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Abstract
Understanding the mechanisms that control the body’s response to inflammation is of
key importance, due to its involvement inmyriadmedical conditions, including cancer,
arthritis, Alzheimer’s disease and asthma. While resolving inflammation has histori-
cally been considered a passive process, since the turn of the century the hunt for novel
therapeutic interventions has begun to focus upon active manipulation of constituent
mechanisms, particularly involving the roles of apoptosing neutrophils, phagocytosing
macrophages and anti-inflammatory mediators. Moreover, there is growing interest in
how inflammatory damage can spread spatially due to the motility of inflammatory
mediators and immune cells. For example, impaired neutrophil chemotaxis is impli-
cated in causing chronic inflammation under trauma and in ageing, while neutrophil
migration is an attractive therapeutic target in ailments such as chronic obstructive
pulmonary disease. We extend an existing homogeneous model that captures interac-
tions between inflammatory mediators, neutrophils and macrophages to incorporate
spatial behaviour. Through bifurcation analysis and numerical simulation, we show
that spatially inhomogeneous outcomes can present close to the switch from bista-
bility to guaranteed resolution in the corresponding homogeneous model. Finally, we
show how aberrant spatial mechanisms can play a role in the failure of inflamma-
tion to resolve and discuss our results within the broader context of seeking novel
inflammatory treatments.
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1 Introduction

Acute inflammation is essential to health, being the body’s response to damage, infec-
tion and foreignmaterial; however,whendysregulated, inflammation can fail to resolve
and, as such, contributes to a large variety of pathophysiological processes. While the
range of pathologies that feature or arise from inflammation vary greatly (from cancer,
to diabetes, to arthritis to name just a few), the cellular and chemical pathways that
characterise the inflammatory response remain similar across conditions (Libby 2007).
The initial inflammatory response primarily starts in the vasculature where leucocytes
[neutrophils and monocytes (precursors of macrophages)] migrate into damaged tis-
sue. Neutrophils are recruited into tissue early; these are short-lived cells that release
substances that can kill bacteria but which can also be harmful to otherwise healthy
tissue. Monocytes and macrophages arrive later and are phagocytes, which essentially
eat foreign particles and dead or dying cells, including dead neutrophils. The bal-
ance between the cellular components of inflammation is orchestrated via a variety of
pro- and anti-inflammatory mediators that, combined with the interactions between
neutrophils and macrophages, control the progression of inflammation to healthy res-
olution or a chronic, self-perpetuating condition. Diseases characterised by chronic
inflammation may be linked to the inability of acute inflammation to resolve, and spe-
cific pro-resolution pathways are now seen as alternative therapeutic targets (Fullerton
and Gilroy 2016; Sugimoto et al. 2016); however, in addition, there is growing exper-
imental evidence that the inflammatory response is characterised by spatial changes
and that mechanisms such as cell motility are key in identifying how inflammatory
conditions progress (Luster et al. 2005; Eming et al. 2007; Nourshargh et al. 2016;
Jasper et al. 2019). There is a growing need to elucidate the mechanisms that control
the interactions between the distinct cell types that drive the resolution of inflamma-
tion and, in particular, how spatial effects such as cell motility effect inflammatory
outcomes, since the potential to actively manipulate these aspects of the inflammatory
response exhibits great scope for development of new drugs and treatments (Libby
2007; Hunter 2012).

There are many examples of mathematical models that capture the interactions that
underlie the inflammatory process, both in a generic context and tailored to particular
disease scenarios, but themajority include only a single generic cell type and take a spa-
tially averaged approach that focuses largely uponhow total numbers/concentrations of
cells andmediators evolve temporally in the tissue of interest. Kumar et al. (2004) pro-
posed a model that included interactions between a generic pathogen and two classes
of pro-inflammatory response that represent the combined effects of early-responding
immune cells (neutrophils, mediators) and a late pro-inflammatory feedback. Having
elucidated the manner in which key model parameters influence resulting outcomes,
the authors suggest various therapies for persistent infectious inflammation (sepsis),
with reducing the late pro-inflammatory feedback being a particular target. This work
was built upon by Reynolds et al. (2006), who incorporated a time-dependent anti-
inflammatory response and investigated howmodulation of this response could present
a route to potential new therapeutic interventions, and again by Day et al. (2010), who
used a nonlinear model predictive control approach to identify therapeutic strategies.
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Spatially dependentmodels of inflammation are comparatively sparse in existing lit-
erature, and generally lack explicit descriptions of the distinct populations of immune
cells (neutrophils and macrophages) that are thought to be central to the resolution
of acute inflammation. The work of Lauffenburger and Keller (1979) includes a spa-
tial description of motile bacteria, a generic inflammatory cell type and an attractant
moving in a cylindrical section of tissue that surrounds a blood vessel. This work
highlights how the effectiveness of the inflammatory response depends critically upon
the rates of diffusion or chemotaxis of inflammatory cells. Similarly, the work of
Lauffenburger and Kennedy (1983) highlights how the chemotaxis rates can act as a
switch between homogeneous and inhomogeneous steady states in a model of bac-
terial infection. The model of Penner et al. (2012) describes spatial interactions of
a generic group of inflammatory cells, chemokines and anti-inflammatory cytokines,
and exhibits interesting spatial patterns such as travelling waves, localised breathers
and spatially inhomogeneous temporal oscillations. Recent advances in technology
are leading to an increase in experimental data that highlight the spatial interactions
underpinning inflammatory processes and mechanistic mathematical models along-
side the computational techniques necessary to analyse such complex datasets are
being used to interpret and elucidate the spatial interactions seen in the data (Liepe
et al. 2012; Ziraldo et al. 2013; Weavers et al. 2016).

In this article, we aim to supplement existing literature in this area by presenting a
model of the acute inflammatory response that, while being generic in context, includes
spatial descriptions of the distinct populations of cells thought to underlie the resolu-
tion of inflammation or progression to chronically inflamed states. By incorporating
explicit descriptions of distinct, interacting cell populations, we aim to better elucidate
how migration of these cells impacts upon the resolution of inflammation. We take as
our starting point a previous spatially independentmodel (Dunster et al. 2014) depicted
schematically in Fig. 1, which focuses on understanding how distinct immune cell
types (neutrophils and macrophages) and pro- and anti-inflammatory mediators inter-
act to yield either a healthy resolution of inflammation or a progression to an unhealthy
self-sustained condition. We build upon this model to incorporate spatial behaviour
through addition of diffusivemovement of non-apoptotic cells and inflammatorymedi-
ators, plus chemotactic movement of immune cells towards areas of damage. Through
numerical simulations and comparison against a bifurcation analysis of the correspond-
ing homogeneous model, we examine how variations in key model parameters can
either stimulate or eliminate spatial patterns. Finally, we reflect upon how the results
of this model could inform the continuing hunt for new therapies and treatments.

2 Model

In the model below we denote concentrations of generic pro- and anti-inflammatory
mediators by c∗(x∗, t∗) and g∗(x∗, t∗), respectively, and include populations of active
neutrophils, apoptotic neutrophils andmacrophages (with number densities n∗(x∗, t∗),
a∗(x∗, t∗) and m∗(x∗, t∗), respectively). Here, x∗ is our spatial coordinate, t∗ is time,
and stars are used to distinguish dimensional variables from their dimensionless coun-
terparts throughout. Our governing equations are as follows:
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Fig. 1 Schematic diagram illustrating the constituent interactions between populations of healthy neu-
trophils (n∗), apoptotic neutrophils (a∗) and macrophages (m∗) in response to pro- and anti-inflammatory
mediators (c∗ and g∗, respectively), with associated parameters (Colour figure online)
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As in the model of Dunster et al. (2014), our model includes recruitment of
macrophages and active neutrophils in response to high levels of pro-inflammatory
mediator with rates χ∗

m and χ∗
n , respectively, with neutrophil recruitment also being

suppressed by high levels of anti-inflammatory mediator, with associated saturation
constant β∗

gc. Active neutrophils become apoptotic at a rate dependent upon the rela-
tive levels of pro- and anti-inflammatory mediators, as reported in previous literature
(Serhan 2007; Akgul et al. 2001; Rossi et al. 2007; Lee et al. 1993) and discussed by
Dunster et al. (2014); we denote the associated rate parameter and saturation constants
by ν∗ and β∗

c , β
∗
g , respectively. Apoptotic neutrophils are removed by macrophages of
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Table 1 Summary of the dimensional parameters appearing in (1)

Parameter Definition

ν∗ Neutrophil apoptosis rate

φ∗ Rate of apoptotic neutrophil removal by macrophages (secondary necrosis)

χ∗
n , χ

∗
m Maximal rates of neutrophil/macrophage influx

γ ∗
a Rate of necrosis of apoptotic neutrophils

γ ∗
m Rate of macrophages leaving tissue

γ ∗
c , γ

∗
g Rate of pro/anti-inflammatory mediator decay

k∗
a Concentration of pro-inflammatory mediators produced upon apoptotic

neutrophil necrosis

k∗
g Concentration of anti-inflammatory mediators produced upon phagocytosis

of apoptotic neutrophils by macrophages

k∗
n Rate of pro-inflammatory mediator production by active neutrophils

β∗
a , β

∗
n , β

∗
c , β

∗
g , β

∗
gc Saturation constants

D∗
n , D

∗
m , D

∗
c , D

∗
g Diffusivities of active neutrophils, macrophages and pro/anti-inflammatory

mediators

θ∗
n , θ

∗
m Rates of neutrophil/macrophage chemotaxis

We direct the reader to Dunster et al. (2014) for further discussion of spatially independent parameters; we
discuss appropriate choices for spatial parameter values in Sect. 2.1

concentration k∗
g , causing an associated release of anti-inflammatory mediators at rate

k∗
g , as reported in previous publications (Lawrence et al. 2002; Lawrence and Gilroy
2007; Henson 2005; Serhan and Savill 2005). Both active and apoptotic neutrophils
provide saturating sources of pro-inflammatory mediator with associated parameters
k∗
n , k

∗
a and saturation constants β∗

n , β∗
a , respectively. We assume that apoptotic neu-

trophils, macrophages and pro/anti-inflammatory mediators each decay linearly with
rates γ ∗

a , γ
∗
m , γ

∗
c , γ

∗
g , respectively. In addition to the above, we develop upon the model

of Dunster et al. (2014) through addition of diffusivemovement ofmediators and (non-
apoptotic) cells and chemotactic movement of active neutrophils and macrophages up
gradients of pro-inflammatory mediator concentration. We denote diffusion constants
and chemotactic constants by D∗

i and θ∗
i , with subscripts identifying the component

of interest. The above parameters are summarised in Table 1. We solve (1) on a square
spatial domain of dimension L∗ (as shown in Fig. 2), subject to periodic boundary
conditions and initial conditions that incorporate both areas of healthy tissue and tissue
damage, as discussed below.

To simplify the analysis, we rewrite (1) in terms of dimensionless variables defined
as follows

n∗ = χ∗
n k

∗
a

γ ∗
c

n, a∗ = χ∗
n k

∗
a

γ ∗
c

a, m∗ = χ∗
mk

∗
a

γ ∗
c

m, c∗ = k∗
ac, g∗ = β∗

gcg, (2a)

x∗ = L∗x, t∗ = 1

γ ∗
c
t, (2b)

resulting in the following dimensionless system:
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L∗L∗

Underlying vasculature (not modelled)

Computational domain Cell recruitment

Initial damage

x∗y∗

Fig. 2 Schematic diagram of our computational domain. We solve (1) on a square domain of dimension
L∗, subject to initial conditions that include localised damage in the centre of the domain. Dashed arrows
represent recruitment of immune cells from the underlying vasculature (not modelled). Periodic boundary
conditions are applied on all boundaries

∂n

∂t
= −ν

1 + g
βg

1 + c
βc

n + c

1 + g
+ Dn∇2n − θn∇ · (n∇c) , (3a)

∂a

∂t
= ν

1 + g
βg

1 + c
βc

n − γaa − φma, (3b)

∂m

∂t
= c − γmm + Dm∇2m − θm∇ · (m∇c) , (3c)

∂c

∂t
= γa

a2

β2
a + a2

+ kn
n2

β2
n + n2

− c + Dc∇2c, (3d)

∂g

∂t
= kgφma − γgg + Dg∇2g, (3e)

where dimensionless parameters are as defined in Table 2. We seek solutions to (3) on
a unit square domain, subject to periodic boundary conditions.

2.1 Parameter Values

We here briefly address the question of how to obtain biologically feasible values
for the dimensional parameters listed in Table 1. This is a non-trivial task since
some of the required measurements are not well documented in existing literature,
due to myriad reasons that include lack of clarity in some biological mechanisms
(Haslett 1999; Gilroy et al. 2010), the fact that the typical short lifespan of an acute
inflammatory response results in many patients presenting only after the condition
has progressed beyond the acute stage, and the fact that parameter values can vary
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Table 2 Dimensionless parameters appearing in the system (3), and their definition in terms of dimensional
quantities

Spatially independent parameters Spatial parameters

Parameter Expression Baseline value Parameter Expression Baseline value

ν ν∗/γ ∗
c 0.1 Dc D∗

c /L∗2γ ∗
c 1 × 10−4

φ φ∗χ∗
mk

∗
a/γ ∗2

c 0.1 Dg D∗
g/L∗2γ ∗

c 1 × 10−4

γa γ ∗
a /γ ∗

c 1 Dn D∗
n/L∗2γ ∗

c 1 × 10−5

γm γ ∗
m/γ ∗

c 0.01 Dm D∗
m/L∗2γ ∗

c 1 × 10−6

γg γ ∗
g /γ ∗

c 1 θn θ∗
n /L∗2γ ∗

c 1 × 10−5

kn k∗
n/k∗

aγ ∗
c 0.01 θm θ∗

m/L∗2γ ∗
c 1 × 10−6

kg k∗
gk

∗
aχ∗

n /β∗
gcγ

∗
c 0.1

βa β∗
a γ ∗

c /χ∗
n k

∗
a 0.1

βn β∗
n γ ∗

c /χ∗
n k

∗
a 0.1

βc β∗
c /k∗

a 0.12

βg β∗
g/β∗

gc 0.01

Also shown are baseline values used in simulations in Sect. 3. Choices of spatially independent parameter
values are informed by Dunster et al. (2014); choices of spatial parameter values are discussed in Sect. 2.1

significantly between different types of tissue. We direct the reader to Dunster et al.
(2014) for a thorough review of previous literature that informs our model’s spatially
independent dimensional parameters, summarised in Table 1, and also their dimen-
sionless counterparts in Table 2. Where previous literature is sufficient to provide only
appropriate orders of magnitude for certain parameters, we display simulations that
best illustrate the model’s full array of behaviours from a mathematical perspective.

Of key importance amongst the spatially independent parameters discussed by
Dunster et al. (2014) is the rate of pro-inflammatory mediator decay, γ ∗

c , since this
parameter is used in the determining key timescales in our model. Existing literature
reports extracellular mediator decay rates to lie between 0.7–20 per day (Waugh and
Sherratt 2007; Su et al. 2009; Smith et al. 2011). Following Dunster et al. (2014), we
take γ ∗

c = 3 day−1.
Despite measurements of spatial parameters being relatively sparse in previous

literature in comparison with the vast numbers of published temporal studies of the
inflammatory response, some measures of these parameters are available from both
experimental studies and inferred frommathematical models. It should be noted, how-
ever, that thesemeasurements are subject to variability across tissues.Rates ofmediator
diffusion reported in previous literature generally lie in the range10−8–10−6 cm2s−1—
see, for example,Warrender et al. (2006),Weidemann et al. (2011), Ross and Pompano
(2018) and references therein. In general, we expect the rates of cell migration to be
slower than those of inflammatory mediators, with previous publications reporting
macrophages to move diffusively at rates of order 10−13–10−7 cm2s−1 (Lauffen-
burger and Kennedy 1983; Sozzani et al. 1991; Owen and Sherratt 1997; Owen et al.
2004). Neutrophils, on the other hand, are expected to move more rapidly owing to
their smaller size.
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We, here, have the flexibility to tune both the domain size L∗ and the timescale
γ ∗
c in our model, to enable us to relate our simulations to some specific inflammatory

condition. However, since we are more interested in examining the general case here,
we begin by defining a baseline set of dimensionless spatial parameters, which we
use in our simulations in Sect. 3.1. We then examine how variations in these param-
eters impact upon the model’s behaviour in Sect. 3.2. Considering a domain of width
L∗ = 10 cm, taking γ ∗

c = 3 day−1 (as in Dunster et al. (2014)), and taking typical
(dimensional) rates of diffusion of mediators and macrophages to be 10−7 cm2s−1

and 10−10 cm2s−1, respectively, provides approximate dimensionless estimates of
Dc, Dg = 10−4 and Dm = 10−6. Since we expect neutrophils to move more quickly
than macrophages but slower than mediators, we prescribe Dn = 10−5. Finally, as an
initial point of reference, we assume that chemotaxis parameters are of a similar order
to those of diffusion, and hence set θn = 10−5 and θm = 10−6; we investigate the
effects of variations in the strength of neutrophil and macrophage chemotaxis more
thoroughly in Sect. 3.2. These parameter choices are summarised in Table 2.

3 Results

In the subsections below we illustrate that the system (3) can exhibit spatially inho-
mogeneous (patterned) solutions that the ODE model of Dunster et al. (2014) omits.
Unless otherwise stated below, we initiate the model using initial conditions that
incorporate uniform damage in a circle of radius 0.25 centred at (x, y) = (0.5, 0.5).
The extent of this damage is determined by the coordinates of the non-trivial steady
state exhibited by the ODE that results from eliminating the spatial terms. Outside
of this circle, all variables are set to zero, representing healthy tissue. Throughout
our analysis, we address the questions of whether the localised damage in the centre
of the domain can invade the neighbouring healthy tissue and, if it does so, whether
the inflammation is globally resolved in the long term, becomes uniformly persistent
(chronic), or whether spatially inhomogeneous solutions can arise.

Numerical solution of PDE systems involving chemotaxis [such as (3)] presents
some challenges with regard to numerical stability and the positivity and smoothness
of solutions, particularly for choices of parameter values that render chemotactic terms
larger than associated diffusion terms. (See, for example, Gerisch et al. 2001; Gerisch
and Verwer 2002; Gerisch and Chaplain 2006 for details.) In order to resolve these
challenges, we follow the numerical approach of Gerisch et al. (2001), first implement-
ing a spatial discretisation of the 2D domain, and then solving the resulting system of
ODEs using a splitting method in which chemotactic terms are timestepped explic-
itly using a fourth-order Runge–Kutta (RK4) method, and the remaining reaction and
diffusion terms are timestepped implicitly using ode15s in Matlab. As described
in Gerisch et al. (2001), our numerical method makes use of a van Leer flux limiter
(described in detail by Sweby 1984) in order to preserve the positivity of solutions.

In the sections below, we beginwith consideration of how the space-free parameters
of the corresponding ODE system impact upon the potential to attain spatial patterns.
We then examine how the spatial parameters related to cell/mediator diffusion and cell
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Fig. 3 Bifurcation diagrams for the non-spatial system. a Bifurcation diagram for ν = 0.1 and varying φ.
The supercritical Hopf bifurcation (HB) lies at φ = φHB � 0.09. b Bifurcation diagram for φ = 0.1 and
varying ν. The supercritical Hopf bifurcation lies at ν = νHB � 0.07. In both a and b, the vertical axis
is the pro-inflammatory mediator concentration, c. Solid (resp. dashed) black lines indicate stable (resp.
unstable) fixed points; red lines represent stable periodic orbits. In c, we illustrate the location of the Hopf
bifurcation in (φ, ν)-space; the non-trivial steady state is stable below the curve shown. (All unspecified
parameter values are as given in Table 2.) (Colour figure online)

chemotaxis impact upon the spatial patterns observed. Finally, we briefly discuss the
sensitivity of our results to our choice of spatial domain and initial conditions.

3.1 Dependence Upon Non-spatial Parameters

We begin by examining how the parameters that appear in the corresponding ODE
model impact upon the spatial patterns exhibited by the PDEmodel of (3).As described
by Dunster et al. (2014), in the absence of spatial terms, the model exhibits a stable
steady state in which all variables settle to zero, corresponding to inflammation being
resolved and yielding a healthy outcome. This steady state is stable for all biologically
feasible choices of parameters. In addition to this (and dependent upon parameter
values) themodel can exhibit atmost one additional stable steady state that corresponds
to chronic damage; this steady state can be eliminated via a Hopf bifurcation as key
parameters are varied, giving rise to sustained temporal oscillations for some choices of
parameters. Dependent on parameter choices, the ODE system is either bistable (with
both healthy and chronic steady states permissible), excitable (in which sustained
oscillations are present), or monostable (in that attaining the healthy steady state is the
guaranteed outcome).We direct the reader to Dunster et al. (2014) for a more thorough
reviewof the above; however, in Fig. 3we showbifurcation diagrams that illustrate how
the stability of the steady states described above depends upon key model parameters.
These bifurcation diagrams, which were produced numerically using the continuation
software XPP–Auto, act as a starting point for our analysis of the spatially dependent
model of (3) below. We focus here upon the effects of varying the rates of neutrophil
apoptosis, ν, removal of apoptotic neutrophils by macrophages, φ, and production of
anti-inflammatory mediators, kg , as these parameters are identified as amongst the
most significant in the analysis of the corresponding ODEmodel (Dunster et al. 2014)
and represent potential therapeutic targets. All other parameters are held fixed at the
values given in Table 2 unless otherwise stated.

In order to more clearly visualise the temporal dependence of our 2D solutions in
the analysis that follows, we often illustrate (in Fig. 4a–c, for example) the temporal
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Fig. 4 Solutions of (3) for varying ν, and all other parameters as given in Table 2. In a–c, we plot the
pro-inflammatory mediator concentrations on the cross section y = 0 as a function of time. a For ν = 0.05
(ν < νHB), the damage initially located in the centre of the domain spreads globally, and the system
ultimately attains the non-trivial (chronic) homogeneous steady state given by the corresponding ODE
model. b For ν = 0.1 (ν � νHB), the system ultimately attains a globally resolved configuration, since
the chronic steady state in the ODE model is unstable for this choice of ν. c For ν = 0.075 (ν > νHB),
the system exhibits temporal oscillations that are inhomogeneous in space. Snapshots of the spatial profile
of pro-inflammatory mediator for ν = 0.075 are also shown at d t = 100 and e t = 2000 (Colour figure
online)

evolution of spatial patterns by considering a cross section of the two-dimensional
domain at y = 0 and plotting the corresponding information against time. High (resp.
low) concentrations of system variables are shown in red (resp. blue).

Varying rates of neutrophil apoptosis In Fig. 4, we illustrate solutions arising for
various choices of ν, with all other parameters fixed at those values gives in Table 2.
In the absence of spatial terms, the bifurcation diagram of the corresponding ODE
model is as shown in Fig. 3b and exhibits a supercritical Hopf bifurcation at ν =
νHB � 0.07. In a spatial domain, setting ν = 0.05 allows the damage in the centre
of the domain to rapidly invade the neighbouring healthy tissue (Fig. 4a). The system
quickly attains a configuration that corresponds to uniform damage ofmagnitude given
by the corresponding branch of the bifurcation diagram in Fig. 3b. (As indicated by the
corresponding ODE model, the system is bistable in this region of parameter space;
the magnitude of the damage imposed in the initial condition acts as a switch between
the uniformly healthy or damaged outcomes.) Similar behaviour occurs for all values
of ν < νHB. For ν = 0.1, a choice of ν significantly greater than νHB, the non-trivial
homogeneous steady state is unstable in the ODE model and, despite damage initially
spreading into the neighbouring healthy tissue via a number of pulses emanating
radially from the centre of the domain, the system ultimately converges to a uniformly
healthy configuration (Fig. 4b). However, for choices of ν > νHB that are relatively
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Fig. 5 Summary of the types of
solutions emitted by (3) for
various choices of ν and φ, and
all other parameter values as
given in Table 2. Green triangles
indicate that the system attains
the non-trivial (chronic)
homogeneous steady state given
by the ODE model; red squares
indicate that the model exhibits
spatially inhomogeneous
temporal oscillations; black
circles indicate that the damage
is resolved uniformly. The black
curve marks the location of the
Hopf bifurcation (Colour figure
online)
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close to the Hopf bifucation, we observe that the system supports sustained, spatially
inhomogeneous, temporal oscillations (as illustrated for ν = 0.075 in Fig. 4c–e). The
long-term pattern in this case is one of a ‘spotted checkerboard’ structure, as shown
in Fig. 4e, whose amplitude oscillates temporally.

Varying rates of neutrophil apoptosis and macrophage phagocytosis In Fig. 5, we
summarise where in (ν, φ)-space we find each of the broad solution types above, with
the remaining parameters fixed at the values given in Table 2. For all choices of ν and φ

that fall to the left of (or below) the Hopf bifurcation curve (shown in black in Fig. 5),
the system converges to a stable homogeneous steady state corresponding to uniform
damage (demarked by green triangles in the figure). For the majority of parameter
choices that fall significantly to the right (or above) the Hopf bifurcation curve, the
system ultimately progresses towards the trivial homogeneous steady state at zero,
corresponding to damage being uniformly resolved (as shown by black circles in the
figure). We note that in these areas of parameter space, the non-trivial homogeneous
steady state is unstable, so uniform chronic damage is not a permissible configura-
tion. However, for suitable choices of φ, there exists a narrow region of parameter
space immediately beyond the Hopf bifurcation in which long-term spatially inhomo-
geneous configurations exist. For the parameter choices represented by red squares in
Fig. 5, these configurations display oscillations temporally as well as spatially; how-
ever, spatially inhomogeneous steady states can also be permissible for some choices
of parameters, as the following sectionwill illustrate.We note that these spatially inho-
mogeneous configurations do not fall into the classical class of solutions that typically
arise through Turing instabilities, given their temporally oscillating nature (in most
cases), and that they do not result from changes in the stability of the homogeneous
steady states in the corresponding ODE model. These results are akin to similar pat-
terns driven by Hopf bifurcation in other models, such as that of Penner et al. (2012),
for example. Below, we examine how variations in the choices of spatial parameters
effect the spatially dependent configurations observed here.

Varying the neutrophil feedback rateThemodel of (3) incorporates a positive feedback
loop owing to the production of pro-inflammatory mediators by active neutrophils, the
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Fig. 6 Bifurcation diagrams illustrating the effects of the neutrophil feedback parameter kn upon locations
of Hopf bifurcations as functions of a φ and b ν. In a, b, the non-trivial steady state is stable for parameter
combinations above the black curves. In c we show the position of the Hopf bifurcation in (φ, ν)-space for
kn = 0.01 (solid line), kn = 0.04 (dashed line) and kn = 0.07 (dash-dotted line). The non-trivial steady
state is stable below the illustrated curves; the areas of parameter space above the curves exhibit potential
for inhomogeneous solutions. The cross symbols demark the baseline parameter values of Table 2

associated rate constant being denoted kn . In Fig. 6, we briefly examine the extent to
which this positive feedback loop impacts upon potential solutions. As discussed
above, the facet of the model that is key in determining the long-term outcome is
the position of the Hopf bifurcation. For parameter combinations that lie prior to the
Hopf bifurcation, the model is bistable and we have the potential to obtain either
healthy or chronic homogeneous steady states dependent upon initial conditions; for
parameter choices beyond the Hopf bifurcation, the only permissible solutions are the
healthy homogeneous configuration or spatially inhomogeneous outcomes. In Fig. 6,
we illustrate how the position of the Hopf bifurcation depends upon our choice of kn .
In Fig. 6a, b, we present two-parameter bifurcation diagrams that illustrate how the φ-
and ν-coordinates of theHopf bifurcations evolve as kn is varied; the non-trivial homo-
geneous steady state is stable for parameter combinations that lie above the illustrated
curves. As kn is increased from our baseline value of kn = 0.01, there is a narrow-
ing window of φ-values (for fixed ν) for which the non-trivial steady state is unstable
(Fig. 6a). As such, the enhanced pro-inflammatorymediator production by neutrophils
essentially acts to enhance the stability of the non-trivial steady state, hence increasing
the potential of attaining a globally chronic state. Holding φ fixed and varying kn , the
position of the Hopf bifurcation is an increasing function of ν, since the enhanced
apoptosis of neutrophils acts to counter the pro-inflammatory mediator production by
active neutrophils (Fig. 6b). For the parameter values of Table 2, choices of kn � 0.07
result in the Hopf bifurcation being eliminated completely. Figure 6c illustrates the
curve in (φ, ν)-space on which the Hopf bifurcation lies, for various choices of kn .
Below the illustrated curves, themodel attains a homogeneous outcome (either healthy
or chronic); we infer from Fig. 5 that the region of viable inhomogeneous solutions lies
immediately above these curves. In general, increases in kn act to overwhelm spatial
inhomogeneities, biassing the system towards the chronic homogeneous outcome.

The role of the anti-inflammatory mediator The anti-inflammatory mediator, g, plays
a key role in mediating the inflammatory outcome by both suppressing the recruit-
ment of new neutrophils and enhancing the rate at which existing active neutrophils
become apoptotic. We, here, examine how the outcomes described above depend
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Fig. 7 Bifurcation diagrams illustrating the role of the anti-inflammatorymediator. In awe show the position
of the Hopf bifurcation in (φ, ν)-space for kg = 0.1 (solid line), kg = 0.01 (dashed line) and kg = 0 (dash-
dotted line). The non-trivial steady state is stable below the illustrated curves; the areas of parameter space
above the curves exhibit potential for inhomogeneous solutions. In b, we illustrate the location of the Hopf
bifurcation in (kg, kn)-space. The cross symbols demark the baseline parameter values of Table 2

upon the levels of anti-inflammatory mediator in the system, focusing in particular
upon the influence of variations in the anti-inflammatory mediator production rate,
kg . In Fig. 7, we illustrate how the positions of the Hopf bifurcations depend upon
kg . In Fig. 7a, we show how the curve of Hopf bifurcations that separates regions of
bistability from potential regions of inhomogeneous outcomes moves in (φ, ν)-space
as kg varies. Below the illustrated curves, the system is bistable with both healthy and
chronic homogeneous solutions being stable; above the illustrated curves the chronic
steady state is unstable, and the only permissible unhealthy solution is one of spatial
inhomogeneity. Decreasing kg has a similar effect to increasing the neutrophil feed-
back parameter kn (as described above) in that the chronic steady state becomes stable
for a wider range of parameters in (φ, ν)-space. This can bias the system towards
the chronic homogeneous outcome, in a manner that is dependent upon initial condi-
tions. In Fig. 7b, we plot the Hopf bifurcation position in (kg, kn)-space, with all other
parameters fixed at the values given in Table 2. Both chronic and healthy homogeneous
solutions are stable above the illustrated curve; inhomogeneous solutions are permis-
sible below this curve. In the limit kg → 0, inhomogeneous solutions are eliminated
entirely. Finally, we note that qualitatively similar observations may be made when
manipulating other parameters relating to the anti-inflammatory mediator; increases
in γg or βg have the effect of reducing the concentration of the anti-inflammatory
mediator or reducing its influence upon neutrophil apoptosis, respectively, both of
which result in the Hopf bifurcation curve approaching the dash-dotted line of Fig. 7a
(for which kg = 0). These results are omitted for brevity.

3.2 Dependence Upon Spatial Parameters

We here investigate how variations in the rates of cell/mediator diffusion (Dn , Dm , Dc,
Dg) and cell chemotaxis (θn , θm) effect the permissibility of spatial patterns. Starting
with the baseline set of parameters given in Table 2, we vary each of these six spatial
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Fig. 8 Results obtained for various choices of mediator/cellular diffusion rates (Dc , Dg , Dn and Dm )
and cell chemotaxis parameters (θn , θm ). In each panel we vary two of these six parameters, holding all
other parameters fixed at the values given in Table 2. Red squares indicate that the model exhibits spatially
inhomogeneous oscillations; blue diamonds indicate that the system attains a spatially inhomogeneous
steady state; black circles indicate that damage is resolved uniformly (Colour figure online)

parameters individually. Given that we hold the non-spatial parameters fixed at the
choices given in Table 2, values for which spatial patterns have been identified as
possible, we know that the only potential outcomes here are (i) a uniformly resolved
configuration inwhich all variables reach the steady state at zero, or (ii) a configuration
that exhibits spatial inhomogeneity. Since our parameter choices lie to the right of the
Hopf bifurcation in Fig. 3, we do not expect to attain a configuration that represents
uniform damage, in particular.

In Fig. 8, we illustrate the manner in which the spatial homogeneity of solutions is
dependent upon these spatial parameters. In each panel, we vary two of the six spatial
parameters, holding the other four at the values of Table 2. As Fig. 8 illustrates, there
are two broad routes through which spatial patterns can be suppressed. Firstly, param-
eter sets for which pro-inflammatory mediator diffusion (Dc) or neutrophil motility
(Dn , θn) are high initially result in damage spreading across the domain, until the
domain becomes globally inflamed. This triggers a global inflammatory response that
ultimately yields uniform resolution (as demarked by black circles in Fig. 8), given
that a steady-state configuration corresponding to uniform damage is not permissible
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Fig. 9 Snapshots (at time t = 2000) of temporally oscillating, spatially inhomogeneous configurations
attained on rectangular domains comprised of x ∈ [0, 1] and a y ∈ [0.15, 0.85], and b y ∈ [0.25, 0.75], for
ν = 0.075 and all other parameter values as given in Table 2. Moving from a square domain (Fig. 4e) to a
narrowing rectangular domain can drive the system from spotted to striped patterns (Colour figure online)

here. On the contrary, high rates of diffusion of anti-inflammatorymediator (Dg) result
in high levels of this mediator across the domain, thus suppressing the recruitment of
neutrophils globally, and limiting the initial spread of damage. The system once again
attains the trivial (healthy) steady state emitted by the corresponding ODE model.
In general, spatially inhomogeneous solutions are attainable when spatial parameters
take low to moderate (physiological) values. It is interesting to note that the model
supports both spatially inhomogeneous steady states and spatially inhomogeneous
solutions that oscillate temporally (as demarked by blue diamonds and red squares in
Fig. 8, respectively). The rate of macrophage diffusion (Dm) seems to play a key role
in acting as a switch between these two broad outcomes, as Fig. 8b illustrates.

As Fig. 8c, d illustrates, the extent to which neutrophil and macrophage migration
are directed (i.e. chemotaxis-dominated) or undirected (i.e. diffusion-dominated) has
a relatively weak influence upon the spatial homogeneity of solutions in general. For
a combination of parameters that results in spatially inhomogeneous oscillations, for
example, we can move the system towards uniform resolution of damage by either
increasing neutrophil motility (through Dn or θn) or decreasing macrophage motility
(through Dm or θm). We note that, in this model, the weak impact of the chemotaxis
terms is partially attributable to the fact that neutrophils and macrophages can also be
recruited directly to the damage site from the underlying tissue, thus rendering directed
migration of cells across the domain less important for resolving localised inflamma-
tion. It is noteworthy that for small rates of neutrophil diffusion (Dn), the netrophil
chemotaxis parameter, θn , can act as a switch between healthy and chronic outcomes.

3.3 Domain Effects and Dependence Upon Initial Conditions

We, here, briefly assess the extent to which the patterns identified above are sensitive
to our choice of domain. Numerical simulations conducted on a number of rectangular
domains of varying aspect ratio, with ν = 0.075 (ν > νHB) and all other parameters
as in Table 2, reveal that the regions of parameter space in which we attain uniformly
resolved, uniformly damaged, or spatially inhomogeneous configurations are exactly

123



   45 Page 16 of 22 A. Bayani et al.

(a)
1

0.8

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

t

c
(b)

1

0.8

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

t

c

(c)
1

0.8

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

t

c

(d)

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000 0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

x

c

Fig. 10 The effect of changing the radius of the initial damage upon pro-inflammatory mediator concen-
trations, c, for ν = 0.075 and φ = 0.1. In a–c we plot the concentrations of c on the cross section y = 0
as functions of time, with initially damaged areas of radius a 0.01, b 0.1, and c 0.25. In d we plot the
mediator distributions at the times demarked by the black lines in a–c, with solid, dashed and dash-dotted
lines relating to panels a, b and c, respectively. The long-term profiles are qualitatively similar for all three
configurations (Colour figure online)

as illustrated in Fig. 5. (Results omitted for brevity.) However, changes in the shape
of the domain can impact on the resultant patterns themselves. In Fig. 9, we illustrate
snapshots of two solutions attained on domains with y restricted to the intervals (a)
[0.15, 0.85] or (b) [0.25, 0.75] (with x ∈ [0, 1] as previously). Comparing these results
to those attained on the square domain (Fig. 4e), we observe that moving to a domain
with a higher aspect ratio can predispose the system to striped patterns such as that
shown in Fig. 9b. Additional simulations also reveal that replacing periodic boundary
conditions by Neumann boundary conditions on all boundaries has negligible impact
upon permissible patterns. (Once again, results are omitted for brevity.)

In Fig. 10, we examine the sensitivity of patterns to the size of the area of damage
imposed via the initial conditions described above. In the figure, we set ν = 0.075 and
φ = 0.1 (a parameter choice forwhichwe have demonstrated, in Fig. 5, that temporally
oscillating patterns are permissible), fix all other parameters at the values used given in
Table 2, and examine results for various choices of the radius of the initially damaged
area. As the figure shows, while variations in the radius of the initial damage give
rise to some differences in the short term, long-term patterns are largely insensitive to
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the size of the initially damaged area. Starting with uniform damage of course results
in spatially homogeneous results (not shown), but since this configuration is unstable
in the ODE model, introducing even a small amount of healthy tissue is sufficient to
allow the PDE system to diverge from the unstable homogeneous configuration and
instead attain stable, spatially inhomogeneous periodic orbits. Similar simulations (not
plotted here for brevity) reveal that the model is also largely insensitive to changes in
the magnitude of the initial damage. For example, on making all the initial conditions
used above ten times larger or smaller, we attain qualitatively equivalent spatially
inhomogeneous solutions in the long term, despite some small variations in initial
behaviour.

4 Discussion

In this work we have extended an existing homogeneous model of the acute inflamma-
tory response to include the spatial effects of cell motility and mediator diffusion. In
contrast to many previous models of the inflammatory response that take the approach
of considering only generic populations of white blood cells (Lauffenburger andKeller
1979; Lauffenburger and Kennedy 1981, 1983; Kumar et al. 2004; Reynolds et al.
2006), our model captures the key interactions between the distinct cell populations
thought to play a fundamental role in determining the inflammatory outcome, be it
homogeneous resolution or progression to a chronic, self-perpetuating state. Through
the inclusion of spatial descriptions of immune cells and inflammatory mediators, our
extended model enables us to elucidate the influence of cell migration and mediator
diffusion upon the spatial spread of inflammatory damage and its ability to resolve
within a spatial setting.

We have analysed our model both analytically, via a bifurcation analysis of the
corresponding homogeneous model, and through extensive numerical simulation of
our spatially dependent extension. Guided by an existing focus in the literature upon
targeting the phagocytosing ability of macrophages (φ) in the hunt for new thera-
peutic strategies (see e.g. Porcheray et al. 2005; Serhan 2017), together with the fact
that the analysis of Dunster et al. (2014) identified the neutrophil apoptosis rate (ν)
as a key parameter in determining the nature of long-term outcomes, our analysis
initially focused upon how variations in these two parameters can facilitate or inhibit
spatially inhomogeneous outcomes. While the ODE model shows that variations in
these two parameters that result in crossing the Hopf bifurcation curve in Fig. 3c act
as a switch from bistability to monostability (i.e. guaranteed resolution of inflamma-
tion), simulations of our spatially dependent model illustrate (in Fig. 5) that crossing
the same Hopf bifurcations can move the model into an area of parameter space for
which persistent spatially inhomogeneous solutions exist—both steady-state solutions
and solutions that oscillate temporally. These chronically inflamed solutions lie in an
area of parameter space for which the ODE model predicts full resolution of damage.
For the majority of parameters studied, our spatially inhomogeneous solutions com-
prise disparate areas of damage whose severity oscillates temporally; while one area
of damage may be resolving, in that pro-inflammatory mediator levels are reducing,
other areas of damage are worsening due to the feedback from both active and apop-
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totic neutrophil populations. Oftentimes, monitoring the pro-inflammatory mediator
concentrations alone would seem to indicate resolution, yet responses from the other
components of the system yield further flares of damage in due course. In this sense,
the temporal patterns that we observe are reminiscent of inflammatory conditions
that have relapsing–remitting characteristics, such as Crohn’s disease or rheumatoid
arthritis (Tibble et al. 2000; Firestein 2003).

Having established the areas of (φ, ν)-space that exhibit spatially inhomogeneous
solutions, we then examined the extent to which the balance between the pro-
inflammatory feedback from active neutrophils (with rate kn) and the counteracting
role of the anti-inflammatory mediator (g) can have a key influence upon biassing the
system towards globally inflamed (homogeneous) or spatially inhomogenous solutions
(as illustrated in Figs. 6 and 7). For large choices of kn or small concentrations of anti-
inflammatory mediator (e.g. in the limit kg → 0), spatial patterns can be eliminated
and the results of the corresponding homogeneous model are recovered. While some
drugs in current usage (such asmethotrexate, sulphasalazine and FK506) do act tomit-
igate against inflammation by triggering the synthesis of anti-inflammatory mediators
(Gilroy et al. 2004; Haskó and Cronstein 2004), manipulation of anti-inflammatory
mediators remains an active area of focus in the hunt for new therapeutic targets
(Henson 2005; Barnig et al. 2018; Bäck et al. 2019). Our results indicate that, while
increasing the concentrations of anti-inflammatory mediators can move the homoge-
neous system from a bistable regime (in which chronic outcomes are permissible) to
a healthy state, intermediate levels of anti-inflammatory mediators can yield spatially
inhomogeneous, non-resolving outcomes.

For spatially independent parameter values that allow the model to emit spatially
inhomogeneous solutions, we have explored (in Fig. 8) the extent to which variations
in spatial parameters can influence the solutions obtained. For rapidly spreading medi-
ators (Dc and Dg large), the initial damage rapidly spreads to fill the entire domain,
triggering a global response that results in a homogeneous, healthy outcome. Simi-
larly, large choices of the neutrophil motility parameters (Dn and θn) or small choices
of macrophage motility parameters (Dm and θm) result in a rapid spread of damage
driven by the apoptosis and eventual necrosis of neutrophils, the associated positive
feedback in pro-inflammatory mediator concentrations once again triggering a global
response that restores the healthy state. For small tomoderate choices of the neutrophil
diffusion parameter Dn , our simulations reveal that strong neutrophil chemotaxis (θn
large) can drive resolution of inflammation, while weaker neutrophil chemotaxis can
result in a persisting spatially inhomogeneous outcome (Fig. 8c). The role of neutrophil
migration in many different inflammation-related pathologies is of increasing interest
(Brubaker et al. 2013; Cecchi et al. 2018); there is strong evidence in the biological
literature that a reduction in the rate of neutrophil chemotaxis occurs under trauma and
ageing and results in an otherwise healthy inflammatory response being pushed into a
persistent inflammatory response (Sapey et al. 2014). Indeed, neutrophil migration is
now thought to be an attractive therapeutic target for diseases such as chronic obstruc-
tive pulmonary disease, a chronic lung disease characterised by aberrant neutrophil
migration (Sapey et al. 2011; Jasper et al. 2019).

It is pertinent to remark briefly that, while the model presented here incorporates a
reasonably thorough catalogue of biological interactions, this comes at the expense of
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restricting the use of some key mathematical analyses that would commonly be used
in analysing pattern-forming systems. For example, our model does not readily lend
itself to travelling wave analysis due to the complexities inherent in the numerous
nonlinear reaction and chemotactic terms, and does not allow spatially interesting
configurations to be determined analytically; we are therefore restricted to the use
of robust numerical schemes in order to identify the model’s spatially dependent
solutions. This is in contrast to a broad range of existing models, the construction of
which can often omit key biological feedbacks in order to facilitate greater analytical
progress. Furthermore, we note that, while we regard the model described here to
include the majority of crucial biological interactions at play in a typical inflammatory
response, there is certainly scope for inclusion of further, more detailed mechanisms.
To do so within the confines of a PDE-based model would likely result in a model
that is not easily penetrable via mathematical analysis. This potentially motivates
the need for a shift to an alternative modelling paradigm, via which the full remit
of biological interactions can be easily incorporated. The use of ‘agent-based’ or
‘cellular automata’ models has become increasingly popular in this regard in recent
years, and has shown great success inmodelling a range of intricate biological systems,
with examples including tumour growth (Gerlee and Anderson 2007; Figueredo et al.
2014), bone remodelling (Tovar et al. 2004), immune responses in the gut (Verma
et al. 2019), within-host progression of sexually transmitted infections (Nelson et al.
2014) and many more. Development of advanced cellular automata models of the
acute inflammatory response, and comparison of results with PDE-based models such
as that described here, remains a key target for ongoing work in this area.

In summary, we have extended an existing spatially homogeneous description of
the inflammatory response to include key spatial effects. Our model illustrates that the
inflammatory outcome exhibits strong dependence upon the interplay between apop-
tosing neutrophils, phagocytosing macrophages and anti-inflammatory mediators. For
parameter choices close to the switch between bistability and guaranteed resolution in
the homogeneous model, our spatial extension exhibits inhomogeneous outcomes. In
line with recent experimental data, we find that aberrant neutrophil migration can play
a role in the failure of inflammation to resolve. All of the above mechanisms remain
key targets in the ongoing search for new therapeutic interventions.
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