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ABSTRACT 

Aim: To 1) assess the environmental suitability for rainforest tree species of the families 

Moraceae and Urticaceae across Amazonia during the Mid-Late Holocene and 2) determine 

the extent to which their distributions increased in response to long-term climate change over 

this period. 

Location: Amazonia. 

Taxon: Tree species of Moraceae and Urticaceae. 

Methods: We used MaxEnt (maximum entropy modelling) and inverse distance weighting 

(IDW) interpolation to produce environmental suitability and relative abundance models at 0.5 

degree resolution for Moraceae and Urticaceae tree species, based on natural history 

collections and a large plot dataset. To test the responses of the Amazon rainforest to long-

term climate change, we quantified the increase in environmental suitability and modelled 

species richness for both families since the Mid Holocene (past 6,000 years). To test the 

correlation between the relative abundance of these species in the modern vegetation versus 

modern pollen assemblages, we analysed the surface pollen spectra from 46 previously 

published paleoecological sites. 

Results: We found that the mean environmental suitability, for the Amazon basin as a whole, 

for species of Moraceae and Urticaceae showed a slight increase (6.5%) over the past 6,000 

years, although southern ecotonal Amazonia and the Guiana Shield showed much higher 

increases (up to 68%). The accompanied modelled mean species richness increased by as much 

as 120% throughout Amazonia. The mean relative abundance of Moraceae and Urticaceae 

correlated significantly with the modern pollen assemblages for these families (R2 = 52%).  

Main conclusions: Increasing precipitation between the Mid and Late Holocene expanded the 

range of suitable environmental conditions for Amazonian humid rainforest tree species in the 

Moraceae and Urticaceae families, thus leading to rainforest expansion in ecotonal areas of 

Amazonia, consistent with previously published fossil pollen data. 

 

KEYWORDS 

Amazonian rainforest, climate change, distribution modelling, Holocene, Moraceae, tree 

species, Urticaceae.  



1. INTRODUCTION 

Amazonia has experienced marked changes in climatic conditions since the Last Glacial 

Maximum (LGM), around 21 kyr before present (BP) (Wang et al., 2017). Simulations and fossil 

pollen data suggest that Amazonia remained predominantly forested during the LGM, 

although savanna expanded at the expense of forest in ecotonal areas, especially in southern 

Amazonia (Mayle & Beerling, 2004). The onset of the Holocene (ca. 12 kyr BP) was marked by 

rising temperatures and precipitation (Maslin & Burns, 2000), but the Early-Mid Holocene (ca. 

8 – 4 kyr BP) was characterized by significantly drier climatic conditions compared with 

present, with minimum precipitation centred around 6 kyr BP. The South American Summer 

Monsoon (SASM) subsequently strengthened during the late Holocene (ca. 3-4 ka BP), with 

increased precipitation facilitating the expansion of rainforest tree species (Vidotto et al., 

2007). Studies using species distribution models (SDMs) have shown the climate-driven 

southward expansion of Amazonian tree species, and consequent contraction of Cerrado 

vegetation (woody savannas), during the late Holocene, attributed to both increased 

precipitation and temperature (Bueno et al., 2017). Ledo & Colli (2017) showed that warm-

adapted tree species expanded along a southeastern – north-western corridor (encompassing 

Amazonian rainforest, Cerrado/Chiquitano dry forest, and Atlantic forest) during Mid-Late 

Holocene. 

 

Fossil pollen records obtained from lake sediment cores demonstrate a long-term trend of 

climate-driven rainforest expansion in ecotonal areas of Amazonia, at the expense of semi-

deciduous dry forests and Cerrado savannas (Reis et al., 2017). The strongest evidence for Late 

Holocene, climate-driven, southward rainforest expansion comes from fossil pollen data from 

two lakes – Laguna Bella Vista and Laguna Chaplin – in Noel Kempff Mercado National Park in 

ecotonal northeastern Bolivia (Mayle et al., 2000). At Laguna Bella Vista the abundance of 

Moraceae/Urticaceae pollen markedly increased between 2790 cal yr and 1530 cal yr BP. At 

Laguna Chaplin, 100 km further to the south, this forest expansion occurred later, between 

2240 cal yr and 660 cal yr (Burbridge et al., 2004). The differing chronologies of rainforest 

expansion between these two lakes suggest a rainforest expansion rate of ca. 0.03 km/yr. 

Modern pollen rain studies (Gosling et al., 2005, 2009) demonstrate that >40% abundance of 

Moraceae/Urticaceae pollen is indicative of humid evergreen rainforest, while presence of 

Curatella americana L. pollen is indicative of savanna, especially if accompanied by high (>40%) 

grass (Poaceae) pollen percentages.  

 

The modern pollen assemblages from the surface-sediment of both lakes reflect the closed-

canopy humid evergreen rainforest surrounding them today, with 40-50% 

Moraceae/Urticaceae pollen (rainforest taxa) and < 10% Poaceae pollen. This contrasts with < 

20% Moraceae/Urticaceae and ca. 40% Poaceae pollen during drier conditions of the Mid-

Holocene, consistent with a mosaic of semi-deciduous dry forest and savanna, which 

dominates the Brazilian Cerrado biome south of Amazonia today (Mayle et al., 2007). The 



families Moraceae and Urticaceae are commonly found in Amazonian rainforests (ter Steege et 

al., 2015, 2006). Moraceae is among the 10 most abundant tree families in Amazonia 

contributing 11 of the 227 hyperdominant species (~5% in total) and it is the most dominant 

tree family in Bolivian wet forests (ter Steege et al., 2015, 2013). Urticaceae encompasses 

many herbaceous species, but is mainly represented by species of the arboreal genera 

Cecropia and Pourouma (Appendix S3). The pollen of these two families is well-represented in 

Amazonian fossil records, but these families are difficult to distinguish palynologically and are 

thus typically recorded as Moraceae/Urticaceae pollen type (Burn & Mayle, 2008). However, 

the Moraceae/Urticaceae pollen type is usually attributed to Moraceae rather than Urticaceae, 

because Moraceae is much more common than Urticaceae in inventories of vegetation plots 

(Burbridge et al., 2004; Mayle et al., 2000).  

 

1.1 Aims and Approach 

Although it is well established from the aforementioned fossil pollen records that Mid-Late 

Holocene climate change drove southward expansion of ecotonal rainforests by at least 130 

km in southern Amazonia (Mayle et al., 2000), the paucity of fossil pollen records across the 

Amazon basin, coupled with the taxonomic limitations of pollen analysis (restricted to family 

level, or genus level at best), hampers understanding of species-level responses of rainforest 

taxa across the basin. 

Here, we circumvent these spatial and taxonomic limitations of pollen analysis by employing a 

species distribution modelling approach to investigate how Mid-Late Holocene climate change 

increased the environmental suitability for Amazonian rainforest species within the Moraceae 

and Urticaceae families, and thereby assess the spatial scale of climate-driven species range 

distribution in Amazonia. We focus on the Moraceae and Urticaceae families because changing 

pollen abundance of these taxa in lake sediment records reliably reflect past changes in 

rainforest distribution (e.g. Mayle et al., 2000). Our approach entails modeling the 

environmental suitability of Moraceae and Urticaceae tree species using a conservative 

pipeline (Gomes et al., 2018), to define their estimated area of occupancy (AOO) (IUCN, 2017). 

We do this for current climate conditions and Mid-Holocene climate projections from seven 

global circulation models (GCMs) (Hijmans et al., 2005). We also compare the relative 

abundance of Moraceae and Urticaceae within lake surface-sediment pollen assemblages 

versus parent vegetation to verify that changing abundance of these taxa in the fossil pollen 

record is a reliable proxy for past changes in rainforest distribution. 

 

2. MATERIALS AND METHODS 

2.1. Amazonian base map 

We based Amazonian lowland forest on ter Steege et al. (2015). The base map consists of 

2,191 0.5-degree cells (Figure S1). We divided Amazonia into six regions following Quesada et 

al. (2011) and ter Steege et al. (2013), Guiana Shield (GS), north-western Amazonia (WAN), 



south-western Amazonia (WAS), southern Amazonia (SA), eastern Amazonia (EA) and central 

Amazonia (CA). This division is mainly based on the maximum geological age of the soils. 

 

2.2. Environmental suitability 

We estimated mean environmental suitability based on models of species potential 

distribution as predicted by MaxEnt version 3.3.3k (Steven J. Phillips et al., 2006). MaxEnt is 

one of the most commonly used methods for modelling species distributions. Its predictions 

are considered consistent in estimating local occurrence (Aguirre-Gutiérrez et al., 2013) and 

regularly competitive against the highest performing methods (Elith & Graham, 2009). This 

machine-learning method is based on presence-only data which enable the use of the natural 

history collections available in herbaria and online databases and also release the user from 

problems related to unreliable absence records (Jiménez-Valverde et al., 2008). The collections 

of Moraceae and Urticaceae used by MaxEnt were downloaded from the Global Biodiversity 

Information Facility (GBIF, http://www.gbif.org/, January 2018), using the function ‘gbif’ from 

the R package ‘dismo’ (Hijmans et al., 2017), based on the most recent list of Amazonian tree 

species (ter Steege et al., 2019). We assigned all individuals to species level and intraspecific 

levels were ignored. All collections were checked for inconsistencies using a cleaning pipeline 

(Gomes et al., 2018) and all records were removed for those species which had: imprecise 

georeferences, duplicates at 0.5 degree spatial resolution, records assigned to capital cities or 

centroids of provinces, latitude equal to longitude and equal to exactly zero. We used 

collection data from the entire Neotropics to prevent SMDs deficiencies that are associated 

with models based on a species’ partial geographic range (Raes, 2012). Species with a small 

number of records (<6) were not used as they may develop inaccurate predictions (van 

Proosdij et al., 2015). We brought occurrences and environmental variables to the same 

resolution before modelling species potential distribution. 

 

The environmental data used by MaxEnt were downloaded from WorldClim at 10 arc-minutes 

(~18.6 km spatial resolution, for 19 environmental variables) (Hijmans et al., 2005). All 

environmental variables were cropped to the geographic extent of the Neotropics to avoid 

range contraction or underprediction related to modelling partial species distributions (Raes, 

2012). We used the function ‘aggregate’ from the R package ‘raster’ (Hijmans, 2017) to 

aggregate all variables from 0.17 (10 arc-minutes) to 0.5-degree (~50 km) spatial resolution. 

We based the selection of the variables on their biological relevance and correlations, using 

the common Spearman’s rank correlation coefficient threshold of |rho| > 0.7 to identify 

correlated variables (Figure S2) (Dormann et al., 2013). Since the seasonal climate produced by 

latitudinal shifts of the South American Summer Monsoon is the overriding control over the 

geographical limit of the Amazonian rainforest (Martin et al., 1997), we selected precipitation 

seasonality (BIO15). We also selected isothermality (BIO3), which measures the climate 

seasonality according the variation of day/night temperatures (O’Donnell & Ignizio, 2012). 

Furthermore, we selected annual precipitation (BIO12) as the range limits of species are 



defined by their ability to endure dry conditions, where the threshold for the presence of the 

studied families is an annual precipitation of ~1,500 – 2,000 mm (Esquivel-Muelbert et al., 

2016). Finally, we followed Whitney et al. (2014) and selected the mean temperature of 

coldest quarter (BIO11) because of the importance of low temperature minima for the floristic 

composition of seasonally-dry tropical forest at the ecotonal boundaries of Amazonia.  

 

We corrected the modelled potential distribution of the species for geographical sampling bias 

by having the background sample with the same bias as the presence data using a target-group 

background (Phillips & Dudík, 2008). This correction improves model accuracy and greatly 

contributes to the analysis, given MaxEnt’s assumption that species records are an 

independently drawn sample from the unknown probability distribution. To achieve that, we 

produced a background file based on a binary raster grid sampled from all Amazonian tree 

species records available on GBIF, reflecting local survey effort. In MaxEnt, we excluded 

product, threshold and hinge features due to their lack of biological justification with the 

environmental data used (Merow et al., 2013). The models were not iterated using subsets of 

presences. 

 

The modelled potential distribution of the species was constrained to their extent of 

occurrence (EOO) (IUCN, 2017) by drawing a polygon around their presence records using a 

convex hull plus a buffer of 300 km (Syfert et al., 2014), resulting in the estimated areas of 

occupancy (AOOs) (IUCN, 2017). This is a conservative use of MaxEnt’s predictions, limiting the 

modelled potential distribution within the range of species’ known occurrences. It also adds a 

distribution area (buffer of 300 km) including a spatial structure that preserves finer scale 

gradients (VanDerWal et al., 2009). A species’ original AOO was based on current climate 

conditions (average for 1960-2000). A species’ past AOO for Mid-Holocene (ca. 6,000 yr BP) 

was based on variables from seven IPPC5 global climate model (GCM) projections, BCC-CSM 

(Xiao-Ge et al., 2013), CCSM4 (Yeager et al., 2012), HadGEM2-ES (C. D. Jones et al., 2011), IPSL-

CM5A-LR (Swingedouw et al., 2013), MIROC-ESM (Watanabe et al., 2011), MPI-ESM-LR 

(Giorgetta et al., 2013) and MRI-CGCM3 (Tatebe et al., 2012). Although predicting past climatic 

conditions of Amazonia may be problematic, since Global climate models (GCMs) may diverge 

in modelling some parts of the Amazonian basin (Smith et al., 2018), we minimized such 

divergences by averaging several GCMs from CMIP5. 

 

2.3. Species relative abundance 

We obtained abundance data of Moraceae and Urticaceae from the Amazon Tree Diversity 

Network (ATDN, http://atdn.myspecies.info/) and modelled the relative abundance of the two 

families spatially. Abundance maps were constructed using 1912 1-ha tree inventory plots 

distributed across Amazonian rainforest (Amazon basin and the Guyana Shield), recording all 

individuals with ≥ 10 cm diameter at breast height (dbh) (ter Steege et al., 2015). We used 

inverse distance weighting (IDW) interpolation to produce relative abundance maps from the 



plot abundance data. We defined the relative abundance (RA) for each cell as RAi = ni/N, 

where: ni = the number of individuals of taxon I, and N = the total number of trees. IDW 

models were based on the nearest 150 plots within a 300 km distance limit (Gomes et al., 

2018; ter Steege et al., 2015). The plot weights were calculated by taking the square root of 

the distance in degrees. 

 

2.4. Pollen data 

We analyzed pollen records from 46 Amazonian paleoecological sites available in palynological 

studies to obtain the percentage of Moraceae and Urticaceae pollen in the sediment core 

assemblages (Appendices S1 and S2). We gathered all pollen information from those 

palynological studies. The uppermost sediment sample (the sediment-water interface of a lake 

sediment core) was considered representative of the modern pollen percentage. The diagrams 

started in age zero representing the current age. The paleoecological sites are well distributed 

across the Amazonian lowland rainforest (Figure S3). As the pollen of Moraceae and 

Urticaceae are difficult to reliably distinguish (Burn & Mayle, 2008), the percentage of pollen of 

both families obtained in the diagrams were pooled (Appendix S1). 

 

2.5. Data analysis 

We fitted a linear model to test if the core-top (modern) pollen percentages of Moraceae and 

Urticaceae, gathered from the pollen diagrams of the Amazonian paleoecological sites, 

correlated well with the relative abundance of both families in the modern vegetation 

surrounding these paleoecological sites. We statistically validated species’ distribution models, 

using the receiver operating characteristic (ROC), testing which of the models had an observed 

value for the area under the ROC curve (AUC) significantly different from a random 

expectation, using bias corrected null-models (Raes & ter Steege, 2007). We produced 99 null-

models for each species, where the n records (same number of n records of the species tested) 

were drawn randomly without replacement using the same spatial grid of the environmental 

layers. If the species’ observed AUC ranked above the upper one-sided 95% confidence interval 

of the AUC values of the null-models (above the 95th higher AUC values) then its modelled 

distribution was considered significant, with < 5% chance that a random set of n records could 

produce an equally good model. We then excluded all species with models not significantly 

different from their null-models. We produced two models for each species: ‘current climate’ 

and ‘Mid Holocene’. For the Mid Holocene we considered only grid cells predicted by all IPPC5 

GCMs. To estimate the environmental suitability for Moraceae and Urticaceae we averaged 

the models of the top 20 most dominant species of each family. The top 20 most dominant 

species were selected by following ter Steege et al. (2015). Those species represent most of 

the individuals of the families (more than 50% for both families). We also modelled Moraceae 

and Urticaceae richness and quantified its increase between the Mid Holocene and current 

climate. To assess the richness of the families, we transformed the modelled potential 

distribution as predicted by MaxEnt into binary maps using the “10 percentile training 



presence threshold”. This threshold rejects 10% of the records in the lowest predicted values 

of the modelled potential distribution, and tends to preserve high prediction rates as sample 

sizes are reduced (Pearson et al., 2007), and that may be the case for some species we 

modelled which have only a few records. Then, we stacked those binary maps for all species to 

assess species richness (Gomes et al., 2019). All calculations and analyses were performed with 

R v.3.4.3 (R Core Team, 2019), including the R ‘gstat’ v.1.1–6 (Pebesma & Graeler, 2014), 

‘maptools’ v.0.9–2 (Roger Bivand & Lewin-Koh, 2017), ‘rgdal’ v.1.2–16 (R. Bivand et al., 2014), 

‘rgeos’ v.0.3–26 (Roger Bivand & Rundel, 2017), ‘rJava’ v.0.9–9 (Urbanek, 2017) and 

‘speciesgeocodeR’ v.1.0–4 (Zizka & Antonelli, 2015). 

 

3. RESULTS 

3.1. Modelled species, current environmental suitability and species richness  

We analysed data for 216 tree species of Moraceae and Urticaceae with records available in 

GBIF. A total of 13,926 records (mean 64, minimum of 2 and maximum of 456 records) were 

used and 199 species had (i) sufficient available records in GBIF (>5), and a total 176 also had 

(ii) modelled distributions that were significantly different from a random expectation tested 

using null models (>95th null model) (Appendix S3 and S4). Those species were used to model 

environmental suitability and species richness. The 20 most abundant tree species of 

Moraceae and Urticaceae used to model the mean environmental suitability of the families 

included 13 species of Moraceae and 7 species of Urticaceae (Appendix S5). Moraceae species 

are generally more abundant than those of Urticaceae; e.g. the 20 most abundant Moraceae 

species are roughly 60% more abundant than the 20 most abundant Urticaceae species in 

Amazonia. Mean species richness for past and current climate was estimated using the 176 

species with sufficient number of records and significant modelled distributions, 111 of which 

are from Moraceae and 65 of which are from Urticaceae. The major emergent patterns are: (i) 

current environmental suitability and species richness are higher in north-western, central 

Amazonia and in a narrow band in the Guiana Shield (Appendix S6, Figure 1a,b and Figure 

2a,b), (ii) both families show roughly the same spatial pattern for environmental suitability and 

species richness (Appendix S6, Figure S4 and S5). 

 

3.2. Species current relative abundance and pollen assemblages 

The relative abundance models were based on all individuals of Moraceae and Urticaceae. The 

fit of the models against the observed abundance resulted in a R2=35.7 for Moraceae and 

Urticaceae, R2=44% for Moraceae and R2=11.8 for Urticaceae. The families accounted for on 

average 7% of all individuals in the forest, but were distinctly more dominant in south-western 

Amazonia (13%, Appendix S6, Figure 3), followed by southern Amazonia (9%) and north-

western Amazonia (7%). The lowest relative abundance was found in the Guyana shield (3%). 

This contrasts strongly with the current environment suitability and species richness patterns 

(Figure 1 a,b). Moraceae, the most common family of the two, drives the overall spatial 

pattern, and shows the highest abundance in southern and south-western, ranging between 0-



11% (mean of 5%) throughout Amazonia; whereas Urticaeae ranges from 0.1-6.3% (mean of 

2.0%) (Figure S6a). Urticaceae is more evenly spread across Amazonia, with three notable 

peaks in abundance in parts of eastern, south-western and north-western Amazonia (Figure 

S6b). 

 

We found that the mean percentage abundance of Moraceae and Urticaceae pollen was 

highest at sites located in southern/south-western Amazonia (39%, Appendix S1), although 

also high in north-western Amazonia (19%). Pollen percentages of Moraceae and Urticaceae in 

the modern pollen assemblages of the surface-sediment lake cores were a good proxy for their 

pooled relative abundance in the modern vegetation, showing a significant and positive 

correlation (R2 = 52%, P < 0.05; Figure 4; Appendix S1). The modern pollen percentages of 

Moraceae and Urticaceae were driven mainly by the relative abundance of Moraceae (R2 = 

56%, P < 0.05) and much less by the relative abundance of Urticaceae which showed only a 

very weak correlation (R2 = 11%, P < 0.05) (Figure S7a,b and Appendix S1). 

 

3.3. Species environmental suitability during the Mid-Late Holocene 

The mean environmental suitability for Moraceae and Urticaceae species increased over all of 

Amazonia during the Mid-Late Holocene (6.5%). Particularly, it increased in the Guiana Shield 

(7%), eastern Amazonia (16%), central Amazonia (5.8%), in the rainforest–savanna boundaries 

in south-western (4.4%) and in southern Amazonia (13.2%), but decreased in north-western 

Amazonia (-3.5%) (Appendix S6, Figure S8). Although the mean variation was low, it ranged 

widely between -34 and 68% considering all grid cells. The average increase for Moraceae 

species over all of Amazonia was 8.5%, for the Guiana Shield it was 10%, followed by eastern 

(18%), south-western (7%), southern Amazonia (15%) and central Amazonia (7%). Mean 

environmental suitability decreased in north-western Amazonia (-3%) (Appendix S6, Figure S9). 

The average increase for Urticaceae species over all of Amazonia was 9.7%, and was higher in 

eastern Amazonia (30%), in the Guiana Shield (13%) and southern Amazonia (13%). It was 

lower in central (8.9%) and south-western Amazonia (3.7%). In north-western Amazonia it 

showed a low decrease (-0.6%) (Appendix S6, Figure S9b). 

 

3.4. Modelled species richness during the Mid-Late Holocene 

The mean modelled species richness for 0.5-degree grid cells strongly increased throughout 

Amazonia during the Mid-Late Holocene (122%). Mean modelled species richness was lower in 

eastern Amazonia (7.8%), but this region showed the highest increase in mean modelled 

species richness (397%) (Appendix S6, Figure 1b and 2b). Some areas with no modelled 

presence of Moraceae and Urticaceae in the past showed a mean increase of 14 species during 

the Mid-Late Holocene. Those areas were located in the Guiana Shield and eastern Amazonia. 

North-western Amazonia showed the highest mean modelled species richness (99 species, 

Appendix S5), but the lowest increase of all regions (14%). The mean modelled species richness 

was lowest in southern, south-western and eastern Amazonia. For Moraceae, the mean 



increase in modelled species richness was higher in the Guiana Shield and central Amazonia 

(Appendix S6, Figure S10a). Urticaceae followed a similar modelled species richness pattern as 

Moraceae but also showed peaks in north-western and central Amazonia (Appendix S6, Figure 

S10b).  

 

4. DISCUSSION 

 

One of the aims of our study was to determine whether environmental suitability increased 

during the Mid-Late Holocene, influencing the distribution of Moraceae and Urticaceae in 

Amazonia in response to long-term climate change. Under current climatic conditions, both 

families are widespread across Amazonia. Taxa with wide ranges, such as Moraceae and 

Urticaceae, are widespread across the precipitation gradient of the region, indicating that 

some of their constituent species have high tolerance to water-stress. Species distribution in 

Amazonia is strongly associated with precipitation (Esquivel-Muelbert et al., 2017). The 

environmental suitability and the modelled richness were higher in north-western and central 

Amazonia, but lower in southern, south-western and eastern Amazonia. Species richness was 

much lower in southern, south-western and eastern Amazonia, especially at the ecotonal 

boundary between the rainforest and the Cerrado savannas.  

 

Ter Steege et al. (2003) mapped Amazonian tree α-diversity and also found a similar pattern, 

where diversity was higher in north-western and central Amazonia. They hypothesized that the 

low diversity in Bolivian and Brazilian ecotonal rainforests reflected their recent expansion 

within the last 2-3 millennia, as shown by Mayle et al. (2000). This would imply that these 

young rainforests are still undergoing succession and are still accumulating species (ter Steege 

et al., 2000), and that the high abundance of Moraceae and Urticaceae in these ecotonal 

rainforests, where environmental suitability was lower compared to other regions, likely 

reflects the rapid dispersal ability and fast growth rates of some of their species. The high 

species richness we found in western Amazonia has also been attributed to stable climatic 

conditions in the region since the last glacial period (Cheng et al., 2013), as well as a shorter 

dry season (ter Steege et al., 2006, 2003) and the wetter and less seasonal climate (Hoorn et 

al., 2010).  

 

Environmental suitability and species richness were also higher in a narrow band in the Guiana 

Shield. The relative abundance of both Moraceae and Urticaceae was very low in that area. 

Both modelled species richness and mean environmental suitability of Moraceae and 

Urticaceae contrasted strongly with their relative abundance in the forest (Figure 1a,b and 

Figure 3). The relative abundance was highest in south-western Amazonia and lower in 

northwest and central Amazonia. For Moraceae this pattern was more pronounced. This may 

reflect the influence of other factors besides abundance on species distribution, such as biotic 

interactions which may dissociate a species’ observed distribution from its potential 



distribution as predicted by environmental suitability (Anderson & Martínez-Meyer, 2004; Elith 

et al., 2011). Ter Steege et al. (2003) suggested that tree species diversity in the Guiana Shield 

may be linked to the small size of this area in comparison with the much larger tract of forest 

dominating the Amazon watershed. The Guianas also hold very poor soils, and low forest 

dynamics, which together may restrict the environmental conditions needed by fast-growing 

groups of species, such as Moraceae, to become dominant (Grau et al., 2017; van der Sande et 

al., 2018). 

 

The mean environmental suitability for Moraceae and Urticaceae increased in the Guiana 

Shield, eastern, south-western and southern Amazonia during the Mid-Late Holocene (Figure 

S8) but this is not reflected in a high abundance. The Guiana Shield is dominated by tree 

species with large seeds and dense wood, indicative of low forest dynamics (ter Steege et al., 

2006). While environmental suitability increased the low dynamics may hamper the 

establishment of fast-growing Moraceae and small-seeded pioneer species of Urticaceae that 

germinate fast. The observed increase in southern and south-western Amazonia along the 

ecotonal boundaries between the rainforest and the Cerrado savannas corroborates the 

interpretation by Mayle et al. (2000) that Moraceae and Urticaceae species may have tracked 

climate change southward in the last three millennia. Species richness increased mostly in 

regions where diversity was already high, and climatic conditions were stable, such as western 

and central Amazonia. 

 

We measured environmental suitability using MaxEnt. Modelling environmental suitability 

based on a single SDM method may be considered a limitation of our approach. Analyses have 

shown divergences between different methods, especially when projecting the distributions of 

species under climate change scenarios (Pearson et al., 2006; Thuiller, 2004). This makes the 

choice of the appropriate model more difficult for most analyses. Previous studies used the 

ensembles of different methods combining their measures of environmental suitability and 

avoiding such difficulty (Diniz-Filho et al., 2009; Thuiller et al., 2011). Despite that, previous 

studies have successfully used MaxEnt to model environmental suitability under climate 

change scenarios in Amazonia (Bush & McMichael, 2016; Gomes et al., 2019). Gomes et al. 

(2018) compared MaxEnt’s models with a nearly independent plot dataset of Amazonian tree 

species and their results showed that MaxEnt’s ability in predicting species presence was very 

high (mean sensitivity close to 90%). Also, Maxent is little sensitive to small sample sizes (Wisz 

et al., 2008). This is particularly important when modelling species distribution in an area as 

vast and data-scarce as Amazonia, where roughly 30% of the tree species are expected to have 

a population size smaller than 1000 individuals (ter Steege et al., 2013). In our dataset of 

Moraceae and Urticaceae 22% of the species occurred with less than 10 records (Appendix S3). 

 

At an Amazon basin-wide scale we found that abundance of both families in lake surface-

sediment pollen assemblages was well correlated with their pooled relative abundances in the 



vegetation (Figure 3). The abundance of Moraceae and Urticaceae in modern pollen records 

therefore serves as a good proxy for the relative abundance of these families in the modern 

vegetation, especially with respect to Moraceae, contributing to the assumptions that most of 

the pollen records may be attributed to this family. We found that, although Moraceae and 

Urticaceae pollen registered in modern pollen assemblages throughout Amazonia, it was most 

abundant in south-western, north-western and southern regions of the basin. 

 

The pollen of Moraceae/Urticaceae is well-represented in Amazonian fossil records, but is 

difficult to reliably differentiate, at both family and genus level (Burn & Mayle, 2008). In our 

analyses, we therefore pooled the pollen of Moraceae and Urticaceae. Based on comparison 

with floristic inventories, most palynologists attribute the majority of the 

Moraceae/Urticaceae type pollen in their assemblages to the Moraceae family (Burbridge et 

al., 2004; Mayle et al., 2000). Our results support this assumption, as the relationship we found 

between the relative abundance of Urticaceae tree species and pooled pollen of Moraceae and 

Urticaceae was very weak. Burn et al. (2010) showed that the pollen rain composition from 

artificial pollen traps was similar to that of lake surface sediments in both moist forests of the 

Madeira-Tapajós ecoregion and the savanna wetlands of the Beni ecoregion. Gosling et 

al.(2009) compared modern pollen trap data with floristic inventories of ecological plots to 

determine pollen-vegetation relationships for rainforest, dry forest, and savanna ecosystems 

in northeast Bolivia. While their results showed that no taxon could be used as an indicator of 

tropical rainforest, they did confirm that high abundance of Moraceae pollen (over 40%) was a 

reliable indicator for this vegetation type. We therefore conclude that the stratigraphic 

changes in abundance of Moraceae/Urticaceae type pollen in sediment cores reflects past 

changes in abundance of tree species of these families in the vegetation through time. 

 

In our analyses, the Moraceae/Urticaceae pollen was present in sediment cores spanning the 

Mid-Late Holocene in all Amazonian regions (Appendix S1). There is a clear trend of rising 

Moraceae/Urticaceae pollen percentages through the Mid-Late Holocene, especially in 

ecotonal southern and northern Amazonia: Lagunas Bella Vista, Chaplin, and Oricore (Carson 

et al., 2014; Mayle et al., 2000) in northeastern Bolivia, Loma Linda in eastern Colombia 

(Behling & Hooghiemstra, 2000), middle Caquetá river basin (Colombia) (Behling et al., 1999), 

Fazenda Cigana and Terra indígena Aningal (Roraima, northern Brazil) (Da Silva Meneses et al., 

2013), and lakes Marcio and Tapera in Amapá (northern Brazil) (De Toledo & Bush, 2007), and 

much further increased in Amazonian forest close to Pantanal (Whitney et al., 2011) and in 

Lago do Saci (Fontes et al., 2017). The palynological richness of Moraceae pollen also increased 

in Bolivian dry forests 600 km southward of Amazonia indicating that their flora was also 

assembled during Late Holocene influenced by changes in the precipitation regime (Whitney et 

al., 2014). In Mid-Late Holocene assemblages of Moraceae and Urticaceae pollen were 

registered in sediment cores in all Amazonian regions, consistent with our modelling results 

showing presence of Moraceae species throughout this time period across Amazonia. Sites 



with pollen evidence for continuous forest cover through the Holocene occur in eastern, 

western, and central Amazonia (Appendix S1). Moraceae/Urticaceae pollen was present in 

cores from all these sites, with high abundance in western Amazonia and much lower, but 

constant, abundance in the Guyana Shield sites, consistent with floristic inventories of 1 ha 

ecological plots across the basin.  

 

We have shown that mean environmental suitability for Moraceae and Urticaceae tree species 

increased during the Mid-Late Holocene throughout Amazonia, especially at the ecotonal 

rainforest-savanna boundaries toward the northern and southern margins of the basin. Our 

modelling results build upon and strengthen paleoenvironmental interpretations from earlier 

fossil pollen studies (e.g. Mayle et al., 2000); i.e. that the long-term trend of rising precipitation 

through the Mid-Late Holocene increased the environmental suitability for Amazonian tree 

species in the Moraceae and Urticaceae families, thereby facilitating their range expansions at 

ecotonal boundaries.  

 

Our results imply that, under a future warmer, drier Amazonia, as predicted under most GCMs 

(Hijmans et al., 2005), it is likely that the late Holocene range expansion of Moraceae, 

Urticaceae and many other taxa will be reversed over the 21st century due to increased 

moisture stress, leading to large forest and diversity losses, especially in ecotonal areas of 

Amazonia (Gomes et al., 2019; Mayle et al., 2007).  



LEGEND TO FIGURES 

Figure 1. Current mean modelled environmental suitability and modelled species richness for 

Moraceae and Urticaceae. (a), Map for current mean modelled environmental suitability. (b), 

Map for current modelled species richness. Circles in green, Numbers of species collections by 

0.5-degree cell (a); Number of single species collected by 0.5-degree cell (b). Gray line, 

approximate boundary of Amazonian rainforest. Maps created with custom R script (R Core 

Team, 2019). Base map source (country.shp, rivers.shp): ESRI 

(http://www.esri.com/data/basemaps, © Esri, DeLorme Publishing Company). 

 

Figure 2. Percentage of increase in mean modelled environmental suitability and species 

richness during the Mid-Late Holocene (between current climate and Mid Holocene climate 

conditions, last 6,000 yr BP). (a), increase in mean modelled environmental suitability. (b), 

Increase in mean modelled species richness. Graph created with custom R script (R Core Team, 

2019). 

 

Figure 3. Current modelled relative abundance for Moraceae and Urticaceae. Circles in green, 

relative abundance of the families on the ATDN plots. Circles in yellow, percentage of modern 

pollen assemblages in the core’s sediment of the paleoecological sites corresponding to the 

values in Appendix S1. Gray line, Amazonian rainforest. Maps created with custom R script (R 

Core Team, 2019). Base map source (country.shp, rivers.shp): ESRI 

(http://www.esri.com/data/basemaps, © Esri, DeLorme Publishing Company). 

 

Figure 4. Relationship between predicted relative abundance and modern pollen 

assemblages of Moraceae and Urticaceae (Appendix S1). The assemblages of pollen were 

gathered from the pollen percentage in the diagrams of 46 Amazonian paleoecological sites. R2 

= 52%. 
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