows
no significant bi-modality, and appears to follow a Maxwellian distribution. Both the CHW
and the unclassified data show some suggestion of being bi-modal, each with their sec-
ondary peak aligning close to the primary peak of the other (whilst subtle, the secondary
peaks are present, viz. ~ 775 kms~! for the unclassified, and &~ 500 kms~! for the CHW).
This suggests that the classification scheme may be having trouble differentiating between
the two types (see discussion of Figure 7). Figure 6b presents the same distributions, but
obtained from the classification of the ACE dataset. We see the significant drop in CHW, but
observe that the distributions of both CHW and SBW are not double-peaked. The unclassi-
fied data in the ACE classification is considerably flattened, suggesting that the difficulty in
classification may be ubiquitous in the ecliptic plane.
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Figure 6 Distributions of solar wind speeds within each cluster found by applying the BGM classification
scheme. Panels a and b present the comparisons for the distributions in the Ulysses and ACE datasets, respec-
tively. Panels c, d and e present the comparisons of like-clusters between the datasets. The latter panels also
include the mean and inter-quartile range of each distribution.

Figures 6¢, 6d and 6e show direct comparisons of the distributions of solar wind clas-
sifications in the ACE and Ulysses datasets. There is good qualitative agreement in the
distributions of the SBW and unclassified data, suggesting that the scheme well-captures
streamer-belt solar wind structures, as well as consistently identifying the unclassified data.
However, the CHW distributions for ACE and Ulysses are very different. Given the gen-
eral trend of coronal holes towards higher latitudes, observing significantly less CHW in the
ecliptic plane is not unexpected. Furthermore, seeing that the CHW in the ecliptic plane is
generally slower is in line with the idea that the fast wind is slowed down due to stream-
stream interactions in the solar wind. The difference in the unclassified data is almost exclu-
sively related to the amplitude of the peak. The means and inter-quartile ranges show good
agreement.

To better understand the double peak in the Ulysses CHW speed distribution, the data are
further split by spacecraft location. We use a threshold of 600 kms™! to separate the two
CHW peaks. Figure 7 shows the occurrence of the two CHW distributions as a function of
radial distance from the Sun. Given the long orbital duration of Ulysses and its associated
latitudinal variation, the data the spacecraft obtains is convolved with the solar cycle and
latitude. Thus, the average latitude and sunspot number (and the respective standard devia-
tions) are calculated for each histogram bin. The sunspot number shows very little structure,
and no overall trends matching the distributions of radial distance shown. In contrast, there
is a clear trend between the absolute heliospheric latitude and the radial distances contained
within the secondary peak (lower speed) of the CHW speed distribution. The trend suggests
that the majority of the secondary peak data is obtained both far from the Sun and closer to
the ecliptic plane.
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6. The UMAP Scheme

The BGM scheme presents a step forward in creating a classification scheme which is more
objective and physically motivated. However, there remain some drawbacks: only a subset of
the possible parameters are used; there is an inherent assumption that the data are normally
distributed; the number of component Gaussians must be specified in advance (reducing the
objectivity of the scheme); moving to higher dimensions reduces the interpretability of the
results (what does a six-dimensional (6D) Gaussian look like or mean?); and, simply having
three Gaussians does not provide much information about the substructure within each clus-
ter. These issues are addressed by creating a further classification scheme using dimensional
reduction and clustering. This scheme will specifically address the subjectivity introduced
when designating decision boundaries by eye. Further, it will remove the subjectivity in de-
termining the number of types of solar wind by deriving the number of clusters from the
latent structures in the data itself. We will apply the UMAP algorithm for dimension re-
duction, and the Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) algorithm to subsequently cluster the low-dimensional representation of the
data.

Datasets are often expressed in terms of a large number of measurements or features. This
means that each sample in the dataset is expressed as a vector, or point, in a high-dimensional
space. It is often the case that the underlying structure of the dataset as a whole can be
described in terms of a much smaller number of latent features, which dimensional reduction
seeks to determine. More formally, while the ambient space in which a dataset lives may be
high dimensional there often exists a much lower-dimensional manifold from which the data
samples are (noisily) drawn. The UMAP algorithm (Mclnnes, Healy, and Melville, 2018)
seeks to learn the topological structure of this manifold, and then find a low-dimensional
representation of the data that has an equivalent topological structure. In this way UMAP
can transform highly complex datasets into much simpler representations that still capture
meaningful structural features of the original dataset. Due to the algorithm using stochastic
gradient descent (Kusher and Yin, 2003), there are minor variations in results produced by
UMAP each time it is performed. For further technical information, see Appendix B.

The HDBSCAN algorithm (Campello, Moulavi, and Sander, 2013) seeks to find dense
regions (clusters) of a dataset that are otherwise separated from the rest of the data by re-
gions where data are sparse. In particular it seeks to do this even when the dataset contains
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background noise. To achieve this, HDBSCAN makes use of a density threshold (expressed
as a minimum number of data samples required before a region can be considered “dense”)
and constructs a hierarchical tree of contiguous regions of density. Given a minimum size
for a cluster, this tree can then be simplified resulting in a nested hierarchy of clusters. By
selecting out the most persistent such clusters (over ranges of distance scales) a single flat
clustering may be extracted. This results in an output of cluster labels where each point
is either labelled with a cluster identity, or as noise. For further technical information, see
Appendix C.

It is worth noting that the nature of the way UMAP works is almost guaranteed to result
in non-convex clusters, and hence a clustering technique that is robust to this is required. By
necessity this essentially means either a hierarchical method such as single linkage (Florek
et al., 1951) or average linkage (Sokal and Michener, 1958), or a density-based technique
such as density-based spatial clustering of applications with noise (DBSCAN) (Ester et al.,
1996) or mean shift (Fukunaga and Hostetler, 1975) is required. That one should therefore
consider the hybrid hierarchical density-based approach of HDBSCAN, over more simplis-
tic methods such as k-means, is entirely natural.

UMAP does not limit the number of parameters that can be used. We apply UMAP to
all of the non-evolving parameters (O’* /0%, C** /C°*, Fe/O, < gr. >, He?* /H'T and
Sp). This 6D data-structure is projected into 2D, allowing subsequent clustering to be in-
dependent of any potential user-biases, since there is not a physical interpretation of the
reduced-dimension axes (McInnes, Healy, and Melville, 2018). Whilst the axes are some
non-linear function of the input dimensions, it is not possible to derive this function from
the mapping. HDBSCAN clustering does not require any user-specified number of clusters,
instead finding groupings by the intrinsic density structures present in the data.

As with the BGM scheme, the UMAP classifications are determined using the Ulysses
fast latitude-scan data. The data is normalised using the MinMaxScaler function available in
scikit-learn, as shown in the documentation for UMAP. This method individually normalises
all of the parameters to be in the 0— 1 range:

X; — min{X}

Xsraled - m (2)
where X.qeq 1S the scaled value, X; is the un-scaled data value, and min{ X} and max{X} are
the corresponding minimum and maximum values of that parameter. It is of no consequence
that different normalisation schemes are used between the UMAP and BGM schemes, since
comparison is only made in real space. Normalisation is simply a tool to facilitate unbi-
ased dimension reduction and classification on a per-scheme basis. The normalised dataset
is then reduced and clustered. The function mapping from 6D to 2D is stored, as are the
classification parameters obtained by HDBSCAN.

Figure 8a presents the results of reducing and clustering the latitude-scan data. Figures 8b
and 8c present the clustering projected into the O’*/0%" and Sp, and proton speed and
temperature spaces, respectively.

To stress a point, the dimension reduction is simply one of the steps required to build the
classification scheme. The lack of physical interpretation of the 2D space axes adds to the
validity of the results, rather than facilitating the influence of current scientific ideas on the
classification. The classification becomes entirely based on the latent structure in the data
and as such, independent of biases or expectations we may hold.

The data in Figure 8a shows distinct groupings in the data. This implies that there are
fundamental differences between the three groups in the 6D space. By inspecting panels b
and c it is apparent that the distinction is the type of solar wind present. From panel b we
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Figure 8 The results of performing the UMAP dimension reduction and HDBSCAN clustering on the
Ulysses fast latitude-scan data. Panel a presents the dimensional reduction and subsequent clustering of the
non-time-evolving solar wind parameters. Panel b presents the clustering of the reduced data projected onto
the 07+ /O6Jr and S), space used in the previous two classification schemes. Panel ¢ presents the clustering
projected onto solar wind speed and proton temperature. From the latter panels it is inferred that clusters one,
two, and three represent CHW, SBW and unclassified data, respectively. The contours are representative of
the point density of data. Given the two different contours and that the data remains largely the same as in
Figure 2, colourbars are not included. The noisy, final contour line is at the one-point level.

infer that cluster one is CHW, cluster two is SBW, and cluster three is the unclassified data.
However, the unclassified data is more complicated than with the BGM scheme. Here, there
are four distinct regions. Because the UMAP reduction preserves the latent structure of the
higher-dimensional space, the isolation of the groupings provides information. The spatial
separation between the unclassified data associated with the CHW, SBW or middle cluster
suggests that in these are fundamentally different from one another. However, within-cluster
separation of the unclassified data does not necessarily imply fundamental differences, since
this could just be an artefact of imperfect projection of the 6D structure onto the 2D plane.

The distribution of the unclassified data is different in each of panels b and c. In panel b
much of the unclassified data is grouped in the region where the CHW and SBW signatures
overlap. This is expected due to the region being where the parameter values transition
between the two types of solar origin, and as such classification uncertainty should exist.
The remaining unclassified data which is spread throughout the CHW and SBW is due to
the small pockets of unclassified data connected to each of the clusters in panel a. In panel c
the unclassified data is more evenly spread around the core regions of each group. Had the
unclassified data been grouped where the faster and slower regions overlapped, it would have
suggested that the speed could be providing useful information about the types of solar wind
present. Since it was not, the stream speed of the solar wind appears to be a less-informative
parameter for classification schemes such as this one.

Since the UMAP reduction aims to maintain the structures in the 6D space, one can
extract information based on the structures present in the data. The CHW group shows more
spread in its internal structure, despite being understood to be less variable than SBW. This
could suggest that there is some underlying variability in the CHW’s parameter space, or
that the manifold covering the CHW is a shape that does not lend itself to 2D reduction (e.g.
a spherical manifold is difficult to project into 2D whilst retaining the topological structure).

@ Springer



41 Page 16 of 29 T. Bloch et al.

a)

Arbitray Axis

Arbitray Axis

e Cluster 1(19720) Cluster 2 (22154) « Cluster 3 (3589)

«
-
o
S

b)

<)

)
S

3
=)

—— Abs error (inc. unclassified)
—— Abs error (w/o unclassified)

IS
S

Percentage, %

17.403%
10.324%

N
°

Proton specific entropy (K/m~-3/2)

0.8 1.0 300 400 700 800

0.4 0.6 500 600
07+ to 06+ ratio Threshold speed, kms-1

Figure 9 The results of classifying the full Ulysses dataset using the determined UMAP classification
scheme. Panel a presents the whole Ulysses dataset reduced to 2D, and the results of the subsequent mapping
to the clustering model created using the latitude-scan data. Panel b presents the clustering of the reduced
data projected into o7+ / 0%t and § p space. The contours are representative of the point density of data as in
Figure 8, showing similar data to Figure 3. Panel c presents the comparison between the UMAP classification
scheme and the traditional speed-threshold scheme. Clusters one, two, and three represent CHW, SBW and
unclassified data, respectively.

6.1. UMAP Scheme: Application

The BGM scheme allows a simple way of classifying new data (the probabilities of each
Gaussian giving the data). Using UMAP and HDBSCAN is not quite as straightforward.
Fortunately, both techniques (as well as the scikit-learn MinMaxScaler) allow for the created
mappings to be stored and applied to new data. In this way, reducing and clustering the whole
Ulysses and ACE datasets is both straightforward and consistent.

6.1.1. Ulysses

Figure 9a presents the results of projecting the entire Ulysses dataset to the reduced-
dimension space and the subsequent clustering. The data maintains the structure found in
the reduction of the fast latitude scans. However, there are larger pockets of unclassified
data, as well as significant linkage between the central unclassified data and clusters one
and two. These features are likely to be the cause of the increased amount of unclassified
data dispersed throughout the CHW in Figure 9b. There is proportionally more unclassified
data present than there was in the original fast latitude-scan result. However, as shown in
previous sections, the data being used is expected to be more variable and thus, may exhibit
more unclassified data. Again, this scheme yields large disparities with the speed-threshold
scheme; ~20% (*~10% excluding the unclassified data).

6.1.2. ACE
The UMAP classification scheme is now applied to data from the ACE spacecraft; Fig-

ure 10 shows the results. Whereas the classification of the Ulysses data resulted in an almost
even split between CHW and SBW with some unclassified data interspersed throughout, the
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Figure 10 The results of classifying the ACE dataset using the determined UMAP classification scheme.
Panel a presents the whole ACE dataset reduced to 2D, and the results of the subsequent mapping to the
clustering model created using the fast latitude-scan data. Panel b presents the clustering of the reduced data
projected into o'+ / 0% and § p space. The contours are representative of the point density of data as in
Figure 8, showing similar data to Figure 4. Panel c presents the comparison between the UMAP classification
scheme and the traditional speed-threshold scheme. Clusters one, two, and three represent CHW, SBW and
unclassified data, respectively.

ACE results shown in Figure 10a are dominated by SBW, with only a small fraction being
CHW or unclassified data. Comparing with the BGM scheme, the UMAP scheme identifies
approximately half (proportionally) as much CHW.

Comparing to the speed-threshold method, we see that the UMAP classification of ACE
data has a disparity of 8% (4% excluding unclassified data). This suggests closer agree-
ment of UMAP with the traditional method than any of the other classifications. Such a
low disparity is promising for the speed-threshold method. However, taking a threshold for
skewed data may not be a fair way to split the data. Taking a speed threshold above any
value found in the data gives a prediction error rate of ~9%, simply due to small ratio of
CHW and unclassified data to SBW.

6.2. UMAP Scheme: Analysis

To further validate the UMAP scheme, radial plots are shown in Figure 11. As before, the
plots show that the classification scheme captures the overall speed and latitudinal depen-
dence in the data (despite neither being used in the classification scheme itself). Whilst there
is good agreement between the UMAP and BGM radial plots (Figures 11a and 5a, respec-
tively), it is the differences which are interesting. The UMAP scheme unclassified data is
more uniformly distributed and there is an increased amount of CHW at lower speeds as
compared with the BGM scheme results. The first point is further evidenced in Figure 11b
where the fraction of unclassified data is clearly more evenly spread throughout the octet of
bins. This implies that the UMAP scheme is more able to classify points at the aphelion of
the orbit in the ecliptic plane.

Figure 12 shows the distributions of the different solar wind classifications as a function
of solar wind speed. The CHW and SBW distributions of the Ulysses data in panel a match
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Figure 11 Plots showing how the UMAP classification of the whole Ulysses dataset maps to solar wind
speed and solar latitude across its three orbits, as well as how the distribution of unclassified data changes
over these orbits. Panels a and b are presented identically to those for the BGM scheme in Figure 5.

well with the distributions found from the BGM classification, including the secondary peak
in the CHW. However, the unclassified data exhibits a more significantly bi-modal distribu-
tion. The peaks of the bi-modality align with the peak of the SBW and primary peak of
the CHW. This may suggest that the unclassified data is comprised of points which lie in
the tails of the CHW and SBW 6D distributions. Furthermore, the ACE data distribution
matches the equivalent BGM result, despite displaying a heavy-tail distribution. The unclas-
sified data, again, displays a bi-modal distribution, and the CHW is too sparse to make a fair
comparison of anything but the predicted occurrence rate.

The comparative plots in Figures 12c, 12d and 12e present the differences between the
distributions more clearly. In panel c the overall similarity is clear, though the ACE distri-
bution shows the heavy tail. In panel d the peaks of the unclassified ACE data are shifted
towards lower speeds. Finally, panel e shows further expected behaviour; the CHW from
ACE is slower and a relatively minor contribution.

As with the BGM scheme, the double peak in CHW has been investigated, yielding
results which are qualitatively equivalent to the results presented in Figure 7.

7. Discussion

The intuitive classification scheme, wherein an arbitrary threshold is applied to non-evolving
solar wind parameters (such as ion charge states ratios and proton entropy), is a bridge be-
tween simple solar wind speed-threshold classification and the machine learning methods
presented herein. It shows significant differences to the speed-threshold method. The lat-
ter method is not without its merits, for many applications the speed of the solar wind is
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Figure 12 The distributions of solar wind speeds within each UMAP classification. Panels a and b present
the comparisons for the distributions in the Ulysses and ACE datasets, respectively. Panels c, d and e present
the comparisons of like-clusters between datasets. The latter panels also include the mean and inter-quartile
ranges of each distribution.

the driving factor. However, in situations where the solar source is important, simply split-
ting the solar wind up using arbitrary speeds may be misleading. The disparity of ~10% to
~11% between the intuitive scheme and the speed-threshold scheme highlights the poten-
tial flaws in statistical analyses performed using solar wind data. The two intuitive scheme
classification boundaries in Figures 1a and 1b are quite different. One has twice the gradient
of the other in linear space, yet they produce similar results in terms of coronal-hole and
streamer-belt winds, suggesting a degree of robustness in the classifications. However, this
approach is entirely deterministic and there is no means to assess uncertain or difficult-to-
classify solar wind intervals.

The BGM scheme mathematically extends the intuitive scheme using the same parame-
ters, 0’* /0% and § »- Instead of using visual inspection, classification boundaries are de-
rived by optimising the fit of a Gaussian mixture to the Ulysses fast latitude-scan data. This
method also allows for the inclusion of a third category: unclassified data. The stability of
the classification is assessed through repeated trials on sub-samples of the data, and found to
be robust. Applying the classification scheme to the whole of the ACE and Ulysses datasets
shows, again, significant disparities with the speed-threshold method: ~18% and ~22%,
respectively. As expected, much less CHW is found in the ACE dataset than the full Ulysses
dataset.

The unclassified Ulysses data was found to be skewed towards the aphelion of the orbit.
This could be indicative of the increased time that turbulence or solar wind stream interac-
tions have to develop before reaching Ulysses. It may be that the assumption of no plasma
mixing breaks down on these long timescales, either as a result of differential streaming of
ions (Marsch, 2006; Schwadron et al., 2005) or magnetic reconnection (Gosling, 2012).
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The similarity of the speed distributions, Figure 6, in the Ulysses and ACE SBW sug-
gests repeatable classification despite the different occurrence density in the two datasets.
The slightly higher mean speed for SBW at Ulysses compared to ACE is consistent with
the increased radial distance and hence continued acceleration and/or interaction time with
faster CHW. The CHW distributions, however, show little similarity. This shows there are
quantitative differences in the speed of CHW streams in and out of the ecliptic plane. A
low-speed CHW population is found primarily at the aphelion of the orbit and perihelion at
low latitudes (the aphelion data is also generally closer to the ecliptic plane). This could be
a further result of the factors causing the unclassified data to be skewed towards the aphe-
lion of the orbit (e.g. turbulence, stream interactions, differential streaming and magnetic
reconnection).

The UMAP scheme builds on the principles of the previous schemes: choosing non-
evolving parameters for classification, and using the fast latitude-scan data to establish the
classifications. Unlike the BGM scheme, there is no user-specified number of categories to
discover, nor is the distribution of data assumed to approximate a multivariate Gaussian.
The UMAP algorithm takes six non-evolving parameters (O’* /0%, C®F/C>*, FelO, <
gre >, He?* /H'*, and S,) and approximates the latent structure of the space into a 2D
representation. The reduced data presented in Figure 8a shows that there are two primary
groupings in the data, as well as another small grouping. The clusters in the data are extracted
using HDBSCAN, a density-based clustering algorithm. By mapping the clusters from the
arbitrary 2D space into O'"/O°" and § »» Figure 8b, it is clear that the groupings in the data
match well with the expected properties of CHW and SBW. Such information is determined
using accepted domain-specific knowledge about the solar wind (e.g. CHW is generally
cooler and has higher S,). Furthermore, the majority of the unclassified data is found in
the boundary region between the CHW and SBW, supporting the idea that it is difficult to
definitively classify, especially in a lower-dimensional representation.

When applying the UMAP classification scheme to the whole Ulysses data, Figure 9a,
the two primary clusters become saturated with data points. There is a proportional increase
in the amount of both CHW and unclassified data. As with the BGM scheme, there is a
large disparity in the comparison with taking speed thresholds: ~20%. The application of
the UMAP scheme to the ACE dataset, Figure 10a, shows a lack of CHW. Interestingly, in
Figure 10c we see much better agreement between the speed-threshold classification and
the results of the UMAP scheme on the ACE data, ~8%. However, the results are not much
better than just classifying everything as SBW, as one may expect with such skewed data.
Despite the link between the CHW and unclassified data, the latter shows very little depen-
dence on the orbital position in Figure 11b.

Comparing the speed distributions of each class, we see qualitative similarities with the
results of the BGM scheme: the SBW speed distributions match well, though the ACE distri-
bution displays a heavy tail, and the CHW is bi-modal. Different however, are the unclassi-
fied data distributions, which are also bi-modal. This highlights the different ways in which
the unclassified data is characterised in the two schemes. The UMAP results show double-
peaks in speed close to the peaks of the CHW and SBW. This suggests that the unclassified
data may be data which belongs to one or other of the distributions, whose parameters devi-
ate from their respective norm.

In Figure 12d, the peaks of the unclassified ACE data are shifted towards lower speeds.
This is contrary to the expectation of the slower stream to be sped up and the faster stream
slowed down, due to stream interactions. As such, the data may signify that the unclassified
data comprises solar wind transients (all slowed due to the increase in SBW in the ecliptic
plane). Else, there may be a process acting to generally slow the unclassified data found in
the ecliptic plane.
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Table 2 The proportions of each

solar wind type found when SW Type S15 BGM UMAP
classifying Ulysses data. S15
refers to the results of Stakhiv CHW ~38.8% ~40.3%
et al. (2015). BGM and UMAP SBW ~44.7% ~48.3%
refer to the results of the Unclassified ~16.5% ~113%
presented classification schemes.

Fast ~20%

Slow ~65%

Intermediate ~15%

Table 3 The proportions of each solar wind type found when classifying ACE or OMNI data. The column la-
bels refer to Zhao, Zurbuchen, and Fisk (2009), Zhao et al. (2017), Xu and Borovsky (2015), and Camporeale,
Care, and Borovsky (2017), respectively. BGM and UMAP refer to the results of the presented classification
schemes. AR refers to active-regions and SR refers to sector-reversal regions.

SW Type Z09 Z17 X15 Cl17 BGM UMAP
CHW ~58% ~8.2% ~25.2% ~20.4% ~8.4% ~4.8%
SBW ~41.7% ~27.6% ~78.9% ~90.9%
Unclassified ~12.7% ~4.4%
Non-CHW ~37%

ICME ~5%

CH-boundary ~10.2%

Quiet Sun ~25.6%

AR ~31.1%

AR boundary ~10.8%

Helmet streamer ~13%

Ejecta ~12.9% ~13.9%

SR region ~20.2% ~38.0%

The heavy-tail distribution of the ACE SBW (classified by UMAP) may suggest that a
more complex model is required to characterise all of the structure in the data. Alternatively,
it may highlight the presence of another process which accelerates SBW in the ecliptic plane,
such as interactions with faster CHW or the inclusion of more solar wind transients (e.g.
ICMESs). Investigating the slower CHW peak in the Ulysses data produces the same results
as for the BGM scheme. The data within the peak is largely from the aphelion of the orbit.

Tables 2 and 3 show the distributions of the classification results from some of the pa-
pers discussed in the introduction. This, again, draws attention to the lack of consensus on
how the solar wind should be classified. Note that these comparisons are relate only to pro-
portions, since the results are not all obtained from the same data. Direct comparison of
classifications for the same data are given in Table 4.

Of the classification schemes mentioned, only Stakhiv et al. (2015) (S15) have results
for classifying Ulysses data. The results in Table 2 have been estimated from their Figure 5.
These results show less fast and more slow wind than we find of our comparable CHW and
SBW, respectively. However, these differences are reduced if we account for the errors we
predict for taking such speed thresholds.

Both of Zhao, Zurbuchen, and Fisk (2009) and Zhao et al. (2017) (Z09 and Z17) have
results from classifying ACE data, though the latter paper is more difficult to compare given
its six-type classification scheme. The results in Table 3 are estimated from Figure 1 of
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Table 4 Confusion matrices (contingency tables) inter-comparing the classification results of various
schemes on ACE or OMNI data. The column labels refer to Zhao, Zurbuchen, and Fisk (2009) and Cam-
poreale, Care, and Borovsky (2017). BGM and UMAP refer to the presented classification schemes. C17’s
results are obtained by matching timestamps between the data provided in their paper with those in either the
BGM or UMAP scheme. Z09’s results are obtained by applying the classification criteria from their paper to
the data used in the BGM or UMAP scheme. The green highlighting serves to draw attention to the diagonals,
which represent the number of samples of agreed classifications between any two schemes.

UMAP C17 709

CHW SBW Ej/Unc COW SBW  Ej/Unc CHW SBW Ej/Unc

Ban | CHW [887 | 802 392 CHW | 2036 @ 181 71 CHW | 38194 0 0
SBW 7117668 302 SBW 3585 | 22677 3496 SBW 15425 | 13620 1017
Ej/Unc 527 3023 152 | Ej/Unc 1856 1522 1421 | Ej/Unc 626 514 3712
CHW SBW  Ej/Unc CHW SBW  Ej/Unc

UMap | CHW (1129 18 38 CHW | 1092 17 15

SBW 4549 | 13774 3286 SBW 11725 | 8106 1678

Ej/Unc 560 162 124 | Ej/Unc 772 220 40

CHW SBW  Ej/Unc

o1r CHW | 6205 390 1692

SBW 11450 | 11507 1423

Ej/Unc 1396 2019 | 1573

709 and Figure 6 in Z17. The Z09 results do not match well with the CHW or SBW re-
sults of either the BGM or UMAP scheme. However, the ICME value is not dissimilar to
UMAP’s unclassified data, possibly supporting the idea that the unclassified data (especially
in the UMAP scheme) could be composed of ICMEs and other transients. Z17’s pure CHW
shows good agreement with our results (especially from the BGM classification). If the CH-
boundary class is taken as a part of the CHW, then the agreement diminishes. The rest of the
classifications are not usefully comparable due to the differences to our scheme.

Both Xu and Borovsky (2015) (X15) and Camporeale, Care, and Borovsky (2017) (C17)
apply their classifications to OMNI data (King and Papitashvili, 2005). This incorporates
ACE data as well as other data from L1, allowing comparison. The results in Table 3 are
taken from Table 3 in X15, and the results of the C17 classification (see their acknowl-
edgements for data location). The X15 results differ from those found with our schemes.
However, if we consider that the sector-reversal region solar wind is a part of our SBW, then
there is some agreement between these results and those from the BGM classification (the
UMAP classification still differs significantly). The C17 results differ slightly from those of
X135, and present more agreement with our results.

To compare some of these results in a more rigorous way, Table 4 presents confusion
matrices (contingency tables) comparing the results of two of the schemes on the same data.
The Z09 and C17 results have been simplified by assuming the non-CHW is equivalent to
our SBW, and combining the SBW and sector-reversal region wind, respectively.

Most noteworthy of these results is the agreement between what the BGM and UMAP
schemes classify as CHW compared with the Z09 and C17 schemes. This is exemplified
by the horizontal rows of CHW from the BGM and UMAP. In these rows the proportion
of what our schemes classify as CHW and the other schemes classify otherwise (reading
along horizontally) is very low. However, reading vertically along the CHW columns, we
see there are many samples in other columns. This suggests that our schemes (trained on the
Ulysses data) provide accurate-but-conservative classifications of CHW as compared to the
other models.

Comparison between each of our (BGM and UMAP) SBW classifications to Z09’s and
C17’s schemes present less consistent results. The BGM:C17 and UMAP:C17 results are
broadly in agreement, with the majority of our SBW also being classed as SBW by the other
schemes. In contrast, the Z09 scheme classifies the majority of solar wind as CHW. Hence,
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the results of our classifications are in conflict (as are the Z09 in conflict with all of the
others in Table 3).

Given the disparate methods of determining the ejecta/unclassified wind, it is unsurpris-
ing that there is little agreement between any of the schemes (save some between the BGM
and Z09 schemes). Using a broadened feature space for the UMAP scheme and identifying
an unclassified cluster not found in the BGM scheme highlights the importance of applying
domain-specific knowledge, even in data-driven approaches.

The inter-comparison between the BGM and UMAP schemes quantifies the evident dif-
ferences and similarities between the two methods. As one may expect from the comparisons
of speed distributions, the SBW is in good agreement. However, the CHW is more diverse.
Given the larger feature space, and less constraining method of clustering, we would posit
that the UMAP CHW is a more accurate representation of the class. It is more difficult to
comment on the accuracy of the unclassified wind from UMAP given that there are contri-
butions from other areas of the feature space.

We acknowledge that there may be some systematic bias in the classifications of ACE
data. It is possible that by limiting the training set to the Ulysses latitude scans, we created
classification boundaries which generalise less well to the ACE data (despite our use of
non-evolving parameters). One potential source of this may be that our training data heavily
samples very large polar-coronal holes. As such, in the ecliptic plane where we see generally
smaller coronal holes, and are more likely to sample boundary regions (see the percentages
of CHW and CH-boundary wind in the Z17 column of Table 3), the algorithms may classify
such winds as SBW mistakenly.

Whilst our choice of training data may bias the classification, the benefits of training
on out-of-ecliptic data which samples almost the entire range of heliospheric latitudes are
significant: a more complete range of solar wind is sampled, and that wind is less likely to be
interfered with by processes relating to stream interaction. Furthermore, it should be noted
that discovering results which differ from the norm when using novel techniques does not
necessarily mean the results are wrong. It could very well be the case that there is less CHW
in the ecliptic plane than current classifications recognise.

8. Conclusions

This work presents two novel, data-driven schemes to classify the solar origin of solar wind
streams using unsupervised machine learning. The schemes are built using non-evolving
parameters which retain information about the source regions. Each classification model is
created using the Ulysses fast latitude-scan data, before being applied to the whole Ulysses
and ACE datasets. The BGM scheme reduces the subjectivity in determining classification
boundaries between solar wind types. It was specified to fit three clusters in the solar wind
data. As expected, two of these are the coronal-hole and streamer-belt winds. The third
remains unclassified. The UMAP scheme addresses subjectivity in the choices of decision
boundaries and the number of clusters to find in the data; it independently derives three
clusters in the latent topological structure of the solar wind data. These clusters correspond
to coronal-hole and streamer-belt winds as before, but find a different type of unclassified
solar wind. Application of the UMAP scheme to Ulysses and ACE shows morphological
differences in the coronal-hole wind seen in and out of the ecliptic plane.

For both schemes, and both spacecraft datasets, the classification results are compared
with the traditional approach of taking speed thresholds. In each case, there are significant
best case disparities between the speed-threshold approach relative to the machine learning
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classifications: The BGM scheme applied to Ulysses, ~22% and ACE, ~18%; the UMAP
scheme applied to Ulysses, ~20% and ACE, ~8%.

Whilst our results differ from those of other works, our data-driven methods are designed
to increase objectivity and reduce the introduction of scientifically subjective biases. Thus,
the differences do not take away from the results presented. Instead, such differences should
motivate further work investigating objective methods of solar wind classification, and their
differences to current schemes.
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Appendix A: Bayesian Statistics and Variational Inference

Bayes’ theorem is the statistical description of the probability that an event happens, given
some prior knowledge of the conditions of the event. Bayes’ theorem is notated, for two
events A and B, as
P(A|B)= P(BIA)P(A),
P(B)

where P(A | B) (the posterior probability) is the conditional probability that event A oc-
curs given event B, P(B | A) (the likelihood) is the conditional probability that event B
occurs given event A, and P (A) (the prior probability) and P (B) (marginal likelihood) are
the probabilities of events A and B happening independently. In Bayesian inference, the
interpretation of the posterior probability is the degree of belief in a hypothesis. This can
be envisioned as a situation where you have a number of Gaussians from which a point
measurement may be sampled (e.g. a solar wind measurement and Gaussian mixture for its
classification). To determine which Gaussian is most likely given the data point, you calcu-
late the posterior using Bayes’ theorem, taking each Gaussian, A, given the data point, B,
and compare the probabilities for each Gaussian.
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Variational inference (used in the BGM) is an extension to Bayesian inference developed
for ML and is a current area of research in statistics. A brief description will be given here
based on the work of Blei, Kucukelbir, and McAuliffe (2017) and Gelman et al. (2013). Vari-
ational inference is a method used to approximate probability densities through optimisation,
rather than sampling techniques (e.g. Markov Chain Monte Carlo, MCMC). MCMC is used
to create an empirical estimate of the posterior distribution based on collected samples, and
is very effective on smaller or more simple models. However, when models are complex or
datasets are large a different approach is needed for computational practicality. Variational
inference chooses a family of probability density functions (PDFs) as an approximation to
the true PDF. The member of the PDF family which minimises the Kullback—Leibler (KL)
divergence to the exact posterior is sought (explained further, below). The member which
minimises the KL divergence is then optimised and used as the approximate distribution
for the posterior distribution. Variational inference is usually faster than MCMC methods
and better suited to scaling for large datasets. The drawback is that while MCMC is known
to converge asymptotically to the correct solution, variational inference is not. Despite this,
Figure 3 and Table 1 in Blei and Jordan (2006), show how variational inference can be much
faster, while also remaining competitive to MCMC methods.

The Kullback-Leibler divergence is a measure of how one probability distribution di-
verges from another (for the derivation and further information, see Kullback, 1978). For
the probability distribution of a continuous random variable x the Kullback-Leibler diver-
gence, Dk (P||Q) of distribution Q(x) from a given distribution P (x) is defined as:

DKL<P||Q)=f p(x)log(M)dx,
—o0 q(x)

where p(x) and ¢ (x) are the probability densities of P(x) and Q(x), respectively.

Appendix B: Uniform Manifold Approximation and Projection

Expanding on the description given in Section 6, the following will discuss the methodology
of the UMAP dimension reduction technique using the appropriate mathematical terminol-
ogy. This description is quite involved, but should provide an interested reader with all of
the vocabulary needed to further investigate the algorithm. Naturally, the full mathematical
description is given in Mclnnes, Healy, and Melville (2018).

The field of topological data analysis (Carlsson, 2009) uses methods from topology to
better understand complex datasets. One such technique is the construction of the Cech
complex (Ghrist, 2014) which provides a combinatorial representation of a topological space
inferred from a given dataset. To construct the Cech complex one forms a cover given by
open balls of a fixed radius about each of the datapoints. The Cech complex is then the
simplicial complex (Ghrist, 2014) given by the nerve of that open cover (see, e.g. Ghrist,
2014, for more detail)). Informally the process proceeds essentially as follows: to each open
ball one assigns a point; whenever a pair of open balls have non-empty intersection one
joins the corresponding points with line segment; whenever three open balls share a non-
empty intersection one adds a filled triangle joining the points; and so on, adding higher
dimension pieces for more complex intersections. By the nerve theorem (Borsuk, 1948), the
resulting simplicial complex is homotopy equivalent (Ghrist, 2014) to the manifold formed
by the union of the open cover. Informally, the topological space pieced together by points,
lines, triangles, tetrahedrons, efc., captures the same fundamental topological structure as
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the space being covered by open balls. In this manner manifold structure latent in data can
be discovered.

Unfortunately this will only successfully capture the underlying manifold from which
the data was drawn when the data samples are uniformly distributed on the manifold. Since
this is rarely the case for data under the ambient metric we must instead use the existing
data distribution to infer the Riemannian metric on the manifold that would result in such
a uniform distribution. This can be done by examining local data distributions and approxi-
mating a locally constant Riemannian metric at each point. While this recovers the uniform
distribution assumption it introduces a new difficulty in that the metric spaces local to each
point are mutually incompatible.

By translating the local metric spaces into fuzzy simplicial sets (see Spivak, 2012; Go-
erss and Jardine, 2009) the incompatibility can be overcome by taking the union of the entire
family of fuzzy simplicial sets. The result is a single fuzzy simplicial set that provides a co-
herent view of the topological structure of the underlying manifold from which the data was
sampled. UMAP then uses an optimisation process to find a low-dimensional representa-
tion of the data that has a fuzzy simplicial set representation that matches the topological
representation of the source dataset as closely as possible.

Appendix C: Hierarchical Density Based Spatial Clustering
for Applications with Noise

As with Appendix B, we present an extension to the description of HDBSCAN given in
Section 6. Again, it is quite involved, but should be of interest to those familiar with ML or
who wish to learn more.

A dataset of measurements can be assumed to have been (noisily) sampled from some
probability density function. ‘Noisily sampled’ in this case refers to sampling a value when
there is noise (e.g. the inherent uncertainty in spacecraft measurements). Given a probability
density function f, where f (x) is the likelihood of sampling a point x and fR,, fx)dx =1,
one can consider the level sets {x € R" | f(x) > A}. As A > 0 varies these level sets will nest
in such a way as to form an infinite tree, called the cluster tree. Each cluster is a branch of
the tree, extending over the range of XA values for which it is distinct. The goal of hierarchical
density-based clustering algorithms is to approximate this cluster tree given only a finite set
of sampled data.

Classical hierarchical clustering techniques such as single linkage clustering (Everitt
et al., 2011) provide a partial solution. Results by Hartigan (1981) demonstrate consis-
tency with the cluster tree for single linkage clustering in the case of 1D data. In higher
dimensions, however, single linkage clustering becomes too sensitive to noise: it suffers
from chaining effects where spurious points result in clusters merging prematurely. To rem-
edy this we need to introduce a notion of density. Let X = {x;, x5, ...,xy} C R" be the
dataset, and define the core-distance k(x;) of a point x; as the distance to the kth nearest
neighbour of x;. The core-distance can act as a proxy for density (since sparse areas of
the sample space will have larger core-distances). We can then define a new metric, called
mutual-reachability-distance, defined as

max{k (x;), k£ (x;), lx; — xjll2}  x; # x;,

0 Xi =Xj.

d(x;, xj) = {
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In effect the mutual-reachability distance between a pair of points is the smallest distance
scale at which both points will be dense and considered to be neighbouring each other. Per-
forming single linkage clustering under this new density-sensitive metric yields a more ro-
bust clustering algorithm that can be shown to converge to the cluster tree of the probability
density function from which the data was drawn Eldridge, Belkin, and Wang (2015).

The resulting cluster hierarchy is often exceptionally complex. Much of the complexity is
the result of single, or small numbers of, points separating off into new clusters. To simplify
the resulting cluster hierarchy we can consider a minimum allowable cluster size m. We
can then re-process the hierarchy considering any child cluster with fewer than m points
to be spurious—we denote those points as “falling out of the parent cluster”. The resulting
simplified tree allows for better cluster analysis. A further step can then be taken by selecting
those clusters within the tree that persist for the largest ranges of distance scales. This can
be posed as a simple optimisation problem using the notion of relative-excess-of-mass from
probability theory. This allows for the production of a flat clustering where each data point is
either assigned a cluster label or, if it fell out of a cluster further up the hierarchy, is labelled
as noise.

References

Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. Solar Phys. 9(1),
131. DOL.

Antiochos, S.K., Mikié, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow
solar wind. Astrophys. J. 731(2), 2 DOI.

Attias, H.: 2000, A variational Bayesian framework for graphical models. Adv. Neural Inf. 12, 209. ISBN
0262194503.

Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J., Tsu-
rutani, B.T.: 1992, The magnetic field investigation on the Ulysses mission: instrumentation and prelim-
inary scientific results. Astron. Astrophys. Suppl. Ser. 92, 221.

Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E.,
Sakurai, R.K.: 1992, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. 92, 237.

Bishop, C.M.: 2006, Pattern Recognition and Machine Learning, 1st edn. Springer, Cambridge. ISBN 978-
0-387-31073-2.

Blei, D.M., Jordan, M.I.: 2006, Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1),
121. DOIL. http://projecteuclid.org/euclid.ba/1340371077.

Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: 2017, Variational inference: a review for statisticians. J. Am.
Stat. Assoc. 112(518), 859. DOI.

Borovsky, J.E., Denton, M.H.: 2016, The trailing edges of high-speed streams at 1 AU. J. Geophys. Res.
121(7), 6107. DOI.

Borsuk, K.: 1948, On the imbedding of systems of compacta in simplicial complexes. Fundam. Math. 35,
217. DOL.

Brooks, D.H., Ugarte-Urra, 1., Warren, H.P.: 2015, Full-Sun observations for identifying the source of the
slow solar wind. Nat. Commun. 6(1), 5947. DOI.

Burlaga, L.F., Mish, W.H., Whang, Y.C.: 1990, Coalescence of recurrent streams of different sizes and am-
plitudes. J. Geophys. Res. 95(A4), 4247. DOI.

Campello, R.J.G.B., Moulavi, D., Sander, J.: 2013, Density-based clustering based on hierarchical density
estimates. Lec. Notes Computer Sci. 7819, 160. DOI.

Camporeale, E., Care, A., Borovsky, J.E.: 2017, Classification of solar wind with machine learning. J. Geo-
phys. Res. 122(11), 10,910. DOI.

Camporeale, E., Wing, S., Johnson, J.R.: 2018, Machine Learning Techniques for Space Weather, 1st edn.
Elsevier, Amsterdam. DOI. ISBN 9780128117880.

Cane, H.V,, Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during
1996-2002. J. Geophys. Res. 108, 1156. DOI.

Carlsson, G.: 2009, Topology and data. Bull. Am. Math. Soc. 46(2), 255. DOI. http:/www.ams.org/
journal-getitem?pii=S0273-0979-09-01249-X.

@ Springer


https://doi.org/10.1007/bf00145734
https://doi.org/10.1088/0004-637X/731/2/112
https://doi.org/10.1214/06-BA104
http://projecteuclid.org/euclid.ba/1340371077
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1002/2016JA022863
https://doi.org/10.4064/fm-35-1-217-234
https://doi.org/10.1038/ncomms6947
https://doi.org/10.1029/JA095iA04p04247
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1002/2017JA024383
https://doi.org/10.1016/C2016-0-01976-9
https://doi.org/10.1029/2002JA009817
https://doi.org/10.1090/S0273-0979-09-01249-X
http://www.ams.org/journal-getitem?pii=S0273-0979-09-01249-X
http://www.ams.org/journal-getitem?pii=S0273-0979-09-01249-X

41 Page 28 of 29 T. Bloch et al.

Crooker, N.U., Gosling, J.T., Bothmer, V., Forsyth, R.J., Gazis, PR., Hewish, A., Horbury, T.S., Intriligator,
D.S., Jokipii, J.R., Kéta, J., Lazarus, A.J., Lee, M.A., Lucek, E., Marsch, E., Posner, A., Richardson,
1.G., Roelof, E.C., Schmidt, .M., Siscoe, G.L., Tsurutani, B.T., Wimmer Schweingruber, R.F., Wimmer-
Schweingruber, R.F.: 1999, CIR morphology, turbulence, discontinuities, and energetic particles. Space
Sci. Rev. 89(1/2), 179. DOI. ISBN 0038-6308.

Eldridge, J., Belkin, M., Wang, Y.: 2015, Beyond Hartigan consistency: Merge distortion metric for hierarchi-
cal clustering. Proc. Machine Learning Res. 40, 588. http://proceedings.mlr.press/v40/Eldridge15.html.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: 1996, A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proc. KDD 96, 226. ISBN 1-57735-004-9. https://www.aaai.org/
Papers/KDD/1996/KDD96-037.pdf.

Everitt, B.S., Landau, S., Leese, M., Stahl, D.: 2011, Cluster Analysis, 5th edn., Wiley, Chichester. DOI. ISBN
9780470977811.

Florek, K., Lukaszewicz, J., Perkal, J., Steinhaus, H., Zubrzycki, S.: 1951, Sur la liaison et la division des
points d’un ensemble fini. Collog. Math. 2(3-4), 282. DOI.

Fukunaga, K., Hostetler, L.: 1975, The estimation of the gradient of a density function, with applications
in pattern recognition. /EEE Trans. Inf. Theory 21(1), 32. DOI. http://ieeexplore.ieee.org/document/
1055330/.

Geiss, J., Gloeckler, G., Von Steiger, R.: 1995, Origin of the solar wind from composition data. Space Sci.
Rev. 72(1-2), 49. DOLI.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: 2013, Bayesian Data Analysis, 3rd edn. CRC Press/Taylor
& Francis, Boca Raton/London. ISBN 978-1-4398-9820-8.

Ghrist, R.: 2014, Elementary Applied Topology, 1st edn. Createspace, Philadelphia. ISBN 978-1502880857.

Gloeckler, G., Cain, J., Ipavich, EM., Tums, E.O., Bedini, P, Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fis-
cher, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition
of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS
on the ACE spacecraft. Space Sci. Rev. 86, 497. DOI.

Goerss, P.G., Jardine, J.E.: 2009, Simplicial Homotopy Theory 53, Birkhéuser, Basel, 1689. DOI. ISBN 978-
3-0346-0188-7.

Gosling, J.T.: 2012, Magnetic reconnection in the solar wind. Space Sci. Rev. 172(1-4), 187. DOI.

Hartigan, J.A.: 1981, Consistency of single linkage for high-density clusters. J. Am. Stat. Assoc. 76(374), 388.
DOL. http://www.tandfonline.com/doi/abs/10.1080/01621459.1981.10477658.

Heidrich-Meisner, V., Wimmer-Schweingruber, R.F.: 2018, Solar wind classification via k-means clustering
algorithm. In: Machine Learning Techniques for Space Weather, 1st edn., Elsevier, Amsterdam, 397.
DOI. ISBN 9780128117880. https://linkinghub.elsevier.com/retrieve/pii/B9780128117880000160.

Igel, C., Heidrich-Meisner, V., Glasmachers, T.: 2008, Shark. J. Mach. Learn. Res. 9, 993. http://www.jmlr.org/
papers/volume9/igel08a/igel08a.pdf.

King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE
plasma and magnetic field data. J. Geophys. Res. 110(A2), 1. DOI.

Ko, Y., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at
the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646(2), 1275.
DOI.

Kullback, S.: 1978, Information Theory and Statistics, Dover Pub. Inc., Dover, Gloucester. ISBN
0844656259. http://index-of.co.uk/Information-Theory/Informationtheoryandstatistics-Solomon.pdf.
Kusher, H.J., Yin, G.G.: 2003, Stochastic Approximation and Recursive Algorithms and Applications, 2nd
edn., Stochastic Modelling and Applied Probability 35, Springer, New York. DOI. ISBN 0-387-00894-

2.

MacQueen, J.: 1967, Some methods for classification and analysis of multivariate observations. In: Proc. Fifth
Berkeley Symp. Mathematical Statistics and Probability 1, 281. https://projecteuclid.org/euclid.bsmsp/
1200512974.

Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1 DOL.

McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar
wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev.
86(1-4), 563. DOI.

McComas, D.J., Angold, N, Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., Smith, C.W.: 2013,
Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779(1), 2.
DOI.

Mclnnes, L., Healy, J., Melville, J.: 2018, UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. arXiv.

McLachlan, G., Peel, D.: 2000, Finite Mixture Models, Wiley Series in Probability and Statistics, Wiley,
Hoboken. DOI. ISBN 9780471721185.

@ Springer


https://doi.org/10.1023/A:1005253526438
http://proceedings.mlr.press/v40/Eldridge15.html
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://doi.org/10.1002/9780470977811
https://doi.org/10.4064/cm-2-3-4-282-285
https://doi.org/10.1109/TIT.1975.1055330
http://ieeexplore.ieee.org/document/1055330/
http://ieeexplore.ieee.org/document/1055330/
https://doi.org/10.1007/BF00768753
https://doi.org/10.1007/978-94-011-4762-0_18
https://doi.org/10.1007/978-3-0346-0189-4
https://doi.org/10.1007/s11214-011-9747-2
https://doi.org/10.1080/01621459.1981.10477658
http://www.tandfonline.com/doi/abs/10.1080/01621459.1981.10477658
https://doi.org/10.1016/B978-0-12-811788-0.00016-0
https://linkinghub.elsevier.com/retrieve/pii/B9780128117880000160
http://www.jmlr.org/papers/volume9/igel08a/igel08a.pdf
http://www.jmlr.org/papers/volume9/igel08a/igel08a.pdf
https://doi.org/10.1029/2004JA010649
https://doi.org/10.1086/505021
http://index-of.co.uk/Information-Theory/Informationtheoryandstatistics-Solomon.pdf
https://doi.org/10.1007/b97441
https://projecteuclid.org/euclid.bsmsp/1200512974
https://projecteuclid.org/euclid.bsmsp/1200512974
https://doi.org/10.12942/lrsp-2006-1
https://doi.org/10.1023/A:1005040232597
https://doi.org/10.1088/0004-637X/779/1/2
http://arxiv.org/abs/1802.03426
https://doi.org/10.1002/0471721182

Machine Learning Solar Wind Classification Page 29 of 29 41

Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind: 1. Average properties. J. Geo-
phys. Res. 71(19), 4469. DOI.

Owens, M.J., Crooker, N.U., Lockwood, M.: 2014, Solar cycle evolution of dipolar and pseudostreamer belts
and their relation to the slow solar wind. J. Geophys. Res. 119(1), 36. DOI.

Owocki, S.P., Holzer, T.E., Hundhausen, A.J.: 1983, The solar wind ionization state as a coronal temperature
diagnostic. Astrophys. J. 275, 354. DOI.

Pagel, A.C.: 2004, Correlation of solar wind entropy and oxygen ion charge state ratio. J. Geophys. Res.
109(A1), A01113. DOI.

Panasenco, O., Velli, M.: 2013, Coronal pseudostreamers: source of fast or slow solar wind? AIP Conference
Proc. 1539, 50. DOI. ISBN 9780735411630.

Pedregosa, F., Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.: 2011, Scikit-
learn. J. Mach. Learn. Res. 12, 2825. DOI. http://jmIr.csail.mit.edu/papers/v12/pedregosalia.html.
Richardson, I.G.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar

wind plasma composition anomalies. J. Geophys. Res. 109(A9), A09104. DOI.

Russell, S.J., Norvig, P.: 2009, Artificial Intelligence a Modern Approach, 3rd edn. Prentice Hall/Pearson
Education, New York/Upper Saddle River. ISBN 978-0-13-604259-4.

Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar
Phys. 6(3), 442. DOI.

Schwadron, N.A., McComas, D.J., Elliott, H.A., Gloeckler, G., Geiss, J., von Steiger, R.: 2005, Solar wind
from the coronal hole boundaries. J. Geophys. Res. 110(A4), 1. DOI.

Sheeley, N.R., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams, and recurrent geomag-
netic disturbances: 1973-1976. Solar Phys. 49(2), 271. DOLI.

Smith, C.W., Heureux, J.L., Ness, N.F.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86(1-4),
613. DOL.

Sokal, R.R., Michener, C.: 1958, A statistical methods for evaluating relationships. Univ. Kansas Sci. Bull.
38, 1409.

Spivak, D.I.: 2012, Metric realization of fuzzy simplicial sets. Self published notes. http://math.mit.edu/~
dspivak/files/metric_realization.pdf.

Stakhiv, M., Landi, E., Lepri, S.T., Oran, R., Zurbuchen, T.H.: 2015, On the origin of mid-latitude fast wind:
challenging the two-state solar wind paradigm. Astrophys. J. 801(2), 100. DOI. http://stacks.iop.org/
0004-637X/801/i=2/a=100?key=crossref.1a00bc7943b9d49d76751a8bf7{41587.

von Steiger, R., Schwadron, N.A., Fisk, L.A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-
Schweingruber, R.R., Zurbuchen, T.H.: 2000, Composition of quasi-stationary solar wind flows from
Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res. 105(A12), 27217. DOI.

Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The Ulysses mission. Astron. Astrophys. Suppl.
92, 207. ADS.

Xu, F.,, Borovsky, J.E.: 2015, A new four-plasma categorization scheme for the solar wind. J. Geophys. Res.
120(1), 70. DOI. ISBN 2169-9402.

Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE
observations. Geophys. Res. Lett. 36(14), L14104. DOI.

Zhao, L., Landi, E., Lepri, S.T., Gilbert, J.A., Zurbuchen, T.H., Fisk, L.A., Raines, J.M.: 2017, On the relation
between the in situ properties and the coronal sources of the solar wind. Astrophys. J. 846(2), 135. DOI.
http://stacks.iop.org/0004-637X/846/i=2/a=1357key=crossref.852c60d0fb4792c4e7d0b09e9fcIb323.

@ Springer


https://doi.org/10.1029/JZ071i019p04469
https://doi.org/10.1002/2013JA019412
https://doi.org/10.1086/161538
https://doi.org/10.1029/2003JA010010
https://doi.org/10.1063/1.4810987
https://doi.org/10.1145/2786984.2786995
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/10.1029/2004JA010598
https://doi.org/10.1007/BF00146478
https://doi.org/10.1029/2004JA010896
https://doi.org/10.1007/BF00162451
https://doi.org/10.1023/A:1005092216668
http://math.mit.edu/~dspivak/files/metric_realization.pdf
http://math.mit.edu/~dspivak/files/metric_realization.pdf
https://doi.org/10.1088/0004-637X/801/2/100
http://stacks.iop.org/0004-637X/801/i=2/a=100?key=crossref.1a00bc7943b9d49d76751a8bf7f41587
http://stacks.iop.org/0004-637X/801/i=2/a=100?key=crossref.1a00bc7943b9d49d76751a8bf7f41587
https://doi.org/10.1029/1999JA000358
http://adsabs.harvard.edu/abs/1992A%26AS...92..207W/abstract
https://doi.org/10.1002/2014JA020412
https://doi.org/10.1029/2009GL039181
https://doi.org/10.3847/1538-4357/aa850c
http://stacks.iop.org/0004-637X/846/i=2/a=135?key=crossref.852c60d0fb4792c4e7d0b09e9fc9b323

	Data-Driven Classiﬁcation of Coronal Hole and Streamer Belt Solar Wind
	Abstract
	Introduction
	Data
	An Intuitive Classiﬁcation Scheme
	Machine Learning Schemes
	The Bayesian Gaussian Mixture Scheme
	BGM Scheme: Application
	Ulysses
	ACE

	BGM Scheme: Analysis

	The UMAP Scheme
	UMAP Scheme: Application
	Ulysses
	ACE

	UMAP Scheme: Analysis

	Discussion
	Conclusions
	Acknowledgements
	Disclosure of Potential Conﬂicts of Interest
	Appendix A: Bayesian Statistics and Variational Inference
	Appendix B: Uniform Manifold Approximation and Projection
	Appendix C: Hierarchical Density Based Spatial Clustering for Applications with Noise
	References


