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ABSTRACT 

The frequency of toxin-producing cyanobacterial blooms has increased in recent 

decades due to nutrient enrichment and climate change. Because Microcystis blooms 

are related to different environmental conditions, identifying potential nutrient control 

targets can facilitate water quality managers to reduce the likelihood of microcystins 

(MCs) risk. However, complex biotic interactions and field data limitations have 

constrained our understanding of the nutrient-microcystin relationship. This study 

develops a Bayesian modelling framework with intracellular and extracellular MCs that 

characterize the relationships between different environmental and biological factors. 

This model was fit to the across-lake dataset including three bloom-plagued lakes in 

China and estimated the putative thresholds of total nitrogen (TN) and total phosphorus 

(TP). The lake-specific nutrient thresholds were estimated using Bayesian updating 

process. Our results suggested dual N and P reduction in controlling cyanotoxin risks. 

The total Microcystis biomass can be substantially suppressed by achieving the putative 

thresholds of TP (0.10 mg/L) in Lakes Taihu and Chaohu, but a stricter TP target (0.05 

mg/L) in Dianchi Lake. To maintain MCs concentrations below 1.0 μg/L, the estimated 

TN threshold in three lakes was 1.8 mg/L, but the effect can be counteracted by the 

increase of temperature. Overall, the present approach provides an efficient way to 

integrate empirical knowledge into the data-driven model and is helpful for the 

management of water resources.  
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1. Introduction 

The harmful cyanobacterial blooms have been exacerbated across the world in the 

last decades with the growing threat from human activities and climate change (Harke 

et al., 2016；O’Neil et al., 2012). One of the cosmopolitan cyanobacterium genera is 

Microcystis, which has been reported to form blooms in more than 257 countries and 

territories, particularly in large lake ecosystems (Jankowiak et al., 2019). Blooms by 

Microcystis often cause serious environmental problems, such as degradation of water 

quality and illness or even death of other eukaryotic organisms, animals, and humans 

(MacKintosh et al., 1990; Singh et al., 2015), due to the production of hepatotoxic 

microcystins (MCs). As a result, identifying specific environmental conditions under 

which MCs in water columns can exceed the provisional World Health Organization 

(WHO) Guideline of 1.0 ug/L is of great importance for lake managers (Burch, 2008; 

WHO, 1998). 

Previous studies have revealed that prevailing environmental conditions can result 

in high MCs events, including low nitrogen-phosphorus ratios (N:P) (Orihel et al., 

2012), an imbalance in cellular carbon-nitrogen ratios (C:N) (Beversdorf et al., 2015), 

warm temperature (Bui et al., 2018), photosynthetically active radiation limitation 

(Wiedner et al., 2003), and iron limitation (Alexova et al., 2011). Compared to other 

environmental factors, N and P concentrations are more amenable to control. 

Furthermore, extensive cyanobacterial blooms and high MCs events are most prevalent 

in eutrophic and hypereutrophic lakes (Rigosi et al., 2015). Spatiotemporal patterns and 

ecophysiology of toxigenic Microcystis blooms are likely influenced by the distribution 
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of nutrients inside the lake (Otten et al., 2012). In this context, establishing nutrient 

thresholds or criteria for controlling an abrupt change or regime shift of toxic 

cyanobacterial blooms is a quantifiable and attractive approach (Xu et al., 2014; Zhang 

et al., 2006). 

Setting nutrient control targets which are often being supported by scenario 

analysis using mechanistic models has been a challenge for lake managers (Recknagel 

et al., 2017). These process-based approaches can give insights into the biogeochemical 

cycling which are crucial to simulate how environmental conditions affect the 

composition and growth of phytoplankton (Reynolds and Irish, 1997). However, 

cyanotoxin production is highly variable in space and time and cannot be accurately 

predicted from cyanobacterial composition and abundance (Huisman et al., 2018). For 

instance, cyanobacterial blooms in natural water are often comprised of toxic and non-

toxic strains, and changes in strain composition can, therefore, lead to major alterations 

in the toxin content (Kardinaal et al., 2007). It has also been reported that cyanotoxin 

production among taxa or even within strains of the same species is triggered by 

different environmental factors (Beaver et al., 2018; Davis et al., 2009). Complicating 

the prediction is that the majority of MCs remain intracellular in intact cells, and they 

are released into water columns when cells are lysed or damaged (Daly et al., 2007). 

Owing to the complex interaction between physical, chemical and biological factors, 

the capacity of mechanistic models to simulate the MCs dynamics remains poor.  

In the last several years, data-intensive statistical models, have received increasing 

attention and several advanced methods have been developed to simulate MCs 
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concentrations. For example, the hierarchical zero-altered model (Taranu et al., 2017), 

the hierarchical Bayesian model (Yuan et al., 2017), and the Bayesian network (Yuan 

et al., 2019) have been fit to USEPA National Lake data and provided estimates of the 

potential relationships between different lake characteristics. Due to the large difference 

between areas, local water management teams want to explore lake-specific criteria. 

Therefore, a major challenge is to estimate the specific relationship for a lake from the 

limited samples. Bayesian inferential methods perform well when dealing with small 

sample sizes and limited data, leading to some ecological applications (Link and Barker, 

2009). For instance, Kelly et al. (2019) estimated the environmental conditions 

associated with the probability of exceedance MCs levels in a eutrophic lake and the 

results help predict MCs risk. However, these approaches could not characterize the 

relationships between taxon-specific biomass and MCs production at the same time.   

To remove the limitations, the present study presents a continuous variable 

Bayesian networks model, which develops from the basic model-developing strategy 

by Qian and Miltner (2015). The main research aim is to estimate the relationships 

between nutrient concentrations and potential MCs thresholds. Emphasis is given to the 

causal diagram, which combines cell-bound and dissolved MCs with different biotic 

and abiotic factors. To leverage knowledge from macro-scale data to enhance 

understanding of specific lakes, the Bayesian computation was applied to develop the 

across-lake model based on data from specific lakes. To showcase the modelling 

framework, this study applied data from three cyanobacterial bloom-plagued lakes in 

China and evaluated whether the nutrient control targets could be affected by warming 
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in the future. 

 

2. Methods 

2.1 Dataset description  

Three typical cyanobacterial bloom-dominated lakes in China, including Lake 

Taihu (30°56'~31°33'N, 119°55'~120°54'E), Lake Chaohu (30°25'~31°43'N, 

117°17'~117°52'E), and Lake Dianchi (24°29'~25°28'N, 102°29'~103°01'E), were 

selected for examination in this study. More detailed descriptions of sampling and 

laboratory methods are available in the study of Shan et al. (2019b). The following 

environmental variables were determined and included in this study: water temperature 

(WT, in °C), dissolved oxygen (DO, in mg/L), pH, electrical conductivity (EC, in S/m), 

Secchi disk (SD, in cm), wind speed (WS, in m/s), total P (TP in mg/L), dissolved 

inorganic P (DIP, in mg/L), total N (TN, in mg/L), and dissolved inorganic N (DIN = 

ammonium (NH4
+) + nitrate (NO3

−) + nitrite (NO2
−), in mg/L). The following biological 

variables were measured and included: chlorophyll-a (Chl-a, in μg/L), cyanobacterial 

biomass (Bcya, in mg/L), total biomass of Microcystis (BM, in mg/L), and the taxon-

specific biomass of Microcystis aeruginosa (BMA, in mg/L). The MCs concentrations 

were measured across 17 sampling transects encompassing the entire lakes. Dissolved 

microcystins (dMCs, in μg/L) were measured by 96 wells filled for enzyme-linked 

immunosorbent assays. Cell-bound microcystins (cMCs, in mg/g dry weight) were 

extracted with 90% (v/v) aqueous methanol, and extracts have seeped through Sep Pak 

C18 cartridges. Finally, cell-bound MCs were eluted in solutions with 1 mL 50% (v/v) 
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chromatographic pure methanol (Thermo Fisher Scientific, Waltham, MA, USA) and 

stored at −20 °C for HPLC analysis. The details of cell counting and MCs 

measurements are available in the study of Hu et al. (2016) and Wu et al. (2014). 

 

2.2 Model development 

   A Bayesian modelling framework was developed to link environmental factors, 

phytoplankton-related biomass, and MCs concentrations in the across-lake dataset. The 

steps of model development were summarized in Fig. 1.  

 

2.2.1 LASSO regression   

A regression model with the least absolute shrinkage and selection operator 

(LASSO) was used to build empirical regressions for developing the conceptual model 

of the Bayesian network (Tibshirani, 1996). Given a linear regression with predictor 

variable xi and response variable yi, the LASSO solves the l1-penalized regression 

problem of finding 𝛽 = {𝛽𝑗} to minimize the formula as follows: 

∑ (𝑦𝑖 − 𝛽0 − 𝒙𝑖

′
𝜷)2 + 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1

𝑛
𝑖=1            (1) 

where 𝛽0 and 𝜷 are the regression coefficients, and p corresponds to the number of 

covariates in the model. LASSO identifies parsimonious predictive models by gradually 

shrinking the absolute value of regression coefficients so that the sum of all coefficients 

is less than a prespecified threshold  (∑ |𝛽𝑗|𝑝
𝑗=1 ≤ 𝑠) (Yuan et al., 201)). In LASSO 

regression, shrinkage and variable selection are achieved simultaneously because the 

coefficients are linearly shrunk to exactly zero, thereby avoiding overestimation of 
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variables. Given collinear variables and limited observations for MCs, concepts of 

parameter shrinkage by penalized estimation can be used to fit interpretable models 

with reliable predictions (Dahlgren et al., 2010; Hooten and Hobbs, 2015).  

All physical-chemical (WT, EC, SD, DO, pH, WS, TN, DIN, TP, DIP, TN:TP, and 

DIN:TP) and biological (phytoplankton-related) variables were log-transformed before 

further analyze. Explanatory variables in LASSO regression were all standardized with 

zero as mean value and one as standard deviation. Given that λ controls the amount of 

shrinkage induced, different values of λ produced various models. The explanatory 

variables contributing to the model decrease with the increase in the value of λ. This 

study used a 10-fold cross-validation procedure to calculate the standard error of models 

along the gradient of λ and selected the value of λ based on the “one-standard-error” 

rule (Breiman et al., 198)). The “glmnet” package in the R library was used to 

implement LASSO regression (Friedman et al., 2010).  

 

2.2.2 Bayesian network  

Based on the results of LASSO, three following regressions can be linked together 

as a directed acyclic diagram (DAG) of the Bayesian network (BN) model (Fig. 2a). To 

deal with continuous variables, the initial DAG model was revised to connect data and 

unknow parameters (Fig. 2b). The first model was a regression for predicting 

Microcystis biomass, where WT, TP, DIN, SD, and pH were used as predictors. The 

second model was for predicting cell-bound MCs concentrations using the biomass of 

Microcystis and environmental variables including WT, DIN, and DIP. The third model 
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was for predicting dissolved MCs using cell-bound MCs concentrations and 

environmental variables including pH, WS, and TN. All these regression models were 

briefly summarized. 

 

(1) The Microcystis biomass model 

The Microcystis biomass model can be written as follow:  

log(𝐵𝑀)  =  𝛽0
𝑐 + 𝛽1

𝑐 log(𝑆𝐷) + 𝛽2
𝑐 log(𝑇𝑃) + 𝛽3

𝑐 log(𝑊𝑇) + 𝛽4
𝑐 log(𝐷𝐼𝑁) +

𝛽5
𝑐 log(𝑝𝐻) + 𝜀𝑐.                                                    (2) 

This model can be replaced with the probability distribution of log(𝐵𝑀), and that is 

log(BM) ~ N (𝜇𝑀, 𝜎𝑀
2 )                                                (3) 

𝜇𝑀 =  𝛽0
𝑐 + 𝛽1

𝑐 log(𝑆𝐷) + 𝛽2
𝑐 log(𝑇𝑃) + 𝛽3

𝑐 log(𝑊𝑇) + 𝛽4
𝑐                  ()) 

 

(2) The Cell-bound MCs model 

The cell-bound MCs model can be expressed as follow:  

log(𝑐𝑀𝐶𝑠)  =  𝛽0
𝑑 + 𝛽1

𝑑 log(𝑊𝑇) + 𝛽2
𝑑 log(𝐷𝐼𝑁) + 𝛽3

𝑑 log(𝐷𝐼𝑃) + 𝛽4
𝑑𝜇𝑀 +  𝜀𝑑 (5) 

This model can be changed with the probability distribution of log(cMCs), and that is 

log(cMCs) ~ N (𝜇𝑐𝑀𝐶𝑠, 𝜎𝑐
2)                                             (6) 

𝜇𝑐  = 𝛽0
𝑑 + 𝛽1

𝑑 log(𝑊𝑇) + 𝛽2
𝑑 log(𝐷𝐼𝑁) + 𝛽3

𝑑 log(𝐷𝐼𝑃) + 𝛽4
𝑑𝜇𝑀              (7) 

 

(3) The Dissolved MCs model 

The dissolved MCs model can be listed as follow: 

log(𝑑𝑀𝐶𝑠)  =  𝛽0
𝑒 + 𝛽1

𝑒 log(𝑝𝐻) + 𝛽2
𝑒 log(𝑊𝑆) + 𝛽3

𝑒 log(𝑇𝑁) + 𝛽4
𝑒𝜇𝑐 + 𝜀𝑒    (8) 
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This model can be revised with the probability distribution of log(𝑑𝑀𝐶𝑠), and that is 

log(dMCs) ~ N (𝜇𝑑, 𝜎𝑑
2)                                               (9) 

𝜇𝑑  = 𝛽0
𝑒 + 𝛽1

𝑒 log(𝑝𝐻) + 𝛽2
𝑒 log(𝑊𝑆)+ 𝛽3

𝑒 log(𝑇𝑁) + 𝛽4
𝑒𝜇𝑐                (10) 

 

2.2.3 Gibbs sampler 

Once these empirical models are established, they can be linked to form the joint 

probabilistic distribution of all parameters. The purpose of our Bayesian approach is to 

replace the conditional probability tables in traditional BN with a set of conditional 

probability distributions (Qian and Miltner, 2015). Estimating all unknown parameters 

result in the following likelihood function:  

L(log(𝐵𝑀) , log(𝑐𝑀𝐶𝑠) , log(𝑑𝑀𝐶𝑠) |𝜃)

=    
1

(2𝜋𝜎𝑀
2 )

1
2

𝑒
−

(𝜇𝑀 − 𝛽0
𝑐−𝛽1

𝑐 log(𝑆𝐷)−𝛽2
𝑐 log(𝑇𝑃)−𝛽3

𝑐 log(𝑊𝑇) −𝛽4
𝑐 log(𝐷𝐼𝑁)−𝛽5

𝑐 log(𝑝𝐻))

2𝜋𝜎𝑀
2

×   
1

(2𝜋𝜎𝑐
2)

1
2

𝑒
−

(𝜇𝑐−𝛽0
𝑑−𝛽1

𝑑 𝑙𝑜𝑔(𝑊𝑇)−𝛽2
𝑑 𝑙𝑜𝑔(𝐷𝐼𝑁)−𝛽3

𝑑 𝑙𝑜𝑔(𝐷𝐼𝑃) −𝛽4
𝑑𝜇𝑀 )

2𝜋𝜎𝑐
2

×
1

(2𝜋𝜎𝑑
2)

1
2

𝑒
−

(𝜇𝑑 −𝛽0
𝑒−𝛽1

𝑒 𝑙𝑜𝑔(𝑝𝐻)−𝛽2
𝑒 𝑙𝑜𝑔(𝑊𝑆)−𝛽3

𝑒 𝑙𝑜𝑔(𝑇𝑁) −𝛽4
𝑒𝜇𝑐 )

2𝜋𝜎𝐶
2

 

                                                              (11) 

where 𝜃  represents a set of regression parameters. All model coefficients were 

defined in Equations 2, 5, and 8. Model coefficients were estimated simultaneously by 

the Gibbs sampler which was implemented using the Bayesian inference software 

JAGS (Plummer, 2003; Qian, 2016). 

 

2.2.4 Monte Carlo simulations 
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Random variates as the model inputs (e.g., SD, TP, WT, DIN, DIP, TN, pH, and 

WS) were considered to follow log-transformation normal distributions. Based on the 

Pearson correlation coefficients, two nutrient groups (TP and DIP, TN and DIN) were 

assumed to follow the bivariate normal distributions. After the joint distribution of all 

coefficients was estimated by the Gibbs sampler, the statistical inference could 

subsequently be made through Monte Carlo simulations (Whitehead and Young, 1979). 

According to the management targets of Microcystis biomass and MCs concentrations 

(Table 1), the conditional distributions of TN and TP that were associated with 

acceptable low risks of toxic cyanobacterial blooms and be derived.   

 

2.2.5 Bayesian updating 

Using the Bayesian updating method, the across-lake model was updated using 

data from specific lakes. In this present work, the estimated distributions of the 

coefficient from the across-lake model were applied as the prior distributions of 

coefficients from a lake-specific model. Qian and Reckhow (2007) suggested that 

improvement could be achieved by the Bayesian updating process if a priori parameter 

distribution across similarly sampling sites is known. Those updated models would be 

lake-specific and provide an insight into water quality management for local 

government. 

 

2.3 Statistical analysis  

   To address the high spatiotemporal variation of dissolved and cell-bound MCs 
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concentrations, this study identified four components of the variation by intercept-only 

model: (1) inter-lake variation or variation in concentrations between different lakes; 

(2) inter-site within-lake variation or variation in concentrations collected at different 

sites in the same lake; (3) intra-year variation or variation in concentrations between 

different sampling months; and ()) residual error which includes variation due to 

measurement error and others.  

   The concentration of MCs in response to different forms of nutrient was assessed 

using generalized additive models (GAM). To examine the potential interactions 

between nitrogen and phosphorus, GAM models were applied using the combination 

of TN and TP, or DIN and DIP as two continuous explanatory variables: 

log (𝑀𝐶𝑖𝑗 + 1) =  𝛼𝑗 + 𝑆𝑗(Nitrogen𝑖,   Phosphorus𝑖) + 𝜀𝑖𝑗,   𝜀𝑖𝑗~𝑁(0, 𝜎2)     (12) 

where i and j are indices for the observations (monthly MCs and nutrient concentrations) 

and the studied lakes, respectively. The smoothing function (  𝑆𝑗 ) is the covariates 

between nitrogen and phosphorus. For two forms of MCs, the contour plots were used 

to visualize the function 𝑆𝑗 . The mmgcvm package was used to implement GAM by 

optimizing the amount of cubic spline smoothing (Wood, 2001).  

 

3. Results 

3.1 Spatiotemporal variation of MC and development of the BN conceptual model 

This study identified four components by the intercept-only model to compare the 

spatiotemporal variation in MCs distribution (Table 2). Considering the cell-bound 

MCs, the standard deviation from sampling month variation was 0.249, accounting for 
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the largest proportion of variance (75.6%). The standard deviations from inter- and 

intra-lake variations were 0.09 and 0.057, which accounted for 9.8% and 3.6% of the 

total variation in cell-bound MCs, respectively. Change in cell-bound MCs would be 

expected to exhibit regularly temporal trends due to that variation from inter-lake was 

likely stronger than that from intra-lake. By contrast, the standard deviation from 

sampling month variation was 0.049, which took up 38% of the total variation in 

dissolved MCs. The standard deviations of inter- and intra-lake variations accounted 

for the remaining 14.6% and 9.2% of the dissolved MCs variation, respectively. The 

residual variation implied uncertainty in predicting dissolved MCs (38.2%), which was 

considerably larger than that in predicting cell-bound MCs (11%).   

LASSO regression was applied in exploring the relationship among a subset of 

abiotic and biotic variables and MCs concentrations to develop the conceptual linkage 

(Fig. S1). First, BM achieved higher predictive accuracy than other biological factors, 

including Chl-a, Bcya, and BMA. Utilizing cross-validation, the best model for predicting 

BM, balancing parsimony, and predictive accuracy was the group of environmental 

variables including pH, TP, WT, DIN, and SD (Table 3). Second, relationships between 

cell-bound MCs and environmental factors were tested under the condition of 

combining different biotic factors (Table 4). When the model selected the variables 

including BM, WT, DIN, and DIP, it achieved an accurate prediction of cell-bound MCs 

concentrations (MSPE = 0.037). Third, the best predictive model for dissolved MCs 

was achieved (MSPE = 0.109) with selected variables including cell-bound MCs, TN, 

pH, and WS. Based on the aforementioned results, a four-layer structure BN model was 
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constructed to incorporate different biotic and abiotic variables for predicting the risk 

of MCs. 

 

3.2 Effects of environmental and biological factors on MC concentrations 

The coefficients of the fitted joint models were presented in Tables S1–S3. When 

the variables are log-transformed, the slop represents a change in the response variable 

under per unit change in the predictor. For instance, the estimated 𝛽3
𝑐 was 0.56 (Table 

S1) which represented an approximately 0.56% increase in BM for a 1% increase in TP. 

When TP had a 1% increase, BM increased by 0.59%, 0.55%, and 0.54% in Lakes Taihu, 

Chaohu, and Dianchi, respectively. When TN had a 1% increase, dissolved MC 

concentrations increased by 0.24%, 0.16%, and 0.15% in Lakes Taihu, Chaohu, and 

Dianchi, respectively, which were reflected by the value of 𝛽3
𝑒 in Table S3.  

The effect of nutrients on MCs was considered to change via network structure 

(Table 5). Given the increase in P concentrations from the 25th to the 75th percentile, 

BM was predicted to increase by 91.8%, whereas cell-bound MCs and dissolved MCs 

concentrations decreased by 7.5% and 4.4%, respectively. When N concentrations 

increased from the 25th to the 75th percentile, the cell-bound MCs concentrations 

decreased from 0.312 to 0.276, whereas dissolved MCs increased from 0.676 to 0.713. 

The concentration of MCs in response to N and P was assessed using the GAM 

approach (Fig. 3). The model results suggested that MCs concentrations depended 

heavily on the interaction between TP and TN. More specifically, cell toxin quota was 

sensitive to the conditions of low DIN concentrations and high TN:TP ratios, whereas 
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the probability of dissolved MCs was higher at the increase of TN and SRP than that of 

TP. 

 

3.3 Evaluation of nutrient control targets 

Monte Carlo simulation was repeated until 10,000 TP and TN values were accepted. 

Given the condition of BM < 0.6 mg/L and MCs < 0.) μg/L, a histogram of the 

discrete distribution indicated that the means of TN and TP in conditional distribution 

were lower than those in marginal distribution, although both had similar variance (Fig. 

4). If this calculated conditional distribution can be considered as the “reference” 

distribution, the U.S. EPA’s recommendation can be set as the nutrient criterion at the 

75th percentile (U.S. EPA, 2000). The criterion was 0.16 mg/L for TP (marginal: 0.24 

mg/L) and 3.12 mg/L for TN (marginal: 3.78 mg/L), respectively. Alternatively, the 

U.S. EPA also recommends that the 25th percentile in all sampling data can be accepted 

as the nutrient criterion when “reference” distributions are unavailable. The TN 

criterion in our data had a 25th percentile of 1.8 mg/L, and the TP criterion had a 25th 

percentile of 0.1 mg/L. This threshold of TP is close to the empirical value in 

eutrophication management. However, the significant difference in the estimated values 

from a 75th percentile and a 25th percentile may largely be attributed to the large 

spatiotemporal variations in BM and MCs in the studied lakes. 

Furthermore, the goal of setting a single nutrient criterion for different bloom-

dominated lakes is likely impractical. After the process of Bayesian updating, those 

updated models could be used to evaluate lake-specific nutrient thresholds by achieving 
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the management targets (e.g., BM < 0.6 mg/L or MCs < 1.0 μg/L in Fig. 5). Despite a 

considerable interaction that exists, the models responded to changes of P more rapidly 

than changes of N, and they predicted the high probabilities of achieving water quality 

objectives at low nutrients concentrations. However, Microcystis biomass or MCs 

concentrations in the three lakes differed in their response to nutrients. The probability 

of meeting the BM objectives of 0.6 mg/L at the target TP concentration (0.10 mg/L) in 

Lake Dianchi was approximately 0.3, while the probabilities in Lakes Taihu and 

Chaohu were nearly close to 1.0 (Fig. 5a). At a stricter TP target (0.05 mg/L), the 

probability in Lake Dianchi increased to 0.6. On the other hand, the probability of 

meeting the MCs objectives at the target TN concentration in Lake Dianchi was higher 

than those in the other two lakes. When the estimated TN target was set to 1.8 mg/L, 

the probabilities of meeting the provisional guidelines of WHO (MCs < 1.0 μg/L) in 

three studied lakes were above 0.8 (Fig. 5b). 

Nutrients in water are not the only key factors influencing the proliferation of 

Microcystis and the production of MCs. Thus, other factors, such as water temperature, 

were considered to achieve the desired water quality goals. Updated model coefficients 

were used to estimate the probability of BM < 1.5 mg/L and MCs < 1.0 μg/L as a 

function of both TN or TP and WT, with all other variables taken their respective 

observed means (Fig. 6). Simulated scenarios of nutrient enrichment and temperature 

warming suggested that toxic cyanobacterial blooms may be more sensitive to 

synergistic effects rather than individual effects alone. For instance, the effects of 

interactions between TP and WT were evident when WT exceeded 20 °C. On the 
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contrary, the effect of TN will be counteracted by the fluctuations of water temperature 

when separating the joint effects of different forms of N and P. 

 

4. Discussion 

4.1 The potential factors influencing the spatiotemporal variations in MCs 

The key challenge for the risk management of MCs is the large spatiotemporal 

variation, lack of sufficient field measurement, and complicated relationships between 

different forms of nutrients. From the results of the intercept-only model, most 

variations in observed MCs were quite dependent upon the temporal sampling scale. 

Thus, seasonal variation in environmental conditions should be considered when setting 

the targets of nutrient control (Tong et al., 2019). Variations from inter-lake were likely 

stronger than those from different sites inside the lake, which indicated the importance 

of the regional effect. However, the variations from inter-lake in predicting dissolved 

MCs were likely stronger than those in predicting intracellular MCs. This was in line 

with the previous study in the Midwestern US that found a positive association between 

MCs and lake latitude (Graham et al., 200)).  

Insights gained from linkage among multiple variables could be sharpened by 

considering the simultaneous effects of biotic and abiotic conditions. The LASSO 

regression may provide more accurate predictions of MCs concentrations under the 

conditions of collinearity (Yuan et al., 201)). When all environmental variables were 

considered together, the total biomass of Microcystis was the best biological variable 

for predicting toxin quota; thereby implying that all detected MC-producing genotypes 
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were likely to belong to the cyanobacterium Microcystis (Ye et al., 2009). In addition，

the biomass of toxic Microcystis aeruginosa did not achieve the same prediction 

accuracy as the total Microcystis biomass. It is reasonable to infer that other 

morphospecies such as Microcystis viridis might also produce considerable amounts of 

MCs (Shan et al., 2019a; Wu et al., 2017). 

Because of multiple sampling sites within lakes, causal relationships between 

environmental drivers and MCs showed stronger evidence than analyses of a single lake 

or a snapshot sampling. The biomass of Microcystis was found to be positively 

correlated with TP and negatively with DIN, buttressing previous findings in San 

Francisco Bay by Lehman et al. (2013). On the other hand, the trends from multivariate 

analysis also reinforced that the tradeoff between the costs and benefits of MCs 

production as N-rich secondary metabolites reduced disproportionately under N-

limitation (Horst et al., 201); Monchamp et al., 2014). In agreement with results from 

the analysis of the US continental-scale data, TN contributed a higher proportion of the 

variation in MCs in water columns than TP (Beaver et al., 201); Yuan et al., 2017). 

There is, however, strong evidence that the relationships between MCs and nutrients 

were more complex rather than a hypothesized linear response due to the variations in 

strain within species (Shan et al., 2019a).  

 

4.2 Rationality and limitations of the proposed framework  

It is usually difficult to imitate the dynamics of MCs in situ by mathematical 

equations, because of their complicated fate in the aquatic environment (Wörmer et al., 
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2011). In this study, a Bayesian modelling framework that accommodates rigorous 

uncertainty analysis was proposed to quantify the risk of MCs. The iterative nature of 

the Bayesian theorem can incorporate existing knowledge and update the joint 

distribution as new information, thereby developing a site-specific model using a local 

dataset (Arhonditsis et al., 2008; Cha et al., 2014). Our proposed model was developed 

based on the across-lake dataset and therefore achieve the necessary statistical purpose 

by increasing the sample size (Malve and Qian, 2006). Multi-lake data are incorporated 

into empirical models to broaden the sample size and stabilize the inference, while the 

resulting model may not be very relevant to anyone lake.  

Biotic and abiotic variables are constantly numeric, and discretizing continuous 

variables into a finite set of states is a key step in implementing the Bayesian network. 

In previous studies, the discretization of a continuous variable has relied on expert 

experience, recognized thresholds, and frequency distribution of response nodes 

(Lucena-Moya et al., 2015). Because the conclusions may rely on the choice of 

discretization method, Nojavan et al. (2017) suggested that the discretization of 

continuous variables should be avoided if possible. This study took advantage of a 

series of conditional probability distributions to replace the conditional probability 

tables, to avoid discretizing continuous variables (Qian and Miltner, 2015).  

For heuristic purposes, this study established a Bayesian network that represents 

the hypothesized causal connections among environmental factors, biological 

biomasses, and MCs concentrations. However, this approach has a limitation that 

empirical regression allows variables to be modelled with linear relationships. The 
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Bayesian inferential method provides an entire predictive distribution for the response 

variables over which inference can be made instead of using a point estimate, such as 

the mean value (Stow et al, 2006). In addition, a stereotype of the method without 

considering lake-specific environmental gradients could lead to some problems (Taranu 

et al., 2012), because the structure of the DAG model is a dominant source of 

uncertainty. Hence, the repetition of the building process in other lakes may be 

preferable to the indiscriminate use of it.  

 

4.3 Implications for future research and water quality management 

Water pollution in China poses a huge threat to the environment and human health 

(Yang et al., 2013). The Chinese government has invested a large amount of money on 

it. For example, ~100 billion RMB (~US $1) billion) has been invested in Lake Taihu 

ecosystem restoration. However, nutrient concentrations and cyanobacterial blooms 

have not been mitigated as quickly as expected (Qin et al., 2019). Long-term nutrient 

trends confirmed that TP concentrations were relatively stable or has possibly increased 

over the last decade, despite the decline of TN concentrations (Xu et al., 2017). 

Considering the long hydraulic residence time in three studied lakes, a legacy of the 

internal loading, especially P, is a formidable problem for the rapid recovery of water 

quality (Shan et al., 2014). In general, TP concentration was the principal force driving 

cyanobacteria’s contribution to total algal biomass (Wagner and Adrian, 2009). Our 

results reinforced the viewpoint that P is the main element regulating Microcystis 

biomass, whereas N may influence the overall toxicity of blooms. We recommend the 

http://xueshu.baidu.com/s?wd=paperuri%3A%283526719ac74fbd151ad6b070700ca399%29&filter=sc_long_sign&sc_ks_para=q%3DLimitations%20of%20diagnostic%20criteria%20and%20assessment%20instruments%20for%20mental%20disorders.%20Implications%20for%20research%20and%20policy&sc_us=2009096363254522252&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
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importance of dual N and P reduction in the future management of toxic cyanobacterial 

blooms. 

Furthermore, prudent sustainable management of MCs will require the 

consideration of the background of limnologic conditions and effect of increasing water 

temperature, due to that the efforts of nutrient reductions in controlling toxic 

cyanobacterial blooms may be counteracted by the effect of increasing temperature 

(Lürling et al., 2017; Richardson et al., 2018). This partly conforms to the field 

observations in Grand Lake St. Marys, western Ohio, U.S. (Walls et al., 2018) and field 

survey in 137 European lakes (Mantzouki et al., 2018). Monte Carlo simulation 

indicated that the highly hazardous risk of Microcystis and microcystins were controlled 

by achieving the TN and TP thresholds at below 0.8 mg/L and 0.05 mg/L, which were 

previously estimated by a nutrient dilution bioassay in Lake Taihu (Xu et al., 2014). 

Nevertheless, managing all lakes to a single TN and TP concentration is infeasible. Due 

to differences between lake ecoregions in China, effective management strategies 

require a good understanding of the influence of nutrients in different regions (Liang et 

al., 2019).  

In contrast to the effect of TN on MCs, TP thresholds under a range of possible 

windows exhibited significant differences between Lake Dianchi and the other two 

lakes. The simulation results indicated that it was important to implement stricter 

control objectives of TP in Lake Dianchi. In comparison, the low concentrations of 

dissolved MCs in Lake Dianchi might be attributed to the photodegradation under high 

UV radiation; however, toxigenic genera could form the MC-protein complexes that 
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prevent proteolytic degradation within the cell (Melssner et al., 2013; Su et al., 2019). 

Our results suggested controlling toxic cyanobacterial blooms in lakes within low 

latitudes should strictly control nutrients and focus on the cell quota instead of 

extracellular toxin in water columns alone. 

 

5. Conclusions 

In this study, a Bayesian modelling framework incorporating biotic and abiotic 

factors was proposed to predict the risk of MCs. Using data from three bloom-

dominated lakes in China, our approach can aid in understanding the causal link 

between key factors and MCs concentrations, by which researchers and decision-

makers can partly infer and predict future MCs scenarios. The results demonstrate the 

estimated TP thresholds are crucial for reducing the biomass of Microcystis. More 

importantly, the estimated TN thresholds for controlling cyanotoxin can be 

counteracted by the effect of increasing temperature. 
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Fig. 1. The logic of the modelling framework used to predict Microcystis and 

microcystin risks based on across-lake and lake-specific dataset. 

 

Fig. 2. (a) Conceptual model that links environmental and biological factors to MC 

concentration. (b) When observation data are available, the initial nodes can be divided 

into predictor variables (observed accurately) and response variables (observed with 

errors). 

 

Fig. 3. The contour lines provided a visualization of the GAM with relationships 

between nutrients and MCs concentrations. Filled circles: observed values of different 

forms of nutrients; Contours: predicted mean cell-bound MCs (Fig. 3a and b) and 

dissolved MCs (Fig. 3c and d) by the GAM associated with each combination of N and 

P. 

 

Fig. 4. Marginal distribution (hollow histograms) of (a) Log TP and (b) Log TN are 

compared with their conditional distribution - the distribution corresponding to BM < 

0.6 mg/L and MCs < 0.) μg/L (grey histograms). The 75th percentiles of the distribution 

are shown as a black solid line for marginal distribution and grey dashed line for 

conditional distribution. The 25th percentiles of the distribution of all data are shown 

as a black dashed line. 

 

Fig. 5. Probability of achieving the low risks of Microcystis biomass and microcystin 
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concentration in different lakes over a range of TP and TN concentrations using updated 

lake-specific models. The solid line represents the results of the across-lake model. The 

orange solid and dash lines represent the potential TN or TP thresholds. 

 

Fig. 6. Predicted probabilities of Microcystis biomass < 1.5 mg/L and MC concentration 

< 1.0 μg/L are shown as a function of water temperature and (a) TP or (b) TN. 
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Building empirical models linking 

environmental, biological factors with 

MCs

(LASSO regression) 

The across-lake 

dataset

Developing a  conceptual model and 

modifying response variables with 

unknown parameters

(Bayesian network) 

Estimating model coefficients of the joint 

probabilistic distribution

(Gibbs sampler) 

Assuming the normal distributions of 

model input variables  

(SD, TP, WT, DIN, DIP, TN, pH, and WS) 

Three lake-

specific datasets

Calculating the biomass of Microcystis, 

and the concentrations of MCs

(Monte Carlo simulations) 

Updating the across-lake model by data 

from three specific lakes

(Bayesian updating) 

Deriving the conditional distribution of 

nutrient concentrations 

(Nutrient control targets) 
 

Fig. 1. The logic of the modelling framework used to predict Microcystis and microcystin risks based on across-lake and lake-specific dataset. 
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Fig. 2. (a) Conceptual model that links environmental and biological factors to microcystin concentration. (b) When observation data are available, the initial 

nodes can be divided into predictor variables (observed accurately) and response variables (observed with errors). 
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Fig. 3. Relationships between nutrients and MCs concentrations. Filled circles: observed 2 

values of TN, TP, DIN, and DIP; Contours: predicted mean cell-bound MCs (Fig. )a and b) 3 

and dissolved MCs (Fig. )c and d) associated with each combination of N and P. The contour 4 

plot shows two variables smoothly fitted by general addictive models. 5 
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 7 

(a)

TP25% = 0.10 mg/L

TP75% = 0.24 mg/L

TP75% = 0.16 mg/L

 

(b)

TN25% = 1.80 mg/L

TN75% = 3.78 mg/L

TN75% = 3.12 mg/L

  8 

Fig. 4. Marginal distribution (hollow histograms) of (a) LogTP and (b) LogTN are compared 9 

with their conditional distribution - the distribution corresponding to BM < 0.6 mg/L and MCs 10 

< 0.) μg/L (grey histograms). The 75th percentiles of the distribution are shown as black solid 11 

line for marginal distribution and grey dashed line for conditional distribution. The 25th 12 

percentiles of the distribution of all data are shown as black dashed line.  13 
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Fig.5. Probability of achieving the low risks of Microcystis biomass and microcystin 17 

concentration in different lakes over a range of TP and TN concentrations using updated lake-18 

specific models. Solid line represents the results from the across-lake model. The orange bar 19 

represents the critical nutrient thresholds for TP (0.10 mg/L) and TN (1.80 mg/L). 20 
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Fig. 6. Predicted probabilities of Microcystis biomass < 1.5 mg/L and MC concentration < 1.0 25 

μg/L are shown as a function of water temperature (WT) and (a) TP or (b) TN. 26 
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Table 1 Thresholds for Microcystis biomass and microcystin in the Alert Levels 29 

Framework 30 

 31 

  32 

Node Definition Units Thresholds Level References 

MCs Microcystin concentrations μg/L MCs<0.4 

0.)≤MCs<1.0 

MCs≥1.0 

 

Alert Level 1 

Alert Level 2 

 

(Falconer et al., 1994) 

BM Biomass of total Microcystis 

(Note:1000 cell/mL = 0.3 mg/L) 

mg/L BM<0.6 

0.6≤BM<1.5 

BM≥1.5 

 

Alert Level 1 

 

(Izydorczyk et al., 2009) 

Alert Level 2  
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Table 2 Observed variation in microcystin concentrations were partitioned into 33 

four different components by mintercept-onlym models. 34 

Response 

variables 

Different component 

of variation 

Standard 

Deviation 

Variation Proportion in 

total variation 

Cell-bound 

microcystin 

Lake 0.090 0.008 9.8% 

Site/Lake 0.057 0.003 3.6% 

Month 0.249 0.062 75.6% 

Residual 0.096 0.009 11.0% 

Dissolved 

microcystin 

Lake 0.137 0.0187 14.6% 

Site/Lake 0.108 0.0117  9.2% 

Month 0.220 0.0486 38.0% 

Residual 0.221 0.0488 38.2% 

 35 

 36 

 37 
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Table 3 Results of applying the least absolute shrinkage and selection operator techniques to explore the relationship between a subset of 38 

environmental variables and different levels of biological factors or microcystin concentrations. All water quality variables were log (x) 39 

transformed, and standardized to a mean value of zero and a standard deviation of 1. Entries for the predictors are regression coefficients for the 40 

variables included in the model. The value of the cross-validation mean squared prediction error (MSPE) and its standard deviation reported for 41 

each of models. R2 is the coefficient of determination for a model containing all of the candidate predictors. 42 

Model Response 

variables 

Explanatory variables Cross-val. 

MSPE 

R2 

 WT SD TN TP DIN DIP pH DO WS 

1 Chl a 0.08) -0.019  0.267 -0.026  0.383 0.01)  0.589±0.032 0.)20 

  2  Bcya 0.095   0.08) -0.057  0.35)  -0.053 0.593±0.02) 0.3)2 

    3 BM 0.115 -0.006  0.156 -0.0)0  0.297   0.233±0.01) 0.518 

) BMA 0.011   0.033   0.02)   0.089±0.007 0.09) 

5 cMCs 0.152    -0.018 -0.009 0.01)   0.0)5±0.005 0.)92 

6 dMCs 0.073 0.022 0.037    -0.025  -0.030 0.110±0.012 0.159 

 43 

 44 
 45 
 46 
 47 
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Table 4 Results of combining different biological factors with environmental factors, predicting concentrations of cell-bound microcystin in 49 

three large-shallow lakes. In each row, the MSPE and R2 were calculated according to aforementioned methods, and the coefficients are linearly 50 

shrunk to exactly zero were excluded from models. The models represent the different biological biomass as explanatory variables in the order, 51 

including Chl-a, Bcya, BM and BMA, respectively. 52 

Model Biological 

variables 

Environmental variables Cross-val. 

MSPE 

R2 

WT SD TN TP DIN DIP pH DO WS  

1  0.152    -0.018 -0.009 0.01)   0.0))±0.00) 0.)92 

2 0.012 0.162  0.008  -0.028 -0.021 0.01)   0.0)2±0.00) 0.532 

3 0.063 0.1)8    -0.018 -0.025    0.037±0.00) 0.576 

) 0.030 0.137    -0.003 -0.00) 0.015   0.0))±0.005 0.501 
 53 
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Table 5 The mean of Microcystis biomass, cell-bound and dissolved microcystin in 54 

response to different quantile of nitrogen and phosphorus in studied lakes. 55 

Nutrients Quantile Biomass of 

Microcystis 

(mg/L) 

Cell-bound 

microcystin 

(mg/g DW) 

Dissolved 

microcystin 

(μg/L) 

Phophorus 5% 3.)72 0.328 0.7)5 

 25%  5.))6 0.306 0.716 

50% 7.)7) 0.292 0.698 

75% 10.))6 0.283 0.685 

95% 17.69) 0.271 0.669 

Nitrogen 5% 13.9)5 0.362 0.662 

25% 9.737 0.312 0.676 

50% 8.018 0.288 0.689 

75% 7.167 0.276 0.713 

95% 6.2)9 0.261 0.793 
 56 

57 
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Supplementary information 58 
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 59 
Fig. S1. Profiles of regression coefficient values for different explanatory variables and 60 

different values of log λ during LASSO regression for predicting the value of (a) total 61 

Microcystis biomass, BM, (b) cell-bound MCs, cMCs, and (c) dissolved MCs, dMCs. 62 
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 63 

Table S1 The estimated biomass of Microcystis (BM) in Equation (2). 64 

Coef cBN estimates Bayesian updating — Taihu Bayesian updating — Chaohu Bayesian updating — Dianchi 

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

𝛽0
𝑐  -6.65 0.32 -7.28 -6.02 -6.25 0.38 -7 -5.5 -6.33 0.39 -7.09 -5.57 -7.12 0.39 -7.92 -6.36 

𝛽1
𝑐  -0.1) 0.0) -0.22 -0.05 -0.1 0.05 -0.19 0 -0.18 0.05 -0.28 -0.07 -0.1) 0.05 -0.2) -0.0) 

𝛽2
𝑐  0.83 0.0) 0.7) 0.9 0.77 0.05 0.67 0.87 0.86 0.05 0.76 0.95 0.83 0.05 0.73 0.92 

𝛽3
𝑐  0.56 0.0) 0.)9 0.6) 0.59 0.05 0.5 0.69 0.55 0.05 0.)6 0.65 0.5) 0.06 0.)3 0.6) 

𝛽4
𝑐  -0.27 0.03 -0.32 -0.22 -0.26 0.03 -0.33 -0.2 -0.28 0.03 -0.3) -0.21 -0.25 0.03 -0.32 -0.19 

𝛽5
𝑐  8.11 0.35 7.)3 8.79 7.52 0.)2 6.68 8.3) 7.86 0.)2 7.01 8.66 8.71 0.)3 7.86 9.56 

𝜎𝐵𝑀  0.)8 0.01 0.)6 0.)9 0.)9 0.01 0.)8 0.51 0.)7 0.01 0.)5 0.)9 0.)6 0.01 0.)) 0.)8 

 65 
  66 
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 67 

Table S2 The estimated concentration of cell-bound microcystins (cMCs) in Equation (5). 68 

Coef cBN estimates Bayesian updating — Taihu Bayesian updating — Chaohu Bayesian updating — Dianchi 

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

𝛽0
𝑑 -1.)6 0.06 -1.59 -1.3) -1.)1 0.07 -1.56 -1.27 -1.)2 0.07 -1.57 -1.28 -1.59 0.08 -1.75 -1.)) 

𝛽1
𝑑 0.52 0.0) 0.)) 0.6 0.5 0.0) 0.)1 0.59 0.51 0.0) 0.)3 0.60 0.55 0.05 0.)5 0.65 

𝛽2
𝑑 -0.08 0.03 -0.1) -0.03 -0.08 0.0) -0.15 -0.01 -0.1 0.03 -0.16 -0.0) -0.09 0.0) -0.16 -0.02 

𝛽3
𝑑 -0.12 0.03 -0.18 -0.07 -0.12 0.03 -0.19 -0.05 -0.09 0.03 -0.15 -0.03 -0.17 0.03 -0.23 -0.1 

𝛽4
𝑑 0.11 0.02 0.07 0.15 0.1 0.02 0.06 0.15 0.12 0.02 0.08 0.16 0.11 0.02 0.07 0.16 

𝜎𝑐𝑀𝐶𝑠  0.18 0.01 0.17 0.2 0.19 0.01 0.17 0.2 0.17 0.01 0.15 0.18 0.18 0.01 0.16 0.2 

 69 
  70 
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 71 

Table S3 The estimated concentration of dissolved microcystins (dMCs) in Equation (8). 72 

Coef cBN estimates Bayesian updating — Taihu Bayesian updating — Chaohu Bayesian updating — Dianchi 

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

𝛽0
𝑒 3.15 0.66 1.85 ).)6 2.71 0.85 0.99 ).33 ).03 0.99 2.08 5.9) 3.3 0.76 1.87 ).83 

𝛽1
𝑒 -3.28 0.68 -).61 -1.9 -2.77 0.88 -).)3 -0.99 -).13 1.02 -6.1) -2.12 -3.)3 0.77 -).97 -1.95 

𝛽2
𝑒 -0.16 0.0) -0.23 -0.09 -0.12 0.0) -0.2 -0.0) -0.22 0.05 -0.32 -0.13 -0.17 0.05 -0.26 -0.09 

𝛽3
𝑒 0.19 0.06 0.07 0.32 0.2) 0.07 0.11 0.39 0.16 0.08 -0.01 0.32 0.15 0.08 -0.01 0.31 

𝛽4
𝑒 0.56 0.09 0.38 0.7) 0.62 0.1 0.)2 0.8 0.58 0.1 0.38 0.78 0.59 0.11 0.38 0.8 

𝜎𝑑𝑀𝐶𝑠  0.32 0.01 0.3 0.3) 0.3 0.01 0.28 0.33 0.32 0.02 0.29 0.35 0.31 0.02 0.28 0.3) 

 73 
 74 


