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Beyond forcing Scenarios: 
predicting climate change through 
Response operators in a coupled 
General circulation Model
Valerio Lembo1, Valerio Lucarini1,2,3 ✉ & francesco Ragone4

Global climate Models are key tools for predicting the future response of the climate system to a variety 
of natural and anthropogenic forcings. Here we show how to use statistical mechanics to construct 
operators able to flexibly predict climate change. We perform our study using a fully coupled model - 
MPI-ESM v.1.2 - and for the first time we prove the effectiveness of response theory in predicting future 
climate response to co2 increase on a vast range of temporal scales, from inter-annual to centennial, 
and for very diverse climatic variables. We investigate within a unified perspective the transient climate 
response and the equilibrium climate sensitivity, and assess the role of fast and slow processes. the 
prediction of the ocean heat uptake highlights the very slow relaxation to a newly established steady 
state. the change in the Atlantic Meridional overturning circulation (AMoc) and of the Antarctic 
circumpolar current (Acc) is accurately predicted. the AMoc strength is initially reduced and then 
undergoes a slow and partial recovery. the Acc strength initially increases due to changes in the wind 
stress, then undergoes a slowdown, followed by a recovery leading to a overshoot with respect to the 
initial value. finally, we are able to predict accurately the temperature change in the north Atlantic.

Climate change is arguably one of the greatest contemporary societal challenges1 and one of the grand contem-
porary scientific endeavours2. The provision of new and efficient ways to understand its mechanisms and predict 
its future development is one of the key goals of climate science. Global climate models (GCMs) are currently the 
most advanced tools for studying future climate change; their future projections are key ingredients of the reports 
of the Intergovernmental Panel on Climate Change (IPCC) and are key for climate negotiations3. For IPCC-class 
GCMs, future climate projections are usually constructed by defining a few climate forcing scenarios, given by 
changes in the composition of the atmosphere and in the land use, each corresponding to a different intensity and 
time modulation of the equivalent anthropogenic forcing. Typically, for each scenario an ensemble of simulations 
is performed, with each member differing in terms of initial conditions, applied forcing or chosen physical para-
metrizations. Subsequent phases of the Coupled Model Intercomparison Project (CMIP, currently the sixth phase 
CMIP6 is active4), which is part of the Program for Climate Model Diagnosis and Intercomparison (PCMDI), 
allowed the definition of standardized experimental protocols for numerical simulations performed with GCMs 
and for the evaluation of the GCMs runs5,6. A bottleneck of this approach is that the consideration of an addi-
tional forcing scenario requires running a new ensemble of simulations. Additionally, for each forcing scenario, 
it is hard to disentangle the impact of each component of the forcing, e.g. different greenhouse gases with their 
concentration pathways and land surface alterations in geographically distinct regions. Finally, no rigorous pre-
scription exists for translating the climate change projections if one wants to consider different time modulations 
of a given forcing, e.g. a faster or slower CO2 increase.

Response theory and climate change
A possible strategy for delivering flexible and accurate climate change projections is the construction of response 
operators able to transform inputs given by forcing scenarios into outputs in the form of climate change signal. 
At this regard, it is tempting to use the fluctuation-dissipation theorem (FDT)7,8, which provides a dictionary for 
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translating the statistics of free fluctuations of a system into its response to external forcings. The idea of using 
the FDT to predict climate change from climate variability has been first proposed by Leith9 and used by several 
authors thereafter10–12. The FDT has recently been key to inspiring the theory of emergent constraints, which are 
tools for reducing the uncertainties on climate change by looking at empirical relations between climate response 
and variability of some given observables13,14.

In the case of nonequilibrium systems, forced fluctuations contain features that are absent from the free fluc-
tuations of the unperturbed system15. Therefore, the applicability of the FDT for such systems faces some serious 
theoretical and practical challenges2,16–18. The climate is a nonequilibrium system whose dynamics is primarily 
driven by the heterogeneous absorption of solar radiation. The motions of the geophysical fluids with the associ-
ated transports of mass and energy, as well as the exchanges of infrared radiation, tend to re-equilibrate the sys-
tem and allow it to reach a steady state2,19,20. Since the climate is not in equilibrium, climate change projects only 
partially on the modes of climate variability, whilst climate surprises - unprecedented events - are indeed possible 
when forcings are applied17. See Ghil and Lucarini2 for a comprehensive mathematical and physical discussion of 
the relationship between climate variability and climate response to forcings.

Response theory is a generalisation of the FDT that allows one to to predict how the statistical properties of 
general - near or far from equilibrium, deterministic or stochastic - systems change as a result of forcings. After 
the pioneering work by Kubo7, response theory has been firmly grounded in mathematical terms for stochastic21 
and deterministic15,22,23 systems; see Ref. 24 for a link between the two perspectives. The use of the response theory 
introduced by Ruelle15,22,23 for predicting climate change has been successful in various numerical investigations 
performed on models of various degrees of complexity, ranging from rather simple ones16, to intermediate com-
plexity ones25,26, up to simple yet Earth-like climate models18,27. The key step is the computation of the Green 
function for each observable of interest. Then, the corresponding climate change signal is predicted by convolving 
the Green function with the temporal pattern of forcing. Once the Green function is known, response theory 
allows one to treat in a unified and comprehensive way forcings with any temporal modulation, ranging from 
instantaneous to adiabatic changes.

Note that, despite non-equilibrium conditions, a subtle relation exists between climate response and climate 
variability. Indeed, natural modes of variability of the unperturbed system that can be identified as prominent 
features in the autocorrelation or power spectra of climatic fields are described by the Ruelle-Pollicott poles2,28,29. 
Such poles are responsible for the amplified response of the system to a resonating forcing with suitably defined 
spatial and temporal pattern.

A similar heuristic approach, although not rooted in formal Ruelle’s15,22,23 response theory, was also proposed 
in the seminal work of Hasselmann et al.30. While some doubts were raised in general terms regarding its applica-
bility, the method showed excellent skills for a wide range of observables in GCM experiments31. The crucial point 
is that in these works linear response formulas were applied to the output of individual experiments with GCMs. 
Ruelle’s response theory clarifies that the heuristic idea of Hasselmann et al.30 is instead mathematically grounded 
if one considers ensemble averages rather than individual experiments.

The climate models used so far to test response theory as formulated above18,27 lacked an active and dynamic 
ocean, so that the multiscale nature of climate processes was only partially represented. Capturing the slow 
oceanic processes is essential for a correct representation of the multidecadal and long-time climatic response. 
Encouragingly, response theory has recently been shown to have a great potential for predicting climate change in 
multi-model ensembles of CMIP5 atmosphere-ocean coupled GCMs outputs32. Blending together data coming 
from different models is outside response theory theoretical framework, yet heuristically justifiable. However, a 
proper treatment within the boundaries of the theory, based on ensemble of simulations with the same model 
featuring an active ocean component, is still lacking.

The response of a a slow (oceanic) climatic observable of interest has been investigated so far in relation to 
the change in the dynamical properties of some other climatic observable, by constructing a linear regression 
between the predictand and predictor using the properties of the natural variability of the system33–36. While 
indeed attractive and promising (and showing a good degree of success), this point of view cannot be rigorously 
ported to climate change studies. Using the resulting transfer function to predict the change of the observable of 
interest in a forced experiment would implicitly assume the validity of the FDT; see discussion above.

We remark that, in some cases (but not always), it is theoretically possible to use a climatic observable for 
predicting the response of another climatic observable of interest in the presence of an external forcing acting on 
the system. The possibility of using an observable as a surrogate forcing able to retain predictive power depends 
of non-trivial properties of its frequency-dependent response (its susceptibility, see below for a definition) and 
relies, in more practical terms, on the possibility of separating two or more dynamically relevant time scales in 
the system37. See recent applications of this idea in Zappa et al.38 and, using a methodology based on adjoint 
modelling, in Smith et al.39.

predicting climate change using the Ruelle Response theory
In this paper we show for the first time how Ruelle’s response theory can be used to perform successful centennial 
climate predictions in the fully coupled climate model MPI-ESM v.1.240. We consider two ensemble experiments. 
One experiment features an instantaneous CO2 doubling ( xCO2 2) taking place at year 1850, and the outputs of its 
ensemble members are used to compute the Green functions of several observables of interest, as described in the 
Methods section (Appendix A). We then perform an ensemble of runs where the CO2 concentration is increased 
- starting also at year 1850 - at the rate of 1% per year until doubling ( pctCO1 2), which takes place after about 70 
years (y). We use the Green function computed with xCO2 2 to reconstruct the response of pctCO1 2 and compare 
the prediction with direct numerical simulations. As discussed in the Methods section, the Green function is 
defined for a period of 2000 y. Therefore, in what follows we are able to perform predictions beyond the time 
frame simulated in the pctCO1 2 scenario (which is only 1000 y long), thus showing very useful predictive power.

https://doi.org/10.1038/s41598-020-65297-2
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First, we analyse the response of the globally averaged near-surface temperature (T m2 ) on short and long time 
scales. We then focus on two key aspects of the large-scale ocean circulation, namely the Atlantic Meridional 
Overturning Circulation (AMOC)41,42 and the Antarctic Circumpolar Current (ACC)43, and show that we can 
achieve excellent skill in predicting the the slow modes of the climate response. We also look into the global ocean 
heat uptake (OHU)44. A non-vanishing OHU indicates the presence of a global net energy imbalance. In current 
conditions, the ocean is well-known to absorb a large fraction of the Earth’s energy imbalance due to global 
warming and to store it through its large thermal inertia, up to time scales defined by the deep ocean circulation45. 
Finally, we prove the validity of our approach for predicting the change in the surface temperature in the North 
Atlantic, where the ocean deep water formation takes place. This region features a complex interplay between local 
processes and large-scale meridional energy transport, thus being particularly sensitive to the strength of the 
forcing and the changes in the large-scale circulation46.

Results
Global Mean Surface temperature. Figure 1 shows that the change of T m2  under the pctCO1 2 scenario is 
predicted with very good accuracy through response theory. The prediction is accurate both for the fast (first 70 y) 
and the subsequent slow response. The time pattern of temperature change indicates that the contribution of the 
fast feedbacks saturates after few decades, and the slow modes dominate the response for the rest of the period. 
The warming goes on for multicentennial scales, in a way that is not captured at all by models featuring a non-dy-
namic ocean18,27. The importance of the slow modes of climate response, associated with the oceanic thermal 
inertia, can be quantified considering the ratio between the transient climate response (TCR) and the equilibrium 
climate sensitivity (ECS), sometimes referred to as the realised warming fraction3; see the Methods section for the 
precise definition of these quantities. Here we have TCR ECS/ 0 5≈ .  (ECS K3 5≈ . ), which is much smaller than 
what found (≈0.85) by Ragone et al.27, indicating a more prominent role of the slow modes of variability in the 
model investigated here. The prediction obtained via response theory shows the establishment of steady state 
conditions for times larger than 1000 y.

The Green function - see Fig. 5 - provides information on the time scales of the response. As a result of the 
presence of slow oceanic time scales, the Green function significantly departs from a simple exponential relax-
ation behavior, which is sometimes adopted to describe the relaxation of the climate system to forcings30,47. The 
idea of defining a general Green function as a sum of multiple or infinite29 exponential functions with different 
timescales, generalising Hasselmann’s ideas - the so- called pulse-response method - and along the lines of previ-
ous studies38,48,49 is beyond the scope of our analysis and will be investigated further in a future work. In our case, 
after a fast decrease for short time scales, the Green function tends to zero at a much slower pace for times longer 
than 100 y, in agreement with what reported by Held et al.47.

Atlantic meridional overturning circulation. The AMOC is strongly influenced by buoyancy perturba-
tions in the Atlantic basin41. It is relevant at climatic level because it encompasses about 25% of the total (atmos-
pheric and oceanic) meridional heat transport42. The time series of annual mean AMOC strength in the pctCO1 2 
scenario is shown in Fig. 2a. The AMOC strength undergoes a decrease by about 30%, reaching its minimum in 
about 150 y. Successively, the AMOC slowly recovers.

The prediction of the AMOC change obtained via response theory captures very well the ensemble mean of 
the time evolution for the pctCO1 2 in the first 1000 y. The corresponding Green function is shown in the inset of 
Fig. 6a. On short time scales, we have a reduction of AMOC, as a result of the negative value of the Green func-
tion. On longer time scales (>100 y), a negative feedback acts as a a restoring mechanism, associated with a posi-
tive sign in the Green function. The presence of fast (meaning here decadal) response associated with the GHG 
forcing has already been found in other models50,51, and is most likely related to the timescales of the sea-ice 
melting, consistently with paleoclimate simulations of the last interglacial climate with prescribed freshwater 
influx from reconstructed sea-ice melting52. The slow recovery of the AMOC might be understood as a heat53–55 
and freshwater56 advection feedback.

Figure 1. Comparison between the simulated globally averaged near-surface temperature T m2  (in K) in the 
pctCO1 2 scenario (thick red line with ensemble mean uncertainty) and the prediction performed using the 

linear Green function in Fig. 5 (thick blue).
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In the 1001–2000 y period, response theory shows that a steady state is progressively reached over 
multi-centennial scales. The newly established AMOC is significantly weaker than the unperturbed AMOC, 
although a large ensemble spread is found. This is consistent with simulations obtained from higher resolution 
versions of the same model57, intermediate-complexity models51 and other fully coupled models inclusive of an 
interactive carbon cycle58.

the Antarctic circumpolar current. The ACC is by far the strongest large-scale oceanic current and its 
role in the general circulation is two-fold. On one hand, it isolates Antarctica from the rest of the system, being 
associated with a very strong zonal circulation in the Southern Ocean. On the other hand, although eminently 
wind-driven, it marks the area of outcropping of deep water occurring at the southern flank of the subtropical 
gyre, as part of the global-scale overturning circulation43.

The Green function is shown in the inset of Fig. 6b. We find that the initial strengthening of the ACC can 
be associated with an increase in surface zonal wind stress (not shown here). Such a surface forcing determines 

Figure 2. Same as Fig. 1, for (a) AMOC at 26 oN (in Sv) and (b) ACC through the Drake Passage (in Sv). 1 Sv 
= 106 m3 s-1. The predictions are performed using the linear Green functions shown in the inset of Fig. 6a, b 
respectively.

Figure 3. Same as Fig. 1, for the OHU (in W). The prediction is performed using the linear Green function 
shown in Fig. 7.
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an enhanced Eulerian mean ACC transport, consistently with previous low resolution simulations59. On decadal 
scales, we have a loss in the correlation between wind stress and ACC, corresponding to the Green function turning 
negative after about 30 y. Beyond these time scales, we have time-wise coherent response of the AMOC and ACC, 
underlying the response of the global ocean circulation. Other models60,61 also feature such a behavior on inter-
mediate time scales, consistently with the idea that the two circulations are related via the thermal wind balance62.

Figure 2b shows that the prediction of the ACC strength evolution in the pctCO1 2 scenario is rather accurate for 
the first 1000 y, except for an underestimation of the positive short-term response, which is smoothed out. This 
points to an insufficient ability of response theory in representing the complex coupling between surface wind 
stress and downward momentum transfer. Furthermore, we observe the presence of a strong variability (on decadal 
time scales) of the predicted signal. This might result from either the small ensemble size or, more interestingly, 
could be the signature of the natural variability, encoded by a Ruelle-Pollicott pole2,28,29; see discussion in Sect. IA.

Note that in the 1001–2000 yrs period the ACC reaches an approximate steady state a bit later than the AMOC, 
possibly as a result of having a larger inertia, consistently with the different depth scales of the two currents62,63. 
The AMOC maximum overturning depth scale is indeed located at about 1000 m, whereas the outcropping in the 
Southern Ocean is related to isopycnal surfaces reaching much deeper. This has profound implications for setting 
the time scales of the ACC and AMOC response. The propagation of deep water formation anomalies in the 
Northern Hemisphere is in fact mediated by Kelvin waves in the Northern Atlantic, whereas much slower interior 
adjustment through Rossby waves communicates the anomaly to the Southern Ocean64.

ocean Heat Uptake. Looking at the 2000 y of prediction in Fig. 3, we notice that response theory accurately 
predicts the response at all time scales. The linearity of the OHU increase in the 70 y of integration comes from the 
convolution of the singular component of the corresponding Green function with the ramp, see the Methods 
section. After the CO2 concentration stabilizes, the OHU decreases towards vanishing values. In the last 1000 y, 
response theory predicts a further decrease in the OHU down to a value of the order of  W5 1013≈ × . As the cli-

Figure 5. Time series evolution of globally averaged near-surface temperature T m2  (in K) for xCO2 2. The thick 
line the annually averaged ensemble mean, the shaded areas denote the 1σ ensemble range. The inset shows the 
first 1000 y of the linear Green function for T m2  (in K y-1), computed from the ensemble mean of the xCO2 2 
experiment.

Figure 4. Same as Fig. 1, for the near-surface temperature in the North Atlantic (TNA, in K). The prediction is 
performed using the linear Green function shown in Fig. 8.
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mate system as a whole relaxes towards the newly established energetic steady state through the negative Planck 
feedback, each of its subcomponents go through a process of relaxation. What we portray in Fig. 3 after year 1920 
is the relaxation of the slowest climatic component, namely the global ocean. The remaining imbalance at the end 
of the prediction can also be interpreted as either resulting from the ultra-long time scales required for reaching 
rigorous steady state conditions, or as the signature of a model energy bias, associated with non-vanishing energy 
budget at steady state; on this aspect, see discussion and Fig. 1 in Lucarini and Ragone65.

the north Atlantic cold Blob. Finally, we study the surface temperature response for a domain covering 
the North Atlantic (between lon 26° W and lon 53° W and between lat 53° N and lat 69° N), thus including the 
areas where the deep water formation occurs. The region is identified as a peculiar spot for the effects of the GHG 
forcing, since the sea-ice melting has been hypothesized to delay the surface warming of this area compared 
to surrounding regions, through a weakening of the overturning circulation46. Indeed - see Fig. 4 - the surface 
warming over the North Atlantic region is remarkably different from the behavior of the rest of the extratrop-
ics, which features a time dependent response (not shown here) similar in shape but somewhat amplified with 
respect to the global mean depicted in Fig. 1. Indeed, a long-lasting plateau - a hiatus in the temperature increase 
of more than 100 y - is observed around the end of the CO2 increase ramp in the North Atlantic. The plateau is 
well captured by response theory, and comes in agreement with the AMOC weakening predicted in Fig. 2a. This 
result is non-trivial, given that such local response results from an interplay of local factors and, as mentioned, 
the response of the large-scale circulation. This hints at the potential of using response theory to identify global 
quantities that can be used as predictors for the response of local observables29.

Discussion and conclusions
We have shown here that response theory is a valuable tool for flexibly predicting crucial features of the climate 
change signal. All relies on obtaining the observable-dependent Green function from model simulations. The 
Green function allows one to deal with a continuum of time-dependent forcings, beyond the standard use of 
reference scenarios. Our findings provide guidance to the climate modellers’ community on how to set up climate 

Figure 6. Same as in Fig. 5, for (a) AMOC at lat 26o N (in Sv) and (b) the ACC through the Drake passage (in Sv). 
The linear Green functions are in Sv y-1).
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change experimental protocols, minimising the need for computational resources. This is especially relevant 
when one wants to study the overall impact and individual effects of multiple climatic forcings or investigate 
geoengineering options.

We have made here use of a fully coupled climate model, highlighting the slow components of the response 
associated with the oceanic modes of variability. The presence of a vast range of active time scales in the system 
makes the prediction of the response theoretically challenging and practically extremely relevant. Compared 
with previous contributions to the literature that have attempted with a good degree of success the prediction of 
changes in slow climatic fields using some form of linear regression, our approach is mathematically more robust 
as it derives directly from basic results in non-equilibrium statistical mechanics.

We stress that response formulas based on Ruelle’s theory are rigorously valid, but only when considering 
ensemble averages. On one side, this clarifies the limits of validity of previous attempts to apply similar formulas 
to individual model runs. On the other side, it indicates the importance of considering large ensemble strategies 
when planning major computational efforts for climate change projections.

The predicted changes in the AMOC and ACC feature clearly distinguishable fast and slow regimes of 
response. The former is essentially different in the two branches of the global ocean circulation, being the ACC 
subject to the effect of surface wind stress anomalies (substantially underestimated, compared to actual simula-
tions). The latter is found to be well correlated between AMOC and ACC, as a signature of the forced response 
of the global ocean circulation circulation, which they are both part of. Coherently with previous findings62,63, 
the ACC reaches a steady state much later than the AMOC. The plateau in near-surface warming over the North 
Atlantic is also related to the initial slowdown of the AMOC, and contrasts with the regular increase of the surface 
temperature we find globally (and predict accurately).

Figure 7. Same as in Fig. 5, for OHU (in W). The linear Green function is in W y-1).

Figure 8. Same as in Fig. 5, for the near-surface temperature in the North Atlantic (in K). The linear Green 
function is in K y-1).
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We remark that the time-dependent transient and long-term evolutions resulting from the CO2 increase are 
qualitatively different for the various climatic observables investigated here. Nonetheless, in all considered cases 
response theory successfully predicts the time-dependent change.

Ruelle’s response theory provides a relatively simple yet robust and powerful set of diagnostic and prognos-
tic tools to study the response of climatic observables to external forcings. The availability of a large number 
of ensemble members allows for constructing more accurate Green functions and for studying effectively the 
response of a broader class of climatic observables. The approach proposed here could be extremely useful to 
inform the planning of major computational efforts for climate projections, putting such endeavours on firm 
theoretical grounds and optimizing the use of computational resources.

We have dealt here with a forcing due only to changes in the CO2 concentration. This means that the pattern 
of the forcing is determined by heating rate associated with a spatially homogeneous CO2 mixing rate. Within 
the linear regime, different sources of forcings can be treated independently. The next step is to investigate other 
nontrivial forcings (e.g. aerosol forcings, land-use change, land glaciers location and extension). As an exam-
ple, response theory has been proposed as a tool for framing geoengineering strategies and understanding its 
limitations66.

Response theory provides a powerful formalism to tackle different problems related to the concepts of feed-
back and sensitivity. A promising application is the definition of functional relations between the response of 
different observables of a system to forcings, in the spirit of some recent investigations (see, e.g. Zappa et al.38). 
This would allow to treat comprehensively the concept of feedback across different time scales and define causal 
links between variables29. On a different line, one of the most promising future applications will be given by the 
synergy between the formalism of response theory and the recently proposed theory of emergent constraints13,67. 
The combination of the two approaches could lead to much needed insights on the climate response to forcings.

Additionally, along the lines of the pulse-response approach, it is in principle possible to try to extract the 
characteristic time scales of the response of the system by fitting the Green functions of the considered observa-
bles as a weighted sum of (in principle, infinitely many) exponential functions. As explained in Refs. 29,68, the time 
scales of the exponential functions are the same for all observables. Instead, the weight of each exponential con-
tribution does depend on the observable of interest, with the response of rapidly equilibrating observables being 
dominated by the fast time scales, while the opposite holds for observables associated with the slow components 
of the system. The optimal fit can be obtained through a global optimisation procedure, where the response of 
various different observables is simultaneously fitted to a sum of exponentials. We will delve into this interesting 
problem of inverse modelling in a separate publication.

Clearly, in some applications one may want to test accurately to what extent nonlinear effects are relevant, as 
the theory is also applicable to higher orders16. Some insights into the non linear component of the response could 
also be obtained by appropriately combining forcings differing in sign and magnitude16,17,66. Nonetheless, being 
based on a perturbative approach, response theory (linear and nonlinear) has, by definition, only a limited range 
of applicability (e.g. one cannot use it to treat arbitrarily strong forcings). Still, the non-applicability of response 
theory has itself fundamental implications for the knowledge of the dynamics of the system one is studying. At a 
tipping point69–72 (or critical transition) the negative feedbacks of a system are overcome by the positive ones and 
any linear Green function diverges as a result of the increase in the time correlations of the system due to a critical 
Ruelle-Pollicott pole2,28, signalling the crisis of the chaotic attractor68. Instead, near a critical transition, response 
operators do not converge unless one considers very weak forcings28,37. The experimental design provided here is 
thus also a clear and mathematically sound strategy for the study of conditions leading to tipping points and their 
role for the climate response2,71 in state-of-the-art climate models.

Appendix A: Methods
Simulations. The analysis is based on two ensembles of simulations with Max Planck Institute Earth System 
Model (MPI-ESM) v.1.240, using its coarse resolution (CR) version. It features, for the atmospheric module 
ECHAM673, a T31 spectral resolution (amounting to 96 gridpoints in longitude and 48 in latitude) and 31 vertical 
levels, for the oceanic module MPI-OM74, a curvilinear orthogonal bipolar grid (GR30) (122 longitudinal and 101 
latitudinal gridpoints) with 40 vertical levels. The two ensembles, each including 20 runs, are based on two differ-
ent scenarios. The first one features an instantaneous doubling in CO2 concentrations (from a reference value of 
280 ppm, characteristic of pre-industrial conditions) at the beginning of the simulations ( xCO2 2), the other one 
an increase in the CO2 concentration at the constant rate of by 1% per year, until the xCO2 2 level is reached after 
about 70 years; afterwards, the CO2 concentration is kept constant ( pctCO1 2). The procedure for the construction 
of the ensemble is analogous to the protocol for CMIP575 and Grand Ensemble76 experiments. A control run is 
performed for 2000 y with pre-industrial conditions. Each of the ensemble members is initialized from a state of 
the control run. The initial conditions are sampled from the control run every 100 y, in order to ensure sufficient 
decorrelation among the respective oceanic states (at least in the mixed layer77,78). The xCO2 2 simulations are run 
for 2000 y, while the pctCO1 2 simulations are run for 1000 y with the same 20 initial conditions. As an additional 
check, one of the xCO2 2 members is prolonged for 2000 additional y, in order to investigate whether the model 
converges to the steady state or there is an intrinsic model drift79.

Retrieval of AMoc and Acc. Typically, the large-scale circulation in the ocean is measured in terms of the 
mass transport across a suitably chosen section of a basin. The strength of the AMOC is computed as the verti-
cally integrated mass weighted meridional mass streamfunction across lat 26.5° N80. This is a standard diagnostics 
of the MPI-ESM model. The ensemble average of the AMOC volume transport amounts to 17.3 Sv (1 Sv = 106 
m3 s-1), which is consistent with recent available measurements from the RAPID monitoring array81. The ACC 
is roughly zonally symmetric, and its location is closely related to the isopycnal slopes in the Southern Ocean. 
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Traditionally60, it has been measured in terms of the strength of the mass transport across the Drake passage. 
Similarly, we take the vertically integrated barotropic streamfunction difference between the 2° × 2° boxes cen-
tered around the lon 68° W, lat 54° S and lon 60° W, lat 65° S locations. The ensemble average of the ACC is 138 Sv, 
which is consistent with the multi-model mean estimate found in Mejers et al.60, amounting to 155 ± 51 Sv. It is 
also not far from the value commonly used as benchmark for the assessment of climate models (173 Sv82).

Linear Response theory. Response theories allow one to predict how the statistical properties of a system 
changes as a result of acting modulations in its external or internal parameters. The validity of the corresponding 
response formulas is heavily dependent on the hypothesis that the unperturbed system is structurally stable, i.e., 
roughly speaking, far from bifurcations, or, in terms of geophysical systems, from tipping points (see related 
discussions in a climate context18,26–28). Rigorous derivations of response theories have been provided for the 
case of deterministic15,22,23 and stochastic21 dynamics. We only remark here that statistical mechanical arguments 
encoded by the chaotic hypothesis83 (a non-equilibrium analogue of the ergodic hypothesis) indicate the feasibil-
ity of the methodology proposed here.

In this paper we follow to a large extent the approach presented by Lucarini et al. 18 and by Ragone et al. 27 (see 
also Refs. 16,26) for the study of a large ensemble of intermediate-complexity atmospheric model runs and follow 
the deterministic route for response theory15,22,23. Let us consider a dynamical system described by the state vector 
x N∈  , whose dynamics is described by the set of differential equations =x F x( ), where ∈F N  is a smooth 
vector field. We add a perturbation to the dynamics in the form Ψ =x t X x f t( , ) ( ) ( ), where ∈ X N  is a smooth 
vector field that gives the structure of the forcing in the phase space, whilst f  is its time modulation. The expecta-
tion value of any observable x( )Φ = Φ  can be written as:

∑Φ = Φ + Φ
=

∞
t t( ) ( )

(A1)f
n

f
n

0
1

( )⟨ ⟩ ⟨ ⟩ ⟨ ⟩

where ⟨ ⟩Φ 0 is the expectation value in the unperturbed state, and the term Φ t( )f
n( )  gives the nth order perturbative 

contribution. We consider here only the first order contribution 〈Φ〉 t( )f
(1) . The linear correction is given by the 

convolution of the linear Green function with the time modulation of the perturbation:

∫ σ σ σΦ = −Φt d G f t( ) ( ) ( ) (A2)f
(1)

1
(1)

1 1

where ΦG (1) is the linear Green function of the generic observable Φ. Because of causality, the linear Green function 
vanishes for negative times. For ease of notation we have not indicated in Eq. A1 the dependence of the response 
on X, as in the applications considered in this paper X is fixed and only the time modulation f  is varied. Note that 
for a time modulation f  such that f t flim ( )t 0 0=→ , f0  finite, and =f t( ) 0 if t 0< , as in the case of =f t cH t( ) ( ), 
where c is a nonvanishing constant and H  is the Heaviside distribution ( =H t( ) 0 for ≤t 0 and H t( ) 1=  for 
t 0> ), one typically has that 〈Φ〉 =(0) 0f

(1) , as observed in this paper for all observables except the OHU. In this 
latter case, one has tlim ( ) 0t f0〈Φ〉 ≠→  because the Green function has a singularity (in the form of a Dirac’s δ 
contribution) for =t 029.

We remark that in previous works33–36,38, the linear prediction of the desired climate observable is instead 
obtained by convolving time pattern of another climatic observable - assumed to be the driver - rather than the 
actual external forcing - with an effective transfer function - rather than the true Green function. The condi-
tions under which climate observables can be used as both predictands and predictors have been discussed by 
Lucarini29.

By taking the Fourier transform of the Green function G (1)
Φ , one obtains the linear susceptibility of the observ-

able ( )(1)χ ωΦ , where ω is the frequency. The susceptibility gives the frequency response to a forcing f t( ) as 
ω χ ω ωΦ =

∼
Φ f( ) ( ) ( )f

(1) (1)
 , where with ⋅̃  we indicate the Fourier transform. The susceptibility gives a spectroscopic 

description of the properties of the response of the observable, and its analysis can give interesting information 
on the most relevant time scales and related processes that determine the response of the observable.

procedure for the Retrieval of the Green function. The strategy for testing the prediction of the men-
tioned key variables with the coupled model ensembles is as follows. First, we compute the Green function from 
the xCO2 2 experiment. The time variable is defined in such a way that the instantaneous doubling occurs at =t 0. 
Hence, the time modulation of the forcing is given in this case by f t f H t( ) ( )xCO2 2

= , where f xCO2 2
 is a constant 

depending on the amplitude of the forcing. Since the radiative forcing is approximately proportional to the loga-
rithm of the CO2 concentration, such a constant is given by f log(2)xCO2 2

=  (it would be =f log p( )xCO2 2
 if the 

final CO2 concentration were p times as large as the initial one). Equation A2 can be thus rewritten as:

Φ = Φ
d
dt

t f G t( ) ( ) (A3)f xCO
(1)

2
(1)

CO2 2 2

The outputs of the xCO2 2 experiments and the corresponding Green functions for the observables described 
above are presented in Figs. 5, 6, 7 and 8.

In particular, the time evolution of OHU for this scenario is shown in Fig. 7. The positive forcing due to the 
instantaneous CO2 doubling leads to an instantaneous jump in the OHU, leading to an annual average value of 
more than 1 PW in the first year. Equation A3 then suggests that the Green function GOHU

(1)  has a singular behav-
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iour at =t 0 (cfr. Ref. 29), while a regular behaviour is found for t 0> , corresponding to the negative radiative 
Planck feedback.

For all observables, we then use the Green functions above to perform predictions for the pctCO1 2 scenario 
using Eq. A2. Thanks to the proportionality of the radiative forcing to the logarithm of the CO2 concentration, the 
time modulation of such forcing can be expressed as =f f r t( )pctCO1 2 , where r t( ) is a ramp function (cfr. Refs. 18 
and 27):

τ
τ

τ

=










<

≤ ≤

>

r t

t
t t

t

( )

0 0

0

1 (A4)

where the time scale 70τ ≈  y denotes the time needed to reach the doubling in the CO2 concentration and where 
=f fpctCO xCO1 2 2 2

 because at the end of the ramp the CO2 concentration is doubled.
From the Green function, one could in principle compute the susceptibility and perform a spectral analysis of 

the properties of the response. However, the correct identification of spectral peaks in the susceptibility requires 
a much richer statistics than what we have available here. The reason is that, while the Green function is an inte-
gral kernel whose specific values at each t are not of crucial importance per se, as it is their integrated contribu-
tion through convolution with the cosidered time pattern that determines the response, in the case of the 
susceptibility it is extremely important to make sure that the signal to noise ratio is very large at each individual 
value of ω. This translates into the fact that, despite the Green function and the susceptibility being strictly con-
nected, to obtain a satisfactory estimate for the latter require a statistics orders of magnitude larger than for the 
former, and possibly different and dedicated numerical estimation approaches16,17,26. An analysis of the suscepti-
bility in experiments similar to what done in this work was attempted in Ragone et al.27, but using ten times more 
ensemble members. We therefore do not present an analysis of the susceptibility. While the analysis of the detailed 
frequency response of a climate model remains a very interesting and promising topic, it has to likely wait until 
experiments with at least several hundreds ensemble members will be available.

equilibrium climate Response and transient climate Sensitivity. Response theory allows to place 
on solid formal ground operational definitions of the sensitivity of the climate system2,18,27. One of the most 
important indicators of the global properties of the response of the system to climate change is the equilibrium 
climate sensitivity (ECS), which is the long term ( → ∞t ) response of the observable T m2  to an abrupt doubling of 
CO2 concentration3. Another common measure of the response is the transient climate response (TCR), which is 
the change in T m2  realised in the pctCO1 2 scenario at the end of the ramp of CO2 increase84.

Using the formalism discussed in this paper, the ECS can be straightforwardly linked to the susceptibility, 
because χ=ECS f (0)xCO T2

(1)
m2 2

2,18,27. Additionally, the TCR can be computed as the result at time t τ=  of the con-
volution of the Green function of T m2  with the forcing given in Eq. A4. Indeed, more generally, the susceptibility 
can be interpreted as a generalised sensitivity function. In particular, as explained in Ragone et al.27, one can find 
an explicit functional relation for the realised warming fraction3, given by the ratio between TCR and ECS:

∫
ωτ
π ω

χ ω

χ
ω= −

+ ωτ

−∞

+∞ −TCR
ECS

sinc e
i

d1 1 ( /2)
2

( )

(0) (A5)

i
T

T

/2 (1)

(1)
m

m

2

2

where =sinc x x x( ) sin( )/ . The integrand in the second term on the right hand side of Eq. A5 gives the contribu-
tion of each time scale to the inertia of the system. Note that this approach allows for treating seamlessly - by 
changing the value of 𝜏 - the case of transient response to steeper or gentler increases of CO2. However, a detailed 
analysis of the relationship between TCR and ECS requires an accurate estimate of the susceptibility, that as 
explained above is beyond the scope of this work.

The theory of emergent constraint has been used to study the ECS85 and the TCR86 in climate models. The 
relationship between ECS and TCR proposed in Eq. A5 might be helpful elucidating and better understanding 
such results.
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