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Abstract

This paper proposes a new identification method based on an exponential modulation scheme for the determination

of the coefficients and exponents of a fractional-order transfer function. The proposed approach has a broader

scope of application compared to a previous method based on step response data, in that it allows for the use of

arbitrary input signals. Moreover, it dispenses with the need for repeated simulations during the search for the

best fractional exponents, which significantly reduces the computational workload involved in the identification

process. Two examples involving measurement noise at the observed system output are presented to illustrate the

effectiveness of the proposed method when compared to a conventional output-error optimization approach based

on the polytope algorithm. In both examples, the proposed method is found to provide a better trade-off between

computational workload and accuracy of the parameter estimates for different realizations of the noise.

Keywords: Fractional order systems, system identification, transfer functions

1. Introduction

Over the past 20 years there has been a surge in the development of fractional order modelling tools for the

emulation of complex processes with greater accuracy compared to conventional integer order representations. This

has led to an increased interest in the application of fractional order calculus across all branches of sciences, from

biology and medicine [1], [2], [3] to mechatronics [4], [5], [6]. Within the circuits and systems community, new5

opportunities have arisen for the analysis of complex 2-port networks [7] and passive electrical networks composed

of fractional elements [8], [9], which also enabled novel control design solutions with improved stability while using

fewer components [10]. In addition, many of these design solutions are very promising in the modelling and control
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of physicochemical processes associated with energy storage [11], [12], [13]. Fractional order modelling has also

been particularly useful in the study of dielectrics [14], [15], [16], [17], [18], as well as viscoelasticity [19], [20], [21]10

and heat transfer [22], [23], [24]. Moreover, within a system-theoretic framework, much research has been devoted

to the stability analysis [25], [26], [27] and control [28], [29], [30] of fractional order systems.

A fundamental problem often addressed through measurements or simulations is the identification of a fractional

order model that suitably describes the dynamics of the system under investigation. Given a set of time-domain

input-output data, a standard identification procedure consists of using a discrete-time approximation for the15

fractional-order derivative operation in order to cast the problem into a regression form [31]. Such an approximation

can be obtained e.g. by using a truncated Grunwald-Letnikov series [32] or digital FIR (finite impulse response)

filters [33]. Nevertheless, this procedure assumes that the fractional exponents are known a priori, which may be

too strong an assumption in practical applications. Alternatively, the coefficients and fractional exponents can be

grouped into a parameter vector to be optimized by using a numerical search method. The goal then consists of20

minimizing some metric of the difference between the actual system response and the model output obtained by

simulation [31]. However, this approach may be computationally demanding because several simulations will have

to be carried out as the parameter vector is varied during the search procedure. An alternative to circumvent

this problem was proposed in [34]. By approximating the input and output signals as linear combinations of

Haar wavelets, the model output could be written as an algebraic expression involving the model coefficients and25

exponents. However, a numerical search method was still required to determine the optimal parameter estimates.

In the case of fractional order transfer functions of the form G(s) = b/(1 + asα), [35] proposed an identification

method which enabled the determination of the coefficients k, T and the exponent α through a simple iterative

procedure involving fractional order integration. However, the proposed method was only applicable to step response

data. This can be a shortcoming in practice, as there are cases where a step input with large magnitude would be30

required to obtain output measurements with suitable signal-to-noise ratio, which may be prohibitive due to slew

rate constraints of the excitation source or possible damage to the system under test.

In view of these limitations, the present paper proposes a new identification method, which is developed as an

extension of a previous step response procedure [36] for the case of arbitrary input signals. For transfer functions

of the form G(s) = b/(1 +asα), the proposed method allows for the full analytical determination of the parameters35

a, b, α, without the need for numerical optimization. In the case of transfer functions with additional parameters,

a novel evaluation index is employed in the search for the best fractional exponents, as an alternative to the error

between the model response and the system output. The new evaluation index dispenses with the need for repeated

simulations of the fractional-order model, which significantly reduces the computational workload involved in the

identification process.40

1.1. Notation

Herein the following notation will be employed. The Laplace transform of y(t), t ≥ 0, will be denoted by

Y (s) = L[y(t)]. Definitions will be stated by using the , symbol. The limit value of y(t) will be denoted as

y(∞) , limt→∞ y(t).
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2. Preliminary result45

It is assumed that the system under consideration can be described by a transfer function of the form

G(s) =
b0 + b1s

β1 + · · ·+ bms
βm

1 + a1sα1 + · · ·+ ansαn
(1)

where the coefficients b0, b1, . . . , bm, a1, . . . , an and the positive real-valued exponents β1, . . . , βm, α1, . . . , αn are

parameters to be identified.

The proposed identification method is based on the generation of two auxiliary signals z(t) and w(t), which

depend on a positive real-valued constant σ, as depicted in Fig. 1. As can be seen, the generation of these signals

involves a time-domain multiplication by an exponential function e−σt, which can be regarded as a modulation50

scheme in a broad sense. A similar exponential modulation procedure was employed in [36], but the proposed

identification method was restricted to the use of a step signal in the input u(t). Herein, arbitrary input waveforms

can be employed.

G(s)
s + 

s

u(t) y(t) z(t)

exp( t)

t = 0

s

w(t)

Figure 1: Generation of the signals employed in the proposed identification method. The rectangular blocks correspond to transfer

functions, whereas the circle with a × sign indicates a pointwise multiplication of the signals in the time domain.

Theorem 1 below establishes a relation between the steady-state values z(∞), w(∞) and the parameters of the

transfer function G(s) in (1). This theorem cannot be directly derived from the mathematical formulation in [36],55

which was restricted to the use of a step input signal. Therefore, a proof will be presented.

Theorem 1 : If σ > 0 is such that the limits

z(∞) , lim
t→∞

z(t) , w(∞) , lim
t→∞

w(t) (2)

exist, then the following identity holds:

z(∞) = w(∞)
b0 + b1σ

β1 + · · ·+ bmσ
βm

1 + a1σα1 + · · ·+ anσαn
(3)

Proof : The Laplace transform of the system response y(t) is given by

Y (s) = G(s)U(s) (4)

The first auxiliary signal z(t) in Fig. 1 is the result of passing y(t)e−σt through a filter with transfer function

(s+ σ)/s, i.e.

Z(s) =

(
s+ σ

s

)
L[y(t)e−σt] =

(
s+ σ

s

)
Y (s+ σ) (5)
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where the last equality follows from the frequency-shifting property of the Laplace transform [37].

From (4) and (5) it follows that

Z(s) =

(
s+ σ

s

)
G(s+ σ)U(s+ σ) (6)

In view of the Final Value Theorem, which is also valid for fractional calculus [38], z(∞) can be related to Z(s)

as

z(∞) = lim
s→0

sZ(s) (7)

From (6) and (7), it can be concluded that

z(∞) = σG(σ)U(σ) (8)

Similary, the Laplace transform of the second auxiliary signal w(t) in Fig. 1 is given by

W (s) =
σ

s
L[u(t)e−σt] =

σ

s
U(s+ σ) (9)

From (9) and the Final Value Theorem, one obtains

w(∞) = lim
s→0

sW (s) = σU(σ) (10)

From (8) and (10) it follows that

z(∞) = w(∞)G(σ) (11)

Finally, from (1) and (11), one arrives at (3), qed �

In what follows, Theorem 1 will be initially employed to derive an identification procedure for a transfer function

G(s) with a single fractional exponent. Afterwards, the general case will be handled.60

3. Single fractional exponent

Consider a transfer function of the following form:

G(s) =
b

1 + asα
(12)

This is a particular case of (1), with n = 1 and m = 0. For brevity of notation, b0, a1 and α1 are denoted by b,

a and α, respectively. From (3) in Theorem 1, it follows that

z(∞) = w(∞)
b

1 + aσα
(13)

for any σ > 0 such that the limits (2) exist. Assume that this is the case for σ1 > 0, σ2 = σ
1/2
1 and σ3 = σ

1/4
1 , with

σ1 6= 1. In view of (13), one can write

z1(∞) =
w1(∞)b

1 + aσα1
, z2(∞) =

w2(∞)b

1 + aσ
α/2
1

, z3(∞) =
w3(∞)b

1 + aσ
α/4
1

(14)

where zi(∞) and wi(∞) denote the values of z(∞) and w(∞) obtained by using the block diagram in Fig. 1 with

σi (i = 1, 2, 3) in place of σ. It is worth noting that the input and output data only need to be acquired once,

because the same u(t) and y(t) signals are used for the calculation of all zi(∞) and wi(∞) values.

4



From (14), it follows that65

az1(∞)σα1 = w1(∞)b− z1(∞) (15)

az2(∞)σ
α/2
1 = w2(∞)b− z2(∞) (16)

az3(∞)σ
α/4
1 = w3(∞)b− z3(∞) (17)

From (15) and (16), one can write

a
[z2(∞)]2

z1(∞)
=

[w2(∞)b− z2(∞)]2

w1(∞)b− z1(∞)
(18)

whereas from (16) and (17), one arrives at

a
[z3(∞)]2

z2(∞)
=

[w3(∞)b− z3(∞)]2

w2(∞)b− z2(∞)
(19)

From (18) and (19), it follows that

[w2(∞)b− z2(∞)]2

w1(∞)b− z1(∞)

z1(∞)

[z2(∞)]2
=

[w3(∞)b− z3(∞)]2

w2(∞)b− z2(∞)

z2(∞)

[z3(∞)]2
(20)

which leads to

{
[w2(∞)]3 − κw1(∞)[w3(∞)]2

}
b3 +

{
κ[w3(∞)]2z1(∞) + 2κw1(∞)w3(∞)z3(∞)− 3[w2(∞)]2z2(∞)

}
b2+{

3w2(∞)[z2(∞)]2 − 2κw3(∞)z1(∞)z3(∞)− κw1(∞)[z3(∞)]2
}
b+ κz1(∞)[z3(∞)]2 − [z2(∞)]3 = 0 (21)

where

κ =
[z2(∞)]3

z1(∞)[z3(∞)]2
(22)

After solving the cubic equation (21) for b, the value of a can be obtained from (18) as

a =
[w2(∞)b− z2(∞)]2

w1(∞)b− z1(∞)

z1(∞)

[z2(∞)]2
(23)

Finally, the exponent α can be obtained from (15) as

α =

ln

(
w1(∞)b− z1(∞)

az1(∞)

)
lnσ1

(24)

4. General case

In the general case, Eq. (3) in Theorem 1 leads to

z(∞) = w(∞)
b0 + b1σ

β1 + · · ·+ bmσ
βm

1 + a1σα1 + · · ·+ anσαn
(25)

which can be rewritten as

z(∞)a1σ
α1 + · · ·+ z(∞)anσ

αn − w(∞)(b0 + b1σ
β1 + · · ·+ bmσ

βm) = −z(∞) (26)
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Assume that tentative values are assigned to the fractional exponents

α1, . . . , αn, β1, . . . , βm. By evaluating zi(∞) and wi(∞) with q ≥ (n+m+1) different values of σi (i = 1, 2, . . . , q),

Eq. (26) can be used to derive a system of linear equations of the form Aθ = c, with

A =


z1(∞)σα1

1 · · · z1(∞)σαn
1 −w1(∞) −w1(∞)σβ1

1 . . . −w1(∞)σβm

1

z2(∞)σα1
2 · · · z2(∞)σαn

2 −w2(∞) −w2(∞)σβ1

2 . . . −w2(∞)σβm

2

...
...

...
...

...
...

...

zq(∞)σα1
q · · · zq(∞)σαn

q −wq(∞) −wq(∞)σβ1
q . . . −wq(∞)σβm

q

 , (27)

θ=[a1 · · · an b0 b1 · · · bm]
T
, c=−[z1(∞) z2(∞) · · · zq(∞)]

T
(28)

The value of q should be at least equal to (n + m + 1), so that the system of equations Aθ = c is not under-

determined. However, it is advisable to use larger values of q in order to mitigate the effect of measurement noise.

As a rule of thumb, the choice q = 2(n+m+ 1) is adopted in the present work. A least-squares estimate θ̂ for the

model coefficients can then be calculated as

θ̂ = (ATA)−1AT c (29)

provided that A is a full-rank matrix.

Now, let e be a column vector of residues defined as e = c − Aθ̂. In view of (29), e can also be written as

e = [I −A(ATA)−1AT ]c. Therefore, the sum square value of the residues can be expressed as

E = eT e = cT [I −A(ATA)−1AT ][I −A(ATA)−1AT ]c = cT [I − 2A(ATA)−1AT +A(ATA)−1AT ]c

= cT [I −A(ATA)−1AT ]c (30)

The fractional-order exponents can then be estimated by minimizing E with respect to α1, . . . , αn, β1, . . . , βm,

either by using a gridding procedure or guided search methods [39].

5. Results and Discussion70

The results presented in this section were obtained by using the Matlabr software and the FOTF code available

within the FOMCON toolbox (fomcon.net) for the simulation of fractional-order systems. More specifically, the

fractional-order derivatives were implemented by using the Grunwald-Letnikov definition with a time step of 10−2

seconds, as described in [32]. The Matlabr software was also employed to carry out the multiplication and filtering

operations presented in Fig. 1. Suitable values of σi, i = 1, 2, . . . , q, were chosen in order to obtain a clear75

characterization of the limits zi(∞) and wi(∞), as will be described below.

For comparison, the polytope algorithm [39] implemented in the Matlabr Optimization ToolboxTM was used

to estimate the coefficients and fractional exponents of the transfer function by minimizing the root-mean-square

error (RMSE) between the system output y and the resulting model response. The default optimization settings

of the toolbox were employed throughout. The computational times reported in the results were obtained with80

an i7-6700K processor and 24GB of RAM memory. Statistical plots were generated using the Matlabr Statistics

ToolboxTM.
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5.1. Example 1

Consider a transfer function of the form (12) with b = 2, a = 5, and α = 1.5, i.e.

G(s) =
2

1 + 5s1.5
(31)

The identification was carried out by using an input signal u(t) given by

u(t) = sin

(
πt

10

)
+ sin

(
πt

15

)
+ sin

(
πt

20

)
(32)

which is shown in Fig. 2a. To simulate measurement imperfections, the output signal y(t) was corrupted with

additive Gaussian noise of zero mean and standard deviation of 0.1. The resulting signal is presented in Fig. 2b.85

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t (seconds)

u
(t

)

(a)

0 10 20 30 40 50
−4

−2

0

2

4

6

8

t (seconds)

y
(t

)

(b)

Figure 2: Example 1. (a) Input u(t) and (b) output y(t) signals employed in the identification.

In order to use the identification approach proposed in Section 3, a suitable value for σ1 must be initially

chosen. For this purpose, a preliminary analysis was carried out as follows. Let σ = (ln 100)/50 = 0.092, which

the value for which the exponential function e−σt decays by a factor of 100 over the time range [0, 50] seconds of

the identification data. Fig. 3 presents the plots of z1(t) and w1(t) for five different values of σ1, namely σ/4, σ/2,

σ, 2σ and 4σ. As can be seen, the determination of the limit values z1(∞) and w1(∞) becomes more accurate90

as σ1 is increased, owing to the faster convergence of the exponential function. However, the use of arbitrarily

large values of σ1 would not be advised, because the information conveyed by the latter parts of the u(t) and y(t)

signals would be suppressed upon the multiplication by e−σ1t. Therefore, the value σ1 = 2σ = 0.184 was adopted

as a compromise choice. In line with the procedure described in Section 3, the values of σ2 and σ3 were taken

as σ2 = σ
1/2
1 = 0.429 and σ3 = σ

1/4
1 = 0.655. Since these values are larger than σ1, they will not hamper the95

determination of the limit values z2(∞), w2(∞) and z3(∞), w3(∞).
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Figure 3: Example 1. Auxiliary signals z1(t) and w1(t) for five different values of σ1.

Table 1: Identification results

b a α δ1 δ2 δ3

0 −1 0 * * *

0.63 −0.10 −1.01 2.2× 10−16 0 −0.37

2.00 5.01 1.50 0 −1.1× 10−16 −3.4× 10−16

*Invalid δi values because 1 + aσαi = 0.

Table 1 presents the results associated to the three solutions of the cubic equation (21). In order to check

conformity with (14), the following quantities were calculated:

δi =

zi(∞)− wi(∞)b

1 + aσαi
zi(∞)

, i = 1, 2, 3 (33)

The first two rows of the table correspond to invalid solutions, which arise because the derivation of (18), (19)

from (15) - (17) and the derivation of (20) from (18), (19) involve squaring and ratioing operations, which may

lead to sign ambiguities. The valid results are those in the last row of the table, for which δ1, δ2 and δ3 are all

approximately zero. Indeed, the identified parameters b = 2.00, a = 5.01 and α = 1.50 match the corresponding100

values in (31), which illustrates the validity of the proposed approach even in the presence of measurement noise.
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Table 2: Example 1. Parameter estimates (average ± standard deviation over 1000 realizations) and computational workload. MaxFu-

nEvals is the upper bound on the number of cost function evaluations in the polytope algorithm.

Proposed Polytope algorithm Actual
Parameter

method MaxFunEvals = 10 MaxFunEvals = 40 value

α 1.50± 0.03 1.4± 0.2 1.4± 0.1 1.5

a 4.98± 0.06 4.8± 1.5 4.7± 0.8 5

b 2.00± 0.02 2.1± 0.6 2.1± 0.2 2

Average computational

workload (seconds)
6.5× 10−4 1.5 5.6

To investigate the reproducibility of the results, the identification was repeated 1000 times, with different

realizations of the measurement noise. The resulting values of average and standard deviation for the parameter

estimates are presented in Table 2. As can be seen, the estimates are in close agreement with the actual parameter

values, with relative standard deviations ranging from 1% to 2%.105

For comparison, the identification was also performed by using the approach based on RMSE minimization.

It is worth noting that the polytope algorithm requires an initial guess for the α, a, b parameters. In order to

simulate uncertainty in this guess, the parameters were randomly initialized with uniform distribution over an

interval of ± 50% around the actual values. Compared to the proposed method, the optimization approach is more

computationally intensive, owing to the need to simulate the fractional-order model in order to evaluate the cost110

function (i.e. the RMSE value) over successive iterations of the polytope algorithm. In order to investigate the

trade-off between computational workload and accuracy of the parameter estimates, different upper bounds on

the number of cost function evaluations (MaxFunEvals) were imposed in the polytope algorithm. The results are

shown in Table 2 and Fig. 4. As expected, the identification outcome improves when the optimization approach is

employed with larger number of cost function evaluations. However, the results are still worse than those obtained115

by the proposed method, which also benefits from a much smaller computational workload.
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Polytope algorithm 
(MaxFunEvals = 10)

Polytope algorithm
(MaxFunEvals = 40)

(d) Average computational 
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6.5 × 10
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Figure 4: Example 1. Identification results obtained over 1000 realizations and average computational workload. The (a), (b), (c)

boxplots present the median (central line), 25th and 75th percentiles (box edges), non-outlier extreme points (whiskers) and outliers

(cross markers) of the data. The thick horizontal line indicates the actual parameter value.

5.2. Example 2

Consider a transfer function of the form (1) with n = m = 1, b0 = 2, b1 = 3, a1 = 5, β1 = 0.5 and α1 = 1.5.

For brevity of notation, the fractional exponents β1 and α1 will be denoted simply by β and α, i.e.

G(s) =
b0 + b1s

β

1 + a1sα
=

2 + 3s0.5

1 + 5s1.5
(34)

The identification was carried out by using a pseudo-random binary signal u(t), shown in Fig. 5a. As in the

previous example, the output signal y(t) was corrupted with additive Gaussian noise of zero mean and standard

deviation of 0.1. The resulting signal is presented in Fig. 5b.120

In this case, the calculation of w(∞) can be simplified, because the input signal has a piecewise constant profile

of the form

u(t) =


u0, 0 ≤ t < t1

uj , tj ≤ t < tj+1, j = 1, 2, . . . ,M − 1

uM , t ≥ tM

(35)
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Figure 5: Example 2. (a) Input u(t) and (b) output y(t) signals employed in the identification.

where tj , j = 1, 2, . . .M , are the switching times and uj = (−1)j , j = 0, 1, . . .M , are the input levels. In view of

the block diagram in Fig. 1, it follows that

w(∞) = σ

∫ ∞
0

u(τ)e−στdτ = σ

u0 ∫ t1

0

e−στdτ +

M−1∑
j=1

uj

∫ tj+1

tj

e−στdτ + uM

∫ ∞
tM

e−στdτ


= u0

(
1− e−σt1

)
+

M−1∑
j=1

uj
(
e−σtj − e−σtj+1

)
+ uMe

−σtM = u0 +

M∑
j=1

(uj − uj−1)e−σtj (36)

Following the procedure proposed in Section 4, q = 2(n+m+ 1) = 6 different values of σ were employed in the

identification. In light of the rationale described in Example 1, the values σ1 = 2(ln 100)/50 = 0.184 and σi = σ
1/i
1 ,

i = 2, 3, . . . , 6 were adopted.

Fig. 6a presents a plot of the index E defined in (30) for a grid of α and β values ranging from 0.1 to 2.0 with

0.1 steps. A logarithmic scale for E is employed for better visualization. The grid search was restricted to β values125

smaller than α, in order to keep the transfer function G(s) strictly proper. As can be seen in Fig. 6a, the index E

is minimized for α = 1.5 and β = 0.5, which correspond to the actual values of the fractional exponents in (34).

For comparison, Fig. 6b presents the root-mean-square error (RMSE) between the noisy system output and the

resulting model response for the tested α and β values. Again, the smallest RMSE was obtained for α = 1.5 and

β = 0.5. However, the evaluation of index E in the entire grid search procedure took approximately 0.25 second,130

whereas the RMSE evaluation took more than 30 seconds. In fact, the RMSE calculations require one simulation

of the fractional-order model for each pair of α, β values in the search grid. In contrast, the evaluation of the index

E defined in (30) is much simpler, as it only involves standard matrix operations. Such findings point to a major

computational advantage of using index E in the search for the best fractional exponents, as compared to the use

of RMSE adopted in [36].135
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Figure 6: Example 2. (a) Index E employed in the choice of α and β. (b)Root-mean-square error (RMSE) between the model response

and the noisy system output (vertical axis cropped for better visualization).

By using α = 1.5 and β = 0.5, the identification resulted in the following transfer function:

Gidentified(s) =
2.0 + 2.9s0.5

1 + 4.9s1.5
(37)

which closely matches (31). As can be seen in Fig. 7, the response of the identified model is well inside the bounds

of the noisy output signal. Indeed, as indicated by the minimum point in Fig. 6b, the root-mean-square error

between these two signals is 10−1, which corresponds to the standard deviation of the added noise.
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Figure 7: Example 2. Actual system response and output of the identified model. The inset is an enlarged view around t = 17.5 s.
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Table 3: Example 2. Parameter estimates (average ± standard deviation over 1000 realizations) and computational workload. MaxFu-

nEvals is the upper bound on the number of cost function evaluations in the polytope algorithm.

Proposed Polytope algorithm Actual
Parameter

method MaxFunEvals = 20 MaxFunEvals = 80 value

α 1.51± 0.04 1.4± 0.2 1.5± 0.1 1.5

β 0.5± 0.1 0.5± 0.1 0.5± 0.2 0.5

a1 4.9± 0.2 4.8± 1.1 4.8± 0.6 5

b0 2.0± 0.4 2.1± 0.6 1.9± 0.5 2

b1 3.0± 0.4 3.0± 0.9 2.8± 0.9 3

Average computational

workload (seconds)
1.5 3.2 12.4

As in the previous example, the reproducibility of the results was investigated by repeating the identifi-

cation 1000 times, with different realizations of the measurement noise. In this investigation, a finer search140

grid was employed, with α and β values varying with 0.025 steps from 0.75 to 2.25 and 0.25 to 0.75, respec-

tively, which correspond to intervals of ± 50% around the actual exponent values. For comparison, the optimiza-

tion approach was employed with random initialization of the α, β, a1, b0, b1 parameters over an interval of

± 50% around the actual values. The results are shown in Table 3 and Fig. 8 for two different upper bounds

on the number of function evaluations (MaxFunEvals) in the polytope algorithm. As can be seen, even with145

MaxFunEvals = 80, the optimization approach is still outperformed by the proposed method regarding the average

value and/or standard deviation of the parameter estimates.
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Figure 8: Example 2. Identification results obtained over 1000 realizations and average computational workload. The (a), (b), (c)
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6. Conclusion

This paper proposed a new identification method for fractional-order systems, which allows for the use of

arbitrary input signals within an exponential modulation scheme. This contribution significantly extends the scope150

of application of a previous step-response formulation [36], which can actually be regarded as a simple particular

case of the method proposed herein. For transfer functions of the form G(s) = b/(1 + asα), a newly derived

formulation enabled the determination of the fractional exponent α and the coefficients a, b through the solution

of a cubic equation. In the general case, a new evaluation index was proposed for the search of the best fractional

exponents, as an alternative to the root-mean-square error (RMSE) between the model response and the system155

output [36]. The calculation of this new index does not require the simulation of the fractional order model, thus

enabling a 100-fold reduction in computational workload (2.5×10−1 s as opposed to 3.0×101 s) when compared to

the RMSE evaluation. By means of simulation examples, the proposed method was shown to provide identification

results in close agreement with the actual system parameters, even in the presence of measurement noise. In

contrast, the results of an output-error optimization approach based on the polytope algorithm were generally less160

accurate, while at the same time required larger computational effort.

It is worth noting that the proposed method requires the system to be initially at rest. The handling of nonzero

initial conditions is a relevant topic [40], which will be pursued in future studies. Future work could also be

concerned with evaluation metrics other than the least-squares criterion employed in the present paper. Within

this scope, using the absolute error may be a convenient choice in cases where the measurement noise has impulsive165

features [41]. Moreover, the extension to multiple input multiple output systems [42] and systems with time delay

[43] should also be promising lines of investigation.
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