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ABSTRACT

A square root approach is considered for the problem of accounting for model noise in the forecast step of

the ensemble Kalman filter (EnKF) and related algorithms. The primary aim is to replace the method of

simulated, pseudo-random additive so as to eliminate the associated sampling errors. The core method is

based on the analysis step of ensemble square root filters, and consists in the deterministic computation of a

transformmatrix. The theoretical advantages regarding dynamical consistency are surveyed, applying equally

well to the square root method in the analysis step. A fundamental problem due to the limited size of the

ensemble subspace is discussed, and novel solutions that complement the core method are suggested and

studied. Benchmarks from twin experiments with simple, low-order dynamics indicate improved performance

over standard approaches such as additive, simulated noise, and multiplicative inflation.

1. Introduction

The ensemble Kalman filter (EnKF) is a popular

method for doing data assimilation (DA) in the geo-

sciences. This study is concerned with the treatment of

model noise in the EnKF forecast step.

a. Relevance and scope

While uncertainty quantification is an important end

product of any estimation procedure, it is paramount in

DAbecause of the sequentiality and the need to correctly

weight the observations at the next time step. The two

main sources of uncertainty in a forecast are the initial

conditions and model error (Slingo and Palmer 2011).

Accounting for model error is therefore essential in DA.

Model error, the discrepancy between nature and

computational model, can be due to incomplete

understanding, linearization, truncation, subgrid-scale

processes, and numerical imprecision (Nicolis 2004; Li

et al. 2009). For the purposes of DA, however, model

error is frequently described as a stochastic, additive,

stationary, zero-centered, spatially correlated, Gaussian

white noise process. This is highly unrealistic, yet de-

fensible in view of the multitude of unknown error

sources, the central limit theorem, and tractability

(Jazwinski 1970, section 3.8). Another issue is that the

size and complexity of geoscientific models makes it

infeasible to estimate the model error statistics to a high

degree of detail and accuracy, necessitating further re-

duction of its parameterizations (Dee 1995).

Themodel error in this study adheres to all of the above

assumptions. This, however, renders it indistinguishable

from a noise process, even from our omniscient point of

view. Thus, this study effectively also pertains to natural

noises not generally classified as model error, such as

inherent stochasticity (e.g., quantum mechanics) and

stochastic, external forcings (e.g., cosmic microwave

radiation). Therefore, while model error remains the pri-

mary motivation, model noise is henceforth the designa-

tion most used. It is left to future studies to recuperate

more generality by scaling back on the assumptions.

Several studies in the literature are concerned with

the estimation of model error, as well as its treatment
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in a DA scheme (Daley 1992; Zupanski and Zupanski

2006; Mitchell and Carrassi 2015). The scope of this

study is more restricted, addressing the treatment only.

To that end, it is functional to assume that the noise

statistics, namely, the mean and covariance, are per-

fectly known. This unrealistic assumption is therefore

made, allowing us to focus solely on the problem of

incorporating or accounting for model noise in

the EnKF.

b. Model noise treatment in the EnKF

From its inception, the EnKF has explicitly consid-

ered model noise and accounted for it in a Monte Carlo

way: adding simulated, pseudorandom noise to the state

realizations (Evensen 1994). A popular alternative

technique is multiplicative inflation, where the spread of

the ensemble is increased by some ‘‘inflation factor.’’

Several comparisons of these techniques exist in the

literature (e.g., Hamill and Whitaker 2005; Whitaker

et al. 2008; Deng et al. 2011).

Quite frequently, however, model noise is not ex-

plicitly accounted for, but treated simultaneously with

other system errors, notably sampling error and errors in

the specification of the noise statistics (Whitaker et al.

2004; Hunt et al. 2004; Houtekamer et al. 2005;

Anderson 2009). This is because (i) inflation can also

be used to compensate for these system errors and

(ii) tuning separate inflation factors seemswasteful or even

infeasible. Nevertheless, even in realistic settings, it can

be rewarding to treat model error explicitly. For exam-

ple, Whitaker and Hamill (2012) show evidence that, in

the presence of multiple sources of error, a tuned com-

bination of a multiplicative technique and additive noise

is superior to either technique used alone.

Section 5 discusses the EnKF model noise in-

corporation techniquesmost relevant to this manuscript.

However, the scope of this manuscript is not to provide a

full comparison of all of the alternatives under all rele-

vant circumstances, but to focus on the square root ap-

proach. Techniques not considered any further here

include using more complicated stochastic parameteri-

zations (Arnold et al. 2013; Berry and Harlim 2014),

physics-based forcings such as stochastic kinetic energy

backscatter (Shutts 2005), relaxation (Zhang et al.

2004), and boundary condition forcings.

c. Framework

Suppose the state and observation, xt 2 R
m and

yt 2 R
p, respectively, are generated by

xt11 5 f (xt)1 qt, t5 0, 1, . . . , (1)

yt 5Hxt 1 rt, t5 1, 2, . . . , (2)

where theGaussianwhitenoiseprocesses fqt j t5 0, 1, . . . g
and frt j t5 1, 2, . . . g, and the initial condition, x0, are

specified by

qt ;N (0,Q), rt ;N (0,R), x0 ;N (m0,P0) . (3)

The observation operator, H 2 R
p3m, has been assumed

linear because that is how it will effectively be treated

anyway [e.g., through the augmentation trick ofAnderson

(2001)]. The parameterm0 2 R
m is assumed known, as are

the symmetric, positive-definite (SPD) covariance ma-

trices P0, Q 2 R
m2

, andR 2 R
p2 . Generalization to time-

dependent Q, R, f , and H is straightforward.

Consider p(xt j y1:t), the Bayesian probability distri-

bution of xt conditioned on all of the previous observa-

tions y1:t, where the colon indicates an integer sequence.

The recursive filtering process is usually broken into two

steps: the forecast step, whose output is denoted by the

superscript f, and the analysis step, whose output is de-

noted using the superscript a. Accordingly, the first and

second moments of the distributions are denoted as

xf 5E(xt j y1:t21), Pf 5Var(xt j y1:t21) , (4)

xa 5E(xt j y1:t), Pa 5Var(xt j y1:t) , (5)

where E( ) and Var( ) are the (multivariate) expectation

and variance operators, respectively. In the linear-

Gaussian case, these characterize p(xt j y1:t21) and

p(xt j y1:t), and are given, recursively in time for sequen-

tially increasing indices, t, by the Kalman filter equations.

The EnKF is an algorithm to approximately sample

ensembles, x1:N 5 fxn j n5 1:Ng, from these distribu-

tions. Note that the positive integer N is used to denote

ensemble size, while m and p have been used to denote

state and observation vector lengths. For convenience,

all of the state realizations are assembled into the ‘‘en-

semble matrix’’:

E5 [ x1 , . . . , x
n
, . . . , x

N] . (6)

A related matrix is that of the ‘‘anomalies’’:

A5E(I
N
2P

1
)5E(I

N
2 11T/N) , (7)

where 1 2 R
N is the column vector of ones, 1T is its

transpose, and the matrix IN is the N 3 N identity. The

conventional estimators serve as ensemble counterparts

to the exact first- and second-order moments of Eqs. (4)

and (5):

xf 5
1

N
Ef1, P

f
5

1

N2 1
AfAfT , (8)

xa 5
1

N
Ea

1, P
a
5

1

N2 1
AaAaT , (9)
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where, again, the superscripts indicate the conditioning.

Furthermore, A (without any superscript) is henceforth

used to refer to the anomalies at an intermediate stage in

the forecast step, before model noise incorporation. In

summary, the superscript usage of the EnKF cycle is

illustrated by

Aa ���������!Model integration,

Eq. (28)
A �������!Model noise

incorporation

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Forecast step

Af ������������������!Analysis

Eqs. (17),(21)
Aa

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Analysis step

.

Although the first Aa of the diagram is associated with

the time step before that of A, Af , and the latter Aa, this

ambiguity becomes moot by focusing on the analysis

step and the forecast step separately.

d. Layout

The proposed methods to account for model noise

builds on the square root method of the analysis step,

which is described in section 2. The core of the proposed

methods is then set forth in section 3. Properties of both

methods are analyzed in section 4. Alternative tech-

niques, against which the proposed method is compared,

are outlined in section 5. Based on these alternatives,

section 6 introduces methods to account for the residual

noise resulting from the core method. It, therefore, con-

nects to, and completes, section 3. The setup and results

of numerical experiments are given in sections 7 and 8. A

summary is provided, along with a final discussion, in

section 9. The appendixes provide additional details on

the properties of the proposed square root methods.

2. The square root method in the analysis step

Before introducing the square root method for the

EnKF forecast step, which accounts for model noise, we

here briefly discuss the square root method in the

analysis step.

a. Motivation

It is desirable thatP
a/f

5Pa/f and xa/f 5 xa/f throughout

the DA process. This means that the Kalman filter

equations, with the ensemble estimates swapped in,

K5P
f
HT(HP

f
HT 1R)21 , (10)

xa 5 x f 1K[y2Hx f ] , (11)

P
a
5 [I

m
2KH]P

f
, (12)

should be satisfied by Ea from the analysis update.

Let Dobs 2 R
p3N be a matrix whose columns are

drawn independently fromN (0, R). Unfortunately, the

perturbed observations analysis update (Burgers et al.

1998),

Ea 5Ef 1Kfy1T 1D
obs

2HEfg , (13)

only yields the intended covariance, Eq. (12), on

average:

E(P
a
)5 [I

m
2KH]P

f
, (14)

where the expectation, E, is taken with respect to Dobs.

b. Method

On the other hand, the square root analysis update

satisfies Eq. (12) exactly. Originally introduced to the

EnKF by Bishop et al. (2001), the square root analysis

approach was soon connected to classic square root

Kalman filters (Tippett et al. 2003). But while the

primary intention of classic square root Kalman filters

was to improve on the numerical stability of the Kal-

man filter (Anderson and Moore 1979), the main

purpose of the square root EnKF was rather to elimi-

nate the stochasticity and the accompanying sampling

errors of the perturbed-observations analysis update in

Eq. (13).

Assume that p#m, or that R is diagonal, or that R21/2

is readily computed. Then, both for notational and

computational (Hunt et al. 2007) simplicity, let

S5R21/2(HAf )/
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
2 R

p3N , (15)

s5R21/2[y2Hxf ]/
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
2 R

p , (16)

denote the ‘‘normalized’’ anomalies andmean innovation

of the ensemble of observations. Recalling Eq. (9) it can

then be shown that Eqs. (10)–(12) are satisfied if

xa 5 xf 1AfGaSTs , (17)

AaAaT 5AfGaAfT , (18)

where the two forms of Ga,

Ga 5 I
N
2ST(SST 1 I

p
)21S (19)

5 (STS1 I
N
)21 , (20)

are linked through theWoodbury identity (e.g., Wunsch

2006). Therefore, if Aa is computed by

Aa 5AfTa , (21)

with Ta being a matrix square root ofGa, thenAa satisfies

Eq. (12) exactly. Moreover, ‘‘square root update’’ is

henceforth the term used to refer to any update of the

anomalies through the right multiplication of a transform
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matrix, as in Eq. (21). The ensemble is obtained by re-

combining the anomalies and the mean:

Ea 5 xa1T 1Aa . (22)

c. The symmetric square root

Equation (20) implies that Ga is SPD. The matrix Ta

is a square root of Ga if it satisfies

Ga 5TaTaT . (23)

However, by substitution into Eq. (23) it is clear that

TaV is also a square root of Ga, for any orthogonal

matrix V. There are, therefore, infinitely many square

roots. Nevertheless, some have properties that make

them unique. For example, theCholesky factor is unique

as the only triangular square root with positive diagonal

entries.

Here, however, the square root of most interest is the

symmetric one, Ta
s 5VS1/2

VT. Here, VSVT 5Ga is an

eigendecomposition of Ga, and S
1/2

is defined as the

entry-wise positive square root of S (Horn and Johnson

2013, Theorem 7.2.6). Its existence follows from the

spectral theorem, and its uniqueness from that of the

eigendecomposition. Note its distinction by the s

subscript.

It has gradually been discovered that the symmetric

square root choice has several advantageous properties

for its use in Eq. (21), one of which is that the it does not

affect the ensemble mean (e.g., Wang and Bishop 2003;

Evensen 2009), which is updated by Eq. (17) apart from

the anomalies. Further advantages are surveyed in sec-

tion 4, providing strong justification for choosing the

symmetric square root, and strong motivation to extend

the square root approach to the forecast step.

3. The square root method in the forecast step

Section 2 reviewed the square root update method for

the analysis step of the EnKF. In view of its improve-

ments over theMonteCarlomethod, it is expected that a

similar scheme for incorporating the model noise into

the forecast ensemble, Ef , would be beneficial. Section

3b derives such a scheme: SQRT-CORE. First, however,

section 3a illuminates the motivation: forecast step

sampling error.

a. Forecast sampling errors in the classic EnKF

Assume linear dynamics, f : x1 f (x)5Fx, for ease of

illustration. The Monte Carlo simulation of Eq. (1) can

be written as

Ef 5FEa 1D , (24)

where the columns of D are drawn from N (0, Q) by

D5Q1/2J , (25)

where J5 [j1, . . . , jn, . . . , jN], and each jn is

independently drawn fromN (0, Im). Note that different

choices of the square root, say Q1/2 and Q1/2V, yield

equally distributed random variables, Q1/2j and Q1/2Vj.

Therefore, the choice does not matter, and is left un-

specified. It is typical to eliminate sampling error of the

first order by centering the model noise perturbations so

that D15 0. This introduces dependence between the

samples and reduces the variance. The latter is com-

pensated for by rescaling by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N/(N2 1)

p
. The

result is that

P
f
5FP

a
FT 1Q

1 (Q2Q)2
1

N2 1
[FAaDT 1D(FAa)T] , (26)

as per Eq. (8), where Q5 (N2 1)21DDT. But, for the

same reasons as for the analysis step, ideally

P
f
5FP

a
FT 1Q . (27)

Thus, the second line of Eq. (26) constitutes a stochastic

discrepancy from the desired relations (27).

b. The square root method for model noise:
SQRT-CORE

As illustrated in section 1c, define A as the anomalies

of the propagated ensemble before noise incorporation:

A5 f (Ea)(I
N
2 11T/N) , (28)

where f is applied column-wise to Ea. Then the desired

relation (27) is satisfied if Af satisfies

AfAfT 5AAT 1 (N2 1)Q . (29)

However, Af can only have N columns. Thus, the

problem of finding an Af that satisfies Eq. (29) is ill

posed, since the right-hand side of Eq. (29) is of rank m

for arbitrary, full-rank Q, while the left-hand side is of

rank N or less.

Therefore, let A1 be the Moore–Penrose pseu-

doinverse of A, denote PA 5AA1 the orthogonal pro-

jector onto the column space of A, and define

Q̂5PAQPA the ‘‘two-sided’’ projection ofQ. Note that

the orthogonality of the projector, PA, induces its sym-

metry. Instead of Eq. (29), the core square root model

noise incorporation method proposed here, SQRT-

CORE, only aims to satisfy
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AfAfT 5AAT 1 (N2 1)Q̂ . (30)

By virtue of the projection, Eq. (30) can be written as

Gf 5 I
N
1 (N2 1)A1Q(A1)T , (31)

AfAfT 5AG fAT . (32)

Thus, with Tf being a square root of G f , the update

Af 5ATf (33)

accounts for the component of the noise quantified by Q̂.

The difference between the right-hand sides of Eqs. (29)

and (30), (N2 1)[Q2 Q̂], is henceforth referred to as

the ‘‘residual noise’’ covariance matrix. Accounting for

it is not trivial. This discussion is resumed in section 6.

As for the analysis step, we choose to use the sym-

metric square root, Tf
s , of G

f . Note that two SVDs are

required to perform this step: one to calculate A1 and

one to calculate the symmetric square root of G f . For-

tunately, both are relatively computationally in-

expensive, needing only to calculate N2 1 singular

values and vectors. For later use, define the square root

‘‘additive equivalent’’:

D̂5Af 2A5A[Tf
s 2 I

N
] . (34)

c. Preservation of the mean

The square root update is a deterministic scheme that

satisfies the covariance update relations exactly (in the

space of A). But in updating the anomalies, the mean

should remain the same. For SQRT-CORE, this can be

shown to hold true in the same way as Livings et al.

(2008) did for the analysis step,with the addition ofEq. (36).

Theorem 1 (mean preservation): If Af 5ATf
s , then

Af15 0. (35)

That is, the symmetric square root choice for the model

noise transform matrix preserves the ensemble mean.

Proof: For any matrix A,

A1 5AT(AAT)1 , (36)

(Ben-Israel and Greville 2003, section 1.6). Thus,

G f
15 11 (N2 1)A1Q(AAT)1A15 1 , (37)

as per Eq. (28). But the eigenvectors of the square of a

diagonalizable matrix are the same as for the original

matrix, with squared eigenvalues. Thus, Eq. (37) implies

Af
15ATf

s15A15 0. u [The open square symbol (u)

indicates completion of a proof.]

4. Dynamical consistency of square root updates

Many dynamical systems embody ‘‘balances’’ or

constraints on the state space (van Leeuwen 2009). For

reasons of complexity and efficiency these concerns are

often not encoded in the prior (Wang et al. 2015, man-

uscript submitted to Quart. J. Roy. Meteor. Soc.). They

are, therefore, not considered by the statistical updates,

resulting in state realizations that are inadmissible be-

cause of a lack of dynamical consistency or physical

feasibility. Typical consequence of breaking such con-

straints include unbounded growth (‘‘blow up’’), exem-

plified by the quasigeostrophic model of Sakov and Oke

(2008a), or failure of themodel to converge, exemplified

by reservoir simulators (Chen and Oliver 2013).

This section provides a formal review of the properties

of the square root update as regards dynamical consis-

tency, presenting theoretical support for the square root

method. The discussion concerns any square root up-

date, and is therefore relevant for the square root

method in the analysis step as well as for SQRT-CORE.

a. Affine subspace confinement

The fact that the square root updateA1AT is a right

multiplication means that each column of the updated

anomalies is a linear combination of the original

anomalies. On the other hand, T itself depends on A. In

recognition of these two aspects, Evensen (2003) called

such an update a ‘‘weakly nonlinear combination.’’

However, our preference is to describe the update as

confined to the affine subspace of the original ensemble,

that is the affine space x1 span(A).

b. Satisfying equality constraints

It seems reasonable to assume that the updated en-

semble, being in the space of the original one, stands a

fair chance of being dynamically consistent. However, if

consistency can be described as equality constraints,

then discussions thereof can be made much more formal

and specific, as is the purpose of this subsection. In so

doing, it uncovers a couple of interesting, hitherto un-

noticed advantage of the symmetric square root choice.

Suppose the original ensemble, x1:N , or E, satisfies

Cxn 5 d for all n5 1:N, that is,

CE5 d1T . (38)

One example is conservation of mass, in which case

the state, x, would contain grid-block densities, while the

constraint coefficients, C, would be a row vector of the

corresponding volumes, and d would be the total mass.

Another example is geostrophic balance (e.g., Hoang

et al. 2005), in which case x would hold horizontal
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velocity components and sea surface heights, while C

would concatenate the identity and a discretized hori-

zontal differentiation operator, and d would be zero.

The constraints (38) should hold also after the update.

Visibly, if d is zero, any right multiplication of E (i.e., any

combination of its columns) will also satisfy the con-

straints. This provides formal justification for the propo-

sition of Evensen (2003) that the ‘‘linearity’’ of the EnKF

update implicitly ensures respecting linear constraints.

One can also write

Cx5 d , (39)

CA5 01T , (40)

implying Eq. (38) provided E5 x1T 1A holds. Equa-

tions (39) and (40) show that the ensemble mean and

anomalies can be thought of as particular and homoge-

neous solutions to the constraints. They also indicate

that in a square root update, even if d is not zero, one

only needs to ensure that the mean constraints are sat-

isfied, because the homogeneity of Eq. (40) means that

any right-multiplying update to A will satisfy the

anomaly constraints. However, as mentioned above,

unless it preserves themean, it might perturb Eq. (39). A

corollary of Theorem 1 is therefore that the symmetric

choice for the square root update also satisfies in-

homogeneous constraints.

Finally, in the case of nonlinear constraints, that is,

C (xn)5 d, truncating the Taylor expansion of C yields

CA’ [d2C (x)]1T , (41)

where C5 ›C /›x(x). Contrary to Eq. (40), the approx-

imate constraints of Eq. (41), are not homogeneous, and

therefore not satisfied by any right-multiplying update.

Again, however, by Theorem 1, the symmetric square

root appears an advantageous choice, because it has 1 as

an eigenvector with eigenvalue 1, and therefore satisfies

the (approximate) constraints.

c. Optimality of the symmetric choice

A number of related properties on the optimality of

the symmetric square root exist scattered in the liter-

ature. However, to the best of our knowledge, these

have yet to be reunited into a unified discussion. Sim-

ilarly, considerations on their implications on DA have

so far not been collected. These are the aims of this

subsection.

Theorem 2 (Minimal ensemble displacement): Consider

the ensemble anomalies A with ensemble covariance

matrix P, and let qn be column n of D5AT2A: the

displacement of the nth anomaly through a square root

update. The symmetric square root, Ts, minimizes

J(T)5
1

N2 1
�
n
kq

n
k2
P
, (42)

5trace([AT2A]T(AAT)1[AT2A]) (43)

among all T 2 R
N2

such that ATTTAT 5AGAT, for some

SPD matrix G. Equation (43) coincides with Eq. (42) if

P
21

exists, but is also valid if not.

Theorem 2 was proven by Ott et al. (2004), and later

restated by Hunt et al. (2007) as the constrained op-

timum of the Frobenius norm of [T2 IN]. Another in-

teresting and desirable property of the symmetric

square root is the fact that the updated ensemble

members are all equally likely realizations of the

estimated posterior (Wang et al. 2004; McLay et al.

2008). More recently, the choice of mapping between

the original and the updated ensembles has been for-

mulated through optimal transport theory (Reich and

Cotter 2013; Oliver 2014). However, the cost functions

therein typically use a different weighting on the norm

than J(T), in one case yielding an optimum that is

the symmetric left-multiplying transformmatrix—not

to be confused with the right-multiplying one of

Theorem 2.

Theorem 2 and the related properties should benefit

the performance of filters employing the square root

update, whether for the analysis step, the model noise

incorporation, or both. In part, this is conjectured since

minimizing the displacement of an update means that

the ensemble cloud should retain some of its shape, and

with it higher-order, non-Gaussian information, as il-

lustrated in Fig. 1.

A different set of reasons to expect strong perfor-

mance from the symmetric square root choice is that it

should promote dynamical consistency, particularly re-

garding inequality constraints, such as the inherent

positivity of concentration variables, as well as nonlinear

equality constraints, initially discussed in section 4b. In

either case it stands to reason that smaller displacements

are less likely to break the constraints, and therefore

that their minimization should inhibit it. Additionally, it

is important when using ‘‘local analysis’’ localization that

the ensemble is updated similarly at nearby grid points.

Statistically, this is ensured by employing smoothly de-

caying localization functions, so thatG does not jump too

much from one grid point to the next. But, as pointed

out by Hunt et al. (2007), in order to translate this

smoothness onto the dynamical consistency, it is also

crucial that the square root is continuous in G. Fur-

thermore, even if G does jump from one grid point to

the next, it still seems plausible that the minimization

of displacement might restrain the creation of dynam-

ical inconsistencies.
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5. Alternative approaches

This section describes the model noise incorporation

methods most relevant methods to this study. Table 1

summarizes the methods that will be used in numerical

comparison experiments. ADD-Q is the classic method

detailed in section 3a. MULT-1 and MULT-m are mul-

tiplicative inflation methods. The rightmost column

relates the different methods to each other by suc-

cinctly expressing the degree to which they satisfy

Eq. (29); it can also be used as a starting point for their

derivation. Note that MULT-1 only satisfies one degree

of freedom of Eq. (29), while MULT-m satisfies m de-

grees, and would therefore be expected to perform

better in general. It is clear that MULT-1 and MULT-m

will generally not provide an exact statistical update, no

matter how bigN is, while ADD-Q reproduces all of the

moments almost surely as N/‘. By comparison,

SQRT-CORE guarantees obtaining the correct first two

moments for any N.m, but does not guarantee

higher-order moments.

Using a large ensemble size, Fig. 1 illustrates the dif-

ferent techniques. Notably, the cloud of ADD-Q is

clearly more dispersed than any of the other methods.

Furthermore, in comparison to MULT-m and MULT-1,

SQRT-CORE significantly skewers the distribution in

order to satisfy the off-diagonal conditions.

Continuing from section 1b, the following details

other pertinent alternatives, some of them sharing some

similarity with the square root methods proposed here.

One alternative is to resample the ensemble fully from

N (0, AAT/(N2 1)1Q). However, this incurs larger

sampling errors thanADD-Q, and is more likely to cause

dynamical inconsistencies.

Second-order exact sampling (Pham 2001) attempts to

sample noise under the restriction that all of the terms

on the second line of Eq. (27) be zero. It requires a very

large ensemble size (N. 2m), and is therefore typically

not applicable, though recent work indicate that this

might be circumvented (Hoteit et al. 2015).

The singular evolutive interpolated Kalman (SEIK)

filter (Hoteit et al. 2002) has a slightly less primitive and

FIG. 1. Scatterplot of ensemble forecasts with the three-dimensional Lorenz-63 system

(Lorenz 1963) using different schemes to account for the model noise, which is specified

by DtQ5diag([36:00, 3:60, 1:08]) and makes up approximately 30% of the total spread of the

updated ensembles. Each dot corresponds to the ‘‘(x, y)’’ coordinate of one realization among

N5 400.

TABLE 1. Comparison of some model noise incorporation methods.

Description Label Af 5 Where Thus, satisfying

Additive, simulated noise ADD-Q A1D D is a centered sample from N (0, Q) ED(Eq. (29))

Scalar inflation MULT-1 lA l2 5 trace(P)21trace(P1Q) trace(Eq. (29))

Multivariate inflation MULT-m LA L2 5diag(P)21diag(P1Q) diag(Eq. (29))

Core square root method SQRT-CORE AT T5 [IN 1 (N2 1)A1QA1T]
1/2

s PA(Eq. (29))PA
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intuitive formalism than the EnKF, typically working

with matrices of sizem3 (N2 1). Moreover, it does not

have a separate step to deal with model noise, treating it

instead implicitly, as part of the analysis step. This lack

of modularity has the drawback that the frequency of

model noise incorporation is not controllable: in case of

multiple model integration steps between observations,

the noise should be incorporated at each step in order to

evolve with the dynamics; under different circumstances,

skipping the treatment of noise for a few steps can be cost

efficient (Evensen and vanLeeuwen 1996). Nevertheless, a

stand-alone model noise step can be distilled from the

SEIK algorithm as a whole. Its forecast covariance matrix,

P
f
, would equal to that of SQRT-CORE: PA(P1Q)PA.

However, unlike SQRT-CORE, which uses the symmetric

square root, the SEIK uses random rotation matrices to

update the ensemble. Also, the SEIK filter uses a ‘‘for-

getting factor.’’ Among other system errors, this is in-

tended to account for the residual noise covariance,

[Q2 Q̂]. This issue is discussed in the next section in re-

lation to SQRT-CORE. As outlined in section 1b, however,

this factor is not explicitly a function of [Q2 Q̂]; it is in-

stead obtained from manual tuning. Moreover, it is only

applied in the update of the ensemble mean.

Another method is to include only the N2 1 largest

eigenvalue components of P1Q, as in reduced-rank

square root filters (Verlaan and Heemink 1997),

and some versions of the unscented Kalman filter

(Chandrasekar et al. 2008). This method can be referred

to as T-SVD because the update can be effectuated

through a truncated SVD of [P
1/2
, Q1/2], where the

choices of square roots do not matter. It captures more

of the total variance than SQRT-CORE, but also changes

the ensemble subspace. Moreover, it is not clear how to

choose the updated ensemble. For example, one would

suspect dynamical inconsistencies to arise from using the

ordered sequence of the truncated SVD. Right multi-

plying by random rotation matrices, as in the SEIK,

might be a good solution. Or, if computed in terms of a

left-multiplying transform matrix, the symmetric choice

is likely a good one. Building on T-SVD, the ‘‘partially

orthogonal’’ EnKF and the complementary orthogonal

subspace filter for efficient ensembles (COFFEE) algo-

rithm (Heemink et al. 2001; Hanea et al. 2007) also rec-

ognize the issue of the residual noise. In contrasts with the

treatments proposed in this study, these methods

introduce a complementary ensemble to account for it.

6. Improving SQRT-CORE: Accounting for the
residual noise

As explained in section 4a, SQRT-CORE can only in-

corporate noise components that are in the span (range)

of A. This leaves a residual noise component un-

accounted for, orthogonal to the span ofA, with [Q2 Q̂]

posing as its covariance matrix.

First consider why there is no such residual of R for

the square root methods in the analysis step: because the

analysis step subtracts uncertainty, unlike the forecast

step which adds it. Therefore, the presence or absence of

components of R outside of the span of the observation

ensemblemakes no difference to the analysis covariance

update because the ensemble effectively already as-

sumes zero uncertainty in these directions.

In the rest of this section the question addressed is

how to deal with the residual noise. It is assumed that

SQRT-CORE, Eq. (33), has already been performed. The

techniques proposed thus complement SQRT-CORE, but

do not themselves possess the beneficial properties of

SQRT-CORE discussed in section 4. Also, the notation of

the previous section is reused. Thus, the aim of this

section is to find an Af 2 R
m3N that satisfies, in some

limited sense

AfAfT 5AAT 1 (N2 1)[Q2 Q̂] . (44)

a. Complementary, additive sampling: SQRT-ADD-Z

Let Q1/2 be any square root of Q, and define

Q̂1/2 5P
A
Q1/2 , (45)

Z5 (I
m
2P

A
)Q1/2 , (46)

the orthogonal projection of Q1/2 onto the column space

of A, and the complement, respectively.

A first suggestion to account for the residual noise is to

use one of the techniques of section 5, with [Q2 Q̂]

taking the place of the full Q in their formulas. In par-

ticular, with ADD-Q in mind, the fact that

Q1/2 5 Q̂1/2 1Z (47)

motivates sampling the residual noise using Z. That is, in

addition to D̂ of SQRT-CORE, which accounts for Q̂, one

also adds ~D5Z~J to the ensemble, where the columns of
~J are drawn independently from N (0, Im). We call this

technique SQRT-ADD-Z.

Note that Q̂1/2, defined by Eq. (45), is a square root of

Q̂. By contrast, multiplying Eq. (47) with its own trans-

pose yields

ZZT 5 [Q2 Q̂]2 Q̂1/2ZT 2ZQ̂T/2 , (48)

and reveals that Z is not a square root of [Q2 Q̂].

Therefore, with expectation over ~J, SQRT-ADD-Z does

not respect E(Eq. (44)), as one would hope.
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Thus, SQRT-ADD-Z has a bias equal to the cross term

sum, Q̂1/2ZT 1ZQ̂T/2 5 [Q2 Q̂]2ZZT. Notwithstanding

this problem, Corollary 1 of appendix A shows that the

cross-term sum has a spectrum symmetric around 0, and

thus zero trace. To some extent, this exonerates SQRT-

ADD-Z, since it means that the expected total variance is

unbiased.

b. The underlying problem: Replacing a single draw
with two independent draws

Since any element of Q̂ is smaller than the corre-

sponding element in Q, either one of the multiplicative

inflation techniques can be applied to account for

[Q2 Q̂] without second thoughts. Using MULT-1 would

satisfy trace [Eq. (44)], while MULT-m would satisfy

diag [Eq. (44)]. However, the problem highlighted for

SQRT-ADD-Z is not just a technicality. In fact, as

shown in section b in appendix A, [Q2 Q̂] has nega-

tive eigenvalues because of the cross terms. It is

therefore not a valid covariance matrix in the sense

that it has no real square root: samples with co-

variance [Q2 Q̂] will necessarily be complex numbers;

this would generally be physically unrealizable and

therefore inadmissible. This underlying problem

seems to question the validity of the whole approach

of splitting up Q and dealing with the parts Q̂ and

[Q2 Q̂] separately.

Let use emphasize the word independently, because

that is, to a first approximation, what we are attempting

to do: replacing a single draw fromQ by one from Q̂ plus

another, independent draw from [Q2 Q̂]. Rather than

considering N anomalies, let us now focus on a single

one, and drop the n index. Define the two random

variables:

q5 Q̂1/2j1Zj , (49)

q??5 Q̂1/2ĵ1Z~j , (50)

where j, ĵ, and ~j are random variables independently

drawn from N (0, Im). By Eq. (47), and design, q can be

identified with any of the columns of D of Eq. (25) and,

furthermore, Var(q)5Q. On the other hand, while q

originates in a single random draw, q?? is the sum of two

independent draws.

The dependence between the terms of q, and the lack

thereof for q??, yields the following discrepancy be-

tween the variances:

Var(q)5 Q̂1ZZT 1 Q̂1/2ZT 1ZQ̂T/2 , (51)

Var(q??)5 Q̂1ZZT . (52)

Formally, this is the same problem that was identified

with Eq. (48), namely, that of finding a real square root

of [Q2 Q̂], or eliminating the cross terms. But Eqs. (51)

and (52) show that the problem arises from the more

primal problem of trying to emulate q by q??. Vice

versa, Q̂1/2ZT 5 0 would imply that the ostentatiously

dependent terms, Q̂1/2j and Zj, are independent, and

thus q?? is emulated by q.

c. Reintroducing dependence: SQRT-DEP

As already noted, though,making the cross terms zero

is not possible for general A and Q. However, the per-

spective of q and q?? hints at another approach: re-

introducing dependence between the draws. In this

section we will reintroduce dependence by making the

residual sampling depend on the square root equivalent,

D̂ of Eq. (34).

The trouble with the cross terms is thatQ ‘‘gets in the

way’’ betweenPA and (Im 2PA), whose product would

otherwise be zero. Although less ambitious than em-

ulating q with q??, it is possible to emulate a single

draw (e.g., j) from N (0, Im) with the two independent

draws of

j??5Pĵ1 (I
m
2P)~j , (53)

where, as before, ĵ and ~j are independent

random variables with law N (0, Im), and P is some

orthogonal projection matrix. Then, as the cross

terms cancel,

PPT 1 (I
m
2P)(I

m
2P)T 5 I

m
, (54)

and thus Var(j??)5Var(j).

We can take advantage of this emulation possibility by

choosingP as the orthogonal projector onto the rows of

Q̂1/2. Instead of Eq. (49), redefine q as

q5Q1/2j??. (55)

Then, since Var(j??)5 Im,

Var(q)5Q1/2I
m
QT/2 5Q , (56)

as desired. But also

q5 (Q̂1/2 1Z)[Pĵ1 (I
m
2P)~j] , (57)

5Q̂1/2ĵ1Z[Pĵ1 (I
m
2P)~j] . (58)

The point is that, while maintaining Var(q)5Q, and

despite the reintroduction of dependence between

the two terms in Eq. (58), the influence of ~j has

been confined to span(Z)5 span(A)?. The above re-

flections yield the following algorithm, labeled

SQRT-DEP:
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1) Perform the core square root update for Q̂, Eq. (33);

2) Find Ĵ such that Q̂1/2
s Ĵ5 D̂ of Eq. (34). Components

in the kernel of Q̂1/2
s are inconsequential;

3) Sample ~J by drawing each column independently

from N (0, Im);

4) Compute the residual noise, ~D, and add it to the

ensemble anomalies:

~D5Z[PĴ1 (I
m
2P)~J] . (59)

Unfortunately, this algorithm requires the additional

SVD of Q̂1/2 in order to computeP and Ĵ. Also, despite

the reintroduction of dependence, SQRT-DEP is not fully

consistent, as discussed in appendix B.

7. Experimental setup

The model noise incorporation methods detailed in

sections 3 and 6 are benchmarked using ‘‘twin experi-

ments,’’ where a ‘‘truth’’ trajectory is generated and

subsequently estimated by the ensemble DA systems.

As indicated by Eqs. (1) and (2), stochastic noise is

added to the truth trajectory and observations, re-

spectively. As defined in Eq. (1), Q implicitly includes a

scaling by the model time step, Dt, which is the duration

between successive time indices. Observations are not

taken at every time index, but after a duration, Dtobs,
called the DA window, which is a multiple of Dt.
The noise realizations excepted, the observation

process, Eq. (2), given by H, R, and Dtobs, and the

forecast process, Eq. (1), given by f, m0, P0, and Q, are

both perfectly known to the DA system. The analysis

update is performed using the symmetric square

root update of section 2 for all of the methods

under comparison. Thus, the only difference between

the ensemble DA systems is their model noise

incorporation method.

Performance is measured by the root-mean-square

error of the ensemble mean, given by

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
kxt 2 xtk

r
2

2
, (60)

for a particular time index t. By convention, the RMSE is

measured only immediately following each analysis up-

date. In any case, there was little qualitative difference to

‘‘forecast’’ RMSE averages, which are measured right

before the analysis update. The score is averaged for all

analysis times after an initial transitory period whose

duration is estimated beforehand by studying the RMSE

time series. Each experiment is repeated 16 times with

different initial random seeds. The empirical variances of

theRMSEs are checked to ensure satisfying convergence.

Covariance localization is not used. Following each

analysis update, the ensemble anomalies are rescaled

by a scalar inflation factor intended to compensate for

the consequences of sampling error in the analysis (e.g.,

Anderson and Anderson 1999; Bocquet 2011). This

factor, listed in Table 2, was approximately optimally

tuned prior to each experiment. In this tuning process

the ADD-Q method was used for the forecast noise in-

corporation, putting it at a slight advantage relative to

the other methods.

In addition to the EnKF with different model in-

corporation methods, the twin experiments are also run

with the standard methods of Table 1 for comparison, as

well as three further baselines: (i) the climatology, esti-

mated from several long, free runs of the system; (ii) 3D-

Var (optimal interpolation) with the background from

the climatology; and (iii) the extended Kalman filter

(Rodgers 2000).

a. The linear advection model

The linear advection model evolves according to

xt11
i 5 0:98xti21 , (61)

for t5 0, . . ., i5 1:m, with m5 1000, and periodic

boundary conditions. The dissipative factor is there to

counteract amplitude growth due to model noise. Direct

observations of the truth are taken at p5 40 equidistant

locations, with R5 0:01Ip, every fifth time step.

The initial ensemble members, fx0n j n5 1:Ng, as well
as the truth, x0, are generated as a sum of 25 sinusoids of

random amplitude and phase,

x0i,n 5
1

c
n

�
25

k51

akn sin(2pk[i/m1uk
n]) , (62)

where akn and uk
n are drawn independently and uniformly

from the interval (0, 1) for each n and k, and the nor-

malization constant, cn, is such that the standard deviation

of each x0n is 1. Note that the spatial mean of each re-

alization of Eq. (62) is zero. The model noise is given by

Q5 0:01Var(x0) . (63)

TABLE 2. Inflation factors used in benchmark experiments.

Reads from left to right, corresponding to the abscissa of the

plotted data series.

Postanalysis inflation

Fig. 2 None

Fig. 3 1.25 1.22 1.19 1.15 1.13 1.12 1.10 1.03 1.00 1.00

Fig. 4 1.13 1.25 1.30 1.35 1.43 1.50 1.57 1.65 1.70

Fig. 5 1.02 1.02 1.02 1.03 1.04 1.05 1.07 1.09 1.13 . . .

1.17 1.21 1.31
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b. The Lorenz-96 model

The Lorenz-96 model evolves according to

dx
i

dt
5 (x

i11
2 x

i22
)x

i21
2 x

i
1F , (64)

for t. 0, and i5 1:m, with periodic boundary condi-

tions. It is a nonlinear, chaotic model that mimics the

atmosphere at a certain latitude circle. We use the

parameter settings of Lorenz and Emanuel (1998),

with a system size ofm5 40, a forcing of F5 8, and the

fourth-order Runge–Kutta numerical time-stepping

scheme with a time step of Dt5 0:05. Unless other-

wise stated, direct observations of the entire state

vector are taken a duration of Dtobs 5 0:05 apart,

with R5 Im.

The model noise is spatially homogeneous, generated

using a Gaussian autocovariance function:

Q
i,j
5 exp(21/30ki2 jk22)1 0:1d

i,j
, (65)

where the Kronecker delta, di,j, has been added for nu-

merical stability issues.

8. Experimental results

Each figure contains the results from a set of experi-

ments run for a range of some control variable.

a. Linear advection

Figure 2 shows theRMSE versus the ensemble size for

different model noise incorporation schemes. The

maximum wavenumber of Eq. (62) is k5 25. Thus, by

the design of P0 and Q, the dynamics will take place in a

subspace of rank 50, even though m5 1000. This is

clearly reflected in the curves of the square root

methods, which all converge to the optimal performance

of the Kalman filter (0.15) as N approaches 51, and Z

goes to zero. SQRT-ADD-Z takes a little longer to con-

verge because of numerical error. The multiplicative

inflation curves are also constant forN$ 51, but they do

not achieve the same level of performance. As one

would expect, ADD-Q also attains the performance of

the Kalman filter for N/‘.
Interestingly, despite MULT-m satisfying Eq. (29) to a

higher degree than MULT-1, the latter performs dis-

tinctly better across the whole range ofN. This can likely

be blamed on the fact that MULT-m has the adverse

effect of changing the subspace of the ensemble, though

it is unclear why its worst performance occurs near

N5 25.

ADD-Q clearly outperforms MULT-1 in the in-

termediate range ofN, indicating that the loss of nuance

in the covariance matrices of MULT-1 is more harmful

than the sampling error incurred by ADD-Q. But, for

45,N, 400, MULT-1 beats ADD-Q. It is not clear why

this reversal happens.

SQRT-CORE performs quite similar to MULT-1. In the

intermediate range, it is clearly deficient compared to

the square root methods that account for residual noise,

illustrating the importance of doing so. The perfor-

mance of SQRT-DEP is almost uniformly superior to all

of the other methods. The only exception is around

N5 25, where ADD-Q slightly outperforms it. The

computationally cheaper SRA is beaten by ADD for

N , 40, but has a surprisingly robust performance

nevertheless.

b. Lorenz-96

Figure 3 shows the RMSE versus ensemble size. As

with the linear advectionmodel, the curves of the square

root schemes are coincident when Z5 0, which here

happens for N.m5 40. In contrast to the linear ad-

vection system, however, the square root methods still

improve as N increases beyond m, and noticeably so

until N5 60. This is because a larger enable is better

able to characterize the non-Gaussianity of the distri-

butions and the nonlinearity of the models. On the other

hand, the performance of the multiplicative inflation

methods stagnates around N5m, and even slightly de-

teriorates for larger N. This can probably be attributed

to the effects observed by Sakov and Oke (2008b).

Unlike the more ambiguous results of the linear ad-

vection model, here ADD-Q uniformly beats the multi-

plicative inflation methods. Again, the importance of

accounting for the residual noise is highlighted by the

poor performance of SQRT-CORE for N, 40. However,

FIG. 2. Performance benchmarks as a function of the ensemble

size, N, obtained with the linear advection system. The scale has

been irregularly compressed for N. 60.
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even though SQRT-ADD-Z is biased, it outperforms

ADD-Q for N. 25, and approximately equals it for

smaller N.

The performance of SQRT-DEP is nearly uniformly

the best, the exception being at N5 18, where it is

marginally beaten by ADD-Q and SQRT-ADD-Z. The

existence of this occurrence can probably be attributed

to the slight suboptimality discussed in appendix B, as

well as the advantage gained by ADD from using it to

tune the analysis inflation. Note, though, that this region

is hardly interesting, since results lie above the baseline

of the extended KF.

ADD-Q asymptotically attains the performance of

the square root methods. In fact, though it would have

been imperceptible if added to Fig. 3, experiments

show that ADD-Q beats SQRT-DEP by an average

RMSE difference of 0.005 at N5 800, as predicted in

section 5.

Figure 4 shows theRMSE versus theDAwindow. The

performance of ADD-Q clearly deteriorates more than

that of the deterministic methods as Dtobs increases. In-
deed, the curves of SQRT-CORE and ADD-Q cross at

Dtobs ’ 0:1, beyond which SQRT-CORE outperforms

ADD-Q. SQRT-CORE even gradually attains the perfor-

mance of SQRT-ADD-Z, though this happens in a regime

where all of the EnKF methods are beaten by 3D-Var.

Again, however, SQRT-DEP is uniformly superior, while

SQRT-ADD-Z is uniformly the second best. Similar

tendencies were observed in experiments (not shown)

with N5 25.

Figure 5 shows the RMSE versus the amplitude of the

noise. Toward the left, the curves converge to the same

value as the noise approaches zero. At the higher end of

the range, the curves of MULT-m and SQRT-CORE are

approximately twice as steep as that of SQRT-DEP.

Again, SQRT-DEP performs uniformly superior to the

rest, with SQRT-ADD-Z performing second best. In

contrasts, ADD-Q performs worse than MULT-m for a

noise strength multiplier smaller than 0.2, but better as

the noise gets stronger.

9. Summary and discussion

The main effort of this study has been to extend the

square root approach of the EnKF analysis step to the

forecast step in order to account for model noise. Al-

though the primary motivation is to eliminate the need

for simulated, stochastic perturbations, the coremethod,

SQRT-CORE, was also found to possess several other

desirable properties, which it shares with the analysis

square root update. In particular, a formal survey on

these features revealed that the symmetric square root

choice for the transform matrix can be beneficial in re-

gards to dynamical consistency.

Yet, since it does not account for the residual noise,

SQRT-CORE was found to be deficient in case the noise is

strong and the dynamics relatively linear. In dealing with

the residual noise, cursory experiments (not shown)

suggested that an additive approach works better than a

multiplicative approach, similar to the forgetting factor

of the SEIK. This is likely a reflection of the relative

performances of ADD-Q and MULT-m, as well as the

findings of Whitaker and Hamill (2012), which indicate

that the additive approach is better suited to account for

model error. Therefore, two additive techniques were

proposed to complement SQRT-CORE, namely, SQRT-

ADD-Z and SQRT-DEP. Adding simulated noise with no

components in the ensemble subspace, SQRT-ADD-Z is

computationally relatively cheap as well as intuitive.

However, it was shown to yield biased covariance

FIG. 3. Performance benchmarks as a function of the ensemble

size, N, obtained with the Lorenz-96 system. The climatology av-

erages an RMSE score of 3.7. The scale has been irregularly

compressed for N. 40.

FIG. 4. Performance benchmarks as a function of the data as-

similation window, Dtobs, obtained with the Lorenz-96 model and

N 5 30. The climatology averages an RMSE of 3.7.
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updates due to the presence of cross terms. By re-

introducing dependence between the SQRT-CORE update

and the sampled, residual noise, SQRT-DEP remedies this

deficiency at the cost of an additional SVD.

The utility of the noise integration methods proposed

will depend on the properties of the system under con-

sideration. However, SQRT-DEP was found to perform

robustly (nearly uniformly) better than all of the other

methods. Moreover, the computationally less expensive

method SQRT-ADD-Z was also found to have robust

performance. These findings are further supported by

omitted experiments using fewer observations, larger

observation error, and different models.

Future directions

The model noise square root approach has shown

significant promise on low-order models, but has not yet

been tested on realistic systems. It is also not clear how

this approach performs with more realistic forms of

model error.

Section c in appendix A shows why it is not possible to

eliminate the cross terms, C, which would make SQRT-

ADD-Z unbiased. However, there might be a shrewd

choice of the square root ofQ that can get close to doing so.

As discussed in appendix B, a more shrewd choice of

Q1/2 might improve SRD. This choice impacts Ĵ, but not

the core method, as shown in appendix A section c, and

should not be confused with the choice of Tf . While the

Cholesky factor yielded worse performance than the

symmetric choice, other options should be contemplated.

Nakano (2013) proposed a method that is distinct, yet

quite similar to SQRT-CORE, this should be explored

further, in particular with regards to the residual noise.
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APPENDIX A

The Residual Noise

a. The cross terms

Let C be the sum of the two cross terms:

C5 Q̂1/2ZT 1ZQ̂T/2 , (A1)

5P
A
Q(I

m
2P

A
)1 (I

m
2P

A
)QP

A
. (A2)

Note that span(Q̂1/2ZT)4span(A)4ker(Q̂1/2ZT), and

therefore Q̂1/2ZT (and its transpose) only has the eigen-

value 0. Alternatively one can show that it is nilpotent of

degree 2. By contrast, the nature of the eigenvalues of C

is quite different.

Theorem 3 (properties of C). The symmetry of C 2 R
m2

implies, by the spectral theorem, that its spectrum is real.

Suppose that l is a nonzero eigenvalue of C, with ei-

genvector y5yA 1yB, where yA 5PAy and yB 5
(Im 2PA)y. Then (i) u5yA 2yB is also an eigenvector,

(ii) its eigenvalue is 2l, and (iii) neither yA nor yB

are zero.

Proof. Note that

Cy
A
5 (I

m
2P

A
)Qy

A
2 span(A)?, (A3)

Cy
B
5P

A
Qy

B
2 span(A) . (A4)

As Cy5 l[yA 1yB], Eqs. (A3) and (A4) imply that

Cy
A
5 ly

B
, (A5)

Cy
B
5 ly

A
. (A6)

Therefore,

Cu5C[y
A
2y

B
]5 ly

B
2 ly

A
52l[y

A
2y

B
].u

Equations (A5) and (A6) can also be seen to imply (iii).

Corollary 1: trace(C)5 0. This follows from the fact that

the trace of a matrix equals the sum of its eigenvalues.

Corollary 2: kyAk22 5 kyBk22. This follows from the fact

that yTu5 (yA 1yB)
T(yA 2yB)5yT

AyA 2yT
ByB should

be zero by the spectral theorem.

Interestingly, imaginary, skew-symmetric matrices

also have the property that their eigenvalues, all of

which are real, come in positive–negative pairs. These

matrices can all be written M2MT for some M 2 iRm2

,

which is very reminiscent ofC. However, it is not clear if

these parallels can be used to prove Theorem 3 because

M2MT only has zeros on the diagonal, while C does not

(by symmetry, it can be seen that this would imply

C5 0). Also, Theorem 3 depends on the fact that the

cross terms are ‘‘flanked’’ by orthogonal projection

matrices, whereas there are no requirements on M.

b. The residual covariance matrix

The residual, [Q2 Q̂], differs from the symmetric,

positive matrix ZZT by the cross terms, C. The following

theorem establishes a problematic consequence:

Theorem 4 ([Q2 Q̂] is not a covariance matrix). Pro-

vided C 6¼ 0, the residual ‘‘covariance’’ matrix, [Q2 Q̂],

has negative eigenvalues.
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Proof. Since C is symmetric, and thus orthogonally di-

agonalizable, the assumption that C 6¼ 0 implies that C

has nonzero eigenvalues. Let y be the eigenvector of a

nonzero eigenvalue, and write y5yA 1yB, with yA 2
span(A) and yB 2 span(A)?. Then yTCy5yT

AQyB 6¼ 0.

Define ya 5yB 1ayA. Then:

yT
a[Q2 Q̂]y

a
5yT

a[ZZ
T 1C]y

a
, (A7)

5yT
BQy

B
1 2ayT

AQy
B
. (A8)

The second term can always be made negative, but

larger inmagnitude than the first, simply by choosing the

sign of a and making it sufficiently large. u

c. Eliminating the cross terms

Can the cross terms be entirely eliminated in someway?

Section 6b already answered this question in the negative:

there is no particular choice of the square root of Q,

inducing a choice of Q̂1/2 andZ throughEqs. (45) and (46),

that eliminates the cross terms: C5 Q̂1/2ZT 1ZQ̂T/2 5 0.

But suppose we allow changing the ensemble sub-

space. For example, suppose the partition Q1/2 5 Q̂1/2 1Z

uses the projector onto the N largest-eigenvalue eigen-

vectors ofQ instead ofPA. It can then be shown that the

cross terms are eliminated: Q̂1/2ZT 5 0, and hence C5 0

and Var(q??)5Q. A similar situation arises in the case

of the COFFEE algorithm (see section 5) explaining

why it does not have the cross term problem. Another

particular rank-N square root, for which C5 0 is the

lower-triangular Cholesky factor of Q with the last

m2N columns set to zero.

Unfortunately, for general Q and A, the ensemble

subspace will not be that of the rank-N truncated Cho-

lesky or eigenvalue subspace. Therefore, neither of

these options can be carried out using a right-multiplying

square root.

APPENDIX B

Consistency of SQRT-DEP

SQRT-CORE ensures thatEq. (30) is satisfied, that is, that

1

N2 1
[A1 D̂][A1 D̂]T 5P1 Q̂ , (B1)

where (N2 1)P5AAT. However, this does not imply

that D̂D̂T 5 (N2 1)Q̂. Therefore, with regards to SQRT-

DEP, ĴĴT 6¼ Im. Instead, the magnitudes of D̂ and Ĵ are

minimized as much as possible, as per Theorem 2.

However, SQRT-DEP is designed assuming that Ĵ is

stochastic, with its columns drawn independently from

N (0, Im). If this were the case, then SQRT-DEPwould be

consistent in the sense of

1

N2 1
E([A1 D̂1 ~D][A1 D̂1 ~D]T)5P1Q , (B2)

where the expectation is with respect to ~J and Ĵ. This

follows from the consistency of q as defined in Eq.

(55), which has Var(q)5Q, because each column of

D5 D̂1 ~D is sampled in the same manner as q.

The fact that D̂ is in fact not stochastic, as SQRT-DEP

assumes, but typically of a much smaller magnitude,

suggests a few possible venues for future improvement.

For example we speculate that inflating Ĵ by a factor

larger than 1, possibly estimated in a similar fashion to

Dee (1995). The value of Ĵ also depends on the choice

of square root for Q̂1/2. It may therefore be a good idea to

choose Q̂1/2 somewhat randomly, so as to induce more

randomness in the square root ‘‘noise,’’ Ĵ. One way of

doing so is to apply a right-multiplying rotationmatrix to

Q̂1/2. Cursory experiments indicate that there may be

improvements using either of the above two suggestions.

APPENDIX C

Left-Multiplying Formulation of SQRT-CORE

Lemma 1: The row (and column) space of Tf
s 5 (G f )

1/2
s is

the row space of A.

Proof. Let A5USVT be the SVD of A. Then:

Gf 5 I
N
1 (N2 1)A1Q(A1)T ,

5 V[I
N
1 (N2 1)S

1
UTQU(S

1
)T]VT.u (C1)

FIG. 5. Performance benchmarks as a function of the noise

strength, obtainedwith the Lorenz-96model andN5 25. Both axes

are logarithmic. On average, when Q is multiplied by 1023

(1022, 1021, 100, 101, respectively), the model noise makes up ap-

proximately 0.5% (4%, 20%, 70%, 90%, respectively) of the

growth in the spread of the ensemble between each assimilation.

The climatology averages an RMSE score of approximately 4.
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In view of Lemma 1 it seems reasonable that there should

be a left-multiplying update, Af 5LA, such that it equals

the right-multiplying update, Af 5ATf
s . Although N �

m in most applications of the EnKF, the left-multiplying

update would be a lot less costly to compute than the

right-multiplying one in such cases if N � m. The fol-

lowing derivation of an explicit formula forL is very close

to that of Sakov andOke (2008b), except for the addition

of Eq. (36). Lemma 2 will also be of use.

Lemma 2. For any matrices, A 2 R
m3N , M 2 R

m2

, and

any positive integer k,

A(ATMA)k 5 (AATM)kA . (C2)

Theorem 5 (Left-multiplying transformation): For any

ensemble anomaly matrix, A 2 R
m3N , and any SPD

matrix Q 2 R
m2

,

ATf
s 5LA , (C3)

where

Tf
s 5 [I

N
1 (N2 1)A1Q(A1)T]

1/2

s
, (C4)

L5 [I
m
1 (N2 1)AA1Q(AAT)1]1/2 . (C5)

In case N.m, Eq. (C5) reduces to

L5 [I
m
1 (N2 1)Q(AAT)21]1/2 . (C6)

Note that [Im 1AA1Q(AAT)1] is not a symmetric

matrix. We can nevertheless define its square root as the

square root obtained from its eigendecomposition, as

was done for the symmetric square root in section 2c.

Proof.Assuming A1Q(A1)T has eigenvalues less than 1,

we can express the square root, [A1Q(A1)T]1/2, through

its Taylor expansion (Golub and Van Loan 1996, The-

orem 9.1.2). Applying Eq. (36), followed by Lemma 2

with M5 (AAT)1(N2 1)Q(AAT)1, and Eq. (36) the

other way again, one obtains Eq. (C5).

If N.m, then rank(A)5m, unless the dynamics

have made some of the anomalies collinear. Hence,

rank(AAT)5m and soAAT is invertible, andAA1 5 Im.

Thus, Eq. (C5) reduces to Eq. (C6). u

Note that the existence of a left-multiplying formu-

lation of the right-multiplying operation A1ATf
s could

be used as a proof for Theorem 1, because LA15 0 by

the definition of Eq. (28) of A. Finally, Theorem 6 pro-

vides an indirect formula for L.

Theorem 6 (Indirect left-multiplying formula): If we

have already calculated the right-multiplying transform

matrix Tf
s , then the we can obtain a corresponding left-

multiplying matrix, L, from

L5ATf
sA

1 . (C7)

Proof.Weneed to show thatLA5ATf
s . Note thatA1A is

the orthogonal (and hence symmetric) projector onto

the row space of A, which Lemma 1 showed is also the

row and column space of Tf
s . Therefore, T

f
s(A

1A)5Tf
s ,

and LA5ATf
s(A

1A)5ATf
s . u
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