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Changes in northern hemisphere temperature variability1

shaped by regional warming patterns2
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3
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Global warming involves changes not only in the mean atmospheric temperature, but also in6

its variability and extremes. Here we use a feature-tracking technique to investigate the7

dynamical contribution to temperature anomalies in the northern hemisphere in CMIP58

climate-change simulations. We develop a simple theory to explain how temperature variance9

and skewness changes are generated dynamically from mean temperature gradient changes,10

and demonstrate the crucial role of regional warming patterns in shaping the distinct re-11

sponse of cold and warm anomalies. We also show that skewness changes must be taken into12

account, in addition to variance changes, in order to correctly capture the projected temper-13

ature variability response. These changes in variability may impact humans, agriculture and14

animals, as they experience not only a warmer mean climate, but also a new likelihood of15

temperature anomalies within that climate.16

Atmospheric temperature is often described as the mean temperature and its variance (Fig. 1),17

the latter measuring the strength of fluctuations around the average temperature. Assuming a Gaus-18

sian distribution of the underlying Probability Density Function (PDF), the mean and variance cap-19

ture the essence of the observed temperature variability1–3. However, there is increasing evidence20
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that temperature PDFs are characterized by nonzero skewness, which implies a non-Gaussian tem-21

perature distribution4–12. Skewness, defined as S = T ′3/(T ′2)
3
2 (where bar signifies a seasonally-22

varying time average and T ′ denotes the temperature anomalies) measures the asymmetry between23

the positive and negative tails of the PDF, and is positive in regions where large warm anomalies24

are more frequent, and negative in regions where large cold anomalies are more frequent. There-25

fore, the spatial structure of skewness (Fig. 2) has important implications for regional climate and26

weather5, 7, 9, 13–19.27

Under global warming, the spatial distribution of the mean temperature and its variability28

are projected to change, leading to significant climate impacts20, 21. Many studies have exam-29

ined the mean temperature response as well as its variance and extremes using climate change30

simulations1, 3, 5, 8, 15, 18, 22–24. Although several studies have highlighted the importance of studying31

the response of temperature skewness to climate change6, 10, 11, 13, 15, 18, 21, 25–29, changes in extreme32

cold and warm temperature events are still typically attributed to changes in the mean and variance33

alone (e.g., Figure 1.8 in the 5th IPCC report30). Here we take a dynamical approach to study tem-34

perature variability in the Northern Hemisphere (NH), employing a Lagrangian feature-tracking35

algorithm to identify and track temperature anomalies. This allows us to directly evaluate the36

separate changes in the intensity of cold and warm anomalies.37

To concentrate on the dynamical origin of the temperature changes, we examine the 850hPa38

level rather than the surface anomalies. The 850hPa level is a widely-used near-surface level3, 10, 24
39

as it is typically above the boundary layer, but still highly correlated with the surface during strong40
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cold and warm temperature events (Extended Data Fig. 1). The relation to surface temperature41

changes is discussed in the final section.42

Projected temperature changes43

We first present the Eulerian temperature variability changes for winter (DJF) and summer (JJA),44

for the ensemble-averaged CMIP5 response for the mean temperature, variance and skewness45

(see Methods). The 850 hPa wintertime mean temperature exhibits an excess warming in the46

high-latitude NH (Fig. 1c), implying a weakening of the meridional (north-south) temperature47

gradient3, 22, 24 (Extended Data Fig. 4). In addition, the relatively colder continental land masses48

warm more rapidly than the oceans, so the zonal (east-west) temperature gradients also decrease49

over most of the NH. To first order, the general decrease of the temperature gradients in winter50

leads to a decrease in the temperature variance, since by advection arguments a weaker gradient51

implies weaker anomalies3, 22, 24. However, some regions such as the Mediterranean and the Iberian52

Peninsula exhibit a slight variance increase (Fig. 1d). In summer, the already warmer continents53

warm more rapidly than the oceans (Fig. 1g), such that the zonal temperature gradients increase24
54

(Extended Data Fig. 4). There is less agreement between the models regarding the sign of the55

variance change in summer, but a robust increase in variance is projected over central Europe5, 31
56

(Fig. 1h).57

The temperature skewness changes provide further important information. For example, the58

generally positive skewness change over most of the NH during winter (Fig. 2c) implies, together59
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with the variance decrease, that it is the cold anomalies that weaken the most. In summer, the in-60

crease in variance over central Europe is accompanied by a negative skewness change in the south-61

ern regions, and a slight positive skewness change in the northeastern regions (Fig. 2g). Hence,62

it is mainly the cold anomalies that intensify in southern Europe, and mainly the warm anomalies63

that intensify in northeastern Europe.64

Lagrangian temperature variability65

Lagrangian feature-tracking is a commonly-applied technique in the field of stormtracks, used66

for studying cyclones and anticyclones32, but is applied here for temperature anomalies instead.67

The approach was recently used by the authors to study temperature variability and its projected68

changes in the Southern Hemisphere (SH)28. In the SH, the temperature skewness is characterized69

by a band of positive skewness on the poleward side of the midlatitude storm tracks, and a band70

of negative skewness on the equatorward side. In the NH, the existence of large continents com-71

plicates this picture, and high spatial heterogeneity in skewness is observed rather than a simple72

dipole structure.73

The feature-tracking algorithm is applied separately for the 850 hPa cold and warm tem-74

perature anomalies, and the spatial distribution of their mean intensities then constructed (Fig. 3).75

This allows the temperature variance to be decomposed into the separate contributions from cold76

(Fig. 3a,e) and warm anomalies (Fig. 3b,f). While the intensity (in absolute value) of both types77

of anomalies generally maximizes over continents, notable differences are observed, with some78
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regions experiencing stronger cold anomalies and others stronger warm anomalies.79

The decomposition into cold and warm temperature anomalies allows us to directly evaluate80

the distinct contribution of each to the projected regional changes. For example, the projected81

winter changes in the mean intensity of cold (Fig. 3c) and warm (Fig. 3d) anomalies clearly show82

that while both types of anomalies are projected to decrease in magnitude, the cold anomalies83

weaken more. In addition, a limited strengthening of both is found over some regions in central and84

southern Europe (although less model agreement is found there). In summer, the projected changes85

in the intensity of both cold and warm anomalies show robust increases over central Europe, with86

cold anomalies increasing to the northwest and extending towards the British Isles and the Atlantic87

Ocean, and warm anomalies increasing mainly in the northeastern parts.88

Assuming small asymmetry between the cold and warm anomalies, their mean intensities89

can be used to estimate the temperature variance and skewness as90

σ2 ≈
(

1

2
(Tw + Tc)

)2

, (1)

and

S ≈ Tw − Tc
1
2
(Tw + Tc)

(2)

(see section 2 in the Supplementary Information for the derivation of this approximation), where91

Tc = |T ′c| and Tw = |T ′w| denote the average absolute intensity of the cold and warm temperature92

anomalies, respectively. The approximate variance (1) measures the power of the average intensity,93
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while the approximate skewness (2) measures the normalized asymmetry between the cold and the94

warm anomalies (and equals zero if Tc = Tw). The approximate skewness, estimated using the95

tracking statistics of the mean intensities, recovers well the temperature skewness (Fig. 2b,f) and96

its projected changes (Fig. 2d,h), albeit with somewhat smaller values.97

The dynamical origin of the changes in cold and warm temperature anomalies is demon-98

strated next for two regional examples, and then generalized using a simple model.99

Regional examples100

We first examine a region in east-central North America (black box in Fig. 1-3, panels a-d), for101

which the ensemble-mean historical temperature PDF is negatively skewed in winter (Fig. 4a, solid102

line). The tracking results indeed show that the intensities of cold anomalies that pass through this103

region in the historical simulations (Fig. 4b, blue solid lines) reach larger magnitudes than the warm104

anomalies (Fig. 4c, red solid lines) (see Methods). The projected temperature variability changes105

in this region are representative of the changes over most of the NH during winter, and exhibit a106

decrease in variance and a positive skewness change (Fig. 4a, dashed line). Consistent with this,107

both the cold and warm anomalies that cross the region weaken in the projected simulations (blue108

and red dashed lines in Figs. 4b and 4c, respectively), but the cold anomalies weaken substantially109

more such that there is a positive skewness change. There is also a robust agreement between110

models regarding the sign of these projected changes (Fig. 4d-g).111

A composite analysis of strong cold and warm anomalies that pass through the region (see112
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Methods) provides further insight regarding the dynamical origin of these changes. Figs. 4h113

and 4i show the projected anomalous circulation associated with strong cold and warm events,114

respectively, overlaid with the projected background temperature change. For strong cold events115

(Fig. 4h), the anomalous northerly flow entering the region experiences a warmer background tem-116

perature to the north, hence the air is advected over a region with reduced meridional temperature117

gradient (Extended Data Fig. 4), and the cold anomalies weaken. A smaller decrease occurs for118

the anomalous southerly flow entering the region during the warm events (Fig. 4i), resulting in a119

smaller reduction of the warm anomalies.120

Without considering the skewness changes, one overestimates the risk ratio (calculated as121

the ratio of the Cumulative Density Functions between historical and projected temperatures) of122

low temperature extremes (dashed blue line in Fig. 4j), and underestimates the risk ratio of high123

temperature extremes (dashed red line in Fig. 4k). For example, in this region, the risk ratio of124

reaching a temperature below 250K is doubled (from 0.06 to 0.12) (Fig. 4j), while the risk ratio125

of exceeding a temperature of 285K is underestimated by about 60% (from 3.9 to 1.6) (Fig. 4k), if126

skewness changes are neglected. Repeating this analysis for kurtosis shows much smaller changes127

(Extended Data Fig. 5).128

Over central Europe during summer (black box in Fig. 1-3, panels e-h), the ensemble mean129

historical temperature PDF is positively skewed (Fig. 5a, solid line). Variance increases while130

skewness slightly decreases in the projected simulations (Figs. 5a-g), although there is greater131

model spread in the sign of the projected skewness change (Figs. 5g). The projected background132
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temperature increase is maximized around southern Europe and the northern Mediterranean re-133

gion, and the meridional temperature gradient therefore increases over central Europe (Extended134

Data Fig. 4). Hence, during strong cold events, the northwesterly flow entering the region (Fig. 5h)135

experiences a stronger background temperature gradient, and the cold anomalies intensify. Simi-136

larly, during strong warm events, the anomalous southerly flow entering central Europe (Fig. 5i)137

experiences a stronger meridional temperature gradient, albeit somewhat smaller, and the warm138

temperature anomalies therefore also intensify, but to a lesser extent. Note that the increase in139

the zonal temperature gradient over central Europe and the west of Iberia (Extended Data Fig. 4)140

also contributes to the intensification of the warm anomalies. Overall, the skewness changes are141

relatively small and slightly negative when averaged over central Europe (Fig. 5g).142

Neglecting the skewness changes nevertheless results in an underestimation of the extreme143

cold tail (dashed blue line in Fig. 5j) and an overestimation of the extreme warm tail (dashed red144

line in Fig. 5k). For example, in this region the risk ratio of reaching a temperature below 275K145

is almost halved (from 0.06 to 0.03) if one neglects the skewness changes (Fig. 5j), while the146

risk ratio of exceeding a temperature above 304K is overestimated by about 20% (from 42 to 50)147

(Fig. 5k).148

Dynamical origin of temperature changes149

The two regional examples discussed above can be generalized using simple arguments. Given that150

strong cold and warm temperature anomalies are mostly associated with northerly and southerly151
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winds, respectively22, we can understand the first-order changes in variance and skewness given152

the changes in the meridional background temperature gradients as follows. From Taylor’s theo-153

rem, one can express the cold and warm temperature anomalies arising from horizontal advection154

as T ′c = −ηNTNy and T ′w = −ηST Sy, respectively. Here, ηN < 0 is the meridional displacement155

of the cold anomaly (which is negative since it is coming from the north), and ηS > 0 is the merid-156

ional displacement of the warm anomaly (coming from the south). We further denote TNy as the157

averaged background temperature gradient experienced by the cold anomaly during its movement158

from the north, and similarly T Sy for the warm anomaly.159

It is clear from the expressions above for T ′c and T ′w and (2) for the approximate skewness160

how a nonzero local temperature skewness can be obtained, S ≈ |ηSTSy |−|ηNTNy |
1
2

(|ηSTSy |+|ηNTNy |)
, if |ηNTNy| 6=161

|ηST Sy|. Moreover, if nonuniform changes in the background temperature gradient occur, both162

the variance and skewness can change locally. Denoting ∆TNy and ∆T Sy as the changes in the163

meridional background temperature gradient to the north and south of a region, one finds ∆T ′c =164

−ηN∆TNy for the cold anomalies, and ∆T ′w = −ηS∆T Sy for the warm anomalies. Here we have165

assumed for simplicity that ηN and ηS remain the same in the future climate, but the meridional166

displacements can generally change too (although in the regions we have examined, the changes167

appear to be small, Extended Data Fig. 6). In the limit of small asymmetry, using (1) and (2) for the168

approximate variance and skewness (respectively) and the expressions above, we find (see section169

3 in the Supplementary Information):170
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∆σ2 ≈ σ2

[
∆T Sy

T Sy

+
∆TNy

TNy

]
, (3)

and171

∆S ≈
∆T Sy

T Sy

− ∆TNy

TNy

. (4)

Hence, depending on the sign and magnitude of the relative temperature gradient changes to172

the north and to the south, the variance and skewness can either increase or decrease. Note that173

close to localized temperature gradients (e.g., due to orography or ocean-continent boundaries),174

zonal gradients also can be significant in influencing the temperature variability33. The equations175

above can be easily generalized to include zonal gradients by calculating the derivatives in the176

direction of largest gradient, which will have a westerly/easterly component in these regions.177

If the gradient changes both oppose the original temperature gradients (i.e.,
∆TNy

TNy
< 0 and178

∆TSy

TSy
< 0), as is the case for most of the NH during winter, and for the first region examined above,179

then (3) predicts a negative variance change. Furthermore, if the relative decrease to the north
∆TNy

TNy
180

is larger than the relative decrease to the south
∆TSy

TSy
, then (4) predicts a positive skewness change.181

The actual changes are captured nicely by the simplified equations for east-central North America182

during winter, as presented in Figs. 6a and 6b, which show the predicted vs. actual variance and183

skewness changes, respectively, across the CMIP5 models. For almost all of the models, the sign184

of the variance change agrees with the background temperature gradient decrease (Fig. 6a). The185

theory also helps understand some of the model spread, as models that predict a larger background186

temperature gradient decrease also show a larger decrease in variance. The skewness changes are187
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slightly more scattered (Fig. 6b), but the simplified equations generally capture the correct sign of188

the skewness change and the model spread, with the models that predict a larger relative gradient189

decrease to the north exhibiting a larger skewness increase than other models.190

Following a similar argument, if the gradient changes to the north and south both reinforce191

the original temperature gradient (i.e.,
∆TNy

TNy
> 0 and

∆TSy

TSy
> 0) (as in the second case examined192

for central Europe during summer), then from (3) the variance change is positive, while from (4)193

the skewness change will again depend on the magnitude of the relative gradient changes. The194

latter explains why a large model spread in skewness change is observed for central Europe during195

summer, including a disagreement regarding the sign of the change (Fig. 5g), as some models196

predict large relative gradient changes to the north, while others predict large changes to the south197

(Fig. 6d). The simplified equations capture this well, including the correct sign of the projected198

skewness change. There is only a weak correlation between the gradient and the variance increase199

over central Europe during summer (Fig. 6c). The sign of the change is captured correctly by200

the simplified equations, but it is clear that the meridional background temperature increase is not201

the only factor controlling the variance increase. This is probably related to the fact that zonal202

gradients are also important for this region during summer (Extended Data Fig. 4h), and also203

because land-surface processes, such as interaction with soil-moisture, become more important204

during summer1, 5, 34. Note that for both winter and summer, the weaker correlation found in Fig. 6b205

and 6c compared to Fig. 6d and 6a, respectively, may also reflect the smaller model spread in these206

cases (i.e. there is less spread across models to be explained).207
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Finally, the expressions for the variance and skewness given in (1) and (2) can be used to208

estimate the intensities of cold and warm temperature anomalies. It is easy to show that (see209

section 4 in the Supplementary Information):210

Tc ≈ σ

(
1− S

2

)
(5)

and211

Tw ≈ σ

(
1 +

S

2

)
. (6)

If the actual variance and skewness are used in (5) and (6), then the amplitude of the cold and212

warm temperature anomalies can be estimated directly and compared with the tracking results. The213

projected changes in these estimated intensities are shown in Figs. 6e-h, which recover well the214

intensity changes found using the Lagrangian approach (Fig. 3). For example, these expressions215

correctly capture the stronger reduction in the intensity of cold anomalies in most of the NH during216

winter, and also correctly capture the increase of both types of anomalies over central Europe217

during summer.218

This study has examined the variability of lower tropospheric (850 hPa) temperature in order219

to better isolate the role of large-scale horizontal advection. A basic mechanism for temperature220

skewness generation by linear advection of nonuniform background temperature gradients is pre-221

sented, and simple expressions are derived to relate variance and skewness changes to background222

temperature gradient changes, which describe well the projected model changes.223

However, it is well known that processes associated with snow or ice melting and land224
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cover also influence the surface temperature variability during winter18, 35–38. The relevance of225

our 850 hPa level findings for surface temperature can be examined by inspecting the near-surface226

(T2m) winter temperature response (Extended Data Fig. 7). Overall, the winter mean and variance227

changes are similar between the two levels, but there are quite significant differences between the228

850 hPa level and the surface temperature skewness changes (compare Extended Data Fig. 7c,f229

with Fig. 2a,c). The projected winter skewness changes are similar in the midlatitudes, but a neg-230

ative (rather than positive) skewness change is projected poleward of the 0◦C temperature line231

(Extended Data Fig. 7c,f). The negative skewness change was proposed to be a direct result of232

snow and sea ice melting18. However, the origin of the positive midlatitude skewness change had233

previously been unexplained. During summer, other processes such as soil-moisture interactions234

are known to be extremely important for surface temperature variability and extremes34, 35, 39–42.235

It has also been shown that the correlation between atmospheric circulation and surface tempera-236

ture variability is weaker in summer compared to winter43. However, the overall structure of the237

projected 850 hPa summer mean, variance, and skewness changes still resemble well the T2m238

response (Extended Data Fig. 8) (except in the Arctic). This again points towards a purely dynam-239

ical mechanism shaping the temperature variability changes, which does not involve the boundary240

layer.241

The current study therefore provides an important element in understanding midlatitude sur-242

face temperature changes, by explaining and quantifying the fundamental role of advection and243

warming patterns in shaping the variance and skewness changes. These are more cleanly revealed244

by analyzing the 850 hPa level, where the dynamical contribution can be isolated. Examining the245
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relative importance of atmospheric circulation and regional land-surface feedbacks in shaping the246

surface temperature variability response to climate change is left for further study.247

Methods248

Data249

In this study we use the 6-hourly 850 hPa temperature field from 26 CMIP5 models (see250

model list in Table S1 in the Supplementary Information). All models are forced by the represen-251

tative concentration pathway 8.5 (RCP8.5) emissions scenario, and the r1i1p1 ensemble member252

is used44. The data covers a period of 19 years in the historical runs (1981–1999), which include253

both the observed anthropogenic and natural atmospheric forcings, and 19 years in the projected254

runs (2081–2099), in which the radiative forcing increases by about 8.5 W m−2 by year 2100. For255

each model, the background climatology is defined for every 6-hourly time period as its average256

over the 19 years, in order to remove both the diurnal and the seasonal cycle. Perturbations are257

then defined as deviations from the 6-hourly climatology (for the historical and projected simula-258

tions separately). The variance and skewness are calculated first for each model separately, and259

then averaged together to produce the ensemble means. We concentrate on the NH during both the260

winter (DJF) and summer (JJA) seasons.261

To examine the accuracy of the historical CMIP5 data in reproducing the observed temper-262

ature variability, we also analyze ERA-I reanalysis data45 (Extended Data Fig. 2 and Extended263

Data Fig. 3). We use the 6-hourly 850 hPa temperature field from the ECMWF ERA-I reanaly-264

14



sis dataset, covering the years 1980-2014, where the background climatology is defined for every265

6-hourly time period as its average over the 35 years.266

Tracking algorithm267

The current study employs the objective spherical feature-tracking algorithm TRACK46, 47,268

which is typically used for cyclone tracking, but is modified here to track temperature anomalies in-269

stead. We track the 850 hPa temperature perturbations by subtracting the background state, defined270

as the 6-hourly climatology (compared with the spatial filtering of the large scale background flow271

that is usually applied for cyclones). The 6-hourly temperature anomaly field is then reduced to a272

T42 grid to smooth the data and reduce noise. The positive and negative temperature anomalies are273

identified as the maxima or minima of the anomaly field, respectively, that exceed a threshold of274

0.5 K. The positive and negative centers are then tracked separately every 6 hours. This tracking is275

performed directly on the sphere, and is achieved by first initializing the maxima or minima into a276

set of tracks using a nearest neighbour method, and then refining these by performing a constrained277

minimization of a cost function for track smoothness (formulated in spherical coordinates)47. Only278

features that last for more than two days are retained for the statistical calculations, which includes279

semi-stationary features as well as the more mobile systems (so that more slowly propagating per-280

turbations like heat waves can be identified too). The spatial statistics of the tracked anomalies281

are then obtained using adaptive locally defined spherical kernel estimators, which are a form of282

distance weighted statistical estimator48. For example, the mean intensity at a certain grid point283

is estimated from the intensity of adjacent track points using a decay function (the local spherical284

kernel estimator), which depends on the distance between the track point and the gridpoint. The285
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kernel bandwidth, which controls the statistic smoothness, is adapted according to the data density.286

This approach has the benefit of computing the statistics directly on the sphere which prevents the287

introduction of biases that often occur for grid box methods.The spatial statistics are computed for288

each model separately, and then averaged together.289

Regional composites290

The regional composites of the anomalous velocity associated with strong cold and warm291

temperature anomalies are constructed using the tracking results of the 850 hPa temperature anoma-292

lies. For each model, we first find the intensity of all the cold and warm anomalies that passed293

through the region, keeping only the maximum value reached inside the region box. We then294

find, for the cold and warm anomalies separately, the 75th percentile thresholds. The composites295

of strong cold and warm anomalies are then constructed by averaging only over features whose296

maximum intensity exceeds the 75th percentile (similar results are obtained when other percentile297

thresholds are used instead). This is performed for each model separately, and the composites are298

then averaged together, centered around the middle of the region box, for positive and negative299

anomalies separately.300

The meridional temperature gradients TNy and TSy used to estimate the variance and skew-301

ness changes given by (3) and (4) (and shown in Figs. 6a-d) are calculated as the linear gradients302

over four grid points to the north and to the south of the centers of each region box, respec-303

tively. They are calculated for the seasonally averaged background temperature and hence are304

time-independent.305
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Statistical data analysis306

The Eulerian PDFs (presented in Figs. 4a and 5a) are calculated by accumulating all the307

temperature anomalies (from all models) in a given region, and then adding the multi-model mean308

temperature for the region. These are compared to the PDFs of intensity of anomalies from the309

tracking (presented in Figs. 4b,c and 5b,c), calculated by accumulating all the positive and negative310

features that pass through each region. The PDFs are obtained using a kernel fitting, and the311

shading denotes the 95% confidence interval, calculated using a two-tailed t-distribution with 26312

degrees of freedom (ts ≈ 2.06) and multiplying by the standard error of the mean model spread313

(for each value of the PDF).314

Data availability315

The datasets analyzed in the current study were obtained from the World Data Center for316

Climate (WDCC) repository, available at http://cera-www.dkrz.de/WDCC/ui/.317

Code availability318

The feature-tracking algorithm used in this study is available for download at http://www.nerc-319

essc.ac.uk/ kih/TRACK/Track.html, by contacting Kevin Hodges (k.i.hodges@reading.ac.uk).320
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Figure 1: The historical (1981-1999) ensemble-mean climatological temperature and variance and

their projected changes (2081-2099 minus historical), based on 26 CMIP5 RCP8.5 ensemble mem-

bers. The 850 hPa (a) mean temperature (K) and (b) temperature variance (K2) during winter

(December-January, DJF), and the corresponding projected changes in (c) and (d), respectively.

Panels (e)-(h) show the same but for the summer period (June-August, JJA). Regions where more

than 70% of the models agree on the sign of the variance changes are stippled.
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Figure 2: The historical (1981-1999) ensemble-mean temperature skewness and its projected

changes (2081-2099 minus historical). The 850 hPa winter (DJF) (a) temperature skewness and

(b) approximate temperature skewness, S ≈ Tw−Tc
1
2

(Tw+Tc)
(see Supplementary Information), where Tc

and Tw denote the mean intensity (in absolute value) of the cold and warm temperature anomalies,

respectively, produced from the tracking statistics (see Methods and Fig. 3). The corresponding

projected changes are shown in (c) and (d), respectively. Panels (e)-(h) show the same but for

the summer period (JJA). Regions where more than 70% of the models agree on the sign of the

changes are stippled.
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Figure 3: The historical (1981-1999) ensemble-mean intensities of cold and warm anomalies pro-

duced from the temperature tracking statistics, and their projected changes (2081-2099 minus his-

torical). The mean intensity of the 850 hPa (a) cold and (b) warm temperature anomalies during

winter (DJF), and their corresponding projected changes in (c) and (d), respectively. Panels (e)-(h)

show the same but for the summer period (JJA). Regions where more than 70% of the models agree

on the sign of the changes are stippled.
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Figure 4: The 850 hPa temperature variability changes in east-central North America during DJF.

PDF of (a) temperature (K), and intensity of (b) cold and (c) warm temperature anomalies (K) from

the tracking, for the historical (solid lines) and projected (dashed lines) simulations (Sh and Sp in

the legend of (a) denote the corresponding skewness of the PDF). The model spread of the region-

averaged (d) temperature variance (K2), (e) intensity of cold and (f) warm temperature anomalies

(K) from the tracking statistics, and (g) temperature skewness, where each dot corresponds to a

model in accordance with the list in Table S1. Dashed horizontal lines show the ensemble mean

averages, and the errorbars denote the 95% confidence interval from the yearly values for each

model. Composites of the anomalous circulation (arrows) in the projected simulations associated

with strong (h) cold and (i) warm anomalies that crossed the region (see Methods), and the pro-

jected background temperature increase (shading). Black box denotes the region. The risk ratio

of the (j) cold and (k) warm tails, with (solid black line) or without (dashed lines) the projected

skewness change.
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Figure 5: As in Fig. 4 but for central Europe during summer (JJA).
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Figure 6: Estimated temperature variance and skewness changes, and estimated changes in the

mean intensity of cold and warm anomalies. The predicted vs. simulated variance (a,c) and skew-

ness (b,d) changes for east-central North America during winter (first row) and central Europe

during summer (second row). Each dot represents a model, and the errorbars denote the 95% con-

fidence intervals from the yearly values. Ensemble-mean estimated changes in the intensity of (e)

cold and (f) warm anomalies during winter (DJF), and of (g) cold and (h) warm anomalies during

summer (JJA). The approximations are based on the spatial distribution of variance and skew-

ness, and given by projected changes of (5) and (6) for the cold and warm anomalies, respectively.

Regions where more than 70% of the models agree on the sign of the changes are stippled.
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