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Asymptotic Forecast Uncertainty and the Unstable Subspace
in the Presence of Additive Model Error∗

Colin Grudzien† , Alberto Carrassi† , and Marc Bocquet‡

Abstract. It is well understood that dynamic instability is among the primary drivers of forecast uncertainty
in chaotic, physical systems. Data assimilation techniques have been designed to exploit this phe-
nomenon, reducing the effective dimension of the data assimilation problem to the directions of
rapidly growing errors. Recent mathematical work has, moreover, provided formal proofs of the
central hypothesis of the assimilation in the unstable subspace methodology of Anna Trevisan and
her collaborators: for filters and smoothers in perfect, linear, Gaussian models, the distribution of
forecast errors asymptotically conforms to the unstable-neutral subspace. Specifically, the column
span of the forecast and posterior error covariances asymptotically align with the span of backward
Lyapunov vectors with nonnegative exponents. Earlier mathematical studies have focused on per-
fect models, and this current work now explores the relationship between dynamical instability, the
precision of observations, and the evolution of forecast error in linear models with additive model
error. We prove bounds for the asymptotic uncertainty, explicitly relating the rate of dynamical
expansion, model precision, and observational accuracy. Formalizing this relationship, we provide
a novel, necessary criterion for the boundedness of forecast errors. Furthermore, we numerically
explore the relationship between observational design, dynamical instability, and filter boundedness.
Additionally, we include a detailed introduction to the multiplicative ergodic theorem and to the
theory and construction of Lyapunov vectors. While forecast error in the stable subspace may not
generically vanish, we show that even without filtering, uncertainty remains uniformly bounded due
its dynamical dissipation. However, the continuous reinjection of uncertainty from model errors may
be excited by transient instabilities in the stable modes of high variance, rendering forecast uncer-
tainty impractically large. In the context of ensemble data assimilation, this requires rectifying the
rank of the ensemble-based gain to account for the growth of uncertainty beyond the unstable and
neutral subspace, additionally correcting stable modes with frequent occurrences of positive local
Lyapunov exponents that excite model errors.
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1. Introduction. The seminal work of Lorenz [41] demonstrated that, even in determin-
istic systems, infinitesimal perturbations in initial conditions can rapidly lead to a long-term
loss of predictability in chaotic, physical models. In weather prediction, this understanding led
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1336 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

to the transition from single-trajectory forecasts to ensemble-based, probabilistic forecasting
[39]. Historically, ensembles have been initialized in order to capture the spread of rapidly
growing perturbations [12, 50]. Data assimilation methods have likewise been designed to
capture this variability in the context of Bayesian and variational data assimilation schemes;
see, e.g., Carrassi et al. for a recent survey of data assimilation techniques in geosciences [13].
The ensemble Kalman filter, particularly, has been shown to strongly reflect these dynami-
cal instabilities [16, 42, 25, 7], and its performance depends significantly upon whether these
rapidly growing errors are sufficiently observed and corrected.

The assimilation in the unstable subspace (AUS) methodology of Trevisan et al. [14, 51,
52, 44, 45] has provided a robust, dynamical interpretation of these observed properties of
the ensemble Kalman filter. For deterministic, linear, Gaussian models, Trevisan et al. hy-
pothesized that the asymptotic filter error concentrates in the span of the unstable-neutral
backward Lyapunov vectors (BLVs), and this has recently been mathematically proven. Guru-
moorthy et al. [27] demonstrated that the null space of the forecast error covariance matrices
asymptotically contain the time varying subspace spanned by the stable BLVs. This result
was generalized by Bocquet et al. [8], proving the asymptotic equivalence of reduced rank
initializations of the Kalman filter with the full rank Kalman filter: as the number of assimi-
lations increases towards infinity, the covariance of the full rank Kalman filter converges to a
sequence of low rank covariance matrices initialized only in the unstable-neutral BLVs.

The convergence of the Kalman smoother error covariances onto the span of the unstable-
neutral BLVs, and the stability of low rank initializations, was established by Bocquet and
Carrassi [7]; this latter work also numerically extended this relationship to weakly nonlinear
dynamics and ensemble-variational methods. The works of Bocquet et al. [8] and Bocquet
and Carrassi [7] relied upon the sufficient hypothesis that the span of the unstable and neutral
BLVs remained uniformly completely observed. This hypothesis has recently been refined to
a necessary and sufficient criterion for the exponential stability of continuous time filters, in
perfect models, in terms of the detectability of the unstable-neutral subspace [23].

The present study is concerned with extending the limits of the results developed in
deterministic dynamics (perfect models) to the presence of stochastic model errors. This
manuscript and its sequel [26] seek to (i) determine the extent to which stable dynamics
confine the uncertainty in the sequential state estimation problem in models with additive
noise and (ii) to use these results to interpret the properties, and suggest design, of ensemble-
based Kalman filters with model error. This manuscript studies the asymptotic properties of
the full rank, theoretical Kalman filter [33] and the unfiltered errors in the stable BLVs. The
sequel [26] utilizes these results to interpret filter divergence for reduced rank, ensemble-based
Kalman filters.

In section 3 we present a detailed introduction to the BLVs. In section 4 we develop novel
bounds on the forecast error covariance, describing the evolution of uncertainty as the growth
of error due to dynamic instability and model imprecision, with respect to the constraint of
observations. Together, the rate of dynamic instability and the observational precision form an
inverse relationship which we use to characterize the boundedness of forecast errors. In Corol-
lary 1 and Corollary 2, we prove a necessary criterion for filter boundedness in autonomous
and time varying systems: the observational precision, relative to the background uncertainty,
must be greater than the leading instability which forces the model error. Our results derive
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1337

from the bounds provided in Proposition 1 for autonomous dynamics and Proposition 2 for
time varying systems. An important consequence is that under generic assumptions, forecast
errors in the span of the stable BLVs remain uniformly bounded independently of filtering.
Described in Corollary 3, this extends the intuition of AUS now to the presence of model
errors: filters need only target corrections to the span of the unstable and neutral BLVs to
maintain bounded errors.

However, the intuition of AUS needs additional qualifications when interpreting the role of
model errors in reduced rank filters. Unlike perfect models, uncertainty in the stable BLVs does
not generically converge to zero as a consequence of reintroducing model errors. Moreover,
while stability guarantees that unfiltered errors remain uniformly bounded in the stable BLVs,
the uncertainty may still be impractically large; even when a Lyapunov exponent is strictly
negative, positive realizations of the local Lyapunov exponents can force transient instabilities
which strongly amplify the forecast uncertainty. The impact of stable modes on forecast
uncertainty differs from similar results for nonlinear, perfect models by Ng et al. [42] and
Bocquet, Raanes, and Hannart [9], where the authors demonstrate the need to correct stable
modes in the ensemble Kalman filter due to sampling errors induced by nonlinearity. Likewise,
this differs from the nonlinear AUS extended Kalman filter (EKF-AUS-NL) of Palatella and
Trevisan [45] that accounts for truncation errors in the estimate of the forecast uncertainty in
nonlinear models. In subsection 5.2, we derive the mechanism for the transient instabilities
amplifying perturbations as a linear effect in the presence of model errors. We furthermore
provide a computational framework to study the variance of these perturbations.

In subsection 5.3, we study the filter boundedness and stability criteria of Bocquet et al.
[8] and Frank and Zhuk [23] in their relation to bounding forecast errors in imperfect models.
Likewise, we explore their differences in the context of dynamically selecting observations,
similar to the work of Law et al. [37]. With respect to several observational designs as
benchmarks, we numerically demonstrate that the unconstrained growth of errors in the stable
BLVs of high variance can be impractically large compared to the uncertainty of the full
rank Kalman filter. These results have strong implications for ensemble-based filtering in
geosciences and weather prediction, where ensemble sizes are typically extremely small relative
to the model dimension. In perfect models, an ensemble size large enough to correct the small
number unstable and neutral modes might suffice. However, our results suggest the need to
further increase the rank of ensemble-based gains. The significance of this result for ensemble-
based Kalman filters and their divergence is further elaborated on in the sequel [26].

2. Linear state estimation. The purpose of recursive data assimilation is estimating an
unknown state with a sequential flow of partial and noisy observations; we make the simpli-
fying assumption that the dynamical and observational models are both linear and the error
distributions are Gaussian. In this setting, given a Gaussian distribution for the initial state,
the distribution of the estimated state is Gaussian at all times. Formulated as a Bayesian
inference problem, we seek to estimate the distribution of the random vector xk ∈ Rn evolved
via a linear Markov model,

xk = Mkxk−1 + wk,(2.1)

with observations yk ∈ Rd given as

yk = Hkxk + vk.(2.2)

c© 2018 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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1338 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

The model variables and observation vectors are related via the linear observation operator
Hk : Rn 7→ Rd. Let In denote the n × n identity matrix. We denote the model propagator
from time tl−1 to time tk as Mk:l , Mk · · ·Ml, where Mk:k , In.

For all k, l ∈ N, the random vectors of model and observation noise, wk,wl ∈ Rn and
vk,vl ∈ Rd, are assumed mutually independent, unbiased, Gaussian white sequences. Partic-
ularly, we define

E
[
vkv

T
l

]
= δk,lRk and E

[
wkw

T
l

]
= δk,lQk,(2.3)

where E is the expectation, Rk ∈ Rd×d is the observation error covariance matrix at time tk,
and Qk ∈ Rn×n stands for the model error covariance matrix. The error covariance matrix Rk

can be assumed invertible without losing generality. For simplicity we assume the dimension
of the observations d ≤ n will be fixed.

For two positive semidefinite matrices, A and B, the partial ordering is defined B ≤ A if
and only if A − B is positive semidefinite. To avoid pathologies, we assume that the model
error and the observational error covariance matrices are uniformly bounded, i.e., there are
constants qinf , qsup, rinf , rsup ∈ R such that for all k,

0 ≤ qinfIn ≤ Qk ≤ qsupIn,(2.4)

0 < rinfId ≤ Rk ≤ rsupId.(2.5)

Rather than explicitly computing the evolution of the distribution for xk, the Kalman
filter computes the forecast and posterior distributions parametrically via recursive equations
for the mean and covariance of each distribution.

Definition 1. The forecast error covariance matrix Pk of the Kalman filter satisfies the
discrete-time dynamic Riccati equation [33]

Pk+1 = Mk+1 (In + PkΩk)
−1 PkM

T
k+1 + Qk+1,(2.6)

where Ωk , HT
kR−1

k Hk is the precision matrix of the observations.

Equation (2.6) expresses the error covariance matrix, Pk+1, as the result of a two-step
process: (i) the assimilation at time tk yielding the analysis error covariance,

Pa
k = (In + PkΩk)

−1 Pk,(2.7)

and (ii) the forecast, where the analysis error covariance is forward propagated by

Pk+1 = Mk+1P
a
kM

T
k+1 + Qk+1.(2.8)

Assuming that the filter is unbiased such that the initial error is mean zero, it is easy to
demonstrate that the forecast and analysis error distributions are mean zero at all times. In
this context, the covariances Pk,P

a
k represent the uncertainty of the state estimate defined by

the filter mean. As we will focus on the evolution of the covariances, we neglect the update
equations for the mean state and refer the reader to Jazwinski [31] for a more complete
discussion.
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1339

The classical conditions for the boundedness of filter errors, and the independence of
the asymptotic filter behavior from its initialization, are given in terms of observability and
controllability. Observability is the condition that given finitely many observations, the initial
state of the system can be reconstructed. Controllability describes the ability to move the
system from any initial state to a desired state given a finite sequence of control actions—in
our case the moves are the realizations of model error. These conditions are described in the
following definitions, beginning with the information and controllability matrices.

Definition 2. We define Φk:j to be the time varying information matrix and Υk:j to be the
time varying controllability matrix, where

Φk:j ,
k∑
l=j

M−T
k:l ΩlM

−1
k:l , Υk:j ,

k∑
l=j

Mk:lQlM
T
k:l.(2.9)

For γ ≥ 0 let us define the weighted controllability matrix as

Ξγ
k:j ,

k∑
l=j

(
1

1 + γ

)k−l
Mk:lQlM

T
k:l.(2.10)

Note that Ξ0
k:j ≡ Υk:j . We recall from section 7.5 of Jazwinski [31] the definitions of

uniform complete observability (respectively, controllability).

Definition 3. Suppose there exist NΦ, a, b > 0 independent of k such that k > NΦ implies

0 < aIn ≤ Φk:k−NΦ
≤ bIn;(2.11)

then the system is uniformly completely observable. Likewise suppose there exist NΥ, a,
b > 0 independent of k for which k > NΥ implies

0 < aIn ≤ Υk:k−NΥ
≤ bIn;(2.12)

then the system is uniformly completely controllable.

Hypothesis 1. Assume that the system of equations (2.1) and (2.2) is
(a) uniformly completely observable;
(b) uniformly completely controllable.

Remark 1. We will explicitly refer to Hypothesis 1 whenever it is used. When we refer
Hypothesis 1 alone, we refer to both parts (a) and (b). At times, we will explicitly only use
either part (a) or part (b) of Hypothesis 1.

Theorem 1. Suppose the system of equations (2.1) and (2.2) satisfies Hypothesis 1 and
P0 > 0. Then there exist constants painf and pasup independent of k such that the analysis error
covariance is uniformly bounded above and below

0 < painfIn ≤ Pa
k ≤ pasupIn <∞.(2.13)

Given any two initializations of the prior error covariance P0, P̂0 > 0 with associated se-
quences of analysis error covariances Pa

k, P̂
a
k, the covariance sequences converge, limk→∞

‖Pa
k − P̂a

k‖ = 0, exponentially in k.

c© 2018 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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1340 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

These are classical results of filter stability; see, for example, Theorem 7.4 of Jazwinski [31]
or Bougerol’s work with random matrices [10, 11] for a generalization.

The square root Kalman filter is a reformulation of the recurrence in (2.6) which is used
to reduce computational cost and obtain superior numerical precision and stability over the
standard implementations; see, e.g., [49] and references therein. The advantage of this formu-
lation to be used in our analysis is to explicitly represent the recurrence in (2.6) in terms of
positive semidefinite, symmetric matrices.

Definition 4. Let Pk be a solution to the time varying Riccati equation (2.6), and define
Xk ∈ Rn×n to be a Cholesky factor of Pk such that

Pk = XkX
T
k .(2.14)

The root Xk in (2.14) can be interpreted as an ensemble of anomalies about the mean
as in the ensemble Kalman filter [22, 2]. In operational conditions, it is standard that the
forecast error distribution is approximated with a suboptimal, reduced rank surrogate [17].
Using a reduced rank approximation, the estimated covariance and exact error covariance
are not equal, and this can lead to the systematic underestimation of the uncertainty [26].
However, in the following we will assume that Xk is computed as an exact root. The sequel
to this work explicitly treats the case of reduced rank, suboptimal filters [26].

Definition 5. We order singular values σ1 > · · · > σn such that

0 ≤ σn
(
XT
kΩkXk

)
In ≤ XT

kΩkXk ≤ σ1

(
XT
kΩkXk

)
In <∞.(2.15)

We define

α , inf
k

{
σn
(
XT
kΩkXk

)}
≥ 0, β , sup

k

{
σ1

(
XT
kΩkXk

)}
≤ ∞,(2.16)

and we write 0 ≤ αIn ≤ XT
kΩkXk ≤ βIn ≤ ∞ for all k.

Equation (2.15) is closely related to the singular value analysis of the precision matrix by
Johnson, Hoskins, and Nichols [32] and the analysis of the conditioning number for the Hessian
of the variational cost function by Haben, Lawless, and Nichols [28] and Tabeart et al. [48].
These works study the information gain from observations, relative to the background uncer-
tainty, due to the assimilation step. The primary difference between these earlier works and our
study here is that the background error covariance is static in these variational formulations,
while in the present study the root Xk is flow dependent. In this flow dependent context, the
constant α (respectively, β) is interpreted as the minimal (respectively, maximal) observational
precision relative to the maximal (respectively, minimal) background forecast uncertainty. The
constant α is nonzero if and only if the principal angles between the column span of Xk and the
kernel of Hk are bounded uniformly below. Generally, we thus take α = 0 unless observations
are full dimensional. A nonzero value for α can be understood as an ideal scenario.

Using Definition 4 and the matrix shift lemma (see [8, Appendix C]) we rewrite the forecast
Riccati equation (2.6) as

Pk = Mk(In + Pk−1Ωk−1)−1Pk−1M
T
k + Qk(2.17)

= MkXk−1(In + XT
k−1Ωk−1Xk−1)−1XT

k−1M
T
k + Qk(2.18)

c© 2018 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1341

from which we infer

1

1 + β
MkPk−1M

T
k + Qk ≤ Pk ≤

1

1 + α
MkPk−1M

T
k + Qk.(2.19)

Iterating on the above inequality, we obtain the recursive bound(
1

1 + β

)k
Mk:0P0M

T
k:0 + Ξβ

k:1 ≤ Pk ≤
(

1

1 + α

)k
Mk:0P0M

T
k:0 + Ξα

k:1.(2.20)

Remark 2. Equation (2.20) holds if there is no filtering step, setting β = α = 0.

The bounds in (2.20) explicitly describe the previously introduced uncertainty as dynam-
ically evolved to time k, relative to the constraint of the observations. We will utilize the
BLVs to extract the dynamic information from the sequences of matrices Mk:l,M

T
k:l.

3. Lyapunov vectors. This section contains a short introduction to Lyapunov vectors and
the multiplicative ergodic theorem (MET). For a more comprehensive introduction, there are
many excellent resources at different levels of complexity; see, for example, [1, 38, 4, 5, 36, 24].
There is inconsistent use of the terminology for Lyapunov vectors in the literature, so we choose
to use the nomenclature of Kuptsov and Parlitz [36] for its accessibility and self-consistency.

Consider the growth or decay of an arbitrary, norm one vector v0 ∈ Rn to its state at time
tk via the propagator Mk:0. This is written as

‖vk‖ = ‖Mk:0v0‖ =
√
vT

0 MT
k:0Mk:0v0,(3.1)

so that the eigenvectors of the matrix MT
k:0Mk:0 describe the principal axes of the ellipsoid

defined by the unit disk evolved to time tk. Using the above relationship for the reverse time
model, we see the growth or decay of the unit disk in reverse time as

‖u−k‖ =
∥∥M−1

0:−ku0

∥∥ =
√
uT

0 M−T
0:−kM

−1
0:−ku0.(3.2)

The principal axes of the past ellipsoid that evolves to the unit disk at the present time are
thus precisely the eigenvectors of the matrix M−T

0:−kM
−1
0:−k. There is no guarantee in general

that there is consistency between the asymptotic forward and reverse time growth and decay
rates, i.e., in (3.1) and (3.2) as k → ∞. Generally, models may have Lyapunov spectrum
defined as intervals of lower and upper growth rates; see, e.g., Dieci and Van Vleck [19, 20].
However, as we are motivated by the tangent-linear model for a nonlinear system, we may
assume some “regularity” in the dynamics.

The antisymmetry of the forward/reverse time, regular and adjoint models’ growth and
decay, is known as Lyapunov–Perron regularity (LP-regularity) [5] and is equivalent to the
classical Oseledec decomposition; see [4, Theorem 2.1.1]. LP-regularity guarantees that (i) the
Lyapunov exponents are well defined for the linear model as point-spectrum, (ii) the linear
space is decomposable into subspaces that evolve covariantly with the linear propagator, and
(iii) each such subspace asymptotically grows or decays according to one of the point-spectrum
rates. We summarize the essential results of Oseledec’s theorem for use in our work in the
following; see Theorem 2.1.1 of Barreira and Pesin [4] for a complete statement.

c© 2018 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/1

1/
20

 to
 4

6.
22

.1
40

.6
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1342 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

Theorem 2 (Oseledec’s theorem). The model xk = Mkxk−1 is LP-regular if and only if
there exist real numbers λ1 > · · · > λp for 1 ≤ p ≤ n and subspaces E ik ⊂ Rn, dim

(
E ik
)

= κi,
such that for every k, l ∈ Z

(3.3)
⊕p

i=1 E ik = Rn, Mk±l:kE ik = E ik±l,

and v ∈ E ik implies

lim
l→∞

1

l
log(‖Mk±l:kv‖) = ±λi.(3.4)

Definition 6. For p ≤ n, the Lyapunov spectrum of the system (2.1) is defined as the set
{λi : κi}pi=1, where λ1 > · · · > λp and κi corresponds to the multiplicity (degeneracy) of the
exponent λi. We separate nonnegative and negative exponents, λn0 ≥ 0 > λn0+1, such that
each index i > n0 corresponds to a stable exponent. The subspaces E ik are denoted Oseledec
spaces, and the decomposition of the model space into the direct sum is denoted Oseledec
splitting.

For arbitrary linear systems LP-regularity is not a generic property—it is the MET that
shows that this is a typical scenario for a wide class of nonlinear systems. A point will be
defined to be LP-regular if the tangent-linear model along its evolution is LP-regular. We
state a classical version of the MET (see Theorem 2.1.2 of [4] and the following discussion),
but note that there are more general formulations of this result and more general forms of
the associated covariant-subspace decompositions. These results go beyond the current work;
see, e.g., Froyland et al. [24] and Dieci, Elia, and Van Vleck [20, 18] for a stronger version of
the MET and related topics.

Theorem 3 (multiplicative ergodic theorem). If f is a C1 diffeomorphism of a compact,
smooth, Riemannian manifold M , the set of points in M which are LP-regular has measure
1 with respect to any f -invariant Borel probability measure ν on M . If ν is ergodic, then the
Lyapunov spectrum is constant with ν-probability 1.

Loosely, the MET states that, with respect to an ergodic probability measure (that is
compatible with the map f and the usual topology), there is probability one of choosing
initial conditions for which the Lyapunov exponents are well defined and independent of
initial condition. This form of the MET has a wide range of applications in differentiable
dynamical systems, but the MET is not limited to this setting. The strong version of the
MET has been applied in, e.g., hard disk systems, the truncated Fourier expansions of PDEs,
and with nonautonomous ODEs and their transfer operators. See Example 1.2 of [24] for a
discussion of these topics. For the rest of this work, we will take the hypothesis that our
model satisfies LP-regularity.

Hypothesis 2. The model defined by the deterministic equation

xk = Mkxk−1(3.5)

is assumed to be LP-regular.
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1343

The deterministic evolution in (3.5) comes naturally in the formulation of the Kalman
filter, where the mean state is evolved via the deterministic component in the forecast step.
For Gaussian error distributions, the evolution of the forecast error distribution is interpreted
in terms of Oseledec’s theorem as the evolution of deviations from the mean, propagated via
the equations for perturbations. While Oseledec’s theorem guarantees that a decomposition
of the model space exists, constructing such a decomposition is nontrivial. Motivated by (3.1)
and (3.2), we define the following operators as in equations (13) and (14) of Kuptsov and
Parlitz [36].

Definition 7. We define the far-future operator as

W+(k) , lim
l→∞

[
MT

k+l:kMk+l:k

] 1
2l(3.6)

and the far-past operator as

W−(k) , lim
l→∞

[
M−T

k:k−lM
−1
k:k−l

] 1
2l
.(3.7)

In the classical proof of the MET, the far-future/past operators are shown to be well
defined positive definite, symmetric operators [43]. As they are diagonalizable over R, we
order the eigenvalues of W+(k) as µ+

1 (k) > · · · > µ+
p (k) and the eigenvalues of W−(k) as

µ−p (k) > · · · > µ−1 (k). By the MET, the eigenvalues µ±i (k) are independent of k and satisfy
the relationship

log(µ±i ) = ±λi.(3.8)

Definition 8. Let the columns of the matrix Fk, respectively, Bk, be any orthonormal eigen-
basis for the far-future operator W+(k), respectively, far-past operator W−(k). Order the

columns blockwise such that for each i = 1, . . . , p and each j = 1, . . . , κi, F
ij
k is an eigenvector

for µ+
i and B

ij
k is an eigenvector for µ−i . We define F

ij
k to be the ijth forward Lyapunov

vector (FLV) at time k and B
ij
k to be the ijth BLV. Let the columns of Ck form any basis

such that for each i = 1, . . . , p and each j = 1, . . . , κi, C
ij
k ∈ E

i
k. Then we define C

ij
k to be the

ith covariant Lyapunov vector (CLV) at time k.

The CLVs are defined only by the Oseledec spaces and, therefore, are independent of the
choice of a norm—any choice of basis subordinate to the Oseledec splitting is valid. On the
other hand, the FLVs and the BLVs are determined specifically with respect to a choice of a
norm and the induced metric. The choice of basis in each case can be made uniquely (up to
a scalar and the choice of a norm) only when p = n. For the remaining work we will focus
on the BLVs; for a general survey on constructing FLVs, BLVs, and CLVs, see, e.g., Kuptsov
and Parlitz [36] and Froyland et al. [24].

The Oseledec spaces and Lyapunov vectors can also be defined in terms of filtrations, i.e.,
chains of ascending or descending subspaces of Rn. This forms an axiomatic approach to
constructing abstract Lyapunov exponents used by, e.g., Barreira and Pesin [4]. The BLVs
describe an orthonormal basis for the ascending chain of Oseledec subspaces, the backward
filtration [36]. For all 1 ≤ m ≤ p we obtain the equality

m⊕
i=1

E ik =
m⊕
i=1

span
{

B
ij
k

}κi
j=1

(3.9)
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1344 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

by equation (17) of Kuptsov and Parlitz [36] and the decomposition of the backward filtration
in equations (1.5.1) and (1.5.2) of Barreira and Pesin [4]. Note that (3.9) does not imply

B
ij
k ∈ E

i
k for i > 1, as the BLVs are not themselves covariant with the model dynamics.

However, the BLVs are covariant with the QR algorithm.

Lemma 3.1. Outside of a set of Lebesgue measure zero, a choice of ij linearly independent
initial conditions for the recursive QR algorithm converges to some choice for the leading ij
BLVs. For any k, the BLVs satisfy the relationship

MkBk−1 = BkTk, ⇔ Mk = BkTkB
T
k−1,(3.10)

where Tk is an upper triangular matrix. Moreover, for any ij and any k,

lim
l→−∞

1

k − l
log
(∥∥∥MT

k:lB
ij
k

∥∥∥) = λi.(3.11)

Proof. The covariance of the BLVs with respect to the QR algorithm in (3.10) can be
derived from (3.3) and (3.9). For all 1 ≤ m ≤ p,

Mk

(
m⊕
i=1

span
{

B
ij
k−1

}κi
j=1

)
=

m⊕
i=1

span
{

B
ij
k

}κi
j=1

,(3.12)

due to the covariance of the Oseledec spaces. Therefore the transformation Mk represented in
a moving frame of BLVs is upper triangular. When the spectrum is degenerate, p < n, there
is nonuniqueness in the choice of the BLVs. However, given an initial choice of the BLVs at
some time k − 1, the choice of BLVs at time k can be defined directly via the relationship in
(3.10). This is the relationship derived in equation (31) by Kuptsov and Parlitz [36] and is the
basis of the recursive QR algorithms of Shimada and Nagashima [47] and Benettin et al. [6].
A choice of BLVs gives a special choice of the classical Perron transformation (see Theorems
3.3.1 and 3.3.2 of [1]), and in particular, it is proven by Ershov and Potapov [21] that outside
of a set of Lebesgue measure zero, the recursive QR algorithm converges to some choice of
BLVs.

Note that the far-future/past operators are also well defined for the propagator of the
adjoint model zk = M−T

k zk−1. Equation (3.11) thus follows from the far-past operator for the
adjoint model, defined as

W∗−(k) , lim
l→∞

[
Mk:k−lM

T
k:k−l

] 1
2l .(3.13)

It is easy to verify that the BLVs defined by the adjoint model agree with those defined via
the regular model—in each case, the left singular vectors of Mk:k−l converge to a choice of
the BLVs as l→∞. Notice that the eigenvalues of W∗−(k) are reciprocal to those of W−(k),
i.e., µ∗−i = 1

µ−i
. Thus by (3.8), log

(
µ∗−i

)
= λi.

Equation (3.10) describes the dynamics in the moving frame of BLVs, where the transition
map from the frame at time tk−1 to time tk is given by Tk. Applying the change of basis
sequentially for the matrix Mk:l, we recover

(3.14) Mk = BkTkB
T
k−1 ⇒ Mk:l = BkTk:lB

T
l ,
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1345

where we define Tk:l , Tk · · ·Tl+1. We note that Mk:k = In implies Tk:k ≡ In. Let eij
denote the ijth standard basis vector such that∥∥∥MT

k:lB
ij
k

∥∥∥2
= eT

ijTk:l (Tk:l)
T eij =

∥∥∥(TT
k:l

)ij∥∥∥2
,(3.15)

where
(
TT
k:l

)ij denotes the ijth column of TT
k:k−l, i.e., the ijth row of Tk:k−l. For any k and

any ε > 0, there exists some Nε,k such that if k− l is taken sufficiently large, (3.11) guarantees

e2(λi−ε)l ≤
∥∥∥(TT

k:k−l
)ij∥∥∥2

≤ e2(λi+ε)l.(3.16)

Definition 9. For each k > l, i = 1, . . . , p, and j = 1, . . . , κi we define the ijth local

Lyapunov exponent (LLE) from k to l as 1
k−l log

(
|T ijk:l|

)
, where T

ij
k:l is defined to be the ijth

diagonal entry of Tk:l.

Lemma 3.2. For any fixed l,

lim
k→∞

1

k − l
log
(
|T ijk:l|

)
= λi.(3.17)

Proof. This is also discussed by Ershov and Potapov [21] in demonstrating the convergence
of the recursive QR algorithm. For a discussion on the numerical stability and convergence
see, e.g., Dieci and Van Vleck [19, 20].

Perturbations of model error to the mean equation for the Kalman filter are not gov-
erned by the asymptotic rates of growth or decay but, rather, by the LLEs. While the LLE

1
k−l log(|T ijk:l|) approaches the value λi as k − l approaches infinity, its behavior on short time
scales can be highly variable. Particularly, for an arbitrary LP-regular system, the rate of
convergence in (3.11) may depend on k. An important class of such systems is, e.g., nonuni-
formly hyperbolic systems (see chapter 2 of [4]). To make the LLEs tractable, we make an
additional assumption, compatible with the typical assumptions for partial hyperbolicity [29].
We adapt the definition of partial hyperbolicity from Hasselblatt and Pesin [30] to our setting.

Definition 10. Let λn0 = 0. For every k we define the splitting into unstable, neutral, and
stable subspaces:

Euk ,
n0−1⊕
i=1

E ik, Eck , E
n0
k , and Esk ,

p⊕
i=n0+1

E ik.(3.18)

Suppose there exist constants C > 0 and

0 < ηs ≤ νs < ηc ≤ νc < ηu ≤ νu(3.19)

independent of k such that νs < 1 < ηu and for any l > 0, v ∈ Emk , ‖v‖ = 1, and m ∈ {s, c, u}

(ηm)l

C
≤ ‖Mk+l:kv‖ ≤ (νm)lC.(3.20)

Then the model (2.1) is (uniformly) partially hyperbolic (in the narrow sense).
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1346 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

Partially hyperbolic systems, as in Definition 10, have LLEs which are bounded uniformly
with respect to rates defined on the subspaces in (3.18). When C is taken large the definition
permits transient growth of stable modes and transient decay of unstable modes. The neutral
subspace encapsulates diverse behaviors which always fall below prescribed rates of exponential
growth or decay. We will make a slightly stronger assumption on these uniform growth and
decay rates that is equivalent to fixing a uniform window of transient variability on each
Lyapunov exponent.

Hypothesis 3. Let ε > 0 be given. We assume that for each i there exists some Ni,ε,

independent of k and j, such that for any B
ij
k whenever k − l > Ni,ε

−ε < 1

k − l
log
(∥∥∥MT

k:lB
ij
k

∥∥∥)− λi < ε,(3.21)

i.e., the growth and decay is uniform (translation invariant) in k.

Unless specifically stated otherwise, we assume Hypothesis 3 for the remaining of this
paper. However, our results may be generalized to all systems satisfying Definition 10 by
using only the uniform rates of growth or decay on the entire unstable, neutral, and stable
subspaces in (3.20). Our results also apply to systems without neutral exponents, i.e., λn0 > 0,
as a trivial extension.

4. Dynamically induced bounds for the Riccati equation.

4.1. Autonomous systems. Consider the classical theorem regarding the existence and
uniqueness of solutions to the stable Riccati equation for autonomous dynamics. This is
paraphrased from Theorem 2.38, Chapter 7, of Kumar and Varaiya [35] in terms of the forecast
error covariance recurrence in (2.18).

Definition 11. The autonomous system is defined such that for every k

(4.1) Mk ≡M, Hk ≡ H, Qk ≡ Q, Rk ≡ R, and Ωk ≡ Ω.

Let P = XXT for some X ∈ Rn×n; the stable Riccati equation is defined as

P = MX(In + XTΩX)−1XTMT + Q.(4.2)

Theorem 4. Let the autonomous system defined by (2.1), (2.2), and (4.1) satisfy Hypoth-
esis 1. There is a positive semidefinite matrix, P̂ ≡ X̂X̂T, which is the unique solution to
the stable Riccati equation (4.2). For any initial choice of P0, if Pk satisfies the recursion in
(2.18), then limk→∞Pk = P̂.

Slightly abusing notation, take α and β to be defined by the solution to the stable Riccati
equation (4.2),

α , σn

(
X̂TΩX̂

)
≥ 0, β , σ1

(
X̂TΩX̂

)
<∞.(4.3)

Then for any k we recover the invariant recursion for the stable limit

(1 + β)−kMkP̂
(
MT

)k
+ Ξβ

k:1 ≤ P̂ ≤ (1 + α)−kMkP̂
(
MT

)k
+ Ξα

k:1.(4.4)
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1347

Proposition 1. Assume (2.1) and (2.2) satisfy Hypothesis 1, and define α, β for the stable
Riccati equation as in (4.3). For any 1 ≤ i ≤ p, if there exists ε > 0 such that

e2(λi+ε)

1 + α
< 1,(4.5)

choose Ni,ε as in Hypothesis 3. For the eigenvalue µi of MT, where |µi| = eλi, choose any
eigenvector vij . Then

vT
ij P̂vij ≤

vT
ij

Qvij

1− e2λi
1+α

.(4.6)

Moreover, if Bij is the ijth BLV, then

(
Bij
)T

P̂Bij ≤
(
Bij
)T

Ξα
Ni,ε:0B

ij +

(
e2(λi+ε)

1 + α

)Ni,ε+1(
qsup

1− e2(λi+ε)

1+α

)
.(4.7)

For every 1 ≤ i ≤ p, any ε > 0, and associated Ni,ε as in Hypothesis 3,

vT
ij

Qvij

1− e2λi
1+β

≤ vT
ij P̂vij(4.8)

and

(
Bij
)T

Ξβ
Ni,ε:0

Bij +

(
e2(λi−ε)

1 + β

)Ni,ε+1
 qinf

1− e2(λi−ε)

1+β

 ≤ (Bij
)T

P̂Bij .(4.9)

Proof. Note that time invariant propagators trivially satisfy Hypothesis 3 and it is easy
to verify the relationship |µi| = eλi directly from the definition of the Lyapunov exponents.
We begin by proving (4.6) and (4.8) for eigenvectors of MT. If vij is an eigenvector of MT

associated to µi, (4.4) implies

vT
ij P̂vij ≤

(
|µi|2

1 + α

)k+1

vT
ij P̂vij +

k∑
l=0

(
|µi|2

1 + α

)l
vT
ijQvij(4.10)

for every k. For λi < 0 generally, or for any λi such that α > e2λi − 1,

lim
k→∞

[(
|µi|2

1 + α

)k+1

vT
ij P̂vij +

k∑
l=0

(
|µi|2

1 + α

)l
vT
ijQvij

]
=

vT
ij

Qvij

1− |µi|
2

1+α

(4.11)

and

vT
ij P̂vij ≤

vT
ij

Qvij

1− e2λi
1+α

.(4.12)

The stable Riccati equation (4.2) implies Q ≤ P̂. Therefore, using the left side of (4.4)
demonstrates that for any eigenvector vij
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1348 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

k∑
l=0

(
| µi |2

1 + β

)l
vT
ijQvij ≤ vT

ij P̂vij(4.13)

for all k. In particular, for every eigenvector vij we obtain

vT
ij

Qvij

1− |µi|
2

1+β

≤ vT
ij P̂vij .(4.14)

The above argument does not have a straightforward extension to the generalized eigen-
spaces, so we coarsen the bound to obtain a closed limiting form in terms of the BLVs which
retain the important growth characteristics under MT. For i > n0, or for any λi such that
α > e2λi − 1, there is a choice of ε as in (4.5) and Ni,ε as in Hypothesis 3. Let P̂ ≤ p̂supIn;
then from the right side of (4.4) we derive

P̂ ≤
p̂supMk+1

(
MT

)k+1

(1 + α)k+1
+

k∑
l=0

MlQ
(
MT

)l
(1 + α)l

(4.15)

≤
p̂supMk+1

(
MT

)k+1

(1 + α)k+1
+ Ξα

Nε,i:1 + qsup

k∑
l=Nε,i+1

Ml
(
MT

)l
(1 + α)l

,(4.16)

which implies
(
Bij
)T

P̂Bij can be bounded above by

p̂sup

∥∥∥(MT
)k+1

Bij
∥∥∥2

(1 + α)k+1
+
(
Bij
)T

Ξα
Ni,ε:1B

ij + qsup

k∑
l=Ni,ε+1

∥∥∥(MT
)l

Bij
∥∥∥2

(1 + α)l
.(4.17)

Utilizing (3.11) we bound
(
Bij
)T

P̂Bij by

p̂sup

(
e2(λi+ε)

1 + α

)k+1

+
(
Bij
)T

Ξα
Ni,ε:1B

ij + qsup

k∑
l=Ni,ε+1

(
e2(λi+ε)

1 + α

)l
(4.18)

for every k > Ni,ε. Taking the limit of (4.18) as k →∞ yields

(
Bij
)T

P̂Bij ≤
(
Bij
)T

Ξα
Ni,ε:1B

ij +

(
e2(λi+ε)

1 + α

)Ni,ε+1(
qsup

1− e2(λi+ε)

1+α

)
.(4.19)

The lower bound is demonstrated by similar arguments with the lower bound in (4.4), utilizing
the property P̂ <∞.

Proposition 1 is similar to results in perfect models [9, 27, 8] but with some key differences.
Once again the estimation errors are dissipated by the dynamics in the span of the stable BLVs,
but the recurrent injection of model error prevents the total collapse of the covariance to the
unstable-neutral subspace. In (4.6), we see that for very strong decay, when e2λi ≈ 0, or for
high precision observations, i.e., when the system is fully observed and as α→∞, the stable
limit of the forecast uncertainty reduces to what is introduced by the recurrent injection of
model error. The singular evolutive extended kalman filter of Pham, Verron, and Roubaud
[46] has exploited these properties by neglecting corrections in the stable eigenspaces and only
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1349

making corrections in the unstable directions. This is likewise the motivation for AUS of
Trevisan et al. [14, 51, 52, 44, 45], though the work of AUS was concerned with nonlinear,
perfect models.

The upper bounds in (4.6) and (4.7) generally hold for i ≤ n0 only when the system is
fully observed. Therefore, these bounds can be considered an ideal bound for the unstable-
neutral modes. However, the lower bound in (4.14) hold generally for i < n0. By assuming
the existence of an invariant solution to the stable Riccati equation (4.2), we will recover a
necessary condition for its existence.

Corollary 1. Assume there exists a solution P̂ to the stable Riccati equation (4.2). Choose
the smallest index i such that 1 ≤ i ≤ n0 and there exists some generalized eigenvector vij of
MT for which vij /∈ null (Q). Then it is necessary that

e2λi

1 + σ2
1

(
R−

1
2 HX̂

) < 1.(4.20)

Proof. Let vi1 be an eigenvector for MT and Qvi1 6= 0. Then by the definition of β in
(4.3), (4.13) holds for all k if and only if (4.20) holds. More generally, suppose {vij}

κi
j=1 are

(possibly complex) generalized eigenvectors forming a Jordan block for MT. Let j be the
smallest index for which Qvij 6= 0. Recall that for each j ∈ {1, . . . , κi} the Jordan basis
satisfies (

MT − µiIn
)
vij = vij−1 ,(4.21)

where vi0 ≡ 0. Therefore, for any m ≥ 1, the vector
(
MT − µiIn

)m
vij is in the span of

{vi1 , . . . ,vij−1}. Let us define N , MT − µiIn so that

k+1∑
l=0

Q
(
MT

)l
vij =

k+1∑
l=0

Q (N + µiIn)l vij

=

k+1∑
l=0

l∑
m=0

µl−mi

(
l

m

)
QNmvij

=

k+1∑
l=0

µliQvij .

(4.22)

Multiply (4.4) on the left with vH
ij

(the conjugate transpose) and the right with vij . Combining

this with the equality in (4.22) proves the result.

Corollary 1 shows that it is necessary for the existence of the stable Riccati equation that
observations are precise enough, relative to the background uncertainty, to counteract the
strongest dynamic instability forcing the model error. The quantity in (4.20) thus represents
the stabilizing effect of the observations, similar to the bounds on the conditioning number
provided by Haben, Lawless, and Nichols [28] and Tabeart et al. [48], but in Corollary 1
expressly in response to the system’s dynamic instabilities.
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1350 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

4.2. Time varying systems. In the following, we will extend the results of Proposition 1
and Corollary 1 to time varying systems and derive a uniform bound on the unfiltered errors
in the stable BLVs in Corollary 3.

Proposition 2. Assume (2.1) and (2.2) satisfy Hypothesis 1(b). For any 1 ≤ i ≤ p, if there
exists ε > 0 such that

e2(λi+ε)

1 + α
< 1,(4.23)

choose Ni,ε as in Hypothesis 3. Then there exists a constant 0 ≤ Cα,Ni,ε such that

lim sup
k→∞

(
B
ij
k

)T
PkB

ij
k ≤ Cα,Niε +

(
e2(λi+ε)

1 + α

)Ni,ε+1(
qsup

1− e2(λi+ε)

1+α

)
.(4.24)

If Hypothesis 1(a) is also satisfied, then for every 1 ≤ i ≤ p, any ε > 0 and associated
Ni,ε, there exists 0 ≤ Cβ,Ni,ε such that

Cβ,Niε +

(
e2(λi−ε)

1 + β

)Ni,ε+1
 qinf

1− e2(λi−ε)

1+β

 ≤ lim inf
k→∞

(
B
ij
k

)T
PkB

ij
k .(4.25)

Proof. If the system satisfies Hypothesis 1(b), then

Ξα
k:k−Ni,ε ≤ Ξ0

k:k−Ni,ε ≡ Υk:k−Ni,ε ≤ bNi,εIn,(4.26)

where bNi,ε is independent of k. Therefore, there exists a constant depending on α and Ni,ε,
but independent of k, such that

Ξα
k:k−Ni,ε ≤ Cα,Ni,εIn.(4.27)

Let P0 ≤ p0In bound the prior covariance. Equation (2.20) implies

Pk ≤ p0
Mk:0M

T
k:0

(1 + α)k
+ qsup

k∑
l=1

Mk:lM
T
k:l

(1 + α)k−l
.(4.28)

From the above, we bound
(
B
ij
k

)T
PkB

ij
k with

p0

∥∥∥MT
k:0B

ij
k

∥∥∥2

(1 + α)k
+
(
B
ij
k

)T
Ξα
k:k−Ni,εB

ij
k + qsup

k−Ni,ε−1∑
l=0

∥∥∥MT
k:lB

ij
k

∥∥∥2

(1 + α)k−l
;(4.29)

thus (
B
ij
k

)T
PkB

ij
k ≤ p0

(
e2(λi+ε)

1 + α

)k
+ Cα,Ni,ε + qsup

k∑
l=Ni,ε+1

(
e2(λi+ε)

1 + α

)l
.(4.30)

Taking the lim sup in (4.30) as k →∞ yields (4.24).
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1351

Suppose that Hypothesis 1(a) and (b) are both satisfied; then by Theorem 1 there exists
a uniform bound on Pk such that Xk must also be uniformly bounded; together with uniform
boundedness of Rk and Hk, this implies β <∞. Note that

Ξβ
k:k−Ni,ε ≥

(
1

1 + β

)Ni,ε
Ξ0
k:k−Ni,ε ≥

(
1

1 + β

)Ni,ε
aNi,εIn(4.31)

for some constant aNi,ε independent of k. This implies

Ξβ
k:k−Ni,ε ≥ Cβ,Ni,εIn(4.32)

for a constant Cβ,Ni,ε depending on β and Ni,ε but independent of k. Utilizing the recursion in
(2.20), choosing ε and an appropriate Ni,ε, and finally bounding the weighted controllability
matrix with (4.32) allows one to recover the lower bound in (4.25) in a similar manner to the
upper bound.

The above proposition shows that there is a uniform upper and lower bound on the fore-
cast error for the Kalman filter, in the presence of model error, which can be described in
terms of inverse, competing factors: the constant α (respectively, β) is interpreted as the
minimal (respectively, maximal) observational precision relative to the maximal (respectively,
minimal) background forecast uncertainty represented in the observation variables. Addition-
ally Cβ,Niε , Cα,Niε represent the lower and upper bounds on local variability of the evolution of
model errors before perturbations adhere within an ε threshold to their asymptotic behavior.

Corollary 2. Assume (2.1) and (2.2) satisfy Hypothesis 1(b) and there exists a uniform
bound to the forecast error Riccati equation (2.18) for all k. Then it is necessary that

e2λ1

1 + supk σ
2
1

(
R
− 1

2
k HkXk

) < 1.(4.33)

Proof. If the forecast error Riccati equation (2.18) is uniformly bounded, there is a 0 <
psup <∞ such that we have the inequality, Pk ≤ psupIn for all k, and β <∞. Using the lower
bound in (2.20), for all k we have(

1

1 + β

)k
Mk:0P0M

T
k:0 + Ξβ

k:1 ≤ psupIn.(4.34)

The summands in (4.34) are positive semidefinite such that for any k > NΥ + 1, truncating

Ξβ
k:1 verifies

NΥ+1∑
l=1

(
1

1 + β

)k−l
Mk:lQlM

T
k:l ≤ Ξβ

k:1 ≤ psupIn.(4.35)

Note that by Definition 2, if k > NΥ + 2,

Mk:NΥ+1ΥNΥ+1:1M
T
k:NΥ+1 =

NΥ+1∑
l=1

Mk:lQlM
T
k:l,(4.36)
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1352 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

and therefore, for every k > NΥ + 2,(
1

1 + β

)k−1

Mk:NΥ+1ΥNΥ+1:1M
T
k:NΥ+1 ≤ psupIn.(4.37)

Using Hypothesis 1(b), for every k > NΥ + 2 we derive(
1

1 + β

)k−NΥ−1

Mk:NΥ+1M
T
k:NΥ+1 ≤

psup(1 + β)NΥ

b
In(4.38)

using the inequality in (2.12). For any j, multiplying (4.38) on the left by (B
1j
k )T and on the

right by B
1j
k and taking the limit as k → ∞ shows that it is necessary for (4.33) to hold for

the left side to be bounded away from ∞.

In contrast to Corollary 1 for autonomous systems, Corollary 2 uses the Hypothesis 1(b) to
simplify the arguments—this, moreover, guarantees the necessary criterion is with respect to
λ1, as the controllability matrix is guaranteed to be positive definite and thus nonvanishing on
every Oseledec space. There is, however, a more direct analog to the statement of Corollary 1
where the adjoint-covariant Lyapunov vectors will play the role of the eigenvectors of MT. It is
easy to demonstrate that the adjoint-covariant Lyapunov vectors have the desired covariance
and growth/decay with respect to the reverse time adjoint model, MT

k . There exist, under
the condition of integrally separated Oseledec spaces, classical constructions for covariant and
adjoint-covariant bases that decompose the model propagator into a block-upper triangular
form (see Theorem 5.4.9 of [1]). This decomposition makes the derivation of a precise state-
ment like Corollary 1 analogous in time varying models with respect to the adjoint-covariant
Laypunov vectors and adjoint-covariant Oseledec spaces. However, the above arguments re-
quire significant additional exposition which we feel unnecessary, as Corollary 2 is sufficiently
general.

Corollary 3. Assume (2.1) and (2.2) satisfy Hypothesis 1(b), and suppose HkXk ≡ 0 for

every k such that α = β = 0. Let k ≥ 1, and choose v ∈ span{Bij
k : n0 < i ≤ p, 1 ≤ j ≤ κi}

such that ‖v‖ = 1. There is a C > 0 independent of k such that

vTPkv ≤ C <∞.(4.39)

Proof. The inequality in (2.20) is an equality for the unfiltered forecast where β = α = 0.
Thus the corollary is clear for any stable BLV directly from Proposition 2, and the conclusion
extends to norm one linear combinations.

Corollary 3 extends the intuition of AUS to the presence of model error: corrections may
be targeted along the expanding modes while the uncertainty in the stable modes remains
bounded by the system’s dynamic stability alone. Particularly, without filtering uncertainty
remains uniformly bounded in the span of the stable BLVs. This is analogous to the results
of Bocquet et al. [8], where in perfect models, the stable dynamics alone are sufficient to
dissipate forecast error in the span of the stable BLVs. With α = 0, the uniform bound in
Corollary 3 may be understood by the two components which (4.24) is composed of, the bound
on Υk:k−Ni,ε and
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1353

qsupe
2(λi+ε)Ni,ε+1

1− e2(λi+ε)
.(4.40)

The controllability matrix Υk:k−Ni,ε represents the newly introduced uncertainty from model
error that is yet to be dominated by the dynamics. Equation (4.40) represents an upper
bound on the past model errors that have already been dissipated by the stable dynamics.
Nevertheless, this uniform bound is uninformative about the local variability. In the following
sections, we study the variance of the unfiltered uncertainty in the stable BLVs compared to
the uncertainty of the Kalman filter.

5. Numerical experiments.

5.1. Experimental setup. To satisfy Hypothesis 2, we construct a discrete, linear model
from the nonlinear Lorenz-96 (L96) equations [40], commonly used in data assimilation liter-
ature; see, e.g., [13] and references therein. For each m ∈ {1, . . . , n}, the L96 equations read
dx
dt , L(x),

Lm(x) = −xm−2xm−1 + xm−1xm+1 − xm + F(5.1)

such that the components of the vector x are given by the variables xm with periodic boundary
conditions, x0 = xn, x−1 = xn−1 and xn+1 = x1. The term F in L96 is the forcing parameter.
The tangent-linear model [34] is governed by the equations of the Jacobian matrix, ∇L(x),

∇Lm(x) =
(
0, . . . ,−xm−1, xm+1 − xm−2,−1, xm−1, 0, . . . , 0

)
.(5.2)

We fix the model dimension n , 10 and the forcing parameter as the standard F = 8,
as the model exhibits chaotic behavior, while the small model dimension makes the robust
computation of Lyapunov vectors numerically efficient. The linear propagator Mk is gener-
ated by computing the discrete, tangent-linear model [34] from the resolvent of the Jacobian
equation (5.2) along a trajectory of the L96, with an interval of discretization at δ , 0.1. We
numerically integrate the Jacobian equation with a fourth order Runge–Kutta scheme with a
fixed time step of h , 0.01.

For F = 8, the 10 dimensional nonlinear L96 model has a nondegenerate Lyapunov spec-
trum, and we replace the superscript ij with i for the BLVs. The model has three positive,
one neutral, and six negative Lyapunov exponents such that n0 = 4. The Lyapunov spectrum
for the discrete, linear model is computed directly via the relationship in Lemma 3.2, where
the average is taken over 105 iterations of the recursive QR algorithm after precomputing the
BLVs to convergence. In our simulations, before our analysis, we precompute the BLVs and
the FLVs over 105 iterations of the recursive QR algorithm for the forward model, or, respec-
tively, for the reverse time adjoint model (see section 3 of [36]). We note that the computed
Lyapunov spectrum for the discrete, linear model as in simulations is related to the spectrum
of the nonlinear L96 model by rescaling the linear model’s exponents by 1

δ .
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1354 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

5.2. Variability of recurrent perturbations. While Corollary 3 guarantees that the un-
certainty in the stable BLVs is uniformly bounded, this bound strongly reflects the scale of
the model error and the local variance of the Lyapunov exponents. If model errors are large,
or the stable Lyapunov exponents have high variance, this indicates that the uniform bound
can be impractically large for forecasting. Assume no observational or filtering constraint,
i.e., HkXk ≡ 0. Suppose that the model error statistics are uniform in time and spatially
uncorrelated with respect to a basis of BLVs: Qk , BkDBT

k , where D ∈ Rn×n is a fixed
diagonal matrix with the ijth diagonal entry given by Dij . Denote P0 ≡ Q0; then (2.20)
becomes (

B
ij
k

)T
PkB

ij
k =

k∑
l=0

(
B
ij
k

)T
Mk:lQlM

T
k:lB

ij
k

=
k∑
l=0

(
eij
)T

Tk:lDTT
k:leij

= Dij

k∑
l=0

∥∥∥(TT
k:l

)ij∥∥∥2
,

(5.3)

where ‖
(
TT
k:l

)ij ‖ is the norm of the ijth row of Tk:l. In (5.3), Pk represents the freely evolved

uncertainty at time k, and thus
∑k

l=0 ‖
(
TT
k:l

)ij ‖2 describes the variance of the free evolution

of perturbations in the direction of B
ij
k .

Definition 12. For each 1 ≤ i ≤ p, each 1 ≤ j ≤ κi, and any k, we define

Ψ
ij
k ,

k∑
l=0

∥∥∥(TT
k:l

)ij∥∥∥2
(5.4)

to be the free evolution of perturbations in the direction of B
ij
k .

Assuming the errors are uncorrelated in the basis of BLVs is a strict assumption, but
studying the free evolution of perturbations has general applicability, BT

kQkBk ≤ qsupIn,
and therefore, (5.4) may be interpreted in terms of an upper bound on the variance of the
freely evolved forecast uncertainty in the ijth mode. Algorithm 5.1 describes our recursive
approximation of the free evolution, given by (5.4), for k ∈ {1, . . . ,m} via the QR algorithm.
We assume that the QR algorithm has been run to numerical convergence for the BLVs at
time 0.

Remark 3. Equation (3.16) implies ‖
(
TT
)ij ‖2 decays exponentially in k− l and the inner

loop of Algorithm 5.1 needs only be computed to the first l such that ‖
(
TT
)ij ‖2 is numerically

zero.

The approximation of (5.4) with Algorithm 5.1 is numerically stable for all k and any
i > n0, precisely due to the upper triangular dynamics in the BLVs. The upper triangularity
of all Tk means the lower right block of Tk:l is given as the product of the lower right blocks
of the sequence of matrices {Tj}kj=l+1. Therefore, computing the stable block of Tk:l is
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1355

Algorithm 5.1. Free evolution of perturbations in the ijth BLV.

Define B0 to be the BLVs at time zero and m ≥ 1.
for k = 1, . . . ,m do

Let Tk,Bk be defined by the QR recursion (3.10), and let Ts
k ∈ Rs×s be the lower right

submatrix of Tk corresponding to the stable exponents.
Set Ψ

ij
k = 1 and T , Is.

for l = 0, . . . , k − 1 do
T := T×Ts

k−l.

Ψ
ij
k := Ψ

ij
k +

∥∥∥(TT
)ij∥∥∥2

for each i = n0 + 1, . . . , p and j = 1, . . . , κi.

end for
return Ψ

ij
k

end for

independent of the unstable exponents, and the row norms of Tk:l converge uniformly and
exponentially to zero by Hypothesis 3.

In Figure 5.1 we plot Ψ5
k and Ψ6

k as in Algorithm 5.1 and the LLEs for B5
k and B6

k for
k ∈ {1, . . . , 104}. Assuming that Qk ≤ qsupIn, Ψi

k bounds the variance in the ith stable mode
at time k, up to the scaling factor of qsup. As n0 = 4, the exponent λ5 is the stable exponent
closest to zero. The left side of Figure 5.1 corresponds to the exponent λ5 ≈ −0.0433 while
the right side corresponds to the exponent λ6 ≈ −0.0878. The upper row in Figure 5.1 plots

0 2000 4000 6000 8000 10000
Time Step k

−0.8

−0.4

0.0

0.4

0.8

LL
E

std=0.142

101

102

103

Ψ
k

λ5=-0.0433

0 2000 4000 6000 8000 10000
Time Step k

−0.8

−0.4

0.0

0.4

0.8std=0.133

101

102

103λ6=-0.0878
Positive Negative Ψ5

k Ψ6
k

Figure 5.1. Horizontal axis: time step k ∈ {1, . . . 104}. Upper row: time series of Ψ5
k and Ψ6

k. Lower row:
LLEs of the fifth and sixth backward vector. Left column: λ5 = −0.0433. Right column: λ6 = −0.0878.
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1356 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

the evolution of Ψi
k for B5

k and B6
k, while the bottom row shows the corresponding time series

of LLEs. The mean of the LLEs are approximately equal to their corresponding Lyapunov
exponent, while the standard deviation is given by 0.142 for λ5 and 0.133 for λ6, respectively.

While Ψ5
k is uniformly bounded, Figure 5.1 illustrates that it can be on the order of

O
(
103
)
, with a mean value of approximately 808 over the 104 iterations. This is in contrast

to perfect models where the projection of the unfiltered forecast error into any stable mode
converges to zero at an exponential rate [8]. Moreover, the frequency and scale of positive
realizations of LLEs of B5

k have a strong impact on the variance of the unfiltered error. The
fewer, and weaker, positive realizations of the LLEs of B6

k correspond to the lower overall
uncertainty represented by Ψ6

k. The maximum of Ψ6
k is on the order of O(102), with a mean

value of approximately 28.

5.3. Unfiltered versus filtered uncertainty. In the following, we compare the variance
of the unfiltered error in the stable BLVs, represented by Ψi

k for i ∈ {5, . . . , 10}, with the
uncertainty in the Kalman filter. Assuming that Qk , In, in this case Ψi

k is equal to the
variance of the unfiltered error along Bi

k. While the error in the Kalman filter depends on
the observational configuration, the value of Ψi

k depends only on the underlying dynamics.
Therefore, we benchmark the variance of the unfiltered error over a range of observational
designs to determine under what conditions the unfiltered error in the stable BLVs will exceed
the uncertainty of the full rank Kalman filter. This analysis allows us to evaluate how many
of the stable BLVs can remain unfiltered while achieving an acceptable forecast performance.
This comparison has a special significance when considering reduced rank, suboptimal filters,
which is the subject of the sequel [26].

The recent works of Bocquet et al. [8] and Frank and Zhuk [23] weaken Hypothesis 1 to
criteria on the observability, or detectability, of the unstable-neutral subspace to obtain filter
stability and boundedness in perfect models. The results in Corollary 1, Corollary 2, and
Corollary 3 similarly suggest that the sufficient condition for filter boundedness, Hypothesis 1,
may be weakened in the presence of model errors. For this reason, we will study the variance
of the filtered error with respect to observations satisfying the criteria discussed by Bocquet
et al. [8] and Frank and Zhuk [23].

Given a fixed dimension of the observational space d < n, consider finding an observa-
tional operator, Hk, which minimizes the forecast uncertainty. Suppose the singular value
decomposition of an arbitrary choice of Hk is given as

Hk = UkΣkV
T
k .(5.5)

For a given observation error covariance matrix, the size of the singular values of Hk correspond
to the precision of observations relative to the uncertainty in the precision matrix, Ωk ,
HT
kR−1

k Hk. Imposing that all singular values of Hk must be equal to one, then up to an
orthogonal transformation of R−1

k , we equate the choice of an observational operator Hk with
the selection of an orthogonal matrix Vk ∈ Rn×d.

For perfect models, Qk ≡ 0, we write the forecast error Riccati equation in terms of a
choice of Hk , VT

k as
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UNSTABLE SUBSPACE IN THE PRESENCE OF MODEL ERROR 1357

Pk+1 = Mk+1Xk

[
In +

(
R
− 1

2
k VT

k Xk

)T(
R
− 1

2
k VT

k Xk

)]−1

XT
kMT

k+1.(5.6)

The Frobenius norm, ‖Pk+1‖F =
√

tr
(
P2
k+1

)
, is bounded by

tr

Mk+1Xk

[
In +

(
R
− 1

2
k VT

k Xk

)T(
R
− 1

2
k VT

k Xk

)]−1

XT
kMT

k+1

(5.7)

≤ tr


[
In +

(
R
− 1

2
k VT

k Xk

)T(
R
− 1

2
k VT

k Xk

)]−1
 tr

(
XT
kMT

k+1Mk+1Xk

)
.(5.8)

Equation (5.8) attains its smallest values when the eigenvalues of

In +

(
R
− 1

2
k VT

k Xk

)T(
R
− 1

2
k VT

k Xk

)
(5.9)

are as large as possible, similar to maximizing the denominator of (4.33).
For a fixed sequence of observation error covariances, finding the largest eigenvalues of

(5.9) can be studied by finding the subspace for which the matrix of orthogonal projection
coefficients VT

k Xk has the largest singular values. In perfect models, the forecast error covari-
ance for the Kalman filter asymptotically has support confined to the span of the unstable
and neutral BLVs [27, 8]. This is likewise evidenced for the ensemble Kalman filter in weakly
nonlinear models [42, 7], suggesting that the columns of Vk should be taken as the leading d
BLVs.

Definition 13. Given d ≥ 1, let B1:d
k ∈ Rn×d denote the matrix comprised of the first d

columns of Bk. We define the observation operator Hbd
k ,

(
B1:d
k

)T
.

Definition 13 is a formalization of the AUS observational paradigms [53, 15] utilizing “bred
vectors” as proxies for the BLVs. The breeding method of Toth and Kalnay [50] simulates
how the modes of fast growing error are maintained and propagated through the successive
use of short range forecasts in weather prediction. The bred vectors are formed by initializing
small perturbations of a control trajectory and forecasting these in parallel along the control.
Upon iteration, the span of these perturbations generically converge to the leading BLVs. For
a discussion of variants of this algorithm, and the convergence to the BLVs, see, e.g., Balci
et al. [3].

The choice of observation operator in Definition 13 is also related to the numerical study of
targeted observations for the L96 model of Law et al. [37]. Law et al. target observations with
the eigenvectors of the operator MT

k+1Mk+1, but note that for a small interval δ , tk+1−tk, the

difference between the linearized equations defining MT
k+1Mk+1 and Mk+1M

T
k+1 is negligible

(see Remark 5.1 of [37]). Law et al. suggest that the eigenvectors of either MT
k+1Mk+1 or

Mk+1M
T
k+1 may be sensible depending on whether the filter should take into account the

principle axes of growth from the past to the current time or from the present to future time.
It is clear from (3.6) and (3.13) that as δ becomes large, the eigenvectors of Mk+1M

T
k+1

approach the BLVs, whereas MT
k+1Mk+1 approach the FLVs.
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1358 COLIN GRUDZIEN, ALBERTO CARRASSI, AND MARC BOCQUET

Definition 14. Given d ≥ 1, let F1:d
k ∈ Rn×d denote the matrix comprised of the first d

columns of Fk. We define the observation operator Hfd
k ,

(
F1:d
k

)T
.

Note that the observation operator Hb4
k uniformly completely observes the span of the

unstable and neutral BLVs, and thus for d ≥ 4, Hbd
k satisfies the sufficient criterion for fil-

ter stability in perfect dynamics discussed by Bocquet et al. [8]. The operator Hb4
k likewise

satisfies the necessary and sufficient detectability criterion for filter stability perfect dynam-
ics of Frank and Zhuk [23]. On the other hand, the operator Hfd

k observes the span of the
leading d FLVs. Unlike the BLVs, the FLVs define a QL decomposition of the span of the
CLVs (see equation (53) of [36]). This implies that the columns of the operator Ff4

k ac-
tually span the orthogonal complement to the stable Oseledec spaces. Therefore, Hf4

k sat-
isfies the criterion of Frank and Zhuk [23] but will not generally satisfy the condition of
Bocquet et al. [8].

We perform parallel experiments, fixing the sequence of linear propagators Mk and the
initial prior error covariance P0 , In, while varying the choice of the observation operator
and the observational dimension d. In each parallel experiment, we study the average forecast
uncertainty for the full rank Kalman filter as described by Frobenius norm of the forecast
error covariance Pk, averaged over 105 assimilations, neglecting a separate filter stabilization
period of 104 assimilations. For each d ∈ {4, . . . , 9}, we compare the following choices of
observation operators: (i) Hbd

k ; (ii) Hfd
k ; (iii) Hk , VT

k for randomly drawn orthogonal
matrices, Vk ∈ Rn×d; and (iv) a fixed network of observations, given by the leading d rows
of the identity matrix, i.e., Hk , Id×n. We also compute the average Frobenius norm of the
forecast error covariance for full dimensional observations, with Hk , In. In each experiment,
the observational and model error covariances are fixed as Rk , Id and Qk , In. For each i,
the value of Ψi

k is averaged over the 105 assimilations.
In Figure 5.2, we plot the average Frobenius norm of the Kalman filter forecast error

covariance matrix as a function of the number of observations, d. We consider the observation
configurations Hbd

k , VT
k , and In (plotted horizontally). The average values of Ψi

k for i =
7, . . . , 10 are also plotted horizontally. While the observational dimension d < 7, the average
uncertainty for the Kalman filter with random observations, or observations in the BLVs, is
greater than the average variance of the unfiltered error along B7

k. Similarly, in Figure 5.3
we consider the configurations with observations defined by Hbd

k , Hfd
k , and Id×n. The average

values of Ψi
k for i = 5, . . . , 8 are plotted horizontally. The variance of the unfiltered error in B5

k

exceeds the uncertainty of the Kalman filter in every configuration. The Kalman filter with
observations fixed, or in the FLVs, do not obtain comparable performance with the unfiltered
error in B6

k until d ≥ 6. Only the LLEs of Bi
k for i = 8, 9, 10 are sufficiently stable to bound

the unfiltered errors below the Kalman filter with a fully observed system.
Our results have strong implications for the necessary rank of the gain in ensemble-based

Kalman filters. In perfect, weakly nonlinear models, the ensemble span typically aligns with
the leading BLVs [42, 7]. From the above results, we conclude that the effective rank of the
ensemble-based gain must be increased to account for weakly stable BLVs of high variance
in the presence of model errors. The perturbations of model errors excited by transient
instabilities in these modes can lead to the unfiltered errors becoming unacceptably large
compared to the filtered errors.
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Ψ7
k Ψ8

k Ψ9
k Ψ10

k

Figure 5.2. Average Frobenius norm of Pk over 105 observation-forecast cycles, with dynamic (Hbd
k ) and

random (VT
k ) observations plotted versus the observational dimension d. Average of variance in ith BLV, Ψi

k,
i = 7, . . . , 10, over 105 observation-forecast cycles plotted horizontally. Average Frobenius norm of Pk with full
dimensional observations, (In), plotted horizontally.

In Figure 5.2 and Figure 5.3, the choice of observations in the span of the leading BLVs
dramatically outperforms the observations in the span of the leading FLVs, or fixed obser-
vations. Likewise Hbd

k makes a slight reduction to the overall forecast error over a choice
of d random observations. As the span of the leading n0 FLVs is orthogonal to the trail-
ing, stable Oseledec spaces, this choice can be considered closer to the minimum necessary
observational constraint on the forecast errors. Particularly, the kernel of Ffn0

k is identically
equal to the sum of the stable Oseledec spaces. This suggests that a necessary and sufficient
condition for filtered boundedness can be described in terms of the observability of the n0

leading FLVs, similar to the criterion of Frank and Zhuk [23]. While it is not necessary, the
sufficient condition of Bocquet et al. [8] leads to a lower filter uncertainty as the span of the
leading n0 BLVs generally contains the largest projection of the forecast error. This suggests
that observing the leading eigenvectors of Mk+1M

T
k+1 may generally outperform observing

the leading eigenvectors of MT
k+1Mk+1 when the time between observations δ = tk+1 − tk

leads to significant differences in the linear expansions, as was noted as an alternative design
by Law et al. [37]. For operational forecasting, this supports the use of the breeding technique
[50] to target observations over using the axes of forward growth.
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Figure 5.3. Average Frobenius norm of Pk over 105 observation-forecast cycles, with BLV (Hbd
k ), FLV

(Hfd
k ), and fixed observations (Id×n) plotted versus the observational dimension d. Average of variance in ith

BLV, Ψi
k, i = 5, . . . , 8, over 105 observation-forecast cycles plotted horizontally.

6. Conclusion. This work formalizes the relationship between the Kalman filter uncer-
tainty and the underlying model dynamics, so far understood in perfect models, now in the
presence of model error. Generically, model error prevents the collapse of the covariance
to the unstable-neutral subspace, and our Proposition 1 and Proposition 2 characterize the
asymptotic window of uncertainty. We provide a necessary condition for the boundedness of
the Kalman filter forecast errors for autonomous and time varying dynamics in Corollary 1
and Corollary 2: the observational precision, relative to the background uncertainty, must be
greater than the leading instability which forces the model error. Particularly, Corollary 3
proves that forecast errors in the span of the stable BLVs remain uniformly bounded, in the
absence of filtering, by the effect of dynamic dissipation alone.

The uniform bound on the errors in the span of the stable BLVs extends the intuition of
AUS to the presence of model error, but with qualifications. Studying this uniform bound with
Algorithm 5.1, we identify an important mechanism for the growth of forecast uncertainty
in suboptimal filters: variability in the LLEs for asymptotically stable modes can produce
transient instabilities, amplifying perturbations of model error. The impact of stable modes
close to zero differs from similar results for nonlinear, perfect models by Ng et al. [42] and
Bocquet, Raanes, and Hannart [9], where the authors demonstrate the need to correct weakly
stable modes in the ensemble Kalman filter due to the sampling error induced by nonlinearity.
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Likewise, this differs from the EKF-AUS-NL of Palatella and Trevisan [45] that accounts for
the truncation errors in the estimate of the forecast uncertainty in perfect, nonlinear models.
Our work instead establishes the fundamental impact of these transient instabilities as a linear
effect in the presence of model errors.

In addition to our necessary criterion for filter boundedness, in subsection 5.3 we discuss
the criteria of Bocquet et al. [8] and Frank and Zhuk [23] in relation to dynamically targeted
observations. Our numerical results suggest how these sufficient, and, respectively, necessary
and sufficient, criteria can be extended to the presence of model errors. Moreover, we dis-
tinguish between the minimal necessary observational constraints for filter boundedness and
more operationally effective, sufficient designs. Particularly, our results suggest that while it
may be necessary that the observations uniformly completely observe the span of the unstable-
neutral FLVs, it is sufficient and improves performance to uniformly completely observe the
span of unstable-neutral BLVs. In terms of operational forecasting, this strongly supports the
use of bred vectors to target observations to constrain the forecast errors.

Corollary 1, Corollary 2, Corollary 3 and the results of section 5 suggest that as a theo-
retical framework for the ensemble Kalman filter, AUS may be extended to the presence of
model errors. By uniformly completely observing and correcting for the growth of uncertainty
in the span of the unstable, neutral, and some number of stable BLVs, reduced rank filters
in the presence of model errors may obtain satisfactory performance. In practice, one may
compute offline the typical uncertainty in the stable BLVs via Algorithm 5.1 and determine
the necessary observational and ensemble dimension at which unfiltered forecast error has neg-
ligible impact on predictions. However, computational limits on ensemble sizes may make this
strategy unattainable in practice—the impact of these unfiltered errors on the performance of
a reduced rank, suboptimal filter is the subject of the direct sequel to this work [26].
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