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ABSTRACT

In southern Africa, models from the 5th Coupled Model Intercomparison

Project (CMIP5) predict robust future drying associated with a delayed rainy

season onset in the Austral spring and a range of wetting and drying patterns

in the Austral summer. This paper relates these rainfall changes to dynamical

shifts in two classes of weather systems: the Congo Air Boundary (CAB) and

tropical lows. Objective algorithms are used to track these features in CMIP5

model output. It is then established that the climatological locations and fre-

quencies of these systems are reasonably well represented in the CMIP5 mod-

els. RCP8.5 end of 21st century projections are compared with historical end

of 20th century simulations. Future projections in tropical low locations and

frequencies diverge, but indicate an overall average decrease of 15% and in

some cases a northward shift. The projected spatial change in the tropical low

frequency distribution is weakly positively correlated to the projected spatial

change in the Austral summer rainfall distribution. Meanwhile, future projec-

tions indicate a 13% increase in CAB frequency from October to December.

This is associated with the gradual climatological CAB breakdown occurring

half a month later on average in end of 21st century RCP8.5 projections. A

delay in the gradual seasonal decline of the CAB prevents rainfall to the south

of the CAB’s mean position, most of which is shown to occur on CAB break-

down days, hence creating the Austral spring drying signal and delayed wet

season onset. Inter-model variability in the magnitude of CAB frequency in-

crease is able to explain inter-model variability in the projected drying.
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1. Introduction30

CMIP5 based rainfall projections exhibit a rainfall decline over southern Africa which is31

strongest in the October, November and December (OND) season (James and Washington, 2013).32

This rainfall decline has been linked with a delay in the onset date of the rainy season (Dunning33

et al., 2018), and in many models comes with an increase in rainfall in central Africa in the same34

season (Aloysius et al., 2016; Creese et al., 2019). Southern Africa is highly vulnerable to climate35

related socio-economic risk, as the regional water resource supports the local food-energy-water36

nexus (Conway et al., 2015). In particular, rainy season onset and cessation dates are particularly37

important for farmers and other stakeholders (Hachigonta et al., 2008). Some studies have found38

consistent delays of southern African wet season onset in satellite and gauge-based observational39

datasets covering the late 20th and early 21st centuries (e.g., Jiang et al., 2019; Kniveton et al.,40

2009). Delayed rainfall onset would shorten the growing season, as no corresponding delay in41

cessation has been projected (Dunning et al., 2018). This will reduce the agricultural viability42

of the region and have follow-on effects on regional food security and economic growth (Lobell43

et al., 2008; Schlenker and Lobell, 2010).44

At first glance, the southern African drying trend appears to follow that of the broader subtropical45

drying trend. However, closer analysis reveals that in southern Africa, the drying occurs primarily46

north of the subtropical rainfall minimum (Scheff and Frierson, 2012a,b). Furthermore, while the47

subtropical drying signal is largely characterized by an increase in the magnitude of the difference48

between precipitation and evaporation (P-E), in southern Africa evaporation decreases in line with49

precipitation, so that P-E does not change considerably. Lazenby et al. (2018) demonstrated that50

the southern African drying trend is primarily a consequence of circulation changes, rather than51

thermodynamic mechanisms such as dry-get-drier (Held and Soden, 2006) or upped-ante (Chou52
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et al., 2009). Thus, the southern African drying trend is dynamically unique and requires a bespoke53

approach.54

Some work has been done on understanding the dynamics of projected rainfall change in south-55

ern Africa. Lazenby et al. (2018) found that this change could be viewed as a northward shift56

of the African rain-band, while Dunning et al. (2018) linked the delayed onset of OND rains in57

southern Africa to relative changes in the strengths of the Saharan and Angolan heat lows. Munday58

and Washington (2019) found a complementary result: models with a deeper future climatological59

Angola heat low showed a higher intensity of drying. Similarly, Cook and Vizy (2013) observed a60

strengthening of the Angola low in regional climate model simulations. However, little work has61

been done to directly link rainfall change to changes in precipitating weather systems.62

Meanwhile, less work has looked at rainfall change in December - February (DJF), the peak63

of the wet season (Van Heerden and Taljaard, 1998). Model projections disagree in this season,64

although Lazenby et al. (2018) suggest that inter-model differences in SST trends in adjacent65

oceans may explain the diverse range of model projections. Once again, the characteristics of the66

future change patterns of atmospheric features on synoptic timescales has not been studied.67

Since atmospheric circulation on climatological timescales is the aggregation of synoptic68

weather systems, future circulation change hinges on the response of synoptic weather systems to69

a warmer atmosphere. However, the synoptic weather systems that occur in the southern African70

tropical margins are under-studied. The representation of such synoptic weather systems in CMIP571

models and their future change has not been studied. This knowledge gap ensures that the synoptic72

context of the future change signal in this region, and whether or not a specific class of weather73

system may deliver the projected change, is unknown.74

This paper focusses on two local classes of weather systems which occur in the latitudinal band75

of the advancing spring rains and have previously been associated with rainfall variability. The first76
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is the Congo Air Boundary (CAB), a combined surface dryline and convergence line that marks77

the boundary between tropical and subtropical weather zones in the Austral spring (Howard and78

Washington, 2019). The second class of weather systems considered are tropical lows, cyclonic79

rotating vortices that form in the Austral summer and tend to cluster near 20°S, creating the clima-80

tological Angola tropical low (Howard and Washington, 2018). By examining the representation81

of the CAB and tropical lows in historical coupled climate models, this work follows a process82

based model evaluation framework. After establishing whether these systems are well modelled,83

we then proceed to studying process based projections. This involves investigating how the CAB84

and tropical lows are projected to change according to RCP8.5 end of 21st century simulations.85

Both of these weather systems were identified by Taljaard (1986) as two of the ten most im-86

portant factors that influence the weather over southern Africa. Crucially, they both operate on87

length-scales that are large enough to be resolved in CMIP5 models. The focus of this work is on88

the Austral spring and summer seasons, since the former is the season with the strongest rainfall89

change, and the latter is the main rainy season. Our analysis will show that changes in tropical90

lows and the CAB are vitally important for future projections of southern African precipitation, as91

they directly influence the delivery of model precipitation. However, this result does not preclude92

changes in other factors, including the distribution of sea surface temperatures, the subtropical jet93

and high-pressure belt, and upper-level waves, from also playing a role. Indeed, it is possible that94

the circulation changes of tropical lows and the CAB are linked to changes in these other systems.95

The CAB has historically been defined as the confluence zone between the Congo Airmass, a96

moist and convectively active region of air that sits over the Congo rainforest, and the drier trade97

easterlies that cross southern Africa and originate from the Indian Ocean (Taljaard, 1972). The98

CAB was originally discussed in the context of identifying the elusive ITCZ over southern and99

eastern Africa (Taljaard, 1953). It was argued that the CAB could not be the ITCZ itself, as both100
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airmasses involved originate from the Southern Hemisphere (the Congo Airmass being associated101

with the recurvature of the south Atlantic trade winds, known locally as the low level westerlies,102

e.g., Leroux (2001)). However, the importance of the CAB for southern African rainfall was103

undisputed (Torrance, 1979).104

Despite its importance to the local climate, no systematic study of the representation of the CAB105

in reanalysis or model products had been performed before Howard and Washington (2019). They106

optimized an edge-detecting algorithm and a ridge-detecting algorithm to pick out sharp gradients107

in specific humidity and ridges in wind convergence that were associated with the southern portion108

of the CAB. They distinguished between the ‘dryline’ CAB and a ‘convergence line’ CAB based109

on the choice of algorithm and determined that although the two were closely comparable, the110

‘dryline’ algorithm was slightly more reliable. Howard and Washington (2019) also identified111

the Kalahari Discontinuity (KD), a similar near-surface dryline/convergence line system located112

further south and oriented parallel to the west coast of southern Africa, that forms after the CAB113

breaks down in October and November. They confirmed that the CAB latitude and detection114

frequency were closely linked to the interannual variability of spring rainfall over southern Africa.115

This suggests that the future change of the CAB has potential explanatory power for the OND116

drying.117

Southern African tropical lows are synoptic-scale cyclonic vortices with depths up to 500 hPa118

that track predominantly westward across the southern African continent (Howard and Washing-119

ton, 2018). They are precipitating systems, and cluster in eastern Angola and western Zambia,120

where they tend to become semi-stationary (Howard et al., 2019). In southern Africa, tropical121

lows have been most commonly studied in the form of their climatological mean, the Angola122

tropical low (e.g., Cook et al., 2004; Crétat et al., 2018; Pascale et al., 2019). Since the Angola123

tropical low has been closely linked to interannual rainfall variability (Reason and Jagadheesha,124
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2005; Cook et al., 2004), considerable attention has been paid to how it is simulated in various125

models. Lazenby et al. (2016) and Munday and Washington (2017) both found that the Angola126

low is excessively strong in historical climate models, and linked this to the wet bias over southern127

Africa. However, the representation of the Angola tropical low on synoptic timescales in CMIP5128

models, and its future change, has not yet been assessed.129

The goal of this paper is to express projected rainfall changes from the viewpoint of projected130

changes in synoptic weather systems. This involves first linking the spring drying signal to pro-131

jected changes in characteristics of the CAB, and also linking the summer inter-model spread of132

rainfall projections with the inter-model spread of changes to the spatial distribution and frequen-133

cies of tropical lows and the CAB. To achieve this aim, the paper proceeds as follows. In section134

2, the models, datasets and feature identification algorithms are described. In section 3, we con-135

sider the historical representation of the CAB, the CAB’s projected future change and the rainfall136

implications of that projected change. In section 4, we perform a similar analysis on tropical lows.137

In the final section, we summarize the importance of this work for understanding rainfall change138

in southern Africa.139

2. Methods140

a. Models and Reanalysis Datasets141

A selection of 25 CMIP5 models has been used in this study, based on the availability of the142

appropriate model output variables. To study the CAB, we require daily surface level specific143

humidity and temperature data, which 18 of these models had available. To study tropical lows,144

we required 6 hourly wind data on pressure levels, which was available in a different subset of 18145

models. The model names, creators and grid-spacings are shown in table 1, together with a list of146
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which models were used to study the CAB and tropical lows. For each model, 30 years of end of147

20th century coupled climate model output were examined, and compared to 30 years of end of148

21st century model output generated under the RCP8.5 coupled model scenario. More precisely,149

the CAB was studied between August ’70 and December ’99 of each century, while tropical lows150

were studied between November ’69 and March ’99. The simulated historical climatology of151

each feature was compared to the reanalysis climatologies from three reanalysis products: ERA-152

5, ERA-Interim and MERRA-2. Reanalysis climatologies were taken from the 30-year period153

1980-2010.154

The CAB has been identified between August and December, and its correlation with rainfall155

change has been studied between October and December. The former season has been chosen156

because this is the season in which the CAB is present in southern Africa, and the season in which157

validation against the results of Howard and Washington (2019) was possible. The latter season158

was chosen because it is the season of maximum rainfall decline in southern Africa (Munday and159

Washington, 2019). Tropical lows were identified between November and March, and their influ-160

ence on future rainfall change was studied between December and February. Again, the former161

is the season in which tropical lows are present in southern Africa (Howard et al., 2019). The162

latter is the main wet season in southern Africa, and is also the season in which the contribution163

of tropical lows towards southern African rainfall is most significant (Howard et al., 2019). The164

OND precipitation decline across the two 30-year time periods is greater than the 30-year decadal165

standard deviation as calculated from the corresponding pre-industrial control experiments in over166

50% of the models considered, as indicated by Supplementary Figure S1. This was not the case in167

DJF.168
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b. Congo Air Boundary169

This paper adapts the methodology of Howard and Washington (2019) to identify the CAB in170

CMIP5 models. Because they studied the CAB in a high resolution (∼ 0.25°) reanalysis dataset,171

and the models employed here have resolutions ranging from ∼ 1° - 3°, this methodology needs172

a few modifications in order to transfer over to lower resolutions. Properties of the CAB are173

dependent on the resolution of the input data, and so all models and reanalyses are regridded to a174

2° × 2° grid.175

While Howard and Washington (2019) used both wind convergence and humidity to detect the176

CAB, the present study only uses humidity, and focusses solely on what Howard and Washington177

(2019) refer to as the ‘dryline CAB’. This choice was made because Howard and Washington178

(2019) found that the dryline CAB was more reliable and easily detected than the convergence179

line CAB. Near-surface relative humidity gradients, rather than specific humidity gradients, have180

been used to calculate the CAB location. This choice has been made to allow for easier comparison181

between historical and RCP8.5 experiments, given that near-surface specific humidity generally182

increases by a factor of about two across the tropics by the end of the 21st century in the RCP8.5183

scenario.184

The algorithm used to detect the CAB is as follows. Figure 1 shows the algorithm applied to a185

sample day (9/9/1999) from a sample model (ACCESS1.3).186

1. The 2m relative humidity is calculated from 2m daily mean air temperature (tas), 2m daily187

mean specific humidity (huss) and surface pressure (sp), where these fields are available.188

Where they are not available, the 1000 hPa pressure level relative humidity (hur) is used189

instead.190
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2. Relative humidity is interpolated to a 2°×2° grid using a nearest neighbor interpolation191

scheme. This scheme is chosen in order to avoid differentially smoothing humidity gradi-192

ents in the higher resolution datasets during the regridding process. The left panel of Figure193

1 shows the regridded field.194

3. In keeping with the Canny (Canny, 1986) algorithm, a Gaussian filter with a 2° radius is used195

to smooth the relative humidity field. The magnitude (M) and direction (θ ) of the gradient196

were then calculated using finite differences.197

4. Canny edges were calculated as per Howard and Washington (2019), thresholding the mag-198

nitude of the humidity gradient such that it must undergo an absolute change of ∆RH = 40%199

between grid cells across a Canny edge in order for a grid cell to qualify as a CAB. The center200

panel of Figure 1 shows the Canny edges identified on the sample model day, colored by the201

orientation angle of the edge.202

5. Canny edges were filtered to retain instances with −π

4 < θ < π

6 and restricted to latitudes203

between 5° - 18°S.204

6. At least 3 qualifying dryline grid cells were required to be detected at the same time in order205

for a CAB to be registered. The resultant CAB grid-cells shown in the right panel of Figure206

1 on the sample model day.207

The KD is also extracted from the calculated set of Canny edges. It is restricted to latitudes208

below 12°S and angles between π

6 < θ < π

2 , consistent with Howard and Washington (2019).209

No minimum grid cell thresholds are applied in this case. As described above, three reanalysis210

products, ERA-5, ERA-Interim and MERRA2, have been included in this study. The thresholds211

described above were manually optimized so that the seasonal cycle of the relative humidity based212
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CAB in the coarsened ERA-5 using the methodology of this paper was qualitatively similar to the213

high resolution specific humidity ERA-5 results of Howard and Washington (2019).214

Figure 2 shows the near-surface relative humidity and identified CAB points for the same case215

study day in early September in historical models and reanalyses. The atmospheric states on this216

chosen day will be in different synoptic setups. Nevertheless, a well-defined CAB is identified on217

this day in all of the CMIP5 models.218

With the daily CAB positions calculated, climatologies of properties such as latitude, frequen-219

cies and extent can be computed and compared. Here, the extent is calculated by counting the total220

number of CAB grid cells on a given day. This gives an approximate measure of the lateral extent221

of the CAB.222

c. Tropical lows223

The methodology used to identify tropical low events follows Howard et al. (2019). We apply224

the TRACK algorithm (Hodges, 1994, 1999). The application of TRACK to CMIP5 model ex-225

periments has previously been documented by Rastogi et al. (2018) and Bengtsson et al. (2007).226

Howard et al. (2019) identified southern African tropical lows using 6-hourly vertical mean vortic-227

ity averaged across pressure levels at 600, 700 and 800 hPa. However, 6-hourly CMIP5 pressure228

level model data was only available at 850 and 500 hPa, and so these model levels have been used229

instead. A comparison between the results of using this set-up and using 600, 700 and 800 hPa230

daily vorticity was considered for a subset of 9 models and no significant difference was found231

(not shown).232

The data preparation algorithm was as follows. At each vertical level and for each 6-hourly233

time-step, vertical vorticity was calculated from the zonal and meridional wind components at a234

T63 resolution, using the python package windspharm. The vertical average was taken, and then235

11



a Sardeshmukh and Hoskins (1988) filter was applied to smooth the spectral cut-off. Cyclonic236

vorticity extrema with ζ <−5×10−6s−1 were then identified and linked using the TRACK algo-237

rithm, as detailed in Howard et al. (2019) and Hodges et al. (2017). Once these vortex tracks were238

identified, they were filtered for southern African tropical lows using the following criteria:239

1. Tracks must spend at least one time step over land;240

2. Track longevity must be at least one day;241

3. The filtered vertical mean relative vorticity must satisfy ζ < −3× 10−5s−1 in at least one242

6-hourly time-step;243

4. There must be coincident cyclonic vorticity at 500, 850 hPa for a continuous 24 hour period;244

5. The genesis location must not be in the Atlantic; and245

6. The genesis location must be north of 25° S.246

Justification for these criteria are given in Howard et al. (2019): briefly, they exclude extra-247

tropical cyclones, coastally trapped Kelvin waves, heat lows, and spurious weak events. A sample248

track longitude Hovmöller plot for each of the models and the reanalysis over one historical year249

is shown in Figure 3. The models reveal a mixture of track behaviours.250

Following the identification of tropical lows, rainfall is attributed to tropical lows by making251

the assumption that all daily rainfall that fell within a 5° radius of a tropical low centroid was252

attributable to that tropical low. This radius was shown to be appropriate for southern African253

tropical lows by Howard et al. (2019) and is consistent with many previous studies of tropical254

lows and tropical cyclones (Baray et al., 2003; Dare et al., 2012; Khouakhi et al., 2017; Lavender255

and Abbs, 2013).256
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3. The Congo Air Boundary257

a. Representation in Historical Climate Models258

The aim of this section is to determine whether or not the CAB is well represented in the CMIP5259

historical simulations under consideration for the period from 1970-2000. Figures are designed260

to be comparable with the ERA-5 based study of the CAB presented in Howard and Washington261

(2019), and modelled CAB properties are compared with the coarsened ERA-5 reanalysis. The262

KD is also briefly considered.263

Figure 4 indicates the climatological location of the CAB and KD in each climate model and264

reanalysis product, based on the frequency the CAB is detected at each interpolated 2°×2° grid-265

box. It is evident that the CAB is detected with similar frequencies and locations in most of the266

models as in the reanalysis products. There is a range of variation across the models, however.267

CMRM-CM5, GFDL-CM3 and the ACCESS models show concentrated, high intensity CAB lo-268

cations with a diagonal orientation from west of Lake Victoria through to south west Angola.269

NorESM1-M and bcc-csm1-1m show heat-maps with a distinct north and south peak. All three270

IPSL models show low CAB detection frequencies in the east. This is particularly interesting271

since the IPSL-CM5A models have previously been shown to be outliers in East Africa, lack-272

ing the moisture-rainfall relationship present in most other models (Rowell and Chadwick, 2018).273

CanESM2 exhibits lower frequency CAB detection rates than the other models, suggesting that it274

may struggle to represent the feature. The biases of the spatial distribution of the CAB in these cli-275

mate models relative to ERA-5 reanalysis, and their significance relative to natural variability over276

the 30-year time period, are shown in Supplementary Figure S2. Overall, climate models exhibit277

biases that are larger than the variability across the reanalysis products. However, the reanalysis278

products do display some differences, particularly in the locations of peak CAB detection.279
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There is much more variability in the representation of the KD in CMIP5 models. BNU-ESM280

shows a very persistent KD, while CSIRO-Mk3.6 and GFDL models represent it reasonably well281

and some other models, such as CNRM-CM5 and CanESM2 miss it completely. Meanwhile,282

MERRA-2 shows a more infrequent KD than the other reanalysis products. We conclude that the283

KD is not as well represented in CMIP5 models as the CAB, and postpone further analysis for a284

future study.285

We next study the seasonal cycle of key CAB features in the CMIP5 models. The seasonal286

cycles of the CAB latitude, frequency and extent in CMIP5 models and low resolution reanalysis287

products are shown in Figure 5. The CAB latitude and extent are both calendar day climatological288

means between 1970 and 2000, and all variables have been smoothed by a 2-week running mean.289

The extent is calculated by counting the total number of CAB grid cells on a given climatological290

day of the year. Only the days when a CAB was identified were used in the average. This gives291

an approximate measure of the lateral extent of the CAB, though it is not precisely comparable292

across CABs of different orientations. The latitude shown is the mean latitude of all CAB points293

on a given day, and the frequency is the proportion of days at a given time of year where a CAB is294

present.295

Howard and Washington (2019) found that based on ERA-5 reanalysis, the CAB moves steadily296

southward between the start of August and the end of November, and that its detection frequency297

drops from near 100% at the start of October through to 10-20% at the beginning of December.298

In the present study, similar behavior is present in the latitude and frequency (the top and center299

panels respectively of Figure 5). The rate at which the CAB moves south is close to constant300

across models and consistent with ERA-5, at roughly 2 degrees per month. Results from ERA-5301

are located at the southern edge of the CMIP5 simulated range. At any given time of the year, the302

climatological CAB latitude has a range of 5°. Since this range is of a similar order of magnitude to303
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the Nyquist frequency (2∆x = 4°), we surmise that the CAB latitude is represented in these models304

as well as can be expected. Based on the center panel of Figure 5, it is evident most models,305

as well as the MERRA-2 reanalysis, show a decreased CAB frequency in August, however all306

models except CAN-ESM2 recover by early September and the vast majority possess CABs that307

are present 80% of the time. The CAB breaks down between October and December in all models,308

with ERA-5 breaking down later than the ensemble mean but being located well within the model309

range. The ensemble mean CAB extent peaks at the beginning of October, consistent with the310

discontinuity width presented by Howard and Washington (2019) (their Figure 5). The reanalysis311

spread in the seasonal cycles of these metrics is approximately half of the model spread.312

Based on the above analysis we conclude that the CAB is well represented in most of the climate313

models considered, with the exception being CanESM2. We therefore proceed to study the change314

in the CAB between present day and future climate models, and to assess the impact of this change315

on rainfall in southern Africa under the RCP8.5 scenario.316

b. Future Change and Rainfall Implications317

In this section, we explore how the CAB changes in the future and whether these changes are318

linked to projected southern African drying. Figure 6 shows the difference, in each model, between319

the CAB latitude, frequency and extent in the RCP8.5 end of 21st century simulation and in the320

historical end of 20th century simulation. The main change is an increase in the CAB frequency321

from October to December, peaking at approximately 25% in GFDL-CM3 and averaging to 13%322

in the ensemble mean. This frequency increase is accompanied by a northward shift in CAB323

latitude on average of 0.7°. These changes are significant relative to natural variability in between324

11 and 15 of the 18 models across the three months, as shown in the bottom panel of Figure 6.325

This indicates that the gradual southward progression and seasonal frequency decline of the CAB326
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is delayed in most climate models, and so the CAB becomes more frequent towards the end of the327

season. Further analysis (not shown) indicates that the delay in CAB breakdown is approximately328

half a month. During this period, there is an increase in the CAB extent, which is significantly329

different from 0 as compared to model spread at the p < 0.05 level in November and December,330

and compared to natural variability in 12 models.331

CAB frequency is also decreased in mid-August in most models and the ensemble mean. This332

is the same period when the CAB frequency was not well represented in Figure 5. This frequency333

decline may be related to the anomalous representation of the CAB in August. Most models return334

to displaying historical CAB frequencies by September, with the exception of CanESM2, whose335

CAB was shown earlier to be poorly represented in historical simulations.336

Howard and Washington (2019) found that the interannual CAB frequency was anti-correlated337

with precipitation between 10° and 15°S in October, November and December. Since the October-338

December CAB frequency increases in most CMIP5 models considered in this study, it seems339

plausible that this increase may be linked to the projected rainfall decline present in most models.340

In order to explore this further, we decompose daily OND rainfall at each grid-cell into three341

components:342

1. North of CAB rain: rain that fell at a grid-cell that was in the same longitude band as an343

identified CAB dryline, with the grid-cell located to the north of the dryline;344

2. South of CAB rain: rain that fell at a grid-cell that was in the same longitude band as an345

identified CAB dryline, with the grid-cell located to the south of the dryline; and346

3. CAB breakdown rain: rain that fell at a grid-cell for which no CAB drylines were detected in347

the same longitude band.348
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The top row of Figure 7 shows the decomposition of the historical climatological mean OND349

rainfall into these three categories, as a function of latitude and averaged over longitudes between350

20° and 30°S. As predicted, the rainfall to the south of the CAB is small, and is only comparable351

to the total rainfall at subtropical latitudes (30°-40°S). Rainfall at tropical latitudes, between 0°352

and 15°S, is evenly distributed between the remaining two categories. North of CAB rainfall is353

identically zero south of 18°S, as the CAB does not extend south of this point.354

The division of rainfall into these three components is based on the hypothesis, proposed by355

Howard and Washington (2019), that the CAB largely prevents tropical rain to its south and that356

the primary means by which spring rainfall occurs in southern Africa is a full or partial breach in357

the CAB. Thus component (2) - rainfall south of the CAB - is expected to be small and primarily of358

extra-tropical origin. The other components represent: (1) rainfall associated with ‘Congo Air’ in359

the deep tropics, and (3) rainfall associated with tropical temperate troughs (TTTs) and other CAB360

breakdown events. This decomposition does not account for the fact that a grid cell associated with361

an elongated TTT may exist to the south of a CAB grid cell due to the TTT’s diagonal structure.362

However, this limitation does not appear to be significant, based on the calculated low magnitude363

of rain to the south of the CAB in Figure 7.364

Meanwhile, the middle panel of Figure 7 shows the future change of each category of rainfall.365

The change in the total rainfall shows the familiar dipole structure, with most models showing366

drying south of 10°S and either wetting or a comparatively low magnitude of drying north of 5°S.367

The decomposition into rainfall classifications is enlightening: there is an increase in rainfall to368

the north of the CAB, and a decrease in rainfall coming from the CAB breakdown events. In each369

case the direction of change is remarkably robust between models and across latitudes.370

To provide further visualisation of the projected change, the lower panel of Figure 7 shows371

the envelopes indicating the model spread of rainfall projections in historical (blue) and RCP8.5372
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(red) simulations. Change in the rainfall decomposition terms is more pronounced than change373

in the total rainfall. The green line in these figures indicates the number of models which show a374

significant change relative to natural variability. At least 13 of the 18 models show a significant375

decline in CAB breakdown rainfall between 8° and 28° S.376

This implies that the ensemble mean OND drying and rainfall change dipole is associated with377

the change in the CAB frequency. The drying is fully contained within the component of the378

rainfall that falls on CAB breakdown days, while the wetting occurs to the north of the CAB.379

The rainfall rate per CAB break-down day and or north of CAB rainfall per CAB day was also380

considered, but no consensus on the sign of change was apparent (not shown). The projected381

decrease in rainfall on non-CAB days and increase in rainfall to the north of the CAB is therefore382

directly linked to the projected increase in the frequency of CAB days. The spatial patterns of the383

ensemble mean change of OND rainfall under this decomposition, shown in the top row of Figure384

8, are consistent with this conclusion.385

Furthermore, inter-model spread of the projected CAB frequency increase explains a large pro-386

portion of the projected southern African drying. This is shown in the lower panels of Figure 8,387

which show the inter-model regression of OND model rainfall change (averaged over 15° - 30°E388

and 5° - 25°S) against the modelled CAB frequency change. CAB frequency change is averaged389

over November and December, the months in which the ensemble mean change is significant. Be-390

fore the CAB rainfall decomposition is applied, 46% of the inter-model variation of total OND391

rainfall change is explained by inter-model variation in the CAB frequency change. Variation392

in the rainfall decline during CAB breakdown events is more strongly predicted by variation in393

the CAB latitude change (R2=0.71). While the CanESM2 data point (blue-green circle) appears394

to have a large degree of leverage in these regressions, its exclusion did strongly not impact the395

significance of the results (not shown).396
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Taken together, these results imply that the OND rainfall decline signal in southern Africa is397

largely explained by the increased frequency of the CAB, which prevents CAB breakdown asso-398

ciated rainfall in the regions that are located to the south of the CAB. Between 5° and 15°S, this399

comes with an increase in rainfall on CAB days, as parts of this region are often located to the400

north of the CAB.401

4. Tropical lows402

We now shift focus to tropical lows, cyclonic vortices that form in the Austral summer and have403

been found to deliver 31% of summer rainfall to the tropical edge region (16°- 22°S) of southern404

Africa (Howard et al., 2019). Tropical lows tend to cluster in Angola and western Zambia, where405

they form the synoptic expression of the late-summer tropical low phase of the climatological406

Angola low (Howard and Washington, 2018). This section first examines the representation of407

tropical lows in 18 CMIP5 models. We then consider their contribution to precipitation and future408

change.409

a. Representation in Historical Climate Models410

In order to evaluate the representation of tropical lows in CMIP5 models, we first consider cli-411

matological spatial distributions of tropical low locations, shown in Figure 9. From this figure, it412

is evident that most models get the broad shape of the distribution of tropical lows correct, with a413

maximum occurring in eastern Angola, the locus of the Angola tropical low. There is a wide range414

in the number of strong tropical low events per year. Most models show a lower count of tropical415

low days per year than the MERRA2 and ERA-5 reanalyses, while ERA-Interim is roughly in the416

middle of the model distribution. This stands in contrast to the findings of Munday and Wash-417

ington (2017), who report that the geopotential height anomaly associated with the Angola low418
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is over-represented in CMIP5 models, although they did not consider ERA-5 or MERRA-2 for419

comparison. However, we do find that two models that have the most prevalent tropical lows (AC-420

CESS1.3 and GFDL-ESM2G) also had strong geopotential height anomalies according to Munday421

and Washington (2017). The spread of tropical low characteristics between the three reanalysis422

products was studied in detail by Howard et al. (2019), and is typically reduced compared to the423

model spread.424

The tropical low latitudes are shifted overly southwards towards the western edge of the425

Namibian Caprivi strip (18°S, 20°E) in most models, notably BNU-ESM, CNRM-CM5, inmcm4,426

NorESM1-M and HadGEM2-CC. The number of tropical lows per day is notably low in IPSL-427

CM5A-LR and inmncm4. BNU-ESM and HadGEM2-ES show an overly strong peak at 20°E,428

with very few tropical lows occurring outside the location of the Angola peak. For BNU-ESM,429

this is also clear from Figure 3, where the track longitudes are largely confined to 18° - 23°E.430

The biases of the spatial distribution of tropical lows in these climate models relative to ERA-5431

reanalysis, and their significance relative to natural variability over the 30-year time period, are432

shown in Supplementary Figure S3.433

Figure 10 shows the normalized distributions of four key properties of tropical lows: their434

longevities, latitudes, zonal velocities and T63 filtered vorticity. The southward shift of the trop-435

ical lows in CMIP5 models as compared to reanalysis is more clear from the latitude distribution436

sub-plot. Based on the distributions of longevity and zonal velocity, models may be divided into437

two groups: those with relatively more short-lived (<8 days) and relatively fewer long-lived trop-438

ical lows (10-20 days) than the reanalysis products, and those with fewer short-lived and more439

long-lived tropical lows. Those models in the first category tend to have a wider distribution of440

zonal velocities, with faster track speeds, while those in the second category have a greater propor-441

tion of stationary lows concentrated around 0 m/s. The first category therefore contains a greater442
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proportion of transient events that move off into the Atlantic Ocean, and the second contains a443

greater proportion of stationary Angola tropical lows. Typical extreme cases for each category444

are CNRM-CM5 and GFDL-ESM2G. Examining Figure 3 reveals a consistent story: for the case445

study year CNRM-CM5 is dominated by transient events (diagonal lines) while GFDL-ESM2G446

contains 4-5 long-lived events that meander across the continent and are frequency stationary, as447

well as some smaller events that are both stationary and transient. The distributions of the filtered448

vorticity largely follow that of reanalysis. Biases in all these quantities are significant relative to449

natural variability in at least 12 out of the 17 models considered.450

The top right panel of Figure 10 shows the number of tropical low days per year. This metric451

reflects the overall magnitude of the signal in Figure 3 discussed earlier. The models with the452

lowest values (IPSL-CM5A-LR and inmcm4) also show a higher proportion of tropical lows just453

below the vorticity cut-off in the lower left panel of Figure 10.454

Rainfall is attributed to tropical lows under the assumption that all rainfall that falls within 5455

degrees of the centroid of a tropical low is associated with that tropical low. Rainfall is decomposed456

into a tropical low portion and a remainder portion. Howard et al. (2019) found that 70% of457

rainfall in south west Angola and 31% of rainfall across the tropical edge region (16° - 22 °S)458

was attributable to tropical lows. The spatial pattern of rainfall attribution for CMIP5 models is459

shown in Figure 11, and the overall proportion of rainfall attributed to tropical lows in each model460

between 15° - 30°E and 10° - 25°S is shown in the lower right panel of Figure 10. We find that461

approximately 30% - 60% of rainfall over southern Africa is associated with tropical lows between462

these latitudes. The spatial patterns of rainfall attribution match well with those found by Howard463

et al. (2019) (reproduced here in lower panels of Figure 11). The biases of these spatial patterns464

relative to ERA-5 reanalysis, and their significance relative to natural variability over the 30-year465

time period, are shown in Supplementary Figure S4.466
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There are some differences between tropical lows in reanalysis products and in CMIP5 models,467

including latitude and longevity distributions, and there is a wide distribution across models in468

the mean number of strong tropical low days per year. However, tropical lows are consistently469

present in each model with key statistics varying by less than 20%. We therefore conclude that470

they are sufficiently resolved to examine projected tropical low changes and how those changes471

impact southern African precipitation projections.472

b. Future Change and Rainfall Implications473

The overall trend in the spatial distribution of tropical lows between end of 21st century RCP8.5474

and end of 20th century historical simulations is a decrease in tropical low frequency and in475

some cases a northward shift, as is shown in Figure 12. Some models, including ACCESS1.0,476

HadGEM2-CC, HadGEM2-ES and GFDL-CM3, show a sharp decline in tropical lows exceeding477

1 tropical low day per 2°× 2° box per year that is restricted to the location of the peak of their478

historical tropical low locations. Northward shifts are evident in CanESM2, IPSL-CM5A-LR and479

MPI-ESM-LR. Only MPI-ESM-MR shows an increase in tropical low frequency. Despite many480

models showing similar overall patterns in tropical low decline, the spatial pattern of change and481

the location of statistically significant changes varies widely across the models. The ensemble482

mean exhibits an overall 15% decline in the number of tropical low days that occur in each year.483

Correspondingly, the spatial pattern of rainfall change between December and February, the484

main tropical low months, shows a high degree of variation between models, consistent with485

Lazenby et al. (2018). Filled green and purple contours show wetting and drying of the over-486

all seasonal mean rainfall in each model in Figure 13. These are overlain by contours, in black and487

red, of the wetting and drying of the component of the rainfall attributed to tropical lows. Changes488

which were not significant compared to natural variability at a p < 0.05 level were masked. It is489
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evident that all the land-based local maxima and minima of total rainfall change located between490

10° and 25°S correspond to an associated maxima or minima in tropical low rainfall change. Com-491

paring with Figure 12, these changes correspond with spatial changes in the frequency of tropical492

lows.493

The ensemble mean tropical low rainfall change in this region (Figure 13, lower right panel)494

also corresponds to the ensemble mean tropical low spatial distribution change (Figure 12, lower495

right panel), with a decrease along 18°S centered south east Angola and an increase further north.496

The spatial pattern of total rainfall decline maps accurately onto the spatial pattern of tropical low497

rainfall decline in southern Angola and northern Namibia. However, the rainfall increase to the498

north of this region has its maximum further north in the Congo and is likely delivered by other499

synoptic systems.500

In order to quantify the relationship between changes in rainfall and tropical low frequency, the501

Pearson’s r coefficient of the spatial correlation between projected rainfall change and tropical low502

frequency change between 5° - 25°S for all land points is shown in the top row of Figure 14. The503

correlation for overall rainfall is low (typically 0.1 - 0.3) but consistently positive in all but two504

models. The correlation for the tropical low rainfall component is higher, with values averaging505

around 0.4. There is no consistent signal in the direction of correlation between the remaining506

rainfall pattern change and the tropical low distribution change. In this manner, the divergence in507

model rainfall projections in DJF over tropical southern Africa is linked to the uncertainty in the508

spatial response of tropical lows to climate change.509

Averaging over land points in the region from 5° - 25°S, the projected frequency change in510

tropical lows is a good predictor of the inter-model spread of rainfall change (r=0.58, p=0.015).511

This is indicated in the regression shown in Figure 14 (lower left panel). The decomposition into512

rainfall associated with tropical lows and a remainder component (lower center and right panels513

23



of Figure 14) indicates that this influence of tropical lows is direct, as the change in tropical low514

rainfall is significantly correlated with the change in tropical lows, and the change in the remainder515

term is not. Therefore, the spread in future projections of tropical lows is a major contributor to516

the spread of rainfall predictions in DJF over southern Africa.517

5. Discussion518

a. Remarks on the Congo Air Boundary519

We have found that the CAB is well represented in CMIP5 models, and that its projected fre-520

quency increase is able to distinguish between models that show strong and weak declines in OND521

rainfall south of 10°S. In this section, we discuss the implications of the historical representation522

of the CAB, and compare our results to other studies of the OND rainfall decline.523

The accuracy of historical representation of the CAB in CMIP5 models is reasonable, despite the524

perpendicular width of the CAB being of order 100 km (Howard and Washington, 2019), below525

the resolution of most CMIP5 models. The southward displacement of the CAB between August526

and December is roughly 8 degrees of latitude, which in the coarsest models is equivalent to 4 grid527

cells, and yet the rate of the CAB’s progression is very similar across models. This suggests that528

representation of the CAB, and its seasonal progression, is controlled by a process that climate529

models do not struggle to simulate, and so is not controlled by processes that act at the grid box530

scale. As with the tropical rainbelt globally, the seasonal progression is clearly associated with531

the progression of the latitude of maximum solar insolation. Meanwhile, the sharp gradients in532

humidity bring to mind bifurcations into dry and moist convective states observed in idealized533

radiative convective equilibrium models (e.g., Emanuel et al., 2014).534
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We have found that projections of CAB frequency have different consequences north and south535

of the climatological CAB. The relationship between the CAB frequency and rainfall south of536

the CAB’s climatological position is an intuitive one. In this region, saturation is rarely achieved537

when the CAB is present, unless extra-tropical processes dominate. Most rainfall comes from538

CAB breakdown events. When the gradual seasonal CAB breakdown is delayed, as in the future539

model projections, there are fewer rainy days in this region, and hence less rain. Meanwhile, there540

is an overall increase in rainfall to the north of the climatological CAB. However, this increase541

is not limited to the location of the CAB, as OND rainfall is projected to increase across much542

of equatorial Africa (Creese et al., 2019). Therefore, there is a consistent projected increase in543

rainfall in locations that are generally located the north of the CAB, but this is not necessarily544

driven by the corresponding projected increase in CAB frequency. The contrasting impacts that545

the CAB frequency has to its north and south are important for determining the precise location of546

projected rainfall decline. Rainfall to the south of the mean CAB position is projected to decline547

due to the projected increase in CAB frequency, while rainfall to the north is projected to increase.548

Therefore, the CAB may be expected to set the location of the boundary of rainfall decline.549

The work presented here is consistent with previous studies of rainfall projections over southern550

Africa. Dunning et al. (2018) found that the seasonal progression of the African rain belt is tied551

up in the strengths of the Saharan and Angola heat lows, both of which are projected to intensify552

in a warmer world. Munday and Washington (2019) found a similar result, that models with a553

deeper future Angola heat low showed a higher intensity of drying, while Cook and Vizy (2013)554

observed a strengthening of the heat low in regional climate model simulations. The Angola heat555

low is intrinsically linked to the CAB (Howard and Washington, 2019), being consistently located556

approximately 1° south of the CAB and sharing circulation features. Therefore an increase in the557

climatological CAB frequency corresponds to an increase in the heat low intensity.558
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By applying the Chadwick et al. (2013) decomposition, Lazenby et al. (2018) attributed the OND559

rainfall change to dynamic rather than thermodynamic changes, associated with spatial shifts in560

the pattern of convective mass fluxes. In the context of this methodology, it is useful to consider561

the atmosphere to the north of the CAB and during CAB breakdown events as capable of deep562

convection, and to the south of the CAB as incapable of deep convection. The increased CAB563

frequency corresponds to a decrease in the proportion of the time that convection may occur in564

the region south of 10°S, and so is associated with a shift in deep convection away from southern565

Africa.566

Figures 3(f-g) in Lazenby et al. (2018) also demonstrated that there was a decrease in near567

surface relative humidity between 10° and 20°S, but that this did not contribute to the overall568

precipitation change budget. This finding underscores the fundamental concept outlined by the569

CAB: that the southern African atmosphere during the Austral spring is often characterized at570

any instant by a dichotomy of states: one that is severely moisture limited and one that is close571

to saturated, with very little in between (Howard and Washington, 2019). In such a scenario,572

small thermodynamic perturbations have less potential to change the likelihood of convection than573

small dynamical perturbations. This is because a dynamical perturbation may move the moist574

airmass into, or away from a given location, drastically changing the likelihood of convection at575

that spot. Meanwhile, a small change in saturation temperature is unlikely to change the likelihood576

of convection if the atmosphere is either severely dry or not at all moisture limited.577

b. Remarks on Tropical lows578

Uncertainty in future projections of tropical lows in southern Africa has been identified as a579

source of the uncertainty and broad model spread in rainfall projections in this region during the580
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main rainy season. This uncertainty derives from variations in the changes of the climatological581

tropical low spatial distribution, however some robust changes are present, as discussed below.582

The historical spatial distribution of tropical lows features a southward bias as compared to583

reanalysis. Models show a greater proportion of tropical lows centered near 18°S and too few584

located around 15°S. This bias is consistent with other studies of the historical CMIP5 rainfall bias585

over southern Africa. An interannual southward shift in the Angola low has been associated with586

an increase in rainfall over subtropical southern Africa (Pascale et al., 2019; Crétat et al., 2018),587

consistent with the direction of the rainfall bias (Lazenby et al., 2016). Furthermore, Munday and588

Washington (2017) found a correlation between the magnitude of this wet bias and the strength589

of the Angola low, which they found was overly intense in most models. They also found that590

the climatological position of the Angola low was shifted towards the Angola-Namibia border in591

many models.592

Despite differences in the patterns, there is a consensus in all but one model of overall tropical593

low decline south of 15°S. This is reflected in the ensemble mean of both precipitation and tropical594

low location shifts. A large minority of models also show a marked increase in tropical lows north595

of this line, signifying a northward shift. However, this change is less robust than the decline fur-596

ther south. A northward shift and overall decline of tropical low location mirrors the characteristic597

response of tropical lows to El Niño events (Howard et al., 2019; Pascale et al., 2019).598

Lazenby et al. (2018) proposed that the diverse range of future projections in DJF is associated599

with inter-model differences in the SST changes in the Indian and Atlantic Oceans. Since inter-600

annual variability of the Angola low, which in late summer is the climatological expression of601

tropical lows, is sensitive to SSTs in these oceans (Pascale et al., 2019), it is likely that variability602

in SST projections may lead to variability in tropical low distributions, which in turn lead to the603

spread of projected rainfall changes.604
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6. Conclusion605

The CMIP5 ensemble predicts a drying trend in both spring and summer in southern Africa.606

Spring drying is robust across all models, and is associated with a delay in the wet season onset607

(Dunning et al., 2018). Such delays would cause a shortening of the growing season, impacting608

regional agriculture and food security (Lobell et al., 2008; Schlenker and Lobell, 2010). Model609

projections in the summer are more divergent and the ensemble mean drying trend in this season is610

less robust. However, rainfall changes in this season would be equally disruptive to the local econ-611

omy. For this reason, it is imperative that the mechanisms of future rainfall change demonstrated612

by CMIP5 models are well understood.613

The present study has placed the spring and summer projected rainfall change in the context of614

two classes of weather events, tropical lows and the CAB. These features are predominant in each615

respective season and are sufficiently well resolved in the climate models. By doing so, we have616

attributed model consensus on spring drying to increases in CAB frequency and latitude, and the617

lack of model consensus on summer rainfall change to uncertainty in the tropical low response to a618

warmer world. This work provides crucial context for the projected changes and grounds changes619

to the local climate in meteorological theory.620

We have found that the spring drying trend is strongly correlated across models with an increased621

frequency in the CAB. This delayed breakdown causes an increase in its average frequency be-622

tween October and December of approximately 13%. Model consensus on its projected change623

agree that the CAB will be located 0.5° - 1° further north and its gradual seasonal decline will624

occur half a month later at the end of 21st century than the 20th under the RCP8.5 scenario. These625

changes are significant as against internal variability in 12 - 15 of the 18 models. Therefore, we626
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strongly advocate for further research into this understudied feature of the climate system, partic-627

ularly in the form of observational field campaigns.628

Tropical lows, which make up the synoptic expression of the Angola low in the southern African629

summer, show more model spread in their future change, particularly when considering small-630

scale spatial shifts. This increased model uncertainty is a contributor to the divergence of DJF631

rainfall projections in southern Africa. However, despite spatial differences, a statistically sig-632

nificant decline in tropical low frequency south of 15°S is present in 11 models, with an overall633

ensemble mean decline of 10%. The response of tropical lows to future warming will be important634

for rainfall change in this region.635
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TABLE 1. List of CMIP5 models and reanalysis products considered in this study, together with horizontal

grid spacings, and an indication of whether the model was used to study the CAB, tropical lows (TL) or both.

799

800

Model Name Institute Horizontal Spacing CAB TL

bcc-csm1-1-m
Beijing Climate Center, China

Meteorological Administration

1.125◦×1.125◦ 1 1

BNU-ESM

College of Global Change and

Earth System Science,

Beijing Normal University

2.8◦×2.8◦ 1 1

CanESM2
Canadian Centre for Climate

Modelling and Analysis

2.8◦×2.8◦ 1 1

CNRM-CM5
Centre National de Recherches

Meteorologiques

1.4◦×1.4◦ 1 1

ACCESS1-0

Commonwealth Scientific and

Industrial Research Organisation and

Bureau of Meteorology, Australia

1.25◦×1.825◦ 1 1

ACCESS1-3

Commonwealth Scientific and

Industrial Research Organisation and

Bureau of Meteorology, Australia

1.25◦×1.825◦ 1 1

CSIRO-Mk3-6-0

Commonwealth Scientific and

Industrial Research Organisation in

collaboration with Queensland Climate

Change Centre of Excellence

1.825◦×1.825◦ 1

inmcm4
Institute for Numerical

Mathematics, Moscow, Russia

1.5◦×2.0◦ 1 1

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace 1.9◦×3.75◦ 1 1

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace 1.25◦×2.5◦ 1 1

IPSL-CM5B-LR L’Institut Pierre-Simon Laplace 1.9◦×3.75◦ 1 1

HadGEM2-CC UK Met Office Hadley Centre 1.25◦×1.9◦ 1 1

HadGEM2-ES UK Met Office Hadley Centre 1.25◦×1.9◦ 1 1
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MPI-ESM-LR
Max Planck Institute for

Meteorology M24

1.8◦×1.8◦ 1

MPI-ESM-MR
Max Planck Institute for

Meteorology M24

1.8◦×1.8◦ 1

NorESM1-M Norwegian Climate Centre 1.875◦×2.5◦ 1 1

GFDL-CM3
NOAA/Geophysical Fluid Dynamics

Laboratory

2.0◦×2.5◦ 1 1

GFDL-ESM2G
NOAA/Geophysical Fluid Dynamics

Laboratory

2.0◦×2.5◦ 1 1

GFDL-ESM2M
NOAA/Geophysical Fluid Dynamics

Laboratory

2.0◦×2.5◦ 1

CESM1-CAM5
Community Earth System Model

contributor

0.94◦×1.25◦ 1

Reanalysis Name Institute Horizontal Spacing CAB TL

ERA-5
European Centre for Medium Range

Forecasting

0.25◦×0.25◦ 1 1

ERA-Interim
European Centre for Medium Range

Forecasting

0.75◦×0.75◦ 1 1

MERRA-2 NASA 0.5◦×0.75◦ 1 1
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FIG. 1. Surface relative humidity (left panel), Canny edges (middle panel) and identified CAB locations (right

panel) on the 9th of September 1999 in ACCESS1.3.
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FIG. 2. Surface relative humidity (colors) and identified CAB locations (red dots) on the 9th of September

1999 in each model and reanalysis product. Surface humidity has been regridded to a 2°×2° grid using the

nearest neighbor method.
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FIG. 3. Tropical low track Hovmöller plots for each model and reanalysis product. x−axis: longitude, y−axis:

time. Colors indicate the T63 filtered vorticity of the tropical low event, a measure of the event intensity.
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Filled contours: CAB. Line contours: KD. Panels indicate different models and reanalysis products.
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FIG. 5. Seasonal cycles of CAB properties. Top: mean CAB latitude, second row: CAB frequency, and third

row: CAB extent (number of grid cells identified per day). Thin colored lines indicate models, and are ordered

by the mean CAB latitude averaged from August to November. Black lines show reanalysis products, thick blue

lines show the ensemble mean. All quantities are smoothed by a 2-week running mean.
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FIG. 6. Seasonal cycles of future change of CAB properties. As per Figure 5, but showing the average of

each property for the RCP8.5 end of 21st century scenario, minus that for the historical end of 20th century

scenario. The thick blue line indicates the ensemble mean and is shown as a solid line when the ensemble mean

is significantly different from zero at the p < 0.05 level using a paired t-test, and a dotted line otherwise. All

quantities are smoothed by a 2-week running mean. The bottom panel indicates the number of models for which

the future change signal is significant against internal variability at a p < 0.05 level for each month, using a

Welch’s t-test. Colors are ordered as per Figure 5. Colors in the top 3 panels are ordered as per Figure 5.
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FIG. 7. CAB rainfall decomposition. Top row: historical rainfall, middle row: RCP8.5 minus historical. The

bottom row compares the inter-model spread in historical (blue) and RCP8.5 (red) simulations, and shows the

number of models which exhibit a significant change relative to interannual variability at the p < 0.05 level,

based on a paired t-test (green line, top axis labels). First column: total rain. Following columns show rainfall

that falls: north of the CAB (second column), south of the CAB (third column) and during CAB break down

(last column). All panel show October - December mean. Colors are ordered as per Figure 5.
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FIG. 8. Top row: Ensemble mean rainfall change OND based on CAB decomposition. Bottom row: Linear

regression between rainfall OND change in the region 15°-30 °E, 5°-25°S and the November-December CAB

frequency change. Black line: least squares regression, text: p-value for the test that the slope of the regression is

equal to zero, and Pearson’s correlation coefficient. Left column: total rainfall, centre column: rain that occurs

north of the CAB, right column: rain that occurs during CAB breakdown events. Colors are ordered as per

Figure 5.
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FIG. 9. Spatial distributions of tropical lows per 2 × 2° grid cell. Panels indicate different models, ensemble

mean and reanalysis products.
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FIG. 10. Normalized distributions (left and centre) and overall quantities (right) of tropical low properties.

Top left: Longevity of TL events in days. Top centre: track latitude. Top right: total number of tropical low

days per year for each model/reanalysis product. Bottom left: T63 filtered vorticity. Bottom centre: track zonal

velocity, calculated as the tendency of the track longitude. Bottom right: proportion of rainfall attributable to

tropical lows, based on the methodology described in section 4b averaged over 15°-30°E and 10°-25°S. Thin

colored lines indicate models, and are ordered by the maximum bin frequency of the upper left panel. Black

lines show reanalysis products, thick blue lines show the ensemble mean. Numbers in brackets indicate the

number of models which show a significant change relative to natural variability at a p < 0.05 level based on a

Mann Whitney U-test for the left column, and a Welch’s t-test for the remaining panels.
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FIG. 11. Proportion of rainfall attributed to tropical lows from December to February in historical CMIP5

sample. Rainfall is defined to be associated to a tropical low if it falls within 5° of the tropical low centroid.

Panels show different CMIP5 models and the ensemble mean.
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FIG. 12. Changes in the distributions of tropical lows per grid-box per year between the RCP8.5 sample and

the historical sample in each model and in the ensemble mean. Hatching on individual model panels indicates

changes that are significant relative to interannual variability using a Welch’s t-test. Forward (backward) hatch-

ing indicates significance at a p < 0.1 (p < 0.05) level. Ensemble mean: forward hatching indicates changes

that are significant relative to the inter-model spread at a p < 0.05 level using a paired t-test.
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FIG. 13. Filled contours: total rainfall change between RCP8.5 end of 21st century sample and historical end

of 20th century sample for December to February over southern Africa. Purple: decrease, green: increase. Line

contours: same as filled contours, but only for rainfall that has been attributed to tropical lows. Data that is

insignificant at a p < 0.05 level relative to interannual variability (inter-model spread) based on a Welch’s t-test

(paired t-test) is masked for each model (for the ensemble mean).
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FIG. 14. Upper row: spatial correlation between rainfall change components and tropical low spatial distri-

bution change. Rainfall change and tropical low distribution change were calculated on a 2°×2° grid before

correlation, and only mainland points between 5°-25°S were considered. Lower row: inter-model regression be-

tween overall rainfall change and tropical low frequency change, averaged over the same region as listed above.

Left column: change in total rainfall field. Centre column: change in rainfall located within 5 degrees of a

tropical low. Right column: remainder rainfall.
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