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c IFAECI, CNRS-CONICET-UBA, Buenos Aires, Argentina.
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We review the field of data assimilation (DA) from a Bayesian perspective and show that, in
addition to its by now common application to state estimation, DA may be used for model
selection. An important special case of the latter is the discrimination between a factual model
— which corresponds, to the best of the modeler’s knowledge, to the situation in the actual
world in which a sequence of events has occurred — and a counterfactual model, in which a
particular forcing or process might be absent or just quantitatively different from the actual
world. Three different ensemble-DA methods are reviewed for this purpose: the ensemble
Kalman filter (EnKF), the ensemble four-dimensional variational smoother (En-4D-Var), and
the iterative ensemble Kalman smoother (IEnKS). An original contextual formulation of model
evidence (CME) is introduced. It is shown how to apply these three methods to compute CME,
using the approximated time-dependent probability distribution functions (pdfs) each of them
provide in the process of state estimation. The theoretical formulae so derived are applied to two
simplified nonlinear and chaotic models: (i) the Lorenz three-variable convection model (L63),
and (ii) the Lorenz 40-variable mid-latitude atmospheric dynamics model (L95). The numerical
results of these three DA-based methods and those of an integration based on importance
sampling are compared. It is found that better CME estimates are obtained by using DA, and the
IEnKS method appears to be best among the DA methods. Differences among the performance
of the three DA-based methods are discussed as a function of model properties. Finally, the
methodology is implemented for parameter estimation and for event attribution.

Key Words: model evidence; data assimilation; marginal likelihood; model selection; detection and attribution;

ensemble Kalman filter; iterative ensemble Kalman smoother; ensemble 4DVar
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1. Introduction and motivation

High-dimensional and nonlinear state-space evolution models

arise in numerous and diverse fields, e.g., numerical weather

prediction (NWP) (Ghil and Malanotte-Rizzoli 1991), air quality

forecasting (Zhang et al. 2012), subsurface flow modeling 5

(Elsheikh et al. 2014a,b), oceanography (Balmaseda et al. 2009),

climatic projection and reconstruction (Bhend et al. 2012), and

signal processing (Crisan and Doucet 2002), to mention just a
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2 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

few. Most of these applications require one to solve the problem

of optimally estimating the partially observed state that evolves10

in time. This problem is often tackled by combining the observed

data with a numerical model that is based on a comprehensive

theoretical description of the processes at play. Designing methods

and numerical algorithms that address this problem in a way that is

theoretically sound and yet tailored to the specifics of the context15

at hand is an active research field in computational statistics in

general, and in the aforementioned fields in particular.

This paper focuses on a related yet distinct problem, which

has received less attention thus far. It consists in quantifying

the resulting performance of the state inference by estimating20

the so-called marginal likelihood of the observations — also

referred to as model evidence – which quantifies the “goodness-

of-fit” between the data and the chosen state-space model (Baum

et al. 1970). Solving the model evidence estimation problem

has attracted, as we shall see, less research effort than the25

state estimation one. Still, estimating model evidence is just as

important as state estimation.

Indeed, the model evidence can be used as a general metric

for model comparison and selection. Areas of application include

calibrating a given state-space model’s parameters based on the30

observed data by maximizing the model evidence; comparing

the skill of several candidate models (or model settings, or

boundary conditions, or numerical schemes) in representing a

given observed phenomenon or class of phenomena and thereby

selecting the most appropriate candidate; quantifying the evidence35

that supports one of several, potentially conflicting, theoretical

hypotheses for the physics of a phenomenon; or providing

evidence for either the existence or the nonexistence of a causal

relationship between a hypothetical forcing external to a system

and an observed response of the system.40

It is, in fact, the latter situation that largely motivated the

present work, in the context of the climate system and of its

increasingly significant anthropogenic forcing, cf. Hannart et al.

(2016) and references therein. More generally speaking, model

evidence may help address fundamental questions whenever45

confronting theory to observations in an attempt to improve the

former, and prove to be a useful tool in extracting quantitative

information from such a model–data confrontation.

Mathematically speaking, deriving model evidence is quite

difficult as it requires, by definition, to integrate out the state 50

vector. Although viable solutions exist in the case of Gaussian

errors and linear model (see e.g. Winiarek et al. 2011), this

daunting task is usually intractable, especially for the class of

high-dimensional and non-linear models considered here. To

circumvent this difficulty, different approaches were proposed in 55

the literature to yield an accurate and more easily computable

estimate of the desired value (Hürzeleri and Künsch 2001; Pitt

2002; Kantas et al. 2009).

Recently, marginal likelihoods have been used for the purposes

of Bayesian inference and model selection. An efficient approach 60

to deal with the former, based on Monte Carlo sampling, has

been proposed by Elsheikh et al. (2014a,b) in the context of

models of subsurface flows. Carson et al. (2015) have described

an application to model selection; the method is again based on

an advanced Monte Carlo technique and has proven to efficiently 65

discriminate between phenomenological models of the glacial-

interglacial cycle using a single dataset. Reich and Cotter (2015,

Chapter 9.1) offer an exposition on model evidence, its use for

model selection and how to use particle filters for its computation.

The present study focuses on the estimation of model evidence 70

using data assimilation (DA) methods designed to deal with

large numerical models and datasets, subject to partially Gaussian

assumptions. DA methods were in fact initially developed for

high-dimensional state estimation in the NWP context, in order

to initialize an atmospheric model by estimating its state variables 75

based on meteorological observations that are incomplete, diverse,

unevenly distributed in space and time and are contaminated

by measurement error (Bengtsson et al. 1981; Kalnay 2002,

and references therein). These methods outgrew their original

application field over the past decades, to reach a wide variety 80

of fields in the geosciences and elsewhere. They thus present the

advantage of being used operationally in many different contexts

and by many practitioners, and to be the focus of a significant

research effort (Blayo et al. 2015). In the recent past, model

evidence estimates have started to appear in the DA context 85

(Winiarek et al. 2011, 2012; Tandeo et al. 2015; Hannart et al.

2016).

c© 2016 Royal Meteorological Society Prepared using qjrms4.cls



Data assimilation for model evidence 3

The purpose of the present paper is to extend these studies

by proposing several approaches for estimating the marginal

likelihood (as model evidence). Section 2 recalls key aspects of90

Bayesian DA that are essential for the discussion; see Bocquet

et al. (2010) and Reich and Cotter (2015) for an extensive

treatment of the subject. Section 3 introduces the concept of

contextual model evidence which is of particular interest in the DA

setting. Section 4 lays out four different computational schemes to95

estimate contextual model evidence. Section 5 implements these

schemes for two low-dimensional nonlinear models and compares

their performance. Section 6 briefly illustrates the application

of the proposed schemes to parameter estimation and causal

attribution of weather events. Section 7 finally summarizes our100

results, provides conclusions and future directions.

2. Data assimilation from a Bayesian perspective: brief

overview

Let us assume that a model of the physical process of interest

is given as a discrete dynamical system in an M -dimensional105

Euclidean space RM ,

xk =Mk:k−1(xk−1) + ηk. (1)

Here xk ∈ RM is the state vector, Mk:k−1 : RM → RM is

usually a nonlinear, possibly chaotic, map and ηk ∈ RM stands

for model error, represented as a stochastic additive term.110

Noisy observations of x are available at discrete times and are

represented as components of the observation vector y ∈ Rd. The

relation between y and the model state x is given by

yk = Hk(xk) + εk. (2)

In Eq. (2), H : RM → Rd is the, possibly nonlinear, observation115

operator that maps the model solution to the observation

space Rd; typically d�M and H may involve spatial

interpolations in finite-difference models or spectral-to-physical

space transformation in spectral models. Transformations based

on physical laws for indirect measurements, such as radiative120

fluxes used to infer temperatures, can also be represented in

this way (e.g., Kalnay 2002). The observational error εk is also

represented as a stochastic additive term.

Both random sequences {ηk : k = 0, . . . ,K} and {εk : k =

0, . . . ,K} are assumed to be white in time, mutually independent 125

and distributed according to the probability density functions

(pdfs) pη and pε, respectively. These pdfs represent the

transitional kernel for the probabilistic transition from xk−1 to

xk, and the likelihood of the observations yk conditioned on the

state xk, respectively, 130

p(xk|xk−1) = pη[xk −Mk(xk−1)], (3)

p(yk|xk) = pε[yk −Hk(xk)]. (4)

The output of the estimation process is the posterior pdf p(x|y)

of the process x conditioned on the data y, 135

p(x|y) =
p(y|x)p(x)

p(y)
. (5)

In this straightforward application of the Bayes formula, p(x) is

the prior distribution that encodes all the knowledge about the

process before assimilating the new observations, and p(y) is

the observation likelihood. The latter is usually independent from 140

time when the estimation is performed and plays the role of a

normalization coefficient. We will see in sections 3 and 4 how

this view can be reversed when solving the DA problem for the

purpose of evaluating model evidence, cf. Hannart et al. (2016).

Once the sequences of system states and observations 145

are collected into xk:0 = {xk,xk−1, ...,x0} and yk:0 =

{yk,yk−1, ...,y0}, it is possible to define three estimation

problems, depending on the time period where observations

are distributed and the time when we want to estimate the state

(Wiener 1949): 150

1. Prediction: Estimate p(xl|yk:0) with l > k.

2. Filtering: Estimate p(xk|yk:0).

3. Smoothing: Estimate p(xk:0|yk:0).

The prediction problem is formally addressed by solving

the corresponding Chapman-Kolmogorov equation for the 155

c© 2016 Royal Meteorological Society Prepared using qjrms4.cls



4 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

propagation of a pdf under the model dynamics

p(xl|yk:0) =

∫
dxk pη[xl −Ml:k(xk)]p(xk|yk:0). (6)

The filtering problem is the most common one in geophysical

applications, and it is characterized by sequential processing,

in which measurements are utilized as they become available160

(Jazwinski 1970; Bengtsson et al. 1981): a so-called analysis step,

in which the conditional pdf p(xk|yk:0) is updated using the latest

observation, yk, alternates with a forecast step in which this pdf

is propagated forward until the time of a new observation. The

analysis is based on the application of the Bayes formula (5),165

which becomes

p(xk|yk:0) =
pε[yk −Hk(xk)]p(xk|yk−1:0)∫

dxk pε[yk −Hk(xk)]p(xk|yk−1:0)
, (7)

while in the prediction step one integrates the Chapman-

Kolmogorov equation (6), with l→ k and k → (k − 1).

Finally, using recursively the Bayes formula in the interval170

{t0 ≤ t ≤ tk}, the smoothing problem can be written as

p(xk:0|yk:0) ∝ p(x0)

k∏
l=1

pε[yl −Hl(xl)]pη[xl −Ml(xl−1)].

(8)

The faithful numerical implementation of Eqs. (3)–(8) is

impossible in realistic geophysical and other high-dimensional

applications of DA because the huge size of the discrete175

models, Mk, and of the observation vector, yk, renders the

accurate representation of the relevant pdfs prohibitive. This

problem is usually overcome by assuming that the error statistics

are Gaussian. This assumption — along with some form of

linearization ofMk and ofHk — allows one to fully characterize180

the pdfs in the equations by their first two moments only, i.e.,

the means and covariances. Such a characterization results in

an enormous simplification when applied to high-dimensional

systems, a simplification that is in fact the basis of many

successful practical DA algorithms. Some of these practical issues185

in applying the Bayesian perspective to DA will resurface in

section 4 in computing model evidence.

3. Model evidence: a contextual formulation

Let us generalize the definition of an observation sequence given

in section 2 to an arbitrary time interval k : m, with k ≥ m, so that 190

yk:m = {yk,yk−1, ...,ym+1,ym}. (9)

In particular, for m = −∞ and k = 0, the sequence (9) contains

all the observations from the far past up to the present time k = 0.

The likelihood of the observations givenM can be written as

p(yk:|M) =

∫
dx p(yk:|x,M)p(x|M) (10) 195

where we used the abbreviated notation yk:−∞ = yk:.

The likelihood p(yk:| M) is referred to as model evidence and

it is often used in model selection (e.g., Carson et al. 2015, and

references therein). This likelihood depends on the underlying

dynamics M, but it can be formulated as being dependent on 200

any hypothesis under scrutiny. When the model dynamics is

ergodic, p(x|M) is the invariant distribution on the attractor

and the likelihood p(yk:) will capture it with an accuracy that

depends on the observation model in Eq. (2). The model evidence

p(yk:|M) is obtained by integrating over x given yk: and it 205

represents the probability that the data are actually observed under

the hypothesis that the model M is the correct one. To simplify

the notation hereafter, the explicit dependence onM is dropped.

For instance, the marginal probability of the data is denoted by

p(yk:) = p(yk:|M). 210

The distribution p(x) in Eq. (10) plays the role of a prior and

it thus allows one to introduce additional information about the

system. The choice of the prior is usually arbitrary and one can in

principle use any distribution that suits a study’s specific purposes.

In many practical circumstances, however, the search for a good 215

informative prior is not straightforward, although its choice may

strongly, and sometimes negatively, affect the results of the study.

The use of the climatological invariant distribution for p(x) in

Eq. (10) has the advantage of characterizing the system globally,

but it is not very informative about its specific current conditions. 220

This is particularly true when the underlying dynamics is out of

equilibrium, when it possesses multiple stationary points, or when

c© 2016 Royal Meteorological Society Prepared using qjrms4.cls



Data assimilation for model evidence 5

it is subject to large deviations. Moreover, in the case of the large-

dimensional systems used in NWP and in climate prediction, as

considered in this study, a proper estimate of p(x) is complicated225

even further by the limitations of the computational resources.

Finally, if the system is subject to climate change driven by

a time-dependent forcing — such as anthropogenic changes in

greenhouse gas and aerosol concentrations — its dynamics has to

be described self-consistently as non-autonomous, and the mere230

existence of a time-independent invariant set on which p(x) is

defined is questionable. In this case, one has to rely on the concept

of a pullback or random attractor that is invariant under the

system’s dynamics but does depend on time, i.e. both p andM in

Eq. (10) are explicit functions of t (e.g., Ghil et al. 2008; Chekroun235

et al. 2011; Dijkstra 2013). This non-autonomous situation is left

for later investigation.

For the purpose of a time-dependent evaluation of the model

evidence in the autonomous case — in whichM only depends on

time due to its non-linearity, i.e., through its dependence on x —240

we are interested in a definition narrowed to the present moment.

To this end, let us condition the observational likelihood from

the present t = t0 to some future time t = tk, on the observation

sequence up to the present, so that

p(yk:) = p(yk:1|y0:)p(y0:). (11)245

The assumption here is to use p(yk:1|y0:) instead of p(yk:),

and the conditional pdf p(yk:1|y0:) will be called the contextual

model evidence (CME). Implicit in Eq. (11) is the idea that

the informational content from past observations is propagated

forward by conditioning on y0:. While yk:1 is still used to250

diagnose the evidence in the time interval from t1 to tk, y0: allows

us now to specify the context.

By marginalizing with respect to x0, one can write the CME as

p(yk:1|y0:) =

∫
dx0 p(yk:1|x0,y0:)p(x0|y0:)

=

∫
dx0 p(yk:1|x0)p(x0|y0:). (12)255

Equation (12) shows that the CME depends on two factors, on the

conditional pdf p(x0|y0:), which plays the role of the prior and

substitutes p(x) in Eq. (10), and p(yk:1|x0), the likelihood of the

observational sequence yk:1 conditioned on the system’s state. 260

The key point here is that the new prior, p(x0|y0:), is easier

to compute than the invariant measure p(x). Indeed, we saw in

section 2 that the conditional pdf p(x0|y0:) is the posterior density

in a Bayesian inference process designed to estimate x0 based on

y0: and that this posterior pdf is the standard, albeit approximate, 265

outcome of applying a DA algorithm to the model M and the

data yk:1. When such a forecast–assimilation cycle as described

in section 2 is routinely running — as is the case in an operational

NWP center — an approximation of p(x0|y0:) is already at hand.

Given the model and the observational network, the level of 270

accuracy of the DA-based approximation for p(x0|y0:) is related

to the degree of sophistication of the DA scheme adopted. We shall

show in section 4 that DA can also be used to estimate the other

term in Eq. (12), namely p(yk:1|x0), and thus to fully accomplish

the task of estimating the CME, consistently and routinely. 275

4. Data assimilation for model evidence

Estimating the CME amounts to computing the integral in

Eq. (12). Analytic solutions can only be obtained for elementary

cases, and the problem becomes rapidly intractable as one moves

toward realistic situations with practical relevance. Numerical 280

methods are thus necessary in practice and their degree of

complexity grows with the dimension M of the model and that

of the data set, d. For high-dimensional systems with large M ,

Monte Carlo methods using importance sampling are a viable

approach, but their convergence as the sample size increases 285

is usually very slow even when M is only moderately large.

An approximate Monte Carlo suitable for NWP applications is

described in Sect. 4.2. Large dimensionality d of the data calls

for Laplace method, in which the integrand is approximated as a

Gaussian and a solution for the integral can be found as a function 290

of the mode and the covariances of this normal distribution. We

will make use of the Laplace approximation in combination with

smoothers in Sect. 4.4.

In the geosciences, one often encounters both conditions, with

M and d up to O(109) and O(107), respectively, and computing 295

the integral in Eq. (12) is a very challenging task that requires a

trade-off between accuracy and computational efficiency. In this

c© 2016 Royal Meteorological Society Prepared using qjrms4.cls



6 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

section, we present a hierarchy of methods based on DA practice

that allow one to evaluate the CME integral in Eq. (12) within a

good approximation, and that are suitable for the large systems300

and big data sets typical of the environmental sciences. To a

certain extent, the accuracy of the methods described below can

be ranked according to the degree of sophistication of the DA

approach on which they are based.

4.1. General setting305

We start by providing an iterative formula that will be used later,

and that allows one to decompose the contextual evidence pdf as

p(yK:1|y0:) = p(yK:2|y1:)p(y1|y0:)

= p(yK:3|y2:)p(y2|y1:)p(y1|y0:) (13)
310

and so on, up to time tK :

p(yK:1|y0:) =

K∏
k=1

p(yk|yk−1:). (14)

Hence the contextual evidence of the sequence yK:0 can be

written as the product of single contextual evidences, one for each

yk. Moreover, the individual contextual evidence p(yk|yk−1:) is315

often a tractable output of a DA scheme. After marginalizing over

the state vector xk, we get

p(yk|yk−1:) =

∫
dxk p(yk|xk)p(xk|yk−1:) , (15)

where p(yk|xk) is the observation likelihood and p(xk|yk−1:) is

the forecast state pdf at tk. Carson et al. (2015) recently used320

the identity in Eq. (14), whereas Del Moral (2004) provides an

alternative proof of its validity.

We assume that, at any arbitrary time t0, an estimate of the

posterior density p(x0|y0:) is available as the outcome of a

forecast–assimilation cycle up to t0. This posterior is then used325

as a prior in the estimation of the CME in Eq. (12). Unless

otherwise stated, a DA method that uses first- and second-

order error moments is adopted herein, so that the posterior pdf

is approximated as a Gaussian, p(x0|y0:) ≈ pDA = N (x0,P
a),

with mean x0 and covariance matrix Pa, where the superscript330

stands for analysis. Similarly, let us define Pf and R, to be used

in the following sections, as the forecast and observation error

covariance, respectively.

The evidencing window is defined as the interval [t0, tK ], and

we aim at estimating the CME 335

p(yK:1|y0:) =

∫
dx0 p(yK:1|x0)p(x0|y0:). (16)

The forward model, Eq. (1), is assumed here to be deterministic

and perfect, so that ηk = 0. The implications of this choice are

discussed in section 7 and a follow-on study will relax these

assumptions. See also (Reich and Cotter 2015, Chapter 9.1) for 340

a definition of model evidence in the case of a stochastic forward

model.

4.2. Monte Carlo and importance sampling

The CME integral, Eq. (16), can be estimated using a Monte

Carlo approach with importance sampling. Samples are drawn 345

from the Gaussian pdf pDA = N (x0,P
a), outcome of a Gaussian

DA scheme at time t0, used as proposal density for the unknown

actual p(x0|y0:).

Let us suppose that, at t0, a sample of N members, {xi0 : i =

1, . . . , N}, is drawn from p(x0|y0:), and its members are used 350

as initial conditions for a forward integration over the evidencing

window. The CME can then be estimated as

p(yK:1|y0:) ≈
1

N

N∑
i=1

p(yK:1|xi0). (17)

The approximation in Eq. (17) gets progressively better by

increasing N , but the computational resources usually set a 355

bound to the size of the sample. We will use this Monte Carlo

estimate, Eq. (17), with N = 106, for some cases in Sect. 5.2.

Equation (17), but for imperfect models, is at the basis of a model

evidence computing algorithm described in Reich and Cotter

(2015, Algorithm 9.2). To prevent filter degeneracy and enhance 360

efficiency with an affordable number of members/particles,

they suggest the use of sequential Monte Carlo methods with

resampling.

We are interested here in a straightforward use of the

approximation Eq. (17) in a high-dimensional context where the 365

sample’s size is unavoidably very small. In the geosciences, one

c© 2016 Royal Meteorological Society Prepared using qjrms4.cls



Data assimilation for model evidence 7

often uses an ensemble Kalman filter (EnKF, Evensen 2009) with

N members to assimilate data up to the beginning t0 of the

evidencing window. In any realistic setup, N �M and these N

members provide a reduced-order, but dynamically consistent,370

representation of p(x0|y0:) that can be used in Eq. (17) in

place of a random draw. This approach, conveniently referred

here to as importance sampling (IS), albeit not very accurate,

is computationally affordable in NWP and climate prediction

centers. We will use it here in comparison with some Gaussian375

ensemble-DA methods in the numerical comparison described in

Sect. 5.

We turn now to the description of several methods to compute

the CME, each of which is based on a distinct Gaussian ensemble-

DA algorithm.380

4.3. Filtering: Kalman filter and ensemble Kalman filter

Kalman Filter (KF). Assuming the evolution and observation

models in Eqs. (1) and (2) are both linear, and that the observation

errors and the initial errors are Gaussian, the Kalman filter (KF:

Kalman 1960; Ghil and Malanotte-Rizzoli 1991) is optimal. In the385

logarithmic formulation of the KF, the observation likelihood pdfs

are

ln p(yk|xk) =− 1

2
‖yk −Hkxk‖2Rk

− d

2
ln(2π)− 1

2
ln |Rk| , k = 1, . . . ,K, (18)

390

and the forecast pdfs are of the form

ln p(xk|yk−1:) =− 1

2

∥∥∥xk − xf
k

∥∥∥2

Pf
k

− M

2
ln(2π)− 1

2
ln
∣∣∣Pf
k

∣∣∣ , k = 1, . . . ,K;

(19)

here Hk is the linearized observation operator at time tk. The395

weighted Euclidean norm ‖x‖2A = xTA−1x is used, while |A|

indicates the determinant of A.

The contextual evidence

p(yk|yk−1:) =

∫
dxkp(yk|xk)p(xk|yk−1:) (20)

is, in this case, the product of two Gaussian pdfs, and hence it is 400

itself Gaussian. Besides, the two statistical moments that suffice to

characterize it are given by those of the innovations: Hkx
f
k for the

mean and Rk + HkP
f
kH

T
k for the covariance matrix. As a result

ln p(yk|yk−1:) =− 1

2

∥∥∥yk −Hkx
f
k

∥∥∥2

Rk+HkPf
kH

T
k

− d

2
ln(2π)

− 1

2
ln
∣∣∣Rk + HkP

f
kH

T
k

∣∣∣ , k = 1, . . . ,K,

(21)

405

so that the factorization formula in Eq. (14) now reads

p(yK:1|y0:) =

K∏
k=1

exp

(
− 1

2

∥∥∥yk −Hkx
f
k

∥∥∥2

Rk+HkPf
kH

T
k

)
√

(2π)d
∣∣Rk + HkP

f
kH

T
k

∣∣ .

(22)

An alternative, less direct, proof of Eq. (22) can be found in

Hannart et al. (2016). 410

Ensemble Kalman Filter (EnKF). If the forward model

M(xk) in Eq. (1) is nonlinear, and even when both initial errors

Pf
0 and observation errors Rk are Gaussian, the evolution of the

forecast and analysis pdfs will not remain Gaussian, with very few

exceptions. There are many ways of approximating their evolution 415

in time, including the extended KF (EKF: Jazwinski 1970; Miller

et al. 1994), the EnKF (Evensen 2009) and the unscented KF

(UKF: Grewal and Andrews 2001). Of these, the EKF is probably

most widely used in engineering applications, while the EnKF is

very widely used in the geosciences where the typical problem 420

size is much higher.

To approximate the CME in nonlinear cases, we consider

here the EnKF and introduce the matrix Ek = [x1, . . . ,xN ],

whose columns contain the ensemble members, as well as the

corresponding normalized forecast anomalies with respect to the 425

ensemble mean Xk = Ek

(
IN − 11T /N

)
/
√
N − 1; here 1 ∈

RN is the column vector of ones, and IN is the N ×N identity

matrix. We obtain

p(yK:1|y0:) '
K∏
k=1

exp

(
− 1

2

∥∥∥yk −Hk(xf
k)
∥∥∥2

Rk+YkYT
k

)
√

(2π)d
∣∣Rk + YkY

T
k

∣∣ ,

(23)
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8 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

where Yk = HkXk is the matrix of normalized430

observation anomalies at tk, usually estimated as Yk =

H(Ek)
(
IN − 11T /N

)
/
√
N − 1.

The estimate in Eq. (23) is exact, and coincides with that

in Eq. (22), when the model is linear, the initial condition and

observation errors are Gaussian and when the initial ensemble435

anomalies span the full range of uncertainty.

4.4. Smoothing: ensemble-4D-Var and iterative ensemble

Kalman smoother

We will use here the Laplace approximation to estimate the

CME integral Eq. (16). As mentioned in Sect. 4, in the Laplace440

method, the integrand is approximated as a Gaussian and the

integral is a function of the mode and the covariance of this

normal distribution. In the asymptotic limit d→∞, most of

the contributions to the integral come from the vicinity of the

maximum and the Laplace approximation — whose accuracy445

scales as the inverse of the variance of the approximating Gaussian

— gets progressively more accurate. The reader is referred to

Evans and Swartz (1995) for a review of various integration

methods used in statistical inference. Reich and Cotter (2015,

Example 9.4) suggest to use the Laplace approximation in the450

computation of model evidence.

In the following we describe two approaches, the ensemble

4D-Var and the iterative ensemble Kalman smoother, that can be

used to compute the best estimator, the mode, and the associated

uncertainty, the covariance. This latter is estimated using the455

Hessian of the corresponding cost-functions, in a way that is made

clear later in this section.

Ensemble 4D-Var (En-4D-Var).

A four-dimensional variational (4D-Var) analysis (Talagrand

and Courtier 1987; Ghil and Malanotte-Rizzoli 1991) is used with460

background error covariances formed from the ensemble forecast

at t0. According to the nomenclature recommendations for

hybrid ensemble–variational methods (point 7 of Lorenc 2013),

we refer to this approach as En-4D-Var. Here, the estimation

and minimization processes are carried out in ensemble space,465

meaning that the control variable is expressed in terms of the

ensemble members with corresponding ensemble coefficients,

similarly to the iterative ensemble Kalman smoother (IEnKS)

(Bocquet and Sakov 2013, 2014; Bocquet 2016). However, the

minimization could be performed as well with the adjoint models 470

if available.

In this approach, the ensemble coefficient w parameterizes the

ensemble space spanned by the perturbations X0 at t0, so that

x0 = x0 + X0w at t0, with x0 being the ensemble mean at t0

and, in computing p(yK:1|y0:), we marginalize over w, 475

p(yK:1|y0:) =

∫
dw p(yK:1|w)p(w|y0:) . (24)

From the theory of the IEnKS written in ensemble space (Bocquet

and Sakov 2014), we get the first factor in the integrand of

Eq. (24):

ln p(yK:1|w) =− 1

2

K∑
k=1

‖yk −Hk ◦Mk:0(x0 + X0w)‖2Rk
480

− Kd

2
ln(2π)− 1

2

K∑
k=1

ln |Rk| , (25)

with the ◦ symbol representing the composition of operators.

Fixing the gauge in w, i.e. accounting for the redundant degrees

of freedom in it, yields the second factor: 485

ln p(w|y0:) = −1

2
‖w‖2 − N

2
ln(2π) . (26)

The sum of these two log-likelihoods yields the IEnKS cost

function

J (w) = ln p(yK:1|w) + ln p(w|y0:) . (27)

This outcome of the IEnKS variational analysis provides, 490

without using the explicit adjoint of the model, the argument

of the minimum w?, along with the associated state vector

x?0 and approximate Hessian IN +
∑K
k=1 (Y?

k)
T
R−1
k Y?

k of

the cost function (i.e. the covariance) that are required in the

Laplace approximation; here Y?
k = [Hk ◦Mk:0]′x?

0
X0, and [Hk ◦ 495

Mk:0]′x?
0

is the linearization of the nonlinear operator in the square
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brackets at t0. Hence, we obtain the approximation

ln p(yK:1|y0:) 'J (w?) +
N

2
ln(2π)− 1

2
ln
∣∣∣∂2J|w?

∣∣∣
'− 1

2

K∑
k=1

∥∥yk −Hk ◦Mk:0(x?0)
∥∥2

Rk

− 1

2

∥∥w?
∥∥2 − Kd

2
ln(2π)− 1

2

K∑
k=1

ln |Rk|500

− 1

2
ln

∣∣∣∣∣IN +

K∑
k=1

(
Y?
k

)T
R−1
k Y?

k

∣∣∣∣∣ (28)

or, exponentiating the log-likelihood,

p(yK:1|y0:) '

exp
(
− 1

2

∑K
k=1 ‖yk −Hk ◦Mk:0(x?0)‖2Rk

− 1
2 ‖w

?‖2
)

√
(2π)Kd

∏K
k=1 |Rk|

∣∣∣IN +
∑K
k=1

(
Y?
k

)T
R−1
k Y?

k

∣∣∣ .

(29)

505

Note that, in computing the CME with the En-4D-Var, Eq. (29),

the initial conditions at the beginning of the evidencing window

are changed at each iteration of the minimization process, and

the innovations at each observation time {tk : k = 1, . . . ,K} are510

recomputed based on the corresponding trajectory started with the

new data.

Here, the IEnKS is merely a convenient means to the solution

of En-4D-Var; it is not representative of what the IEnKS has to

offer, as will be seen in the following.515

Iterative ensemble Kalman smoother (IEnKS).

The IEnKS (Bocquet and Sakov 2014) allows the observations

to be assimilated sequentially, one time tk after another, rather

than all of them together as in the En-4D-Var. The initial condition

and the ensemble of anomalies at t0 are sequentially updated by520

assimilating y1 in the first step, then y2 in the second step and so

on until yK . The outcomes of the analysis at step k are the state

x?k and the normalized anomaly matrix X?
k, both defined at t0, and

both then used in the subsequent step. This procedure corresponds

to the quasi-static IEnKS, as advocated in Bocquet and Sakov525

(2014), but it will be simply referred to as IEnKS hereafter. The

IEnKS makes possible to implement Eq. (14), and each single

contextual evidence p(yk|yk−1:) corresponds to the k-th analysis

of the IEnKS.

At step k, the ensemble coefficient vector wk is now used in the 530

computation of p(yk|yk−1:) to parameterize the ensemble space

spanned by the anomalies x0 = x?k−1 + X?
k−1wk at t0, with the

definition x?0 ≡ x0 and X?
0 ≡ X0. Marginalizing over wk, we get

p(yk|yk−1:) =

∫
dwk p(yk|wk)p(wk|yk−1:) . (30)

The theory of the IEnKS written in ensemble space yields for 535

k = 1, . . . ,K:

ln p(yk|wk) =− 1

2

∥∥yk −Hk ◦Mk:0(x?k−1 + X?
k−1wk)

∥∥2

Rk

− d

2
ln(2π)− 1

2
ln |Rk| , (31)

and, fixing the gauge in wk, 540

ln p(wk|yk−1:) = −1

2
‖wk‖2 −

N

2
ln(2π) . (32)

The sum of these two log-likelihoods yields the IEnKS

cost function, as in Eq. (27). Then the integral in Eq. (30)

can be estimated by the Laplace method. We take advantage

of the outcome of the IEnKS variational analysis to use the 545

argument w?
k of the minimum and the approximate Hessian

IN + (Y?
k)

T
R−1
k Y?

k of the cost function required in the Laplace

approximation, where Y?
k = [Hk ◦Mk:0]′x?

k
X?
k−1. One thus

obtains the approximation: for k = 1, . . . ,K,

ln p(yk|yk−1:) '−
1

2

∥∥yk −Hk ◦Mk:0(x?k)
∥∥2

Rk
− 1

2

∥∥w?
k

∥∥2
550

− d

2
ln(2π)− 1

2
ln |Rk|

− 1

2
ln
∣∣∣IN +

(
Y?
k

)T
R−1
k Y?

k

∣∣∣ . (33)

This can be re-arranged differently by using the value of w?
k,

w?
k =

{
IN + (Y?

k)TR−1
k Y?

k

}−1
R−1
k

{
yk −Hk ◦Mk:0(x?k)

}
555

=(Y?
k)T

{
Rk + Y?

k(Y?
k)T
}−1 {

yk −Hk ◦Mk:0(x?k)
}
,

(34)
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and gathering the first two terms to yield

ln p(yk|yk−1:) =− 1

2

∥∥yk −Hk ◦Mk:0(x?k)
∥∥2

Rk+Y?
k(Y?

k)T

− d

2
ln(2π)− 1

2
ln
∣∣∣Rk + Y?

k

(
Y?
k

)T∣∣∣ . (35)560

The factorization formula in Eq. (14) reads therewith

p(yK:1|y0:) '

K∏
k=1

exp
(
− 1

2 ‖yk −Hk ◦Mk:0(x?k)‖2
Rk+Y?

k(Y?
k)T
)

√
(2π)d

∣∣∣Rk + Y?
k

(
Y?
k

)T∣∣∣ . (36)

565

If the models are linear, this formula coincides with Eq. (23) in

the limit in which the DA window vanishes. Equation (36) differs

from Eq. (29) by the observations being assimilated sequentially

rather than all in one batch.

5. Numerical results570

This section presents the numerical results of the following four

approaches to computing the CME

1. importance sampling (IS), Eq. (17);

2. ensemble Kalman filter (EnKF), Eq. (23);

3. ensemble 4D-Var (En-4D-Var), Eq. (29); and575

4. iterative ensemble Kalman smoother (IEnKS), Eq. (36).

5.1. Experimental Set-up

Design and performance evaluation. We evaluate the relative

performance of the four methodologies by applying them to

two prototypical low-order dynamical systems often used in580

theoretical NWP and climate studies. Given the potential uses of

CME mentioned in section 1, we wish to evaluate the accuracy

and robustness of the proposed schemes when observations are

consistent with the model (i.e. perfect model), but also when they

are not, insofar as CME is intended for the purpose of model585

evaluation and selection. It is, therefore, particularly relevant to

estimate CME when the observations are not consistent with the

model.

The contextual model evidence will thus be systematically

computed for two models: the correct and the incorrect one.590

To be consistent with the intended applications to detection and

attribution (Hannart et al. 2016, and references therein), we use

the notationM1 for the true model andM0 for the other one. This

notation agrees with the use, in causality theory (Pearl 2000), of

index ‘1’ for the factual world and ‘0’ for the counterfactual one. 595

In both cases, the CME is estimated based on the same sequence of

observations, which by definition are generated by the true model.

Statistically speaking, the CME of observations is expected to be

higher when using the true model than when using another one, as

will be discussed further on. 600

In order to decide which of the four approximations performs

best in each of the situations being tested, we have to compare

their outcome with that of alternative computational methods

that are able to evaluate the CME with high accuracy. We have

therefore used a massive Monte Carlo (MC, Eq. (17)) integration 605

with 106 particles and a high-degree integration method, the

Gauss-Hermite quadrature (GHQ, e.g., Liu and Pierce 1994).

The results are reported in subsection ”Performance of the four

methods” of Sect. 5.2.

Gauss-Hermite quadrature is a suitable option in the present 610

context given that the kernel distribution, which is the posterior

pdf of the underlying EnKF running with the true model (see

“Models and implementation“ subsection below), is assumed

Gaussian although the unknown actual posterior distribution may

well not be so. An analytic approximation of the integral can 615

be obtained as a function of the roots of the corresponding

Gauss-Hermite polynomials (see Appendix for details). Both

the accuracy of the method and the associated computational

cost increase with the degree of the Gauss-Hermite polynomials.

Similarly to the kernel for GHQ, the ensemble-based Gaussian 620

posterior pdf provided by the EnKF at the beginning of the

evidencing window is used as the importance density from which

the 106 members of the MC are randomly drawn.

Models and implementation. The experimental setup is

chosen to mimic the situation encountered in an operational NWP 625

or climate prediction center, in which DA is routinely carried out

to update the model state based on observations. We suppose that

an EnKF is used for this purpose and that it assimilates noisy

observations whose error is assumed to be an unbiased random

Gaussian noise, so that εk is sampled from N (0,Rk). 630
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K-‐long	  evidencing	  window	  

EnKF-‐based	  
Trajectory	  

observa8ons	  
True/Correct	  model	  M1�

Incorrect	  model	  M0	  

Schema'c	  diagram	  of	  a	  forecast-‐-‐assimila'on	  cycle	  and	  
contextual	  model	  evidence	  (CME)	  computa'on	  	  	  

Figure 1. Schematic diagram of a routine forecast–assimilation cycle that includes
contextual model evidence (CME) computation run alongside the EnKF-based
trajectory of the correct modelM1 (blue) and the incorrect oneM0 (red).

We adopt a standard identical-twin experiment configuration

(Bengtsson et al. 1981), in which a solution of the correct

model M1 is taken to represent the truth and is sampled

to generate synthetic observations. The control trajectory, into

which the observations are assimilated, is generated by randomly635

perturbing the initial condition of the true trajectory. This control

trajectory then evolves using the correct model, and the synthetic

observations are assimilated into it using the EnKF with the setup

described below.

In parallel, we carry out a sequence of model evidence640

diagnosis, at each observation time tk and over an evidencing

window comprising K observation vectors. The CME is then

computed for the correct and incorrect models, M1 and

M0, using the four methods. A schematic illustration of the

experimental setup is given in Fig. 1.645

Experiments are conducted using two low-order nonlinear

chaotic models widely used in the predictability and DA literature:

(i) the Lorenz 3-variable convection model (L63: Lorenz 1963);

and (ii) the Lorenz 40-variable mid-latitude atmospheric dynamics

model (L95: Lorenz and Emanuel 1998).650

The original L63 model is modified to include an additional

time-constant forcing, cf. Palmer (1999), as follows:

dx

dt
= σ(y − x) + λi cos θ , (37)

dy

dt
= ρx− y − xz + λi sin θ , i = 0, 1 (38)

dz

dt
= xy − βz . (39)655

The canonical values (σ, ρ, β) = (10, 28, 8/3) for the standard

coefficients are used, while the parameter λ modulates the

strength of the external forcing; it is chosen to be λ1 = 0 for the

correct model, and −8 ≤ λ0 6= 0 ≤ 8 for the incorrect one. The 660

coefficient θ gives the angle of the forcing and is set to θ = 7π/9

as in Palmer (1999).

The equations of L95 read (Lorenz and Emanuel 1998): for

j = 1, . . . ,M ,

dxj
dt

= xj−1

(
xj+1 − xj−2

)
− xj + Fi , i = 0, 1 (40) 665

withM = 40 and periodic boundary conditions, x0 = xM , x−1 =

xM−1 and xM+1 = x1. The standard value F1 = 8 is used for

the correct configuration, while 5 ≤ F0 6= 8 ≤ 11 for the incorrect

one. For both models, L63 and L95, the range of values chosen 670

for the forcing in the incorrect configuration is such that the

overall asymptotic stability properties of the system do not differ

substantially from the true configuration. In all the situations we

have examined, the true and perturbed models are both chaotic,

although with a different spectrum of Lyapunov exponents. 675

The EnKF is used to assimilate the observations into the basic

trajectory of the true model, shown in blue in Fig. 1. We use an

ensemble square-root Kalman filter implementation, the ensemble

transform Kalman filter (ETKF: Hunt et al. 2007). The numerical

setup for the models and the EnKF is as follows. 680

• Number of ensemble members:N = 4 for L63;N = 20 for

L95.

• Observation distribution: both models are fully observed,

i.e. d = 3 for L63 and d = 40 for L95. The time interval

between updated is tk+1 − tk = 0.10 for L63 and tk+1 − 685

tk = 0.05 for L95.

• Observation error: unbiased Gaussian white noise with

covariance R = σ2
obsId with σobs = 2 for L63, and σobs =

1 for L95.

• Forecast error covariance inflation factor: Pf → α2Pf , 690

with α = 1.03 for both models.

The experiments are ran after a 2,000 time step–long spin-up

that is not taken into account in computing the statistics. The

CME values are computed over K-long evidencing windows,
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starting at each observation time tk, and using the four methods695

under comparison: IS, EnKF, En-4D-Var and IEnKS, for both the

“factual” scenario, with M1, and the “counterfactual” one, with

M0 (see Fig. 1). In both cases, the same set of observations,

sampled from the underlying true evolution, are used. A

consequence of this latter assumption is that the correct model700

CME is generally larger than the incorrect one: observations are

more likely to belong to the true rather than to the perturbed world.

In the following, we will compute and show the logarithm of the

CME, i.e. the logarithm of Eq. (16), but will indistinguishably

refer to it as CME.705

5.2. Comparing the methods and CME values

Performance of the four methods. In this subsection, we are

interested in the accuracy of the four methods. To this end,

they are compared here with MC and GHQ (see Sect. 5.1). The

experiments last 200 time steps (after the 2,000 long spin-up),710

the evidencing window is K = 10, and the CMEs are computed

at each time step. The forcing strength in the incorrect model is

λ0 = 8 and F0 = 11 for L63 and L95, respectively.

To reduce the computational burden, GHQ is used only for L63

but with polynomial degrees as high as 32, while MC is used715

for both L63 and L95. MC and GHQ will not necessarily return

the same estimate of the actual CME and, when necessary, we

will assume GHQ to be the most accurate. To clarify this issue,

we have computed the MC estimates as a function of N in the

range [102, 106], along with the best-fit to a power law of the720

form, y(x) = a+ bxc. This allows to extrapolate the asymptotic

limiting value for N →∞, MC∞, by taking the limit y∞ =

limx→∞ y(x). The results of this analysis are reported in Table 1.

The root-mean-square-error (RMSE) of the best-fit isO(10−2) for

the correct L63 and O(10−1) for both correct and incorrect L95.725

The incorrect L63 model is unsurprisingly the most intricate to

treat and the RMSE is O(100). In all cases the best-fit coefficient

c is negative, so that the asymptotic values, MC∞, are retrieved

from the best-fit coefficient a. The extrapolated asymptotic values

can be compared with the estimates given by GHQ and MC (with730

N = 106) for L63, and with MC (N = 106) for L95. We see

that for the L63 correct case, MC∞, MC (N=106) and GHQ

all coincide and are thus indistinguishably good estimates of

IS EnKF En−4D−Var IEnKS GHQ MC
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)
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Figure 2. Average CME value for the correct and incorrect model, i.e. log(p1) vs.
log(p0), estimated using our four methods — IS, EnKF, En-4D-Var and IEnKS —
as well as the two high-accuracy validation methods, Monte Carlo (MC) with 106

particles, and Gauss-Hermite quadrature (GHQ) with degree 32. The horizontal line
depicts the reference value given by the GHQ or MC∞ (see Table 1).

the target CME value to compare with the DA-based estimates.

The numerical results for L63 incorrect model suggest that 735

convergence has not yet been reached, as it is also reflected by

the lower accuracy of its best-fit. The estimated limiting value,

MC∞, is slightly closer to GHQ than MC with N = 106, and

GHQ is taken as the reference here. For the L95, both correct

and incorrect models, the asymptotic estimates, MC∞, are very 740

close to those for N = 106, particularly for the correct model case

as expected. We are thus confident that, in this case, MC with

N = 106 provides reasonably good estimates of the actual CME

to compare with the DA-based computations.

Results for the mean CME using the four methods along 745

with GHQ and MC (N = 106) are displayed in Fig. 2; the red

horizontal line depicts the target actual CME value.

For the L63 correct model, the EnKF and IEnKS are

remarkably providing almost the same estimate, the closest to

the GHQ target, followed by IS. In contrast, En-4D-Var is the 750

farthest from the target, a result that is possibly related to the

effect of a non-quadratic cost function and the resulting presence

of multiple minima that makes difficult the convergence to the

global minimum of the cost function. The problem experienced

by the En-4D-Var smoother seems to be successfully overcome 755

by the IEnKS, by virtue of the quasi-static formulation adopted in

this study (see Pires et al. 1996; Bocquet and Sakov 2014, for a

definition and discussion on the quasi-static approach).
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Table 1. Average correct (log p1) and incorrect (log p0) CME estimated using Gaussian Hermite Quadrature (GHQ) with degree 32 (see text and Appendix
for details) and Monte Carlo with 106 particles (MC). The RMSE of the best-fit to the power law, y(x) = a+ bxc, for the numerical values of MC with
102 ≤ N ≤ 106 are given in the 5th column. The extrapolated asymptotic value for N →∞ is given in the 6th column.

GHQ MC (N=106)
RMSE of best-fit to

y = a+ bxc
MC∞

Correct ModelM1 -65.44 -65.44 0.004 -65.44
L63

Incorrect ModelM0 -78.19 -109.19 2.22 -102.25

Correct ModelM1 – -574.57 0.411 -574.63
L95

Incorrect ModelM0 – -744.68 0.440 -729.25

MC is taken as the reference for the L95 correct case, and all

four methods being evaluated, except IS, converge to the target760

with a similar high level of accuracy. When observations are

dense and frequent enough, and when the model forecast is only

weakly nonlinear in between two observation times, the errors are

nearly Gaussian and the three DA methods track the true signal

successfully; as a result, their CME estimates almost coincide.765

Estimating the CME for the incorrect models is more intricate

and, in fact, MC and GHQ no longer provide identical results for

the L63 model (see also Table 1). As explained above, GHQ is

used here as the reference target value. In contrast to the true-

model case, IS is now the least accurate, EnKF and IEnKS are the770

best, while En-4D-Var is in between the two.

When comparing to the incorrect-model CME for the L95

model, we see that the En-4D-Var and IEnKS methods provide

similarly accurate results, followed by the EnKF, while IS is not

able to converge to the target given here by the MC. Together,775

the results for the true- and the incorrect-model CME in the L95

model suggest that, at least in this weakly nonlinear regime, the

accuracy of the DA-based estimates of the CME is connected

to the level of sophistication of the DA method, with the two

smoothers, En-4D-Var and IEnKS, performing better than the780

filter (EnKF).

Time series of CME values. Figure 3 shows 1000-time steps

long time series of the instantaneous CME values, for the correct

and incorrect models, over the time interval 100–1100 (after the

spin up) for the L63 model (left panels) and the L95 one (right785

panels). The parameter values appear in the figure caption, and

the evidencing window is K = 10 in all experiments.

As expected, the CME values in the incorrect model are

algebraically smaller than in the correct one, for all four methods,
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Figure 3. Time series of 1000 instantaneous CME values starting from t = 100,
for the correct (top panels) and incorrect (bottom panels) configurations of the
L63 model (left panels) and L95 model (right panels), respectively; the evidencing
window has length K = 10 for all four panels. The values of the forcing in the
correct vs. the incorrect models are as in Fig. 2; see also panel legends. The CME
is computed using the four methods: IS, EnKF, En-4D-Var and IEnKS.

and especially so in the L95 model; see Fig. 3(d). The behavior 790

of the CME time series is, moreover, very different between the

L63 and L95 model. In the L63 model, the CME values are

predominantly quite small in absolute value, but large on-off

bursts are observed, in which the CME jumps to algebraically

very low values, i.e. to quite large absolute values. These spikes 795

are also observed in the correct model, but they get larger and

more frequent in the incorrect one. Moreover, these spikes are

mainly found in the IS and En-4D-Var methods, with only some

occasional instances in the EnKF, and to an even lesser extent in

the IEnKS. 800

The CME time series of the correct L95 model in panel (b)

are almost never as small in absolute value as for the L63

model in panel (a), while three of the four methods to compute

CME provide similar results, and IS alone is both negatively

biased overall and exhibits strong negative spikes as well. The 805

CME values for the incorrect L95 model in panel (d) are shifted
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14 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

downward by about 100 logits with respect to the correct model

for the estimates provided by the EnKF, En-4D-Var and IEnKS

methods, while the IS departures are even more substantial.

The differences in the numerical results for CME estimation810

with the L63 and L95 models using DA-based methods can

be interpreted by the two models’ dynamical and statistical

properties. The L63 model has a strange attractor which is

bimodal. As shown already by Miller et al. (1994) in comparing

an EKF with a 4D-Var method, these features can easily lead to815

situations in which the model solution and the observations are

on a different “wing of the butterfly,” i.e. on a different lobe of

the attractor, thus making already the state estimation particularly

challenging.

Such situations are even more deleterious when using DA to820

evaluate model evidence and when the incorrect model is under

study. Carrassi et al. (2008) and Carrassi and Vannitsem (2010)

provide further examples of applying DA to both the L63 and L95

model, and discuss some of the implications of their dynamical

features on DA results. The fine, onion-skin structure of the L63825

attractor is most likely to be responsible for the large spikes in

the CME values obtained by the En-4D-Var method: multiple

minima in the cost function arise, and their number increases as

the window length K increases, cf. Figs. 6a–c in Miller et al.

(1994, and discussion therein). This inference is confirmed by830

some of the numerical experiments below; see Fig. 6 and related

discussion.

The use of the quasi-static approximation in the IEnKS, in

which one observation vector is sequentially added at each step

of the minimization, helps track the global minimum of the cost835

function and prevents getting trapped in a secondary minimum

that would give a strongly biased estimate of the CME. This may

explain the relatively smoother profile of the IEnKS-based CME

estimates.

Distribution of CME values. The distributions of the CME840

values are shown in Figs. 4 and 5 for the L63 and L95 models,

respectively. The statistics are computed based on 4,000 time steps

long experiments, started after the spin-up. The same correct and

incorrect forcing values as before were used in panels (a) and (b),

respectively, while the corresponding zoomed areas of the pdfs845

are plotted in panels (c) and (d), respectively. Note that to improve
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Figure 4. Same as Fig. 2 for the probability density function (pdf) of the CME for
the L63 model, and the four methods — IS, EnKF, IEnKS and En-4D-Var — only.
(a,b) Full pdf; and (c,d) zoom on the central part of the pdf.
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Figure 5. Same as Fig. 4 but for the L95 model.

visualization of the main features of the pdfs we have intentionally

limited the displayed range for the L63 to [−200,−40]. As a

consequence the pdfs in Fig. 4 do not reflect the large, occasional,

peaks observed in Fig. 3a,c. 850

In agreement with Fig. 3, the three Gaussian DA-based CME

estimates are quite similar to each other in the factual case and

differ from the IS estimate, which shows a negative bias in both

models, particularly in L95, cf Fig. 5(a). A closer inspection of

the zoomed area for the L63 model in Fig. 4(c) reveals that the 855

EnKF pdf is slightly shifted toward smaller values, whereas the

En-4D-Var and IEnKS estimates are still very close to each other.

The similarities among the three DA-based estimates are visible

when looking at the zoomed area for the L95 model in Fig. 5(c).

Differences among IS, EnKF, En-4D-Var and IEnKS estimates 860

are, however, apparent in the CME estimates with the incorrect
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model. All four distributions are now displaced toward smaller

values than in the corresponding correct model cases — since

the observations are more likely in the true world — and other

discrepancies appear, too. It is thus remarkable that the IS pdfs, for865

both the L63 and L95 models, show now even stronger departures

from the other three distributions. The IS method here does not

use any resampling to keep the members on the track of the true

signal; this can lead to unrealistic underestimations of the CME,

as noted already in Fig. 3.870

When looking more attentively at the pdfs for the three DA-

based approaches, additional details emerge. In the L63 model,

the IEnKS estimates differ from both the EnKF and En-4D-Var,

in particular its pdf is slightly larger toward smaller CME values,

cf. Fig. 4(d), although the modes of the three distributions are875

almost indistinguishable, cf. Fig. 4(b). The situation is somewhat

different in the L95 model, where the En-4D-Var and the IEnKS

pdfs are very close when using the incorrect model, while the

EnKF pdf peaks at a slightly larger CME value.

Sensitivity analysis of the results. This section describes880

the numerical sensitivity analysis of the CME computational

methods with respect to the discrepancy between correct and

incorrect forcing, ∆λ or ∆F , and the length of the evidencing

window, K. We wish to understand how the different methods

respond to the effect that these factors have on the CME integral.885

The comparison among the DA-based methods is guided by the

following predictions. First, the CME gets smaller for increasing

∆λ or ∆F . In fact, if ∆λ or ∆F is seen as a measure of the

difference between the correct and incorrect models, the marginal

likelihood of observations of the latter model will decrease along890

with the difference between the two. Recall that ”correct model”

is intended here as the one used to generate the observations so

that, by construction, the CME values must be higher in this case.

The sensitivity analysis to ∆λ or ∆F aims to assess the extent

to which this is the case in the DA-based approximations of the895

CME and how this compares among the four approaches. Second,

the CME gets smaller for increasing K. In fact, the longer the

evidencing window the longer the time at disposal for the model

to manifest its deviations from the observations, and the more

statistically reliable the CME should be. We do not have in this900

case a guess for the unknown actual growth rate, but we expect
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Figure 6. Mean CME as a function (a,b) of the difference between the incorrect
and correct model forcing (a) ∆λ = λ0 − λ1 and (b) ∆F = F0 − F1, and (c,d)
of the length of the evidencing window. Results for (a,c) the L63 model and (b,d)
the L95 model. In the top panels (a,b) the evidencing window is K = 10, while in
the bottom panels the forcing parameter equals the incorrect value: (c) λ0 = 8 for
L63, and (d) F0 = 11 for L95.

that the better the data assimilation is able to keep the incorrect

model close to the observations, the bigger the CME values.

The way the four methods respond to the amplitude of the

discrepancy between the correct and the incorrect forcing, and to 905

the length K of the evidencing window, is depicted in Fig. 6.

In panels (a) and (b), the evidencing window is kept fixed

at K = 10, while the difference in the forcing is plotted on the

abscissa. It is striking that, roughly speaking, the CME values

for all four methods are inversely proportional to the difference, 910

in absolute value, between the two forcings (see Fig. 6(a,b)).

Nevertheless, the rate of change of the CME values varies from

one method to another, and the differences between methods are

noticeably larger in the case of the L63 model in panel (a). Of

the four, it is IS that falls off most strongly as the forcing value 915

deviates more from the correct one, in both panels. The IS method

is thus the least accurate at a given forcing, but also the most

sensitive one to the deviation of the forcing from the correct value.

The En-4D-Var method also exhibits a marked sensitivity to

forcing value, although less so than the IS method. Interestingly, 920

the En-4D-Var estimate of CME in the true case, i.e. for λ1 = 0,

is very close to IS, and increasingly closer to EnKF and IEnKS

than IS as we move away from the correct forcing value for

the L63 model, cf. panel (a). The EnKF and IEnKS estimates

peak at a slightly higher value for the true CME and show lesser 925

dependence on the forcing difference between the two models. In

the L95 model, cf. panel (b), the three DA-based computational
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16 A. Carrassi, M. Bocquet, A. Hannart and M. Ghil

techniques — EnKF, En-4D-Var and IEnKS — give a similar

response to the difference in forcing, while IS is negatively biased

with respect to all three and shows a larger dependency on the930

forcing difference between the correct and incorrect models.

The impact of the evidencing window length, K, is analyzed

in panels (c) and (d), for the L63 model and the L95 one,

respectively. Here the incorrect model forcing is kept fixed at

λ0 = 8 for L63 and at F0 = 11 for L95. The increase of the935

evidencing window length facilitates the discrimination between

the correct and the incorrect models, since the two dynamics have

a longer time interval each to manifest their differences, but it also

makes the computation of the integral in Eq. (16) more delicate,

calling therewith for more sophisticated integration methods.940

The L63 model highlights this quandary better, due to the

model’s greater simplicity but also bimodal character, cf. panel

(c). In it, we see how IS changes rapidly by increasing K, but

En-4D-Var is also very sensitive. While the correctness of the

En-4D-Var estimate cannot be assessed, the large deviation from945

the other two DA-based methods points to its lower accuracy.

Again, the gap between the En-4D-Var estimates and those of

EnKF and IEnKS may well be due to the emergence of multiple

minima of the cost function as K increases. This is corroborated

by the absence of this behavior in the ”more unimodal” L95950

model, cf. panel (d), where the three DA-based approaches give

indistinguishable estimates.

The numerical results so far pertain to the comparison of the

four methods of evaluating the CME integral in Eq. (16). One

can presume that their accuracy depends strongly on the accuracy955

of the DA-based scheme on which they rely, leaving IS, which

suffers from under-sampling and lack of resampling, as the least

accurate option. Nevertheless, trying to achieve an overall ranking

of DA schemes may be difficult, since different methods may

be optimal for specific tasks and under specific circumstances.960

Such differences in method performance for model evidence are

illustrated here by application to the L63 model vs. the L95 one,

with the former exhibiting a bimodal attractor.

6. Applications

We briefly discuss now two possible applications of our proposed 965

schemes; both are straightforward to describe and implement

based on the results obtained in section 5.

6.1. Parameter estimation

Let us assume now that the true values of the forcing parameters,

i.e. λ1 in L63 and F1 in L95, are unknown, but that we 970

have access to a time series of observations for each one of

the two models. Many methods for parameter estimation are

available (e.g., Ghil 1997; Kondrashov et al. 2008; Kantas et al.

2009; Carrassi and Vannitsem 2011) but the present maximum

likelihood estimation approach is relatively new. A recent review 975

on parameter estimation for the geosciences can be found in

Bocquet (2015).

By maximizing the CME for the parameter of interest, we can

use the observations on the model state to evaluate the unknown

forcing. In addition, we will apply the standard likelihood ratio 980

approach to derive confidence intervals on the forcing estimates

obtained by our CME approach.

The results of this approach to parameter estimation are also

available in Figs. 6(a,b). With K = 10, the four methods yield an

unbiased estimate of the forcing parameter in both the L63 (panel 985

(a)) and the L95 (panel (b)) model, since the CME curves in both

panels reach their maxima at the correct parameter value.

The methods differ, however, in the curvature of each of

the CME curves at their respective maxima, and thus on the

corresponding confidence intervals. More precisely, the less 990

accurate methods yield a higher curvature than the most accurate

ones, and thus lower estimates of uncertainty. Indeed, the variance

of a maximum likelihood estimator is driven by the inverse of the

second derivative of the negative log likelihood, asymptotically

(e.g., Millar 2011). Accordingly, less accurate methods appear 995

to still be able to yield unbiased parameter estimates, but to

underestimate uncertainty. Furthermore, increasing the length K

of the evidencing window in Figs. 6(c,d) does not affect the

position of the maxima and so the estimates remain unbiased, but

it appears to increase the gap in CME estimates for parameter 1000

values that differ from the truth. Thus increasing K reduces the

uncertainty estimates, as expected.
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6.2. Causal attribution of climate-related events

Providing causal assessments on episodes of extreme weather

or unusual climate conditions has become an important topic in1005

the climate sciences over the last decade (Solomon et al. 2007;

Stocker et al. 2013). Its importance arises from the multiple needs

for public dissemination, litigation in a legal context, adaptation to

climate change or simply improvement of the science associated

with these events (Stott et al. 2013).1010

The conventional approach to event attribution so far consists

in comparing two probabilities, p1 and p0, and in computing the

so-called fraction of attributable risk or FAR of the event under

study, where FAR = 1− p0/p1. Here p1 is the probability of

occurrence of the event in a modelM1 representing the observed1015

climatic conditions, which simulates the real world, referred to as

factual, while p0 is the probability of occurrence of the event in a

second model M0 that represents this time the alternative world

that might have occurred had the forcing of interest been absent,

referred to as counterfactual. In the conventional approach, p1 and1020

p0 are calculated by running an ensemble of simulations of each

one of the two models, M1 and M0, which is computationally

quite costly.

Recently, Hannart et al. (2016) have shown that this

conventional approach can be improved upon by applying DA to1025

derive the CME of a series of observations of the given event

for these two alternative models, M1 and M0. In both cases,

the CME is estimated for the same sequence of meteorological

observations of the event. If the value of the factual CME

substantially exceeds that of the counterfactual CME for the event1030

under scrutiny, then it is possible to conclude that the forcing of

interest has had a causal influence on the event.

Hannart et al. (2016) made use of the EnKF in their DA-

based approach to event attribution. Their proposed approach is

further investigated here by using the four methods discussed1035

so far to compute model evidence; the effectiveness of these

methods is evaluated by calculating the discriminating power of

each of them. This metric is defined as the ability to discriminate

whether the observed sequence of observations is more or less

likely to occur in the factual rather than in the counterfactual1040

world, and it is obtained as the ratio between the factual and
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Figure 7. Same as Fig. 6 but for the mean discriminating power.

counterfactual model evidence, p1/p0. Figure 7 shows the average

of the logarithm log(p1/p0) of the discriminating power for L63

and L95, as a function of the counterfactual model’s forcing and

of the evidencing window length K. 1045

As expected, the discriminating power increases monotonically

as the difference between the factual and the counterfactual

forcing increases — i.e., as the cause to whom the event is to be

attributed is more salient — as well as with the length K of the

evidencing window. Indeed, the larger K is the more time one can 1050

observe the difference between the models.

In agreement with our previous results on the CME, Figs. 7(b,d)

show that the three DA-based methods provide similar results

for the L95 model, while IS systematically overestimates the

discriminating power. This means that, if IS is used in an 1055

attribution application, it will exaggerate the responsibility of

the forcing under scrutiny. The DA-based methods offer a more

plausible way to assess the main cause that might have produced

the observed sequence.

The situation is slightly less clear for the L63 model, cf. panels 1060

(a) and (c), although IS still provides the largest CME estimate

for any given K. But the DA-based methods are affected now

differently by the increase in the evidencing window, with En-

4D-Var displaying the strongest response, as already discussed in

relation with Fig. 6. 1065
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7. Concluding remarks

7.1. Summary

This study focused on the problem of quantifying the resulting

performance of a state inference by estimating the model

evidence, i.e. the marginal likelihood p(yk:), which quantifies the1070

accuracy of a model-to-data fit. Model evidence is a natural metric

for selection and comparison, and it is relevant to many problems

faced by both scientists and practitioners: e.g. calibrating model

parameters, comparing the skill of several candidate models in

representing the observed signal, or evidencing the existence of a1075

causal relationship between an external forcing and an observed

response. This latter attribution problem, and in particular the

development of methods for attribution of climate related events

in real or near-real time (Stott et al. 2013; Hannart et al. 2016),

was one of the original motivations of this study.1080

Deriving model evidence for high-dimensional models and big

datasets – both of which are common in the geosciences – is

usually computationally intractable and the issue can only be

solved under simplified assumptions (e.g., Hürzeleri and Künsch

2001). In this paper we have shown how this task can be1085

carried out efficiently using data assimilation (DA) techniques

specifically designed to deal with large numerical models and

dataset subject to partially Gaussian assumptions.

We introduced the original contextual formulation of the model

evidence (CME), p(yk:1|y0:) in Eq. (16). As opposed to the1090

standard formulation, the CME is narrowed down to the present

systems condition, and the conditional pdf p(x0|y0:) is taken as

the prior in lieu of the invariant distribution p(x) on the model

attractor, as used in the standard case.

This new prior is not only more informative and easier to1095

compute but it is also the outcome, i.e. the posterior pdf, of a DA

procedure designed for state estimation based on the observations.

When a forecast-assimilation cycle is routinely and continuously

carried out, as it is in NWP centers, this prior is immediately at

hand.1100

We have then proved that DA can also be used to compute the

conditional pdf, p(yk:1|x0), that enters the CME definition, cf. Eq.

(16). Together with the DA-based CME prior, using this pdf also

allows one to fully accomplish the model evidence estimation task

in a consistent and routine way by using DA. 1105

Analytic derivations of the proposed DA-based approach were

described for both filtering and smoothing methods. In particular,

we presented the Kalman filter (KF), the ensemble Kalman filter

(EnKF), the ensemble four-dimensional variational smoother (En-

4D-Var) and the iterative ensemble Kalman smoother (IEnKS). 1110

The theoretical formulae for the EnKF, En-4D-Var and IEnKS,

along with the importance sampling based on the EnKF, have

been compared numerically using two low-order chaotic models,

the Lorenz 3-variable (L63) model (Lorenz 1963) and the 40-

variable (L95) model of Lorenz and Emanuel (1998). Gauss- 1115

Hermite quadrature and a massive Monte Carlo algorithm are

used as independent highly accurate reference results for the CME

values.

Numerical tests were used to compare the computing methods

in terms of the CME time series and their distributions, as well 1120

as with respect to their sensitivity to the model forcing and to

the length of the evidencing window. In general the accuracy of

the estimates increased with the sophistication of the DA method.

Thus the IEnKS yielded the best results and the IS the worst ones.

In the comparison of method skill for the two models, the 1125

IEnKS also performed better for the L63 model, which possesses a

bimodal attractor. In fact the quasi-static approximation employed

by the IEnKS helps preventing the appearance of multiple minima

in the cost function that hampers the performance of En-4D-Var.

In these conditions also the EnKF appears to behave generally 1130

better than En-4D-Var, and its skill is the closest to that of the

IEnKS. On the other hand, in a weakly nonlinear regime as

represented here by the L95 model, the accuracy of the DA-

based estimates of the CME appears connected to the level of

sophistication of the DA method, with the two smoothers, En-4D- 1135

Var and IEnKS, performing better than the filter (EnKF).

We have also considered two applications of estimating the

model evidence – namely to parameter estimation and to causal

attribution of climate-related events – and have studied the

potential of the proposed DA-based approach for these purposes. 1140

Results have shown that DA-based model evidence (i) can

be efficiently used to estimate unknown model parameters,

along with the associated uncertainty; and (ii) it is able to
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discriminate between two competing models and, therewith, to

correctly attribute an observed event to one of the two. In1145

both of these applications the IEnKS-based CMEs provide the

best performance. Nonetheless the EnKF appears as a good

compromise between accuracy and ease of implementation, and

its reduced computational cost compared to IEnKS makes it a

suitable option for CME computation in a realistic setting.1150

7.2. Future directions

The next step in applying the present DA-based approach to

more realistic models and observational scenarios is to consider

climate models of intermediate complexity and incomplete

and unevenly distributed observations. This application-oriented1155

research activity has to be supported and accompanied by two

theoretical lines of investigations, namely the extension of the

present results (i) in the presence of model error, and (ii) in

conjunction with spatial localization techniques.

Taking into account model error is crucial for obtaining an1160

accurate and robust estimate of the marginal likelihood, and this

requirement becomes even more stringent when model evidence

is intended for use in model discrimination or selection. Model

error can, in fact, masks the difference between two models

under-scrutiny, whether one of the two is correct or not. This1165

effect is an issue for both, standard and DA-based, methods, but

particularly for the latter as the accuracy of the DA outcome will

naturally depend on the model accuracy, as discussed in Hannart

et al. (2016, Fig. 4d). Methods to incorporate model error in

DA procedures for state and parameter estimation have been the1170

subject of an intense, and still active, stream of research (e.g. Dee

1995; Harlim 2013; Raanes et al. 2015). The use of these methods

and the study of their adaptation to DA-based CME estimation is

definitely worth addressing.

The applications of the proposed DA-based approach to large1175

dimensional, spatially extended, dynamical systems necessitate

the implementation of localization strategies, commonly used

in ensemble-based DA in the geosciences with the aim of

compensating for the sampling errors that arise from the use of

an insufficiently large ensemble; see Sakov and Bertino (2011)1180

and references therein. The extension of the formulae described

here to compute CME in conjunction with localization is a central

theme among the authors’ current lines of investigation.
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Appendix 1195

Computation of contextual model evidence using

Gauss-Hermite quadrature

All quadrature methods approximate an integral as a weighted

sum of the integrand’s values, evaluated at a finite set of well-

specified points called nodes. Gaussian quadrature approximates 1200

the integral of an unknown function f(x) over a specified domain

D with a known weighting kernel ψ(x). If the function f(x)

is well approximated by a polynomial of order 2m− 1, then

a quadrature with m nodes suffices for a good estimate of the

integral, according to 1205

∫
D

dxf(x)ψ(x) ≈
m∑
i=1

wif(xi). (A1)

The nodes xi and weights wi are uniquely determined by

the choice of the domain D and the weighting kernel ψ(x),

which in turn determines the type of quadrature. The locations

of the nodes {xi : i = 1, . . . ,m} are given by the roots of 1210

the polynomial of order m in the sequence of orthonormal

polynomials {πj(x) : j = 1, . . . ,m}, according to the scalar

product (πj |πk) =
∫
Ddxπj(x)πk(x) = δjk, and the weights are

computed once the roots are known.

When the integration domain is the entire real axis and the 1215

kernel is given by a Gaussian function, the quadrature method

is known as the Gauss-Hermite method, since it involves the
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orthogonal Hermite polynomials, and it can be written as

∫
R

dxf(x) exp(−x2) '
m∑
i=1

wif(xi) , (A2)

with xi being the roots of the Hermite polynomialsHem of degree1220

m, and the weights wi being given by

wi =
2m−1m!

√
π

m2 {Hem−1(xi)}2
i = 1, . . . ,m . (A3)

Moreover, when the kernel is given by a normal distribution,

ψ = N (x, σ2), the Gauss-Hermite approximation becomes

∫
R

dx
1

σ
√

2π
exp

{
− (x− x)2

2σ2

}
f(x) '1225

1√
π

m∑
i=1

wif
(√

2σxi + x
)
. (A4)

This formula can be obtained from Eq. (A2) after a change

of variable and integration by substitution. Gauss-Hermite

quadrature is of key importance in many areas of applied1230

science, including statistics and finance, and is described in many

textbooks on numerical analysis (e.g., Press et al. 1992).

Let us recall the general expression of the CME in Eq. (16):

p(yK:1|y0:) =

∫
dx0 p(yK:1|x0)p(x0|y0:). (A5)

In our numerical experiments of section 5, the prior density,1235

i.e. the kernel in Eq. (A5), is the multivariate Gaussian posterior

obtained from the EnKF applied to the underlying factual

trajectory, and it reads

p(x0|y0:) =
exp

(
− 1

2 ‖x0 − x0‖2Pf
0

)
√

(2π)M
∣∣Pf

0

∣∣ . (A6)

Here, the forecast error covariance matrix Pf
0 is given in terms1240

of the forecast perturbation matrix, Pf
0 = X0X

T
0 , as described in

section 4.1.

We consider the case N ≥M + 1, for which P0 is almost

surely non-singular and which applies in the numerical

experiments with the L63 model. The choice of a Gaussian kernel1245

allows for the use of Gauss-Hermite quadrature, and the function

f(x) in Eq. (A4) is the likelihood p(yK:1|x0). Given Gaussian

observational errors with covariance R, f(x) should be replaced

with

p(yK:1|x0) =
exp

(
− 1

2

∑K
k=1 ‖yk −Hk ◦Mk:0(x0)‖2Rk

)
√

(2π)Kd
∏K
k=1 |Rk|

.

(A7) 1250

We now consider the multivariate extension of the Gauss-

Hermite quadrature Eq. (A4). In order to make the sampling more

efficient, it is convenient to use the principal axes of variability

of the covariance matrix Pf
0. To this end, let us decompose the

perturbation matrix, 1255

X0 = USVT . (A8)

Here, U and V are the matrices whose columns are the M left

and right singular vectors, and S is the diagonal matrix of the M

singular values. We define the operator

Z =
√

2UTSU . (A9) 1260

By proceeding via integration by substitution, as for the univariate

case, the multivariate Gauss-Hermite quadrature method can be

shown to be given by

∫
RM

dx
1√

(2π)M
∣∣Pf

0

∣∣ exp
(
−1

2
‖x− x‖2Pf

0

)
f(x)

'
m∑

i1=1,i2=1,...,iM=1

iM∏
j=i1

wjf(x + Zχ) (A10) 1265

with χ = (xi1 , xi2 , ..., xiM ) being the roots of the Hermite

polynomials. The final formula to approximate Eq. (A5) is

obtained by using Eq. (A7) as f(x).

1270
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