
Thomas Ströhlein's Endgame Tables: a 
50th Anniversary 
Article 

Supplemental Material 

A thesis reference 

Haworth, G. ORCID: https://orcid.org/0000-0001-9896-1448 
(2020) Thomas Ströhlein's Endgame Tables: a 50th 
Anniversary. ICGA Journal, 42 (2-3). pp. 165-170. ISSN 1389-
6911 doi: https://doi.org/10.3233/ICG-200151 Available at 
https://centaur.reading.ac.uk/90000/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: https://content.iospress.com/articles/icga-journal/icg200151 
To link to this article DOI: http://dx.doi.org/10.3233/ICG-200151 

Publisher: The International Computer Games Association 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


A NOTE ON BOOLEAN MATRIX THEORY1

R. DUNCAN LUCE

1. Introduction. Let U be a Boolean algebra of at least two ele-

ments. If a, bÇiU, intersection, union, complementation, and inclu-

sion are denoted by aC\b, a^Jb, a', and aQb respectively. Form the

set V of matrices A, B, ■ ■ -of order n having entries A y, 2? ,7, • • • ,

i, j = l, 2, • • • , n, which are members of U. The restriction to square

matrices is inessential to some of the theorems; in particular, Theo-

rems 5.1 and 5.2 are true for rectangular matrices which are subject

to the usual restrictions on the range of the indices to make the indi-

cated multiplication and equality meaningful.

In the set V define intersection, union, complementation, and

inclusion by:

(A C\ B)a = Aur\ Bu,    (A U B)u = An V) Bih    (A')¡¡ = A'ih

A C B if and only if for every i, j, An C Bi,-.

Under these definitions V forms a Boolean algebra, which is known

as the algebra of Boolean matrices.2

A multiplication may be defined in Fas follows:

(AB)n = U (Aikr\Bkj).
k-l

If 0 and e are the null and universal elements of U, then the zero

(null), identity, and universal matrices 0, I, and E are defined as:

(0)a = 0,    (I)ij = 0 if i 7e j   and    e if i = j,    (E)ij = e.

Under these definitions and the given multiplication, V forms a

lattice-ordered semigroup with zero.3

As in ordinary matrix theory the transpose of A, A T, is defined by

(At)íj = Ají and the elements of the transpose will be denoted by Aj¡.

The following properties follow either immediately from the defi-

nitions or by virtue of V being a lattice-ordered semigroup:

Received by the editors December 28, 1950 and, in revised form, August 17, 1951.

1 The work included in this paper was carried out during the summer of 1949

when the author was a member of the Research Center for Group Dynamics, Uni-

versity of Michigan.

1 G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25,

rev. ed., New York, 1948, p. 213.

» Ibid., pp. 201-213.
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A NOTE ON BOOLEAN MATRIX THEORY 383

A(BKJC) = ABKJAC,       (B\J C)A = BA\J CA,

A(BC\C)(ZABr\AC,       (Br\C)ACBAr\CA,

A(BC) = (AB)C, ACB implies AC C BC and CA C CB for all C,

0 C\ A = OA = AO = O   and   IA = AI = A for all A,

(A \J B)T = AT\J BT,        (A H BY = ATC\ BT,

(AB)T = BTAT,       (AT)T = A,

EE = E, OCA C-Eand.4 C AE C E, A C EA C EioraXlA.

2. Symmetry and skew-symmetry. In analogy to ordinary matrix

theory we wish to define concepts of symmetry and skew-symmetry;

it is clear that the formal definition of symmetry may be carried over

without change, but this is not true for skew-symmetry. Our choice

for the latter (Definition 2) has in its favor a form parallel to one

definition of symmetry and that it allows Theorem 2.1 to be proved.

Definition 1. A Boolean matrix A is said to be symmetric if

AT(~\A' = 0.

Definition 2. A Boolean matrix A is said to be skew-symmetric if

ATC\A=0.

Evidently the property A =AT implies A is symmetric, and con-

versely it is implied by symmetry for ATC\A' = 0 implies ^4rC^4-

Taking the transpose, AC.AT, whence A =AT. It is equally easy to

show that A is skew-symmetric if and only if A =AC\AT'. Moreover,

A is skew-symmetric if for some B, A =BC\BT'. For if there exists

suchaS, then A'= B'KJ BT and so AT = BTr\B'CBTyJB'= A', whence

AT=ATr\A', or what is the same, A =AC\AT'.

By the properties of the transpose mentioned in §1 one easily

proves that symmetry is a property invariant under union, intersec-

tion, and complementation. Skew-symmetry is invariant under inter-

section, for if AC\AT = 0 and BC\BT = 0, then (AC\AT)C\(Br\BT)

= 0 = (AC\B)C\(Ar\B)T. It is not, however, invariant under comple-

mentation as

shows, nor under union as A and

•-C2
show.

Theorem 2.1. Any Boolean matrix can be uniquely decomposed into

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



384 R. D. LUCE [June

the disjoint union of a symmetric and a skew-symmetric matrix.

Proof. If A is so decomposed, the decomposition is unique. For if

A =S\JQ where SC\Q = 0, S = ST, and QTr\Q = 0, then

At~\AT = (S\JQ)C\(S\J QT)

= (sns)\j (sn qt) u (Qr\s)u (Qn qt)

= s w (sT n qt) vj o\j o = s u (5 n q)t = s-,

Ar\AT' = (s\jQ)r\ (s' n qt') = (sr\s'n qt>) u (q n 5' n qh

= o VJ (5' n Q) = Q

since QCQ1" and ÇC5'.
Selecting 5 = ^4n^4T and Q=Ar\AT' proves that the decomposi-

tion exists.

3. Consistent matrices.

Definition 3. A Boolean matrix A is said to be row (column) con-

sistent if AE = E (EA =E).

Lemma 3.1. A is row (column) consistent if and only if I(ZAAT
(ICA?A).

Proof. By definition IQAAT if and only if e = \i¡(Aijr\A'^

= U,- Aij=Uj (AijC} Ejk) for every i, k. This, by definition, is equiva-

lent to E = AE.

Lemma 3.2. (1) If A and B are row (column) consistent, then AB is

row (column) consistent. (2) If AB is row (column) consistent, then A

is row consistent (B is column consistent). (3) Neither converse is true.

Proof. (1) By hypothesis AE = E and BE = E; so (AB)E = A(BE)
= AE = E. (2) By hypothesis (AB)E = E and it is always true that

¿7iC£ and BECE; so E=(AB)E = A(BE)QAE, whence AE = E.

[e  o~\ fe  o~]      [~e  o~] fo  él Ve   e~]      Vo  o~\
H     and H    •

e  oj Lo  o_\      \_e  oj \_o  ej \_o  oj      \_o oj

This lemma states, in the terminology introduced by Dubreil for

semigroup theory,4 that under multiplication the set of row (column)

consistent matrices forms a left (right) consistent subsemigroup of V.

The introduction of the concept of a consistent matrix suggests that

at the other extreme of the relation ^4C-<4TiGTi we might consider

matrices A such that AE = A. Such a definition would be a slight

4 P. Dubreil, Contribution à la théorie de demi-groups, Mémoires de l'Académie des

Sciences de l'Institut de France (2) vol. 63 (1941).
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1952] A NOTE ON BOOLEAN MATRIX THEORY 385

generalization of the concept of a right ideal element in a relation

algebra;5 however, these matrices do not seem to be as important

as consistent matrices. It may be mentioned, nonetheless, that the

class of all ideal matrices (i.e., both left and right ideal) is a Boolean

subalgebra isomorphic to the given algebra U.

4. Inverses. We shall denote the inverse of a matrix A, if it exists,

by A~1. Following the terminology of ordinary matrix theory a

matrix A is called orthogonal if it has an inverse which is AT. For

example,

is orthogonal. It is immediate that the product of two orthogonal

matrices is orthogonal.

Lemma 4.1. A Boolean matrix A is orthogonal if and only if A

is both row and column consistent and for every i, j, k, i?=~j, An,

nAjk=o=Akir\Akj.

Proof. If A is orthogonal, Lemma 3.1 implies that A is row and

column consistent. For every i, j, i^j, AAT = I implies

o = U (Aikr\ATki) m U (Aikr\Aik),
k k

whence for every k, Aai^Ajk^o. Similarly, Aki(~\Akj = o for every

i,j, k, i^j, follows from ATA =7.

Conversely, if Aiki^Aik = o for every i, j, k, i^j, then \)k(AikC\Ajk)

= \Jk(Aikr\Au) =o, whence ^4^4rC7. Since A is row consistent,

Lemma 3.1 implies I<ZAAT, and so AAT = I. Similarly ATA=I.

Theorem 4.2. A Boolean matrix has an inverse if and only if it is

orthogonal.9

Proof. The sufficiency is true by definition.

By Lemma 3.2, if A has an inverse, both A and -4-1 are row and

column consistent. Thus, using Lemma 4.1, it is sufficient to show

AikC\Aik = o = Aki(~^Akj for every i,j, k, i^j. We shall carry this out

only for the first case as the other is essentially the same. AA_1 = I

implies that for every i,j, i^j, \Jk(AikC\A^l)=o, whence, for every

6 Birkhoff, op. cit., p. 212.

« This result is stated by J. H. M. Wedderburn, Ann. of Math. vol. 35 (1934) pp.
185-194.
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k, AikC^Alj1 =o; summing over j, j^i, and holding k fixed, we have

U/*< (Aikr\Aû1)=o. Thus,

Aik n ÄS. - u (ii« n ¿I,1) vj (^a n 4«) = u C4« n ¿*î)

= Aiu C\ U ^t,- = Aik
j

since Uj^4y1 = e because A~l is row consistent. Now, for every i,j,

k, Í9*j,

Aikr\Ajk = (Aik n All) r\ (a » r\A~k))

= (Aik r\ A~k)) r\ (Ait n All) = o.

Hence A is orthogonal.

Corollary. A is involutory (A2 = I) if and only if A is both sym-

metric and orthogonal.

Proof. Immediate.

5. Linear matrix equations. In this section we shall consider the

problem of finding the class of matrices X such that XA =B (AX = B)

when A and B are given Boolean matrices.7 This is clearly equivalent

to finding the intersection of the two classes of matrices X satisfying

XA dB and XA Z)B. The former case is relatively simple and is

completely solved; however, the latter is much more difficult. We

have been able only to give a sufficiency condition on X, which is

not necessary, for X to be a solution of XAZjB. We also present a

necessary and sufficient condition on A and B that there be solutions

to XA=B.
Utilizing the solutions to XAÇ2.0 (hence in this special case the

complete set of solutions to XA —0), we completely characterize the

divisors of zero occuring in the algebra of Boolean matrices.

It is clear from the previous section that if A is orthogonal,

X = BAT is the unique solution of XA =B, but in general a solution

will not be unique.

Toward our ends we prove the following lemma.

Lemma 5.1. 7-e/ A, B, and C be Boolean matrices. ABCQI' if and

only if A'D(BC)T.

Proof. By definition ABCQI' if and only if, for every i,

Uj\}k(AijC\Bjkr\Cki)=o or, what is the same, A¿3n5y*nCki = o for

' The results of this section are generalizations of work by D. O. Ellis and J. W.

Gaddum as stated in Bull. Amer. Math. Soc. Abstract 56-5-448.
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every *', j, k. Rewriting, we have A'ijZ)Bikr\Cki = C^r\BlJ. Since the

left side is independent of the index k, this is equivalent to A'tJ

DUk(C?tr\Bl), that is, A'DCTBT = (BC)T.

Birkhoff defines for any multiplicative lattice8 the right (left)

residual B:A (B : : A) of B by A as the largest X (if it exists) satisfying

XAÇ.B (AXC.B). A multiplicative lattice in which such residuals
always exist is called a residuated lattice.9

Theorem 5.2. In the algebra of Boolean matrices XA C.B if and only

if XC(B'A T)', and AXQB if and only if XC(A TB')'; hence the alge-
bra is residuated and B:A = (B'AT)' and B: :A = (ATB')'.

Proof. XAC.B means by definition that UX-XV^/jOC-Sí* for
every i, k, and this is equivalent to XaCsAjkQB,*, i,j, k = i, 2, • • • ,

n. This in turn is true if and only if XaC\A ,^5^ = Xnl^tA jkl^B'u

= o. Summing on j and k, U¡\ik(XaC\Ayt^B¿) =o, which means, by

definition, that XAB'T = XABT'CT- According to Lemma 5.1, this

is true if and only if X'^>(AB'T)T, that is, if and only if XC(B'AT)'.
A similar proof holds for AXQB.

Corollary 1. The following are equivalent: XA=0, XQ(AE)T',

EXC(AE)T'. A similar statement holds for AX = 0.

Proof. Since it is always true that OQXA, it is sufficient to con-

sider XAQO, which by the theorem is equivalent to X(Z(0'AT)'

= (EAT)' = (AE)T'. This is equivalent to X'^)(AE)T and hence to

X¡jZ)^k(Eikr\Ajj) = UkAy for every i, j. Since the right side of this

expression   is  independent of *,  it  is the same as  Ui-d^CH^X^

= nk(OikUXÍJ) = [\Jk(Eikr\Xkj)]'. Rewriting, we have EATC(EX)'
and soEXC(AE)7".

As was mentioned in the introduction, this theorem and its corol-

laries are not restricted to square matrices ; however the usual restric-

tions on the ranges of the indices are required. With this in mind, we

may restrict X and B to be vectors; then Corollary 1 becomes, essen-

tially, the first principal result of Ellis and Gaddum.7 Their second

result is included in the following corollary.

Corollary 2. XA —B has a solution if and only if B(Z(B'AT)'A.

Proof. If there is a solution X, the theorem implies XQ(B'AT)';

however, XA =B also implies BCXAC(B'AT)'A.

Conversely, if BC(B'AT)'A, then X = (B'AT)' is a solution for the
hypothesis implies XA Z)B and the theorem XA C.B.

8 Birkhoff, op. cit., p. 200.

9 Ibid., p. 201.
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In the first part of their third result Ellis and Gaddum note that if

X solves XAQB, then, since X<Z.(B'AT)', X may be written in

parametric form X = RC\(B'AT)' with R an arbitrary matrix. If,

however, X is to solve XA =B, R may no longer be arbitrary. The

second part of their third result is a statement of conditions on R

necessary and sufficient for X to be a solution. These are trivial, for

they may easily be shown equivalent (in the case X and B are vectors)

to the following trivial result :

Corollary 3. XA =B has the solution X = Rr\(B'AT)' if and only

if BC[RC\(B'AT)']A.

Theorem 5.3. 7,e/ A and B be Boolean matrices of the same order. If

there exists a matrix C such that CC.A and BQEC, then all matrices X

such that XZ)BCT are solutions of XA Z)B.

Proof. If such a C exists, it is sufficient to show BCTA^B since

XADBCTA. For every i, I,

u u (Bu n cTjk r\Akl)D Bu r\ u (cTlk r\Ait)D Ba r\ u c«
i       k k k

since CC.A. From the assumption BQEC we obtain BnC.\JkCki, so

the result follows by definition.

The condition of this theorem is by no means necessary for if

A = B = E, then X = 7 is a solution. Now suppose the C of the theorem

satisfies IZ)BCT = ECr. Then for every i, j, iy^j, o = \Jk(Eikr\CtTl)

= \JkCjk, and so for every j and k, Cjk = o. C = O contradicts the condi-

tion B =ECEC.
In the theory of semigroups with a zero element, an element A is

a right divisor of zero if A t^O and there exists an element B^O such

that BA=0.

Theorem 5.4. A Boolean matrix A is a right (left) divisor of zero if

and only if A is not row (column) consistent.

Proof. Suppose BA = O and A is row consistent, then, by Corollary

1 of Theorem 5.2, BC(AE)T' =ET' = 0, so A is not a right divisor of

zero.

Conversely, if A is not row consistent, there exists some integer p

such that UgApqT^e. Define: Bpp = (U5^4j,3)'and5,y = cotherwise, whence

Bt¿0. Consider BA: if i^p, Uk(Bikr\Ak,)=o since Bik = o. If i = p,

\Jk(BPkr\Aki)=Bppr\Apj = (\JqApq)'r\ApjCA'P]r\Apj = o. Thus BA

= 0 and A, Bp^O, so A is a right divisor of zero.

University op Michigan
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