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ABSTRACT: Peptoids are biofunctional N-substituted glycine pepti-
domimics. Their self-assembly is of fundamental interest because they
demonstrate alternatives to conventional peptide structures based on
backbone chirality and beta-sheet hydrogen bonding. The search for
self-assembling, water-soluble “minimal” sequences, be they peptide or
peptidomimic, is a further challenge. Such sequences are highly desired
for their compatibility with biomacromolecules and convenient
synthesis for broader application. We report the self-assembly of a set
of trimeric, water-soluble α-peptoids that exhibit a relatively low critical
aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-
resolved DLS show different sequence-dependent morphologies, namely
uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular
assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly
ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from
superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-
specific bio- and biomimetic macromolecules.

Control of self-assembly using sequence-specific polymers
such as peptides and their mimics is a powerful approach

to generating functional nanomaterials. Very short self-
assembling peptides and their mimics (e.g., ≤ 5 residues) are
of special interest since they are more easily scalable and they
lead to insight into assembly requirements.1 Their discovery is
nontrivial since assembly propensity (e.g., hydrophobic
interactions and hydrogen bonding) and favorable solvent
(water) interactions must be balanced among just a few
residues.1−3 The realization that diphenylalanine (FF) is a key
aggregating domain of amyloid peptides including amyloid
β4−6 has had an immense impact since assembly from such a
simple dipeptide was not anticipated. However, FF is not
directly soluble in water, and its assembly requires dilution
from an organic solution. Assembly of specific tripeptide
derivatives of FF has also been reported, and a number of
applications for both FF and its derivatives have been
proposed.1,7,8

Peptoids are N-substituted glycine structural isomers of
peptides, in which the functional side chains are attached to
backbone amide nitrogen atoms instead of the α-carbons.9,10

This preserves the side chain spacing of peptides but removes
backbone chirality. Like peptides, specific peptoid sequences
may also give rise to bioactivity and secondary structures.11−14

Unlike peptides, the non-natural backbone structure confers
great resistance to proteolysis,9,15 which greatly improves
pharmacokinetics for therapeutic applications such as anti-
microbial peptoids9,16−18 and benefits other long-term

biomedical uses.10,19 The side chain shift also eliminates
backbone hydrogen-bond (H-bond) donors, and hence intra-
and interbackbone H-bonding. This also means that the
peptoid backbone may be freely hydrated20,21 and, together
with lack of backbone chirality, may exhibit great conforma-
tional flexibility.10,22

Peptoid self-assembly is an emerging area.9,10 To overcome
flexible conformations and restricted H-bonding, it might
appear that a relatively high number of residues would be
required to confer sufficient attractive side chain interactions
for assembly to occur. An initial report of self-assembled
“peptoid gels” actually comprised of hybrids with peptides that
could provide H-bonding.23 A strategy to recover H-bonding
or constrain conformations is through Ugi-multicomponent
synthesis to obtain N-substituted polyamides with amino acid
side chains,24,25 and a derivative has been shown to form gels
from organic−water mixtures.26 Otherwise, reported micellar
assemblies have been driven by the relatively large hydro-
phobic blocks of long-chain polypeptoids or the hydrophobic
alkyl “tails” of sequence-specific lipo-peptoids.27−31 Similarly,
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long amphiphilic sequences (16−36 residues) are required for
the assembly of nanosheet or nanotube structures.32−35

We report the first examples of aqueous self-assembly from
very short, water-soluble linear α-peptoid sequences without
the directing influence of other components such as peptides36

or lipid tails.31 Inspired by FF and derivatives, we prepared a
set of four achiral peptoid trimers comprised of analogs of the
aromatic amino acid phenylalanine and the cationic lysine. In
particular, we studied the effect of varying the sequence order
as well as the side chain length of the lysine analog. In FF
peptides and derivatives, various design rules have been
reported to account for the importance of π−π stacking of the
phenyl groups, interbackbone beta-sheet packing, and
chirality.1,2,37 Chirality and inter- and intra-backbone H-
bonding are however absent in peptoids. Our designs therefore
test the minimal requirements for nanostructure assembly of
peptoids/peptides that are directly soluble in water.
Our sequences are comprised of two residues of Nphe (N-

benzylglycine), the analog of phenylalanine (Phe), and a
residue of either Nlys (N-(4-aminobutyl)glycine) or Nae (N-
(2-aminoethyl)glycine). Nlys is a direct lysine (Lys) analog,
while Nae is a mimic with a shorter two methylene connection
to the amine (Figure 1). The sequences are named with

reference to the single letter codes of their amino acid
counterparts as N(KFF), N(kFF), N(FKF), and N(FkF), with
small “k” denoting Nae. The tripeptoids were synthesized by
regular submonomer solid-phase synthesis and purified by
preparative HPLC (see the SI). The purity and identity of the
sequences were characterized by analytical HPLC and mass
spectrometry (Figures S1−S3), the standard for solid-phase
synthesized peptoids (and peptides).
In this first study, all samples were prepared by directly

dissolving the sequences in deionized water (DIW). An acidic
pH (e.g., pH ∼3 at 20 mg/mL) was measured for our assembly
solutions due to small amounts of trifluoroacetic acid (TFA)
typically retained from HPLC purification. The pH is far below

the pKa of N-terminal and side chain amines (ca. 9−10). Thus,
the amines on the Nlys and Nae side chains and the N-termini
are expected to be ionized. This amine protonation increases
solubility in water and electrostatic repulsion between the
peptoids and would actually be expected to decrease assembly
propensity.
Figure 2 shows that all four tripeptoids exhibited a similar

critical aggregation concentration (CAC) in a fluorescence

assay (0.3 ± 0.03 wt %, i.e., 3 ± 0.3 mg/mL), indicating the
self-assembly of hydrophobic cores above the CAC that could
sequester the hydrophobic dye. The measured CAC is actually
comparable to those of a previously reported set of lipo-
peptoids (ca. 0.1 wt %), which however required a long
palmitoyl hydrophobic tail to drive assembly.31

Analytical gradient RP-HPLC measurements (Figure S3)
further characterized more sensitively that N(FkF) and
N(FKF) partitioned more readily in water than N(kFF) and
N(KFF) (i.e., eluted at a slightly higher 76% vs 72% water
content in a water−acetonitrile (ACN) gradient). The overall
similar CAC is presumably governed by the fixed number of
hydrophobic Nphe residues and +2 charges from Nlys/Nae
and the free N-terminus. The slightly higher hydrophobicity of
N(kFF) and N(KFF) could be related to the proximity of the
side chain primary and N-terminal secondary amines hindering
double protonation.
In comparison, we recently showed that an Nphe dipeptoid

and FF analogue are insoluble in water. For the dipeptoid, X-
ray crystallography showed that π−π stacking of Nphe side
chains induced crystallization of microneedles during evapo-
ration from a DMSO−water mixture.38 Alternatively, lamellar
nanostructures were observed when the dipeptoid was
precipitated in water from an ACN solution.
For the present water-soluble tripeptoids also incorporating

Nphe residues, we were able to confirm nanostructure

Figure 1. A) Chemical structures of tripeptoids studied. B) Schematic
of sample preparation and assembly process.

Figure 2. Examples of CAC determination from peptoid concen-
tration dependence of ANS fluorescence: A) N(FkF), B) N(FKF), C)
N(KFF), and D) N(kFF). I/I0 is the intensity ratio with and without
peptoids. DIW was added directly to preweighed lyophilized peptoids
to obtain the highest concentrations shown, and the samples were
diluted further with DIW for measurements at lower concentrations.
See Figure S4 for original spectra, SI 1.4 for sample preparation
details, and example CAC data with pH control.
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formation by cryo-TEM (Figure 3). Remarkably, N(FkF)
formed long, uniform ca. 6 nm wide nanofibers that extended

many microns, which further collected into relatively straight
bundles (Figure 3A−C and S5A−D). We note that the
nanofibers were formed even at the acidic pH 3 of our 2 wt %
samples, when we expect N(FkF) to be fully ionized. This
behavior stands in contrast to peptide self-assembly, which is
often triggered by adjusting the pH to deionize charged groups
and enhance H-bonding.1,39

Cryo-TEM further showed that tripeptoid assembly was
highly sensitive to both the side chain length and the residue
sequence order. N(FKF), which has Nlys with the longer side
chain in the same central residue position as N(FkF), formed
networks (Figure 3D−F) spanning a few hundred nanometers
that are composed of globular assemblies ca. 15−20 nm wide
(Figure 3D). However, nanofibers were occasionally observed
to coexist (Figure S5H), indicating that the propensity for
ordered assembly of this N(FxF) sequence is attenuated by the
longer Nlys vs Nae side chain. It is not immediately clear why
the seemingly small difference in side chain length between
N(FkF) and N(FKF) has caused such a large shift in
assembled morphology. However, the shift is corroborated
by additional light scattering and spectroscopic evidence (see
below). Moreover, it is well-known from peptide dimers and

trimers that small changes in side chains and/or sequences can
give rise to diverse assembly behavior.1−3 It is however possible
that the longer side chain of Nlys is simply mismatched to or
provides excessive conformational flexibility for potential
ordered assembly.
N(kFF) and N(KFF), which have the cationic Nae/Nlys

placed at the N-terminus, also formed interconnected
assemblies (Figure 3G−L). Upon closer inspection, N(KFF)
actually assembled into fine 5−10 nm features (insets in
Figures 3G and S5K) that cluster into a second set of larger ca.
50 nm spherical assemblies. N(kFF), which has the shorter
Nae side chain, also formed 5−10 nm fine features (Figure 3J).
However, this sequence appeared to exhibit stronger
interactions, since the fine features instead coalesced into
globules ca. 50 nm in diameter (Figures 3J,K and S5O,P) as
well as into nanosheets that spanned >100 nm (Figures 3L and
S5O).
Dynamic light scattering (DLS) measurements corroborated

the size and morphology of the nanoassemblies. N(FkF) shows
a complex scattering behavior that could be fitted with
subpopulations with hydrodynamic radii (RH) centered around
0.5 nm and 60 nm and another population > 1000 nm with a
large dependence on a scattering angle (2θ) (Figure 4A). Since

angular differences are characteristic of anisotropic particles,
the micron-sized dimension should be related to the length of
the nanofibers. The nonvarying sub-1 nm fraction was assigned
to monomers, while the ca. 60 nm length scale could represent
the effective averaged widths of the nanofiber bundles.
Peptoid N(FKF) shows assemblies with RH centered around

108 nm (Figure 4B), which could indicate the loose networks
of finer assemblies (Figures 2D−F). N(kFF) and N(KFF)
show mainly the presence of structures with RH centered
around 0.5 nm and 44−49 nm (Figures 3C,D), corresponding
to respectively monomers and the clusters observed.

Figure 3. Cryo-TEM images from 2 wt % (20 mg/mL) solutions of
N(FkF) (A−C), N(FKF) (D−F), N(KFF) (G−I), and N(kFF) (J−
L). The left column shows zoomed in areas indicated in the center
column. The right column shows additional typical images. Further
areas are shown in Figure S5. The insets in G show that the ∼50 nm
N(KFF) features are clusters of the finest structures. Peptoid solutions
were prepared in the same way as for CAC measurements (see the
caption of Figure 2). See the SI for cryo-EM sample vitrification
procedures.

Figure 4. Variation in hydrodynamic radii (RH) with a DLS scattering
angle (2θ = 90°) for A) N(FkF), B) N(FKF), C) N(KFF), and D)
N(kFF). Two wt % (20 mg/mL) solutions were used. The different
symbols in each panel refer simply to the different size populations
measured in each sample, as indicated by the labels of hydrodynamic
radii (RH). They are unrelated between panels. Peptoid solutions were
prepared in the same way as for CAC measurements (see SI 1.4 for
sample preparation details).
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The high degree of molecular ordering implied by the
uniformity of the N(FkF) nanofibers is reminiscent of some FF
tripeptide derivatives assembling also into nanofibers.1,37

However, our peptoids assembled directly in acidified water.
Solubility was likely promoted by the cationic Nae/Nlys side
chains. Assembly however cannot be related to beta-sheet
structures because there is no interbackbone H-bonding in
peptoids. We speculate that, similar to the Nphe dipeptoid
crystals we reported recently,38 nanofiber assembly was
facilitated by Nphe π−π stacking as well as by flexible peptoid
backbone twists that enable favorable positioning of interacting
groups.38,40

We further characterized π−π stacking spectroscopically
(Figure 5). First, N(FkF) showed a set of absorption fine

structures in the 245−270 nm phenyl band distinct from other
sequences as well as an additional absorption around 288 nm
(Figure 5A), indicating a unique phenyl environment. This
phenyl signature was retained at concentrations below the
CAC (Figure S6A), indicating that they originate from the
monomer state. On the other hand, while other tripeptoids
produced fluorescence emissions at 282 and 288 nm, N(FkF)
displayed a pair of especially well-separated emissions centered
at 280 and 312 nm (Figure 5B). These peaks, separated by 32
nm (3663 cm−1), are assigned as monomer and strongly red-
shifted excimer emission, respectively. An excimer was assigned
based on its increasing emission with increasing concentration
above the CAC (Figure S6). As the nanofibers assembled, the
phenyl groups must be sufficiently close in space to form the
excimer efficiently during the excited-state lifetime of the
phenyl chromophore. This is analogous to the fluorescence
behavior of FF peptide nanofibers37 and certain dimerized
peptoids that are mediated by π-interactions.40,41

The excimer fluorescence features were already present 30
min after initially dissolving the peptoid in water, the time
sample preparation and measurements took. They also held
constant after long-term storage (tested up to 4 months at 4
°C; see Figure S7). Consistent with the CAC measured for
N(FkF) (∼3 mg/mL; Figure 2), the 312 nm excimer peak
grew more apparent as the peptoid concentration increased
above 1 mg/mL (Figure S6).
In the context of sequence-specific assembly facilitated by

Nphe π−π stacking, it is noteworthy that the less hydrophobic
N(FxF) compared to N(xFF) (earlier elution in HPLC
Figure S1), which ordinarily would suggest lower assembly
propensity, was actually able to form the more ordered

nanofibers. Indeed, as discussed above, the sequences are
expected to be fully charged to promote solubility. It is possible
that stronger nonspecific attractive interactions due to higher
hydrophobicities could be hindering the repositioning required
during assembly to obtain ordered nanostructures. Interest-
ingly, the 312 nm excimer emission remained when we raised
the pH of the N(FkF) solution from pH 3 to pH 11 (Figure
S8), indicating that the N(FkF) structural interactions were
not controlled by charge or H-bonding. In comparison, the
small separation of the 282 nm/288 nm peaks for N(FKF) is
also unchanged from acidic to basic pH (Figure S9), although
there is some slight overall shift of these peaks and some
additional low intensity features appeared by pH 9. This lower
pH stability could be due to the fact that the unordered
N(FKF) structure may possibly be more susceptible to
changes in environmental conditions.
In summary, we have identified a set of minimally short,

water-soluble tripeptoids that assemble into uniform 6 nm
wide nanofibers and other nanoassemblies. This is the first
demonstration of self-assembly for such short linear α-
peptoids. The assembled morphology depended on the
sequence and was further controlled by the cationic side
chain length. Spectroscopic results are consistent with unique
π−π interactions that differentiate highly ordered nanofibers
from other structures.
Our tripeptoids illustrate that ordered aqueous assembly of

even very short peptidic chains can still be engineered without
chirality, backbone−backbone H-bonding (e.g., beta-sheet
structures2,37), and charge group deionization. Even if our
tripeptoids may superficially resemble FF-peptides, peptoids
and peptides appear to follow different assembly rules to strike
a balance between solvation and intermolecular attraction. The
flexibility of the peptoid backbone might even aid assembly, by
accommodating favorable conformations for side chain H-
bonding or π−π stacking, as previously implicated.38,40 Nae,
the Lys-mimic included in our nanofiber- and sheet-forming
tripeptoids, is also found in longer peptoid sequences that
assemble into highly ordered bilayer nanosheets,32,34 suggest-
ing a potential structural role. Future studies comprising
additional nano characterization, molecular simulations, and a
larger set of sequences may elucidate the molecular structures
observed and clarify how the sequence and the Nae side chain
may control the assembly. Overall, our tri-peptoid sequences
display unique and novel self-assembly behavior distinct from
di- and tripeptides and open the door to convenient studies of
peptoid assembly directly in water. The proteolytically stable
peptidic structures should be of fundamental interest as well as
of value to applications such as stable biomaterials and other
sequence-tunable nanostructures.
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Figure 5. A) Absorbance spectra of tripeptoids in water (2 wt %, 20
mg/mL; intensities normalized to local minimum at 243 nm). B)
Fluorescence spectra of the same solutions (265 nm excitation;
normalized to emission maxima). Peptoid solutions were prepared in
the same way as for CAC measurements (see the caption of Figure 2
and SI 1.4 for details).
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