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Abstract  

Research into how the brain processes temporal structure has gained increasing 

attention, yet there is remarkably little understanding of how temporal and 

non-temporal structures are processed simultaneously. Using event-related potentials 

(ERPs), we examined how the brain responds to temporal (metric) and non-temporal 

(harmonic) structures in music simultaneously, and whether these processes are 

impacted by musical expertise. Fifteen musicians and 15 nonmusicians rated the 

degree of completeness of musical sequences with or without violations in metric or 

harmonic structures. In the single violation conditions, the ERP results showed that 

both musicians and nonmusicians exhibited an early right anterior negativity (ERAN) 

as well as an N5 to temporal violations (“when”), and only an N5-like response to 

non-temporal violations (“what”) , which were consistent with the behavioral results. 

In the double violation condition, however, only the ERP results, but not the 

behavioral results, revealed a significant interaction between temporal and 

non-temporal violations at a later integrative stage, as manifested by an enlarged N5 

effect compared to the single violation conditions. These findings provide the first 

evidence that the human brain uses different neural mechanisms in processing metric 

and harmonic structures in music, which may shed light on how the brain generates 

predictions for “what” and “when” events in the natural environment.  

Keywords: what and when information, harmonic structure, metric structure, 

ERAN, N5, musical expertise
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1 Introduction  

Research into how the brain processes temporal structure has gained increasing 

attention (Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015), yet there is 

remarkably little understanding of how temporal and non-temporal structures are 

processed simultaneously, especially when such structures are organized in nested 

ways. Dynamic attending theory, proposed by Jones (Jones, 1976; Jones & Boltz, 

1989), posits that attention becomes entrained to temporal events and this entrainment 

facilitates the processing of non-temporal events presented in phase with the temporal 

structure of auditory sequences. Although the theory has received some empirical 

support (e.g., Boltz, 1993; Jones, Johnston, & Puente, 2006; Jones, Moynihan, 

Mackenzie, & Puente, 2002; Prince, Schmuckler, & Thompson, 2009), evidence is 

lacking on how temporal and non-temporal events interact with each other in 

hierarchical sequences.  

Given its emphasis on hierarchically structured metric (when) and harmonic 

(what) structure, music provides a unique window into how the brain simultaneously 

processes temporal and non-temporal structures (Cuddy, Cohen, & Mewhort, 1981; 

Fitch, 2013; Koelsch, 2013; Prince, Thompson, & Schmuckler, 2009; Russo, 

Thompson, & Cuddy, 2015; Simon, 1972). In Western tonal music, metric structures 

are hierarchically organized based on strong and weak beats (Jones, 2009; Patel, 2008; 

Prince, Thompson, et al., 2009), while harmonic structures are organized based on the 

stability of notes or chords (Krumhansl, 1990). When harmonic and metric hierarchies 

are misaligned, they can be difficult to process (Jones, 1987; Jones & Boltz, 1989; 

Prince, Thompson, et al., 2009). However, little else is known about how these two 

structures are processed simultaneously.  

Behavioral studies have demonstrated that the processing of hierarchical 
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harmonic structures is enhanced by regular, non-hierarchical temporal structures such 

as expected isochronous temporal events (Tillmann & Lebrun-Guillaud, 2006) or 

symmetric temporal structure (Bigand, Madurell, Tillmann, & Pineau, 1999; Boltz, 

1989). Nevertheless, whether hierarchical temporal (metric) structures also facilitate 

the processing of hierarchical harmonic structures remains to be demonstrated. In one 

investigation, it was found that judgments of metric position were biased by tonal 

stability, but judgments of tonality were unaffected by metric position (Prince, 

Thompson, et al., 2009). However, this asymmetric influence could not reveal the 

exact relationship between metric and harmonic structural processing.  

In the present investigation, we used ERPs to examine how metric and harmonic 

structures in the same musical sequence are processed, with the aim of elucidating 

how the brain simultaneously processes when and what information in hierarchically 

organized sequences. To our knowledge, there have been no electrophysiological 

studies examining how metric and harmonic structures are simultaneously processed 

in the brain. Rather, previous research has focused either on harmonic syntactic 

structures (e.g., Koelsch & Jentschke, 2010; Koelsch, Jentschke, Sammler, & 

Mietchen, 2007; Steinbeis & Koelsch, 2008; Zhou, Liu, Jiang, Jiang, & Jiang, 2019) 

or on rhythmic syntactic structures (Sun, Liu, Zhou, & Jiang, 2018). When brain 

responses are examined for harmonic structure, it has been reported that out-of-key 

chords or notes elicit an ERAN and an N5 (indexing integration of expectancy or the 

processing of intra-musical meaning) in both musicians and nonmusicians (e.g., 

Koelsch & Jentschke, 2010; Koelsch et al., 2007; Steinbeis & Koelsch, 2008). 

However, when in-key chords were used in the harmonic irregular condition, no 

ERAN was observed (Poulin-Charronnat, Bigand, & Koelsch, 2006), which suggests 

that the ERAN effect is modulated by the perceived psychological distance between 
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the regular and irregular chords. Similarly, an N5-like effect has been observed when 

the scalp distribution of the N5 is modulated by task, i.e., shifting from the frontal 

distribution under an attended condition to the whole-scalp distribution under an 

unattended condition (Loui, Grent, Torpey, & Woldorff, 2005). When brain responses 

are examined for rhythmic structure, it has been reported that rhythmic syntactic 

violations elicit an early right anterior negativity (ERAN, indexing the processing of a 

musical expectancy violation) in musicians, but not in nonmusicians (Sun et al., 2018). 

Unlike those studies which examined either metric or harmonic regularity, our study 

manipulated both metric and harmonic regularities simultaneously at the end of 

musical sequences. Thus, the first aim of our study was to determine how the brain 

processes metric and harmonic structures simultaneously.   

The second aim of our study was to examine whether musical expertise might 

benefit the simultaneous processing of metric and harmonic structures in music. 

Although listeners who grow up in the Western tonal music environment should 

possess the ability to process metric and harmonic structures regardless of their 

musical training background (Koelsch, Gunter, Friederici, & Schröger, 2000; Koelsch 

et al., 2007), previous studies have shown that musicians outperform nonmusicians in 

processing harmonic (Jentschke & Koelsch, 2009; Koelsch & Jentschke, 2008; 

Koelsch, Schmidt, & Kansok, 2002) and rhythmic syntactic structures (Sun et al., 

2018), when these structures are examined separately. Exploring the role of learning 

in the simultaneous processing of metric and harmonic structures in music would 

contribute to our knowledge about the effects of musical training on musical structure 

processing.  

Given the asymmetric interaction between tonal stability and metric position on 

the stability ratings of musical sequences (Prince, Thompson, et al., 2009), we 
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expected that metric and harmonic violations would elicit different neural responses 

in the brain, and musicianship might also influence such responses.  

2 Materials and methods 

2.1 Participants 

Fifteen musicians (Mage = 22.47 years, SD = 2.39, 11 females and 4 males) and 

15 nonmusicians (Mage = 24.07 years, SD = 2.19, 11 females and 4 males) 

participated in the experiment. In order to determine whether our sample size was 

sufficient to detect a between-group effect, we estimated the power of our analysis to 

detect an effect using the data from our previous study (Sun et al., 2018). Two 

simulated datasets were created by randomly choosing 15 participant datasets (with 

replacement) separately from the musician and nonmusician groups in the previous 

study. The group ERP differences were then calculated using cluster-based random 

permutation tests (Maris & Oostenveld, 2007). After repeating this procedure 2000 

times, power was estimated by calculating the proportion of repetitions yielding 

significant results to all repetitions. The result revealed an estimated power of 0.82 

with 15 participants in each group, confirming that our sample size was sufficient to 

detect a between-group effect in the present study.  

All participants in our experiment were native Chinese college students. The 

musicians had high proficiency in Western tonal music and had received on average 

14 years of formal instrumental training (range: 9 to 18) on piano, violin, viola, 

accordion, cello or erhu (a traditional Chinese instrument), practicing on average 
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more than 3 hours per day. The nonmusicians had never received extracurricular 

music training, although the compulsory education curriculum in China contains 

music lessons of 40-45 minutes per week. However, they were typically familiar with 

Western tonal music since listening to tonal music is an essential experience for 

Mandarin listeners (Jiang, Liu, & Wong, 2017; Wong, Roy, & Margulis, 2009). All 

participants were right-handed and reported no history of neurological, major medical 

or psychiatric disorders or hearing impairments. Ethical approval was obtained from 

Shanghai Normal University, and all participants signed a written consent form before 

the experiment was conducted.  

2.2 Experimental design and statistical analysis 

Rationale for the experimental design. Using a similar design in our previous 

study (Sun et al., 2018), we created irregular sequences with a syncopated ending 

chord, in which sound pressure level (SPL) accented chord was placed at a metrically 

weak rather than strong position. To reduce demands on working memory, chorale 

sequences were five-bars rather than eight-bars as in our previous study (Sun et al., 

2018).  

Because our goal was to evaluate and compare brain responses to harmonic and 

metric structure when they are combined in a musical sequence, we designed our 

stimuli such that manipulations of harmonic and metric structure were equated for 

discriminability. To this end, we conducted Pretest 1 to establish roughly equal 

discriminability between harmonic and metric structures. As our aim was to 

understand how the brain extracts and processes metric and harmonic regularities, we 

did not provide participants with explicit metrical cues. Therefore, we conducted 

Pretest 2 to determine whether the stimuli were perceived in 2/4, 3/8, or additive 
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meter in order to ensure stimulus validity.  

Pretests In Pretest 1, we asked 11 nonmusicians to rate the similarity between 

different versions of the same original sequence on a 7-point Likert scale, with 

regular/irregular metric and/or harmonic structures in a pair. For metric structures, 

regular metric sequences ended with a chord at the first metrically strong position, and 

irregular sequences ended with a syncopated chord, in which an accented chord was 

placed at a metrically weak rather than strong position. For harmonic structures, 

regular harmonic sequences ended with tonic chords, and irregular harmonic 

sequences ended with either supertonic chords or double dominant chords. Similarity 

ratings indicated that discriminability of regular and irregular metric endings closely 

matched the discriminability of tonic (regular) and supertonic (irregular) harmonic 

conditions (see Supplemental files). Therefore, the supertonic chords were chosen 

over double dominant chords as the harmonically irregular endings for the formal 

experiment (see Supplemental files, Pretest 1).  

In Pretest 2, we tested 11 nonmusicians and 11 musicians who did not take part 

in the previous pretest or the formal experiment, with a 3 meter (2/4, 3/8, additive) × 2 

group (musicians, nonmusicians) two-factor mixed design. Ten four-part chorale 

sequences were chosen as potential stimuli based on the results from Pretest 1. We 

then manipulated the regularities of the metric (rhythmic accents at metrically strong 

vs. weak positions) and harmonic (tonic vs. supertonic chords) events at the end of 

these sequences, which served as standard sequences. The comparison sequences 

were melodies derived from the top voices of the standard sequences and were 

presented in 2/4-, 3/8-, and additive meters, respectively. In order to provide a cue of 

meter to the participants, the first beats of each measure in the comparison sequences 

were intentionally accented. Each standard sequence was paired with three different 
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comparison sequences, in 2/4-, 3/8-, or additive meter. Participants were required to 

make a same/different judgment of the paired sequences based on metrical similarity.  

The percentages of ‘yes’ response to the 2/4-, 3/8-, and additive meters were 

calculated for each group. Repeated measures analyses of variance (ANOVAs) with 

meter (2/4, 3/8, additive) as the within-subjects factor and group (musicians, 

nonmusicians) as the between-subjects factor were conducted. The results showed 

that the main effect of meter was significant (p = .004). Neither the main effect of 

group (p = .99) nor the interaction between meter and group (p = .65) was significant. 

Post hoc comparative analysis showed that participants perceived the sequences more 

frequently in 2/4 meter than in 3/8 and additive meters (2/4: M = 60.23, 3/8: M = 

41.36, additive: M = 46.48). Single sample t-tests showed that the perception of 

2/4-meter, but not that of 3/8 or additive meter, was significantly higher than the 

chance level (p = .037). These results confirmed that our stimuli were perceived in 2/4 

meter, with no difference between musicians and nonmusicians (see Supplemental 

files, Pretest 2).  

Stimulus. Based on the results of the two pretests, we established equivalence in 

hierarchical regularities of the metric (rhythmic accents at metrically strong vs. weak 

positions) and harmonic (tonic vs. supertonic chords) events at the end of the 

sequences. An example of the experimental stimuli in the formal experiment are 

shown in Figure 1. We included four experimental conditions to examine regular and 

irregular metric and harmonic structures: 1) regular metric and harmonic structures 

(regular); 2) regular metric and irregular harmonic structures (single violation); 3) 

irregular metric and regular harmonic structures (single violation); and 4) irregular 

metric and harmonic structures (double violation). A regular metric sequence is 

expected to end with a rhythmic accent at a metrically strong position, while a regular 
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harmonic sequence is expected to be terminated by an authentic cadence (V-I in major 

keys). As in previous studies, we focused on the ERAN and N5, the two main ERP 

components associated with the processing of musical structures.  

-------------------------------------------------------- 

Insert Figure 1, about here. 

-------------------------------------------------------- 

There were 5 five-bar original chorale sequences in 2/4 meter in the formal 

experiment. We controlled for the frequency of occurrence of the critical ending 

events for both harmonic and metric structures so as to avoid the effect of sensory 

novelty on musical structural processing (Koelsch et al., 2007). Because of the 

relatively high number of irregular ending chords (supertonic chords) in our 

sequences, the harmonic progressions usually developed around the category of 

subdominant function. However, on the whole, the harmonic progressions of our 

musical sequences conformed with tonal conventions of Western music. Taking the 

sequence in Figure 1 as an example, it started with tonic-dominant-tonic harmonic 

progression, developed around the category of subdominant function, and finally 

ended with the authentic cadence.  

Each sequence had four versions, with regular/irregular metric and/or harmonic 

structure, thus forming 20 sequences. These sequences were transposed to 12 major 

keys, thus resulting in 240 sequences. All stimuli were created at a tempo of 82 

quarter notes per minute using the Sibelius 7.5 software (Avid Tech. Inc.), and 

exported with Steinway piano timbre by Cubase 5.1’s inbuilt Kontact 5.4. The 

loudness of each sequence was normalized to -3 dB using Adobe Audition 3.0.  

Procedure. 240 sequences were presented in a pseudorandom order with the 

constraints that a given type of ending was not repeated more than three times in 
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succession, and that consecutive sequences were neither from the same original 

sequence nor in the same key. All stimuli were presented through loudspeakers 

(Edifier, R101V).  

Participants were instructed to first rely on intuition to judge whether the musical 

events in a sequence followed one another in an expected manner, and then to rate the 

degree of completeness of each sequence on a 5-point Likert scale, with 1 indicating 

the lowest degree of completeness and 5 the highest degree of completeness. They 

were encouraged to use the full range of the response scale. The completeness 

judgments were not solely based on the ends of musical sequences. Instead, such 

judgements required global integration of the whole musical sequence (Tillmann & 

Lebrun-Guillaud, 2006). Therefore, participants were instructed to compare musical 

expectation with viewers’ expectation for movie plots, given that expectation for 

future sounds is tailored to a particular context (Huron, 2006). That is, when watching 

a movie, one often builds up expectations from one plot to the next. Expected plots in 

a movie would lead to the resolution of these plots and make viewers feel fulfilled and 

relaxed. If a movie ended with an unexpected plot, the viewers would feel a sense of 

incompleteness, and vice versa. Following the instruction, eight practice trials were 

given to familiarize the participants with the stimuli and procedure. Before the formal 

experiment, participants were also given the chance to adjust the volume of the 

stimuli to their comfortable listening level.  

ERP recording and analysis. EEG data were recorded using a Neuroscan 

Synamps amplifier with 64 standard scalp locations according to the International 

10–20 system. To measure eye movements and eye-blinks, electrodes were placed 

above and below the left eye as well as the outer canthi of both eyes. Signals were 

digitized with a sampling rate of 500 Hz, and filtered using a 0.05 Hz low cutoff and a 
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100 Hz high cutoff. The left mastoid electrode served as on-line reference. After the 

measurements, the data were referenced offline to the algebraical mean of left and 

right mastoid electrodes, with a 0.1 to 30 Hz band-pass filter (24-dB/oct slope) using 

NeuroScan software 4.5. We realigned and time-locked the recording time window to 

the last chords. Epochs of 1200 msec including a 200 msec pre-stimulus baseline 

period were averaged. Trials were rejected from the data when artifacts exceeded the 

amplitude of ±75 μV in any channel. On average, 86% of the trials were kept, 

similarly across all four conditions (all ps > .05).  

As indicated by the rectangles in Figure 1, the ERPs were extracted from the first 

chord of the last bar (5.85 s after the music onset) for metrically regular endings and 

from the last chord of the penultimate bar (5.49 s after the music onset) for metrically 

irregular endings. These sequence lengths were sufficient for participants to establish 

the regularity representations of harmony and meter in our experiment, given that the 

minimum length required was a minimum of about 1 s (Andreou, Griffiths, & Chait, 

2015; Lebrun-Guillaud & Tillmann, 2007).  

We performed cluster-based random permutation tests (Maris & Oostenveld, 

2007) using the MATLAB toolbox Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 

2011), in order to control for Type I error rates due to multiple comparisons across 

different conditions in ERP studies (Luck & Gaspelin, 2017; Wang, Zhu, Bastiaansen, 

Hagoort, & Yang, 2013). All spatially adjacent data samples exceeding a preset 

significance level (5% here) were grouped into clusters. For each cluster, the sum of 

the t statistics was used as the cluster-level test statistic. Then a null distribution was 

created with the assumption of no difference between conditions. This distribution 

was obtained by randomly assigning the conditions in participants 1000 times and 

then the largest cluster level statistic was calculated for each randomization. Finally, 
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the observed cluster-level test statistics were compared against the null distribution, 

and clusters falling in the highest or lowest 2.5th percentile were considered 

significant.  

We examined the early right anterior negativity (ERAN) and the N5 as the ERP 

components for the processing of musical structure (e.g., Koelsch et al., 2000; 

Koelsch & Jentschke, 2010). Based on previous findings (Koelsch et al., 2000; Loui 

et al., 2005; Poulin-Charronnat et al., 2006) and visual inspection, we selected two 

time windows for analysis: (1) 100–250 msec after the chord onset to test for ERAN 

effects, and (2) 300–800 msec after the chord onset to test for N5 effects. The mean 

amplitudes of the trials in each condition were computed by including all but the 

reference electrodes.  

In order to examine whether musicianship benefits the processing of metric and 

harmonic structures, we first computed the ERP effects (irregular minus regular) in 

single and double violation conditions in each group separately. We then subtracted 

the ERP effects in the double violation condition from the single violation condition. 

Following the comparisons between these effects for each group, we examined the 

three-way interaction among group, harmonic structure, and metric structure using a 

cluster-based random permutation test.  

In cases where there was no significant group effect, we pooled the data and then 

tested the two-way interaction between metric and harmonic structures, by comparing 

the ERP effects (irregular minus regular) between single and double violation 

conditions separately for the two syntactic structures. In the event that there was a 

significant two-way interaction, planned contrasts were then conducted between 

irregular and regular endings in the single and double violation conditions separately 

for metric and harmonic structures. When no significant two-way interaction was 
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found, we then combined the data across the two conditions and tested the main effect 

of metric and harmonic structures, respectively. 

 3 Results 

3.1 Behavioral results 

Figure 2 displays the mean completeness ratings of the sequences. A three-way 

ANOVA was conducted with group (musicians, nonmusicians) as a between-subjects 

factor and metric (regular, irregular) and harmonic structure (regular, irregular) as 

within-subjects factors. There was a significant main effect of metric structure (F(1, 28) 

= 35.32, p < .001, partial η2 = .56, ANOVA), indicating that sequences with irregular 

metric structure were perceived as less complete than those with regular metric 

structure (regular: M = 3.13, SD = .05, irregular: M = 2.75, SD = .06). There was also 

a significant main effect of harmonic structure (F(1, 28) = 465.11, p < .001, partial η2 

= .94, ANOVA), indicating that sequences with irregular harmonic structure were 

perceived as less complete than those with regular harmonic structure (regular: M = 

4.10, SD = .06; irregular: M = 1.78, SD = .08). No other significant main effects or 

interactions were observed (ps > .06, ANOVA). These results indicated that both 

musicians and nonmusicians were able to perceive the difference in completeness 

between regular and irregular conditions for both metric and harmonic structures. 

-------------------------------------------------------- 

Insert Figure 2, about here. 

-------------------------------------------------------- 
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3.2 EEG results 

The ERAN at the 100 to 250 msec time window. A three-way interaction test 

among group, metric structure, and harmonic structure showed that there was no 

significant difference between groups (p = .881, cluster-based random permutation 

test). We then combined the data across the two groups and tested the two-way 

interaction between metric and harmonic structures by comparing the metric and 

harmonic effects in the single violation condition with those in the double violation 

condition. The results showed no interaction between metric and harmonic structure 

(p = .368, cluster-based random permutation tests).  

In order to examine whether there were main effects of metric and harmonic 

structure, we performed two sets of analyses contrasting irregular and regular 

conditions for metric and harmonic structures. For harmonic structure, no significant 

cluster was observed (p = .166, cluster-based random permutation tests), suggesting 

that there was no significant difference between the two conditions. For metric 

structure, however, the test revealed a significant difference between regular and 

irregular endings from 145 to 229 msec (p = .004, cluster-based random permutation 

tests). This difference was most pronounced over frontal sensors. These findings 

indicate that violations in metric structure elicited an ERAN over the frontal area, as 

shown in Figure 3.  

-------------------------------------------------------- 

Insert Figure 3, about here. 

-------------------------------------------------------- 

The N5 at the 300-800 msec time window. A three-way interaction test among 

group, metric structure, and harmonic structure showed that there was no significant 

difference between groups (p = .238, cluster-based random permutation tests). Thus, 
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the data were combined across groups and a two-way interaction test between metric 

and harmonic structures was conducted. As shown in Figure 4, the test revealed a 

significant difference between single and double violation conditions from 515 to 800 

msec (p = .004, cluster-based random permutation tests), which was most pronounced 

over right-dominant parietal-occipital sensors, indicating an interaction between the 

integration of metric and harmonic structures. A larger negativity was elicited in the 

double than the single violation condition for both metric and harmonic structures, 

suggesting that harmonic structural integration was affected by the simultaneous 

presence of a metric irregularity, and vice versa.  

-------------------------------------------------------- 

Insert Figure 4, about here. 

-------------------------------------------------------- 

As shown in Figure 5, planned contrasts between irregular and regular harmonic 

endings in the regular metric condition showed a significant difference from 300 to 

647 msec (p = .002, cluster-based random permutation tests), which was most 

pronounced over left parietal-occipital sensors. Planned contrasts between irregular 

and regular harmonic endings in the irregular metric condition showed a significant 

difference from 335 to 774 msec (p = .002, cluster-based random permutation tests), 

which was most pronounced over parietal-occipital sensors.  

-------------------------------------------------------- 

Insert Figure 5, about here. 

-------------------------------------------------------- 

As shown in Figure 6, planned contrasts between irregular and regular metric 

endings in the regular harmonic condition showed a significant difference from 300 to 

800 msec (p = .002, cluster-based random permutation tests), which was most 
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pronounced over frontal sensors. Planned contrasts between irregular and regular 

metric endings in the irregular harmonic condition showed a significant difference 

from 347 to 800 msec (p = .002, cluster-based random permutation tests), which was 

present across the whole-scalp sensors.  

-------------------------------------------------------- 

Insert Figure 6, about here. 

-------------------------------------------------------- 

4 Discussion  

Using ERPs, we examined how the brain simultaneously processes metric and 

harmonic structures in music, and whether these processes are impacted by musical 

expertise. We manipulated both metric and harmonic regularities simultaneously at 

the end of musical sequences, given that the hierarchies in music are typically 

represented in cadence. The results revealed a significant difference in neural 

responses to metric and harmonic structures in musical sequences that contain both 

forms. In particular, even when the discriminability of violations in metric and 

harmonic structures was equated, an ERAN was observed in response to metric but 

not harmonic violations. Given that the ERAN reflects automatic cognitive processing 

of musical structures (Koelsch et al., 2000; Koelsch & Jentschke, 2008; Koelsch et al., 

2002), this finding suggests automatic processing of metric but not harmonic structure 

at an early processing stage. However, at the later integrative stage, we observed an 

interaction between metric and harmonic structures, as evidenced by an enlarged N5 

effect in the double violation condition. Planned comparisons revealed that violations 

of metric structure elicited an N5 and violations of harmonic structure elicited an 

N5-like response in both single and double violation conditions. Furthermore, 
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nonmusicians showed comparable neural responses as musicians to concurrent metric 

and harmonic structural violations.  

Our first main finding is that an ERAN was observed in response to metric but 

not to harmonic structural violations. This ERAN effect was evoked by a musical 

structural violation and hence reflects musical structure building (Koelsch, 2013). It 

cannot be attributed to sensory novelty as we carefully controlled for the frequency of 

occurrence of the final events in our stimuli. That is, sequences ending with 

syncopated and nonsyncopated chords in our study were presented with equal 

probability, and the frequencies of occurrence of the regular and irregular metric 

chords were the same in each sequence. Thus, this ERAN reflects automatic cognitive 

processing of musical metric structure (Sun et al., 2018), which is consistent with 

previous findings that musical structural processing operates in the absence of 

attention (Koelsch et al., 2000; Koelsch & Jentschke, 2008; Koelsch et al., 2002), 

although it can also be modulated by demands of attention (Loui et al., 2005; Maidhof 

& Koelsch, 2011).  

The differential results in the ERAN response between metric and harmonic 

structures may be due to the predictive feature of temporal processing, which might 

have contributed to the ERAN effect in metric structure. Indeed, beat perception is 

essentially a predictive rather than a reactive process. The brain is capable of making 

highly accurate temporal predictions about the timing of upcoming beats (Rankin, 

Large, & Fink, 2009; Repp, 2005; Repp & Su, 2013), even when the movement is 

absent (see Patel & Iversen, 2014). Such predictive processing is modulated by 

dynamic attention allocation (Jones & Boltz, 1989), which is correlated with neural 

oscillations (Large & Snyder, 2009). Indeed, neural oscillations reach their maximum 

prior to the occurrence of the next beat, which underpins prediction accuracy during 
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timing processing (Arnal, Doelling, & Poeppel, 2014; Fujioka, Ross, & Trainor, 2015; 

Fujioka, Trainor, Large, & Ross, 2012).  

The absence of an ERAN response to harmonic violations in our study is 

consistent with results reported by Poulin-Charronnat et al. (2006), where neither 

musicians nor nonmusicians showed an ERAN to harmonic violations using in-key 

chords (subdominant chords). However, other studies have reported an ERAN effect 

elicited by irregular harmonic endings (e.g., Koelsch et al., 2000; Koelsch & 

Jentschke, 2008; Koelsch et al., 2007; Koelsch & Mulder, 2002; Patel, 1998). This 

discrepancy may be explained by the difference in stimuli used across different 

studies. Firstly, the harmonic ERAN seems to depend on the saliency of the ending 

chords in the irregular condition. In our study, we used in-key (subdominant chords) 

rather than out-of-key chords as the irregular endings, as in the study by 

(Poulin-Charronnat et al., 2006). Most likely, an ERAN was observed for out-of-key 

chords because they are far more irregular and acoustically divergent than in-key 

chords (e.g., Koelsch et al., 2000; Koelsch & Jentschke, 2008; Koelsch et al., 2007; 

Koelsch & Mulder, 2002; Patel, 1998). Secondly, rhythmic/harmonic complexity may 

also modulate the harmonic ERAN. Unlike previous studies, we used sequences with 

varied rhythm rather than isochronous chords. High rhythmic complexity is thought to 

delay the latency of the harmonic ERAN (Koelsch & Jentschke, 2008; Koelsch & 

Mulder, 2002; Patel, 1998), but in our study may have had an even more disruptive 

impact on this neural response, making it harder for the brain to detect. Similarly, 

chorale sequences in our study contained more chords than those used in previous 

studies (e.g., Koelsch et al., 2000; Koelsch & Jentschke, 2008), which made our task 

more complex than previous ones. One or more of these factors may account for the 

absence of the harmonic ERAN in our study.  
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Our second main finding is that metric and harmonic structures were processed 

in an interactive manner at the later integrative stage. When only metric violations 

were present, our participants exhibited a right lateralized frontal N5 effect, an index 

of the integration of musical structure. This finding is consistent with previous 

findings that the N5 effect reflects harmonic structural integration, which is 

modulated by the degree of fit with regard to the previous musical context (e.g., 

Koelsch & Jentschke, 2010; Koelsch et al., 2007; Steinbeis & Koelsch, 2008). The N5 

component signifies the difference in expectedness between regular and irregular 

cadences. Therefore, given that our experimental manipulation was based on musical 

expectations, the ERP effects we observed reflected the difference in expectedness 

between musical sequences.  

In response to harmonic violations alone, our participants exhibited a posterior 

N5-like effect. Although this N5-like effect was induced in a similar time window as 

the metric N5, it showed a central-parietal, rather than a right lateralized frontal 

distribution. Thus, we referred to it as an N5-like effect, rather than an N5. Such a 

posterior effect may be due to the increased difficulty in structural integration. 

Specifically, previous studies have demonstrated a frontal N5 effect using real music 

containing varied rhythm and tonic versus out-of-key chords in the regular and 

irregular conditions (Koelsch & Mulder, 2002) or using isochronous chord sequences 

ending with tonic or in-key chords (Koelsch & Jentschke, 2010). In the present study, 

musical sequences were not only with varied rhythm, but also ended with tonic or 

in-key (supertonic chords) chords, which increased the task difficulty. Because the 

perceived psychological distance between out-of-key and tonic chords is greater than 

that between in-key (supertonic chords) and tonic chords, the former would be easier 

to perceive than the latter. This increased difficulty might have resulted in the 
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posterior N5-like effect in the present study. On the other hand, compared with the 

metric N5 effect, this harmonic N5-like effect might be due to the absence of the 

harmonic ERAN at the early processing stage. That is, early automatic structural 

processing may enhance listeners’ sensitivity to structural integration of metric 

structures at a later stage. However, this possibility will need to be validated in future 

studies.  

In the double violation condition, concurrent metric and harmonic processing 

modulated the N5 and N5-like effects, as the N5 effect elicited by metric violations 

was enlarged by irregular harmonic endings and the N5-like effect elicited by 

harmonic violations was enlarged by irregular metric endings. As suggested by 

previous studies (Hagoort & Brown, 2000; Koelsch et al., 2000; Kutas & Kluender, 

1994), this result may be attributed to the increased difficulty in integrating metric (or 

harmonic) structures in the presence of irregular harmonic (or metric) structures. This 

enlarged N5 suggests that more cognitive resources are required for the integration of 

double violations compared to single violations. Previous studies have demonstrated 

that regular non-hierarchical temporal structures facilitate pitch discrimination (Boltz, 

1993; Jones et al., 2006; e.g., Jones et al., 2002; Prince, Schmuckler, et al., 2009) and 

the processing of hierarchical harmonic structures (Bigand et al., 1999; Boltz, 1989; 

Tillmann & Lebrun-Guillaud, 2006). Taken together, our findings extend previous 

results to suggest that regular metric structures that are hierarchically organized can 

also facilitate the processing of harmonic structures.  

Although the irregular harmonic or metric endings enhanced the metric N5 or 

harmonic N5-like effect, these enhanced effects were not simply due to the sum of the 

metric and harmonic effects. An ANOVA with the N5 effect (double violation, sum), 

hemisphere (left, right), anteriority (anterior, posterior) as the within-subjects factors 
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showed that the N5 effect elicited in the double violation condition was significantly 

larger than the sum of the metric and harmonic effects (F(1, 28) = 8.07, p = .008, partial 

η2 = .22) (see Figure S1, Supplementary files). Given that the N5 is also sensitive to 

attentional resource allocation (Loui et al., 2005), the enhanced N5 and N5-like 

effects indicate that additional attentional resources may be required when integrating 

the irregular harmonic or metric ending into the previous musical context.  

Our third main finding is that musical expertise is not associated with enhanced 

processing of combined metric and harmonic structures at the behavioral or neural 

levels. The absence of musical training effect cannot be attributed to limitations in the 

stimuli or sample size. For the metric structures, although we did not provide 

participants with explicit metrical cues, the results of Pretest 2 confirmed that our 

stimuli were perceived in 2/4 meter, rather than in 3/8, or additive meters. 

Furthermore, the absence of musical training effect in our study was unlikely due to 

our sample size, as our power estimation revealed that a sample of 15 musicians and 

15 nonmusicians was sufficient to detect a between-group effect (see Methods 2.1).  

Two possible reasons may account for the absence of such a musical training 

effect. First, for processing harmony, research has shown that nonmusicians can 

become remarkably sensitive to the regularities in tonal music through passive music 

exposure and perceptual learning (Jiang et al., 2017; Koelsch et al., 2000; Wong et al., 

2009), which allows them to process musical structures (Bigand & Poulin-Charronnat, 

2006; Zhou et al., 2019). Likewise, for processing meter, it has been suggested that a 

bias towards duple meter could result from listeners’ daily exposure to Western tonal 

music (Trainor & Hannon, 2013), which is present even in 9-month-old infants 

(Bergeson & Trehub, 2006). Indeed, consistent with our findings, previous studies 

have also reported similarities in the way musicians and nonmusicians integrate 



- 23 - 
 

harmonic structure (Jentschke & Koelsch, 2009; Koelsch, Rohrmeier, Torrecuso, & 

Jentschke, 2013; Koelsch et al., 2002; Miranda & Ullman, 2007) and metric structure 

(Sun et al., 2018). These results corroborate our finding that nonmusicians and 

musicians exhibit a similar capacity to process musical structure. 

Second, the absence of musical training effect may be related to task difficulty. 

Indeed, task difficulty modulates the effects of musical training on rhythmic 

production (Chen, Penhune, & Zatorre, 2008), beat perception (Bouwer, Werner, 

Knetemann, & Honing, 2016), and pitch contour processing (Schön, Magne, & 

Besson, 2004). Compared with our previous study (Sun et al., 2018), the present study 

used shorter musical sequences (five bars). Such a manipulation may make the task of 

metric structural processing easier, which may in turn result in the absence of the 

effect of musical expertise. Indeed, the difference between musicians and 

nonmusicians disappeared when only four-bar rhythmic sequences were presented 

(unpublished data). However, future research is needed to examine whether task 

difficulty and musical knowledge modulate the effect of musical training on the 

processing of musical structure. 

In addition, the behavioral results are not completely consistent with the ERP 

results in the present study. This difference suggests that ERP and behavioral 

responses are sensitive to different cognitive operations (e.g., Kounios & Holcomb, 

1992; Tillman & Wiens; Zhang, Guo, Ding, & Wang, 2006). Specifically, the ERP 

amplitudes such as the ERAN and N5 amplitudes to music proved to be sensitive to 

the detection of music structural irregularity and integration, respectively, whereas the 

behavioral responses may be more sensitive to the demands in judging the 

completeness of musical sequences. In other words, the ERAN and N5 in our study 

only reflected the operation of the mechanisms that manifest the properties of musical 



- 24 - 
 

structures (i.e., detection and integration), whereas the behavioral responses might be 

sensitive to participants' decision-making processes and task-dependent strategies. On 

the other hand, the recording of the behavioral responses in the present study was 

outside of the ERP measurement windows used. Given that the ERPs were 

time-locked to the onsets of the final chords, the ERAN and N5 were measured from 

100 to 250 msec and 300 to 800 msec after the final chord onsets. However, 

participants were required to rate the completeness after the termination of the whole 

musical sequences, rather than after the onsets of the final chords. Therefore, our 

behavioral results reflected the offline judgment of music-completeness, whereas our 

ERP results reflected the online processing of musical structure. This might have led 

to the difference in the interaction between metric and harmonic structures between 

these two types of results in our study.  

5 Conclusion  

This investigation provides the first electrophysiological evidence that neural 

responses to metric (when) and harmonic (what) structures are different in sequences 

that contain both forms of structure, even when changes are equated for 

discriminability. Our findings indicated automatic early processing of metric but not 

harmonic structure, and interactive processing of the two forms of structure at the 

later integration stage. These findings extend dynamic attending theory (Jones, 1976; 

Jones & Boltz, 1989) by indicating that regular, hierarchically organized temporal 

structures can facilitate the processing of hierarchically organized non-temporal 

structures, and vice versa.  

It is well established that, in order to interact with and navigate in a constantly 

changing environment, the human brain must continuously make rapid and accurate 
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predictions about what will happen next and when it will occur in temporal sequences. 

Our findings suggest that the human brain can automatically respond to the 

unpredicted when information (but not to the what information) at the early stage. At 

the later stage, however, the processing of the unpredicted when and what information 

seems to be interactive. Such neural responses are not affected by learning experience 

in individuals. Thus, our findings may shed light on how the brain generates 

predictions for “what” and “when” events in the natural environment.
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Figure Captions 

Figure 1. Samples of the musical sequences used in the formal experiment. There were four 

conditions: (a) regular metric and harmonic structures, (b) regular metric and irregular 

harmonic structures, (c) irregular metric and regular harmonic structures, (d) irregular metric 

and harmonic structures 

Figure 2. Mean ratings of the degree of completeness of the sequences with four types of 

endings.  

Figure 3. Scalp distributions of the irregular-minus-regular metric difference waves in the 

145–229 msec latency range and grand mean ERP waveforms elicited by regular and irregular 

metric endings collapsed over the harmonic conditions.  

Figure 4. The difference waveforms of irregular-minus-regular metric endings under regular 

and irregular harmonic conditions, and the scalp distributions of the two difference waves in 

the 515–800 msec latency range. 

Figure 5. Grand mean ERP waveforms elicited by regular and irregular harmonic endings at 

four electrode sites in the metric regular and irregular conditions. Gray-shaded areas indicate 

significant time windows. Scalp distributions of the irregular-minus-regular harmonic 

difference waves in the 300–647 msec latency range in the metric regular condition and in the 

335–774 msec latency range in the metric irregular condition.  

Figure 6. Grand mean ERP waveforms elicited by regular and irregular metric endings at four 

electrode sites in the harmonic regular and irregular conditions. Gray-shaded areas indicate 

significant time windows. Scalp distributions of the irregular-minus-regular metric difference 

waves in the 300–800 msec latency range in the harmonic regular condition and in the 

335–774 msec latency range in the harmonic irregular condition.  
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