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provided that in taking the maximum of V the & vector ranges over only that region
of 5 space which satisfies the normality condition

61 + 62 + 63=1 (3)

and the orthogonality condition

61 m
62 .n 0. (4)
63 -a

The solution vector 6 has the property that its three components are the relative
contribution of the three terms of U to UMin.
The general solution to the two linear equations (3) and (4) is readily seen to be

1| -n/(m-n) n+ a

62 = m/(m-n) +Y -(m +O) (5)
63 0 mr-n

where y is an arbitrary number. For our present purpose, we need not find that
value of y which maximizes V. We need only suppose this has been done. If now
y receives a positive increment, because of a positive increment in Xi, the sum 61 +
62 receives a negative increment if m > n, a positive increment if m < n. Equation
(2) is thus established for the case of the two inequalities. When m and n are
identical, U contains only two terms. The solution vector & is then completely
determined, so its components are independent of the X's. Equation (2) is thus
established also for the case of the equality sign.

1 Zener, C., "A mathematical aid in optimizing engineering designs," these PROCEEDINGS, 47,
537 (1961).

2 Duffin, R. J., "Cost minimization problems treated by geometric means," Operations Res.,
10, 668 (1962).

ON THE APPLICATION OF DYNAMIC PROGRAMING TO THE
DETERMINATION OF OPTIMAL PLAY IN CHESS AND CHECKERS*

BY RICHARD BELLMAN

THE RAND CORPORATION, SANTA MONICA, CALIFORNIA

Communicated by H. S. Vandiver, December 10, 1964

1. Introduction.-A great deal of effort has been expended in connection with
the use of digital computers to play chess and checkers. The most successful has
been the checker-playing program of Samuel.' It is of some interest then to in-
dicate how the theory of dynamic programing2, 3 can be used to determine optimal
play in the great majority of pawn-king end games in chess, with computers cur-
rently available, and in all probability, to determine optimal play for the entire
game of checkers. Here we shall outline the basic methods which are of interest
in themselves, involving as they do the concept of semigroups in structure. Es-
sential to our approach are the ideas of recurrence and transitivity which have
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proved of such value in topological dynamics and in the theory of Markov chains.
Detailed results and numerical examples will be presented in subsequent papers.

2. Chess as a Multistage Decision Process.-Let p denote the state of the game
in chess, with White to move. The specification of p involves the listing of the
positions of all of the pieces and pawns, as well as information concerning castling
and pawns "en passant." Introduce the function

f(p) = 1 if p is a win for White,

= -1 if p is a loss for White, (2.1)

= 0if p is a draw.

Let the effect of a move by White be denoted by Tw, and let TB denote the result
of a move by Black. The consequence of a move by White followed by a move by
Black is to replace p by TBTWP. The principle of optimality then yields the basic
functional equation

f(p) = max min f(TBTWp), (2.2)
Tw TB

which in principle determines both the function f(p) and optimal play, under ap-
propriate boundary conditions. As it stands, however, the equation is useless
computationally because of the dimensionality barrier, and it is useless analytically
because of our lack of knowledge of the intrinsic structure of chess. It is this
ignorance which prevents the application of approximation techniques to the
study of (2.2).

3. Recurrence-Transitivity-Stratification.-To make some progress, we lower
our sights and concentrate upon the end game in which only pawns and kings are
on the board. Despite the fact that a direct application of (2.2) is still not possible,
the technique of structural stratification described below enables us to introduce a
sequential procedure which is computationally feasible with available computers.
To this end, we distinguish between two types of moves, those which are recurrent

and those which are transitive. A king move, not involving capture, is recurrent
in the sense that it is reversible; a pawn move, or a king move involving capture, is
transitive in the sense that it is irreversible. Thus, the second class of moves par-
take of the inexorable quality of the arrow of time. The change in structure cannot
be undone.

Associated with p, in the end game, there is a set So containing all positions de-
rived from p by means of recurrent moves. Each position p thus defines an equiv-
alence class. There are a finite number of moves which change the structure in
an irreversible fashion, to wit, the pawn moves and the king moves involving
capture. Let pi,p2,. .. ,PM denote the resultant states, and S1,s2, ....SM, the as-
sociated sets of equivalent states under recurrent moves. Schematically:

,, P2 _ jo (i)
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Now we introduce a stratification technique, a method of partitioning the original
state space. Let f(p) be the function defined above, and introduce the new func-
tionsfo,f, ....,M defined in the following

fo(P) = f(p), p e So, (3.1)

fM(p) = f(p), p eSi.
Since the functions fi are defined only on the sets Si, we see that not more than (64)2
possible different states p can arise for p e Si. Consequently, there is no trouble
in storing fi(p) in rapid-access storage. Actually, the number of equivalent states
is generally considerably smaller, taking account of restrictions on the location of
kings, and still less if we introduce some rudimentary ideas of strategy and tactics.
This last point is important computationally if there are many pawns on the
board.

Similarly, starting with the new set Si, we introduce sets Sij, associated functions
fij, and so on. Using the functional equation of (2.2), we now obtain recurrence

relations connecting contiguous functions, fo in terms of the fi, fi in terms of the fib,
and so on.
To start the calculations, we use a number of boundary conditions, such as the

fact that the game is obviously a draw when no pawns remain on the board; the
fact that we can recognize a win, loss, or draw when only one pawn remains on the
board; and similarly, that we can recognize a win, loss, or draw as soon as a pawn
promotes. In some cases there may be some doubt concerning this last statement,
which is why we claim only "the great majority of cases." In actual game play,
there should be no difficulty. It is easy, however, to conceive of problem positions
where there could be a question.

4. Discussion.-Even with the techniques described above, we cannot handle
king-piece-pawn endings with the computers currently available. It seems reason-
able to predict, however, that these techniques will be powerful enough with the
computers available within ten years or so. The middle game remains as far away
as ever as far as any rigorous treatment is concerned.

5. Checkers.-The initial stratification in the game of checkers is most easily
done by keeping track of the number of men that remain on the board, and structure,
if necessary. In the beginning, all moves are necessarily transitive moves, involving
changes in structure and capture. As soon as a king is achieved by either side, we
have the possibility of recurrent moves. The boundary condition we impose is
that we can recognize whether a game is a win, loss, or draw as soon as five or more
kings are on the board. This is not the case, certainly as far as problem positions
are concerned, but does seem to be the case as far as actual play is concerned. With
bigger computers, this restriction can be removed and it seems safe to predict that
within ten years, checkers will be a completely decidable game.
Summary.-A great deal of effort has been expended in connection with the use

of digital computers to play chess and checkers. The most successful has been
the checker-playing program of Samuel. It is of some interest then to indicate how
the theory of dynamic programing can be used to determine optimal play in the
great majority of pawn-king end games in chess, with computers currently available,
and in all probability, to determine optimal play for the entire game of checkers.
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Here we have outlined the basic methods which are of interest in themselves, in-
volving as they do the concept of semigroups in structure.

Any views expressed in this paper are those of the author. They should not be interpreted as
reflecting the views of The RAND Corporation or the official opinion or policy of any of its govern-
mental or private research sponsors.

* The results presented above are part of research carried on in the area of pattern recognition
in collaboration with John M. Richardson at the Hughes Research Laboratories at Malibu, Cali-
fornia, as a consultant. Preliminary results were given in Bellman, R., System Identification,
Pattern Recognition and Dynamic Programming-I: General Concepts, Hughes Research Labora-
tories (1964); System Identification, Pattern Recognition and Dynamic Programming-II: End-
games in Chess, Hughes Research Laboratories (1964); System Identification, Pattern Recognition
and Dynamic Programming-III: The Game of Checkers, Hughes Research Laboratories (1964);
System Identification, Pattern Recognition and Dynamic Programming-IV: Abstraction of Proper-
ties and Adaptive Pattern Recognition, Hughes Research Laboratories (1964).

1 Samuel, A. L., "Some studies in machine learning using the game of checkers," in Com-
puters and Thought, ed. E. A. Feigenbaum and J. Feldman (New York: McGraw-Hill Book Com-
pany, Inc., 1963), pp. 71-105.

2Bellman, R., Dynamic Programming (Princeton, New Jersey: Princeton University Press,
1957).

3 Bellman, R., and S. Dreyfus, Applied Dynamic Programming (Princeton, New Jersey: Prince-
ton University Press, 1962).

ON THE SOLUTIONS OF LINEAR SECOND-ORDER
DIFFERENTIAL EQUATIONS

BY A. S. GALBRAITH, E. J. MCSHANE, AND GENE B. PARRISH

UNIVERSITY OF VIRGINIA AND U.S. ARMY RESEARCH OFFICE (DURHAM)

Communicated December 14, 1964

In a recent note' Walter Leighton made the following assertion:
If p(x) is of class C' and nondecreasing on the interval I: xo < x < ao, and if

p(x) co, as x -A o, every solution of

y' + p(x)y = 0 (1)

tends to zero as x - o.

In a letter to one of us he informed us that he had discovered a flaw in the reason.
ing, too late to withhold the note from publication. Here we present a counter-
example; it had its genesis in a conversation stimulated by correspondence with
Leighton. We shall construct a function p(x) on [0, oo) of class C' and with non-
negative derivative, tending to m with x, such that (1) has a solution, all of whose
maxima are at least equal to a positive K. The construction of p(x) and of the
solution (if (1) proceed in parallel.

Let {fr4, { c, } be sequences of numbers such that

1 = <S< <83< ... 0n,
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