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ABSTRACT 

Morphological, spectroscopic and scattering studies of the self-assembly and 

aggregation process of hybrids containing gold nanoparticles (AuNPs) and the amyloid 

peptides [RF]4 and P[RF]4 (where R = arginine; F = phenylalanine; P = proline) in aqueous 

solution were performed. Two methodologies were tested for the AuNP nucleation, using 

sodium borohydride (NaBH4) or epigallocatechin gallate (EGCG) as a reducing agent. This 

led to remarkable distinct modes of assembly, AuNP decorated fibrils with NaBH4 

reduction or isolated AuNPs with EGCG reduction. For both methodologies, the presence 

of spherical AuNPs was observed by plasmonic resonance bands in absorption spectra at ~ 

520 nm. Zeta potential measurements confirmed stable systems, with a similar aggregation 

state. Circular dichroism spectra revealed an antiparallel β-sheet conformation of the 

peptides. The transmission electron microscopy (TEM) images showed the coexistence of 

nanometer fibers and globular nanoparticles with 20 nm size. The small-angle X-ray 

scattering (SAXS) results show that the NaBH4 systems presented large cylindrical 

structures, while with increasing P[RF]4 content, a decrease in radius was observed. 

However, the EGCG-AuNPs were characterized by spherical particles, with a radius of 10 

– 20 nm. Also, the colorimetric efficiency of the hybrids in the capture of Cu2+ ions in 

solution was monitored. Raman spectroscopy data confirmed the conformational/structural 

of self-assembled samples. Moreover, there is indications for surface-enhanced Raman 

spectroscopy (SERS) effect for Cu2+ sites. The set of results indicates that these systems 

could act as a promising sensitive metal concentration probes. 
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1. INTRODUCTION 

Green chemistry has gained increasing prominence in recent decades due to 

environmental concerns and desire to increase process efficiency. Over the last 20 years, 

self-assembled systems based on peptides have attracted strong interest due to their 

enormous potential for bionanotechnological applications. Among several promising uses, 

we can highlight the development of sensing devices, molecular carriers, bioelectronics, 

tissue engineering, and so on. Many advantages – especially the fast synthesis, 

functionalization capabilities, and relatively low cost – confirm the potential of these 

systems.[1-7] The detailed knowledge about the structure of these systems and its influence 

on the resulting chemical and physical properties is a crucial step for understanding these 

materials and designing new applications.  

Among the molecular groups able to form self-assembled structures, amphiphiles have 

a prominent position. They can self-assemble into polymorphs with a large variety of 

liquid-crystalline phases. In this way, these systems are appropriate architectures to 

formulate biomimetic materials and establish interfaces with biological systems. 

Furthermore, they are excellent physical models for investigating fundamental processes 

in soft materials. When amphiphilic entities are conjugated to amino acids, these hybrid 

systems can take advantage of chemical diversity and molecular recognition properties 

offered by these building blocks and substantially increase their range of application.  

Various molecules can be attached to peptides to affect their self-assembly properties 

and direct their assembly into particular desired structures. The inclusion of specific 

peptide sequences with unique biological features has resulted in a large number of 

biocompatible biomaterials, being self-assembled by using peptide conjugates as building 

blocks.[8-10] For example, we investigated the effect of oligopeptides comprising alternating 

L-arginine (R) and L-phenylalanine (F) sequences, which show an increase in their 

organization levels with the increase in the number of repeats,[11-13] and these architectures 

can influence the morphology of the particles, since nanospherical aggregates or nanofibers 

are observed, depending on the peptide concentration and the pH of the medium.[14]  

Another factor to be considered is the influence of the reducing agent on the stability 

process of gold nanoparticles in solution. The gold reduction depends on the strength of 

these reagents, by which the nanoparticle morphology and size can be changed and, 

consequently, their physical-chemical properties. One of the most widely used reducing 

agents for the AuNP synthesis is the NaBH4, characterized by a strong ability to reduce 
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Au3+ to Au in seconds, controlling the size of the particles at the nanoscale.[15] Recently 

some works used EGCG [epigallocatechin gallate] to produce regular AuNPs ( < 50 nm); 

it is an active polyphenol flavonoid present in green tea and shows great potential in 

nanomedicine, acting as anti-inflammatory, anti-cancer, and anti-obesity.[16-19] 

With increasing industrialization, heavy metal pollution has become more problematic, 

and consequently, severe damage in the environment is observed. Contamination by these 

materials is straightforward, but their elimination is quite difficult in biological material 

recycling and energy exchange.[20] Many strategies to capture metal ions were developed 

in the last years, however specifically for systems containing gold nanoparticles, the 

colorimetric detection is gaining interest due to the capability of multi-ion sensitivity [21-29] 

and detecting interactions between amino acids or peptides and metal ions.[22, 30-32] Here we 

explored the self-assembly process of [RF]4 and P[RF]4 peptides conjugates with AuNPs 

in water solution, evaluating changes in the properties of these hybrids by varying the 

reducing agent (NaBH4 and EGCG) and we demonstrate the efficiency of these hybrids in 

the detection of Cu2+ ions, which is present in water, food, air, and biological systems.[20]  

 

2. EXPERIMENTAL METHODS 

2.1 Synthesis of oligopeptides peptides 

Peptides with [RF]4 and P[RF]4 sequences were synthesized using a solid phase Fmoc 

strategy.[33] All chemicals were of analytical or HPLC grades. The protected amino acids, 

(Fmoc-F-OH), (Fmoc-R(Pbf)-OH) and (Fmoc-P-OH), 1,3-diisopropylcarbodiimide/N-

hydroxybenzotriazole (DIC/HOBt), trifluoroacetic acid (TFA), anisole, thioanisole, 

dichloromethane (DCM), dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP) 

and 1,2-ethanedithiol (EDT) were purchased from Sigma-Aldrich (Saint Louis, MO). 

Wang resin with 100-200 mesh size was purchased from Advanced Chemtech (Louisville, 

KY), with a substitution degree of 0.55 mmol g-1 and first amino acid coupled to the 

polymeric support. The protected group was removed by reaction with 20% of 4-

methylpiperidine in dimethylformamide for 30 min. Coupling was carried out in a 5.0 fold 

excess of DIC/HOBt in DCM/DMF (1:1, v:v). The reactions were monitored using the 

Kaiser ninhydrin test.[34] The dry protected resin was exposed to 90% trifluoroacetic acid, 

5.0% thioanisole, 3.0% 1,2-ethanedithiol, and 2.0% anisole to remove all the protecting 

groups. After this, the material was lyophilized and analyzed on a liquid-chromatography 

electrospray ionization mass spectrometer, LC-ESI-MS, yielding [RF]4 (MM + H) = 
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1232.6 g mol-1 (calculated = 1231.6 g mol-1) and P[RF]4 (MM + H) = 1328.7 g mol-1 

(calculated = 1327.7 g mol-1).[14]  

 

2.2 Functionalization of the AuNPs with [RF]4 and P[RF]4 

    The solutions of AuNPs were prepared using 0.5 wt% HAuCl4 and two reducing agents 

were tested: 0.3 wt% sodium borohydride (NaBH4) or 0.5 wt% epigallocatechin gallate 

(EGCG) in the presence of the peptides (0.5 wt%). The solutions were adjusted to pH 4 

after the addition of the reducing agent, using a 0.1 mol L-1 HCl. 

Two series of experiments were evaluated in this work: the effect of peptide 

concentration changes, fixing the HAuCl4 concentration in 0.5 wt%, and the influence on 

the self-assembly process of peptide mixtures. In the first case, systems with different 

proportions of HAuCl4/peptide ratios were studied, considering the proportions 6.7, 3.3, 

and 2.3 for HAuCl4/[RF]4, and 5.0, 2.5, 1.7 for HAuCl4/P[RF]4, using NaBH4. 

For the mixtures of P[RF]4/[RF]4 different proportions were selected in the following 

proportions (v/v): 0:1 (1), 3:7 (2); 5:5 (3), 7:3 (4) and 1:0 (5) of P[RF]4/[RF]4 with AuNPs 

nucleated with NaBH4 and 0:1 (6), 3:7 (7); 5:5 (8), 7:3 (9) and 1:0 (10) of P[RF]4/[RF]4 

with AuNPs nucleated with EGCG. 

All reagents used had analytical purity: HAuCl4 (tetrachloroauric acid(III)) - Sigma 

Aldrich; NaBH4 - Sigma Aldrich; EGCG - Sigma Aldrich; NaOH (sodium hydroxide) - 

Synth; HCl (hydrochloric acid. All solutions were prepared with water purified by the 

Direct-Q System, Millipore, with a resistivity of 18.2 mΩ cm-1 (at 25 °C) and TOC below 

10 ppb. 

 

2.3 Spectroscopy methods 

      Absorbance profiles were monitored over a range of 200 to 800 nm on a Varian Cary 

50 Bio UV/Vis spectrophotometer, using quartz cuvettes with 1.0 cm path length. The 

baseline was corrected using a water buffer solution running under the same conditions 

(blank) and was subtracted from the experimental spectra. 

Zeta potential measurements were made on a Zetasizer Nano ZS instrument (Malvern) 

using disposable folded capillary cells (DTS1060).  

For the evaluation of the secondary structure of the samples, circular dichroism (CD) 

spectra were carried out using a Jasco-815 CD spectropolarimeter (Jasco Co) or a 

Chirascan spectropolarimeter (Applied Photophysics, UK). The samples were scanned at 

25 °C in a quartz cuvette with a thickness of 0.01 mm. The spectra were recorded with 
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absorbance A < 2 at any measured point, considering 0.5 nm step, 1 nm bandwidth, and 1 

s collection time per step. A water background CD signal was used to subtract the baseline 

from the experimental data. 

Dispersive Raman spectra were performed using a Horiba Jobin Yvon T64000 Triple 

Spectrometer. 2 µL of the sample was deposited on a silicon plate and, after being dried at 

room temperature, was excited with a 532 nm laser (Verdi G5, Coherent Inc. USA), 1 mW, 

focused on a 0.5 µm radius spot (50x objective). The acquisition time was 30 seconds. 

 

2.4 Small-Angle X-ray Scattering and Small-Angle Neutron Scattering 

Small-Angle X-Ray Scattering (SAXS) was performed on beamline B21, Diamond Light 

Source, Didcot, UK. A EMBL BioSAXS robot containing a 96 well plate was used, where 100 

µL of the 0.5 wt% peptide solutions were injected via an automated sample exchanger into a 

quartz capillary, with 1.8 mm internal diameter, in a vacuum chamber. The SAXS beamline 

operated with a fixed camera length and energy of 3.9 m and 12.4 keV, respectively, and the 

SAXS pattern was recorded using a PILATUS 2M detector. Data processing was performed 

using ScÅtter on the beamline, and fitting was performed using SASfit.[35] 

Small-Angle Neutron Scattering (SANS) data measurements were performed on 

beamline Larmor at ISIS Neutron and Muon Source, Didcot, UK. Quartz cuvettes with a 

thickness of 0.01 mm were filled with 500 µL of the 0.5 wt% hybrid solutions, synthesized 

with NaBH4, and prepared using a solvent mixture of 30 % D2O : 70 % H2O. An incident 

beam with a wavelength range of 1.7 Å to 10 Å and momentum transfer of 0.003 Å to 1.0 

Å was used. Data processing was performed using MANTID, and fitting was performed using 

SASfit. [35] 

 

2.5 TEM imaging 

     Transmission electron microscopy (TEM) experiments were carried out at the Brazilian 

Nanotechnology National Laboratory (Campinas, Brazil) on a JEOL model JEM-2100 

instrument, operating at 200 kV, and at the University of Reading, on a JEOL 2100Plus, 

instrument operating at 200 kV. Copper grids (Agar Scientific, UK) 5.0 mm in diameter 

and 10 μm thick, coated with carbon film, were used.  

2.6 Detection of Cu2+ using the peptide-AuNPs systems by colorimetric assays 

Solutions containing 80 µL of (1, 3, 5, 6, 8, and 10) hybrids and 300 µL of CuCl2 (7.0 

to 223 µmolL-1), purchased from Sigma Aldrich, were analyzed in UV/Visible absorbance 

spectroscopy. The experiments were made in triplicate. 
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3. RESULTS  

3.1. Nucleation of AuNPs in [RF]4 and P[RF]4 systems 

These hybrids containing amyloid peptides and AuNPs were stabilized in water 

solutions at pH 4 since zeta-potential assays indicate an isoelectric point for both 

peptides.[14] An important characteristic of metallic nanoparticles is the presence of the 

plasmon resonance bands, which can be analyzed in a qualitative way to describe the form 

and size of the particles.[36] Figure 1a shows the spectrum for the [RF]4 hybrids. In this case, 

a small band at approximately 258 nm was observed, characteristic of the amino acid 

phenylalanine [37] and a band of higher intensity at 530 nm, which is related to the spherical 

gold nanoparticles.[36, 38] We also observed that even with the increase in peptide 

concentration, the intensity and width of the bands remained the same, i.e., these 

phenomena indicate a homogeneity of the particles formed in the aggregation process.  

Considering the hybrids of P[RF]4, the spectra in Figure 1b show the characteristic band 

of phenylalanine at ~ 258 nm,[37] however, with a much smaller and broader intensity, 

which suggests the formation of larger aggregates. For the plasmon resonance band of gold, 

displacement of its maxima was observed, varying between 520 nm and 550 nm, with the 

increase of the concentration of the P[RF]4. Despite having a globular characteristic,[36, 38] 

these nanoparticles are larger as the ratio of the hybrid (HAuCl4/peptides) decreases, 

indicating differences in the morphology of these self-assembled materials. 

For the hybrids containing the mixtures of P[RF]4 and [RF]4, the phenylalanine band is 

observed at ~ 258 nm.[37] The samples prepared with NaBH4 are characterized by a band at 

546 nm, which for sample (1) showed the lowest intensity, while (3) and (4) presented the 

highest intensity, as can be seen in Figure 1c. Considering the EGCG systems, a band 

located at 567 nm (Figure 1d) was observed for all proportions, suggesting the formation 

of bigger aggregates in comparison with the NaBH4 hybrids. Also, a gradual enhancement 

of the intensity is verified, increasing the P[RF]4 content, which can be correlated with a 

higher amount of globular gold nanoparticles in the solutions. 

Systems containing only AuNPs synthesized using both reducing agents also showed a 

band at 560 nm and 568 nm, respectively, for NaBH4 and EGCG, indicating spherical 

structures. As observed for the samples with the peptides, EGCG systems tend to form 

bigger particles in comparison with the NaBH4, and this is characterized in Figure 1d by 

the enlargement and shifting of the plasmonic band. 
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Figure 1. UV/Vis absorption spectra for samples with different proportions of a) HAuCl4/[RF]4 

and b) HAuCl4/P[RF]4, both synthesized using NaBH4. The same measurements were performed 

using different mixtures of P[RF]4/[RF]4 in c) HAuCl4-NaBH4 and d) HAuCl4-EGCG. 

 

Zeta potential measurements of the HAuCl4/peptide solutions prepared with NaBH4 

were made to probe the stability of the aggregates, considering the surface charge in regard 

to the aggregation tendency and its possible redispersibility.[39] At pH 4, the solutions had 

positive zeta potentials with similar values, indicating that they may have identical 

aggregation states. The summarized data is presented in Table S1. As verified before by 

UV/Vis absorption spectroscopy, the systems are stable, suggesting that the organization 

of the monomers present is the same, and the proline residue does not influence the self-

assembly process. DLS assays were performed (Figures S1 and S2), and the results 

corroborate with the other spectroscopic techniques, proving the systems have similar self-

assembled structures. HAuCl4/peptide samples presented an exponential decay in their 

correlation curve, which suggests the presence of one predominant population. They are 

characterized by small particles, with an average size of 50 nm. The NaBH4 peptides 

mixture samples presented some differences in the correlation curves, indicating that the 
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size of the particles is changing. However, a higher uniformity of the data for EGCG 

hybrids was observed, which form larger particles with size ranging hundreds to the 

micrometer. 

To obtain information about the secondary structure of the peptides in these hybrid 

systems, CD experiments were performed. Figure 2 shows the CD spectra for all systems 

analyzed. Considering the spectra for HAuCl4/[RF]4 (Figure 2a), the samples present a 

random coil conformation, characterized by a negative band at 194 nm, which corresponds 

to a π → π* transition, and a positive band at 219 nm, correlated with n → π* transition.[40] 

For HAuCl4/P[RF]4, the 1.7 and 2.5 ratios presented three positive bands: at 188 nm and 

190 nm, respectively, which correspond to antiparallel β-sheet conformation, at 206 nm 

and 218 nm, associated, respectively, with π → π* transition and n → π* transition, 

characteristic of phenylalanine amino acids.[41, 42] However, a transition to random coil 

organization was observed for the HAuCl4/P[RF]4 = 5.0 sample, characterized by a 

negative band located at 188 nm and two maxima at 200 nm and 218 nm, as can be seen in 

Figure 2b. 

The mixtures of P[RF]4/[RF]4 spectra, presented in Figures 2c and 2d, had positive bands 

at 225 nm and 219 nm, for NaBH4 and EGCG systems, suggesting an antiparallel β-sheet 

conformation. It was observed that with increasing P[RF]4 content, the intensity of the 

bands decreases, implying less β-sheet structures are present. 
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Figure 2. CD spectra of solutions with different proportions of a) HAuCl4/[RF]4 and b) 

HAuCl4/P[RF]4, both synthesized using NaBH4. The same measurements were performed using 

different mixtures of P[RF]4/[RF]4 in c) HAuCl4-NaBH4 and d) HAuCl4-EGCG. 

 

To obtain more detail about the shape and dimensions of nanostructures in the mixtures, 

SAXS and SANS measurements were performed, and the curves were fitted using the 

software SASFit.[35] The red curves in the SAXS patterns, presented in Figures 3a and 4a, 

represent the adjusted form factors. The SAXS data shows the presence of predominant 

fibril structures, suggesting the formation of fibrils decorated with AuNPs (or alternatively 

peptide fibrils with a small population of unassociated AuNPs). Systems (1-5) were 

characterized previously by β-sheet structures in the micrometer range (see Figure 2); 

consequently, a long cylindrical shell model (with fixed cylinder length, 1000 nm) was 

used as form factor with a Gaussian size distribution (σR) of the radius. Also, it was 

necessary to include only for the samples (1) and (2) a hard-sphere structure factor 

contribution. Systems containing AuNPs in the absence of peptides, prepared with NaBH4, 

were fitted using mass fractal Gaussian as a form factor with a Gaussian size distribution. 

Table 1 summarizes the fitted parameters. 

The parameters in Table 1 indicate a gradual decrease of the cylinder radius (R) 

increasing the P[RF]4 content in the systems, from 1.9 nm for sample (1) to 1.1 nm for (5). 
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However, an increase of shell thickness of the cylinders (ΔR) was observed with increasing 

P[RF]4 content. This effect suggests that the proline helps the molecular packing, leading 

to more compact structures. The model fitting also shows variations in the (electron) 

scattering length density of the core (ɳcore) and the shell (ɳshell). A considerable increase of 

the ɳcore was observed in the samples with more P[RF]4, which also have a lower radius, 

confirming the higher packing of the peptide molecules in the core of the fibers. The AuNPs 

system shows fractal clusters with radius (R’) 2.3 nm and fractal dimension D = 2.0, with 

scattering contrast (I0) of 5.6 x 10-4. 

SANS curves for samples at the same concentration as used for SAXS are shown in 

Figure S3, along with model core-shell cylindrical form factor fits. In this case, a gradual 

enhancement of the cylinder radius with the increase of P[RF]4 was observed with almost 

constant shell thickness (parameters in the inset Table 1). This effect can be associated with 

the contrast difference caused by the use of a solvent mixture containing D2O/H2O (3:7, 

v/v), which was chosen to enhance the scattering signal. However, an increase of core 

scattering contrast ɳcore was also observed in the samples with a higher content of P[RF]4, 

which confirms tighter packing in the core again. 

 

 

Figure 3. a) SAXS data (grey points) of P[RF]4/[RF]4 AuNP hybrids synthesized with NaBH4 in 

pH 4. Model fits (red line) using the model described in the text. TEM images of 0.5 wt% water 

solutions of b) (1), c) (2), d) (3), e) (4), f) (5) and g) only AuNPs. 
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Table 1. Summary of the model parameters obtained from the fitting procedure of SAXS data for 

peptides mixtures (1), (2), (3), (4), and (5) containing NaBH4.* 

Samples Long cylindrical shell* 

 
R  

(nm) 

σR  

(nm) 

ΔR 

(nm) 
ɳcore  ɳshell 

(1) 1.9 0.5 0.2 1.0 x 10-6 5.0 x 10-6 

(2) 1.4 0.7 0.7 1.3 x 10-6 1.8 x 10-6 

(3) 1.0 0.7 1.0 9.7 x 10-7 2.0 x 10-6 

(4) 1.0 0.6 0.9 1.0 x 10-6 2.0 x 10-6 

(5) 1.1 0.7 0.8 2.2 x 10-6 1.0 x 10-6 

 Mass fractal Gaussian 

 

R’ 

(nm) 

σR  

(nm) 

D 

(nm) 
I

0
  

AuNPs 2.3 0.4 2.0 5.6 x 10-4  

*The scattering length density of the solvent (ɳsolv) was fixed at zero.  

 

TEM images for hybrids (1-5), presented in Figure 3b-f, show the coexistence of small 

fibers covering the grid surface and spherical gold nanoparticles, with higher contrast, well 

distributed over the grid, corroborating CD and SAXS results. Increasing the P[RF]4 

content, more elongated fibers are formed, with length varying from 50 nm to 200 nm. 

Globular AuNPs with 20 nm in diameter were observed, and the interaction between these 

particles and the peptide fibers leads to the formation of some aggregates. For the sample 

containing only AuNPs (Figure 3g), only a few nanometer-scale globular nanoparticles 

were observed.  

SAXS data for the peptide mixtures (6-10) was characterized by a -4 power law intensity 

decay in the low q Guinier regime, suggesting the presence of spheres. For this, the curves 

were fitted using the sphere form factor, and Gaussian size distribution and the fit 

parameters are listed in Table 2. This shows an increase of the sphere radius (R’’) from 1.0 

nm (6) to 2.0 nm (10) and a decrease of the scattering (electron density) contrast (ɳ) with 

increase in P[RF]4, corroborating UV/Vis absorption results. And this effect was more 

prominent in the AuNPs sample synthesized without the peptides, which had a 2.6 nm 

radius.  
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Figure 4. a) SAXS data (grey points) of P[RF]4/[RF]4 AuNP hybrids synthesized with EGCG in 

pH 4. Model fits (red line) using the model described in the text. TEM images of 0.5 wt% water 

solutions b) (6), c) (7), d) (8), e) (9), f) (10) and g) only AuNPs.  

 

Table 2. Summary of the model parameters obtained from the fitting procedure of SAXS data for 

peptides mixtures (6), (7), (8), (9), and (10) using EGCG. 

Samples Spheres 

 
R’’ 

(nm) 

σR  

(nm) 
ɳ 

(6) 1.0 0.3 5.9 x 10-6 

(7) 1.5 0.3 2.4 x 10-6 

(8) 1.8 0.4 1.9 x 10-6 

(9) 2.0 0.3 1.2 x 10-6 

(10) 2.0 0.2 2.4 x 10-6 

AuNPs 2.6 0.5 3.1 x 10-7 

 

For the EGCG systems (Figures 4b-f), TEM images revealed the presence of spherical 

AuNPs with a size of approximately 20 nm, and as for the NaBH4 samples, the interaction 

of these nanoparticles is higher with increasing P[RF]4 content, since larger aggregates are 

observed. However, the AuNPs sample showed a higher level of organization of these 

globular particles, suggesting that the coalescence process is more pronounced, forming 
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aggregates with sizes ranging from nm to m. These results corroborate with DLS and 

SAXS results presented previously. 

 

3.2. Colorimetric analysis of Cu2+ 

The addition of the salt into the peptide hybrid-functionalized gold nanoparticles 

promoted changes in the solution colors, varying initially from red to blue (see Figure S4). 

To verify possible differences in the size and morphology of the gold aggregates, UV/Vis 

absorption, and TEM analyses were performed. Figure S5 shows a shifting of the gold 

plasmonic resonance band, from 520 nm (peak 1) to 544-562 nm, with salt addition and an 

increase of the 600 nm band (peak 2), which indicates a difference in the particle 

morphology.[20] The redshift of the plasmonic band and the appearance of the 600 nm band 

show an increase of the gold nanoparticles size.[43] This effect was confirmed by changes 

in the colors of the solutions from red to blue, as can be seen in Figure S4. The sensitivity 

of the colorimetric assay to distinct concentrations of Cu2+ in solutions containing the 

hybrids was investigated considering the absorption ratio (A600/A520) as a function of the 

metal ion concentration. A linear fit was used, and the equations are shown in Figure 5. 

TEM images, presented in Figure 5, confirm morphological changes of the hybrids 

with the metal ion interaction, establishing the UV/Vis absorption results. In all systems, 

aggregation effects are prominent, resulting in some cases in the formation of micrometer 

aggregates. This aggregation process suggests that the gold-peptide hybrids interact with 

the metal ions, capturing them and, consequently, forming large aggregates, which can 

separate from the rest of the solution. 

To evaluate the sensitivity and minimum concentration of Cu2+ that can be detected by 

this colorimetric method, a progression of metal ion concentrations from 7.0 to 223 molL-

1 was added to all samples in aqueous solution, as shown in Figure 5. We observed a gradual 

blue-to-red color change when the concentration of Cu2+ was increased. The sensitivity of 

the colorimetric assay was determined by the absorption ratio (A600/A520) as a function of 

the metal ion concentration, showing a good linear correlation coefficient for the AuNP 

sensor (6), with a detection limit (LD) of 0.19 µmol L-1 based on the 3 error on the slope. 

This value is quite reasonable compared to other colorimetric sensors for Cu2+ described 

in the literature (see Table 3). 
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Figure 5. Absorption ratios (A600/A520) as a function of the metal ion concentration in solution. 

TEM images of the systems (1, 3, 5, 6, 8, and 10) in the presence of solutions containing 75 µmolL-

1 of Cu2+. 
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Table 3. Comparison of proposed Cu2+ sensor with other reported colorimetric sensors in the 

literature. 

Recognition systems 
Detection limit 

(µmol L
-1

) 
References 

Amyloid-like peptide (6) / AuNPs 0.19 This study 

Cysteine-(Glutamine)3 / AuNPs 1.0 [44] 

L-Cysteine / AuNPs 2.2 [45] 

L-Cysteine / Gold nanorod 0.34 [46] 

DNAzyme / AuNPs 0.29 [47] 

Escherichia coli / AuNPs 0.40 [48] 

DNA / Click chemistry 0.20 [49] 

Starch-stabilized silver nanoparticles 0.63 [50] 

In situ formation of silver nanoparticles 0.25 [51] 

DNA / AuNPs 20 [52] 

Thermally treated AuNPs 0.040 [53] 

Azide-tagged AuNPs 1.80 [54] 

Triazole / Click chemistry 10 [55] 

Polythiophene / Click chemistry 3.0 [56] 

Dopamine / AuNPs 1.4 [57] 

Catalytic leaching / AuNPs 0.70 [58] 

Copper catalysis / AgNPs 0.75 [51] 

Casein peptide / AgNPs 0.16 [59] 

 

To validate the UV/Vis data and confirm the metal ion association with the peptide, 

dispersive Raman spectra were recorded in the absence and presence of Cu2+, and are 

shown in Figure 6. Table S2 presents all the vibrational bands assignment.[60,70] The peaks 

at 1586, 1606, and 1674 cm-1 confirm β-turn conformation, supporting the CD data. A 

linear electronic Raman background up to 200 cm-1 was observed for all EGCG spectra, 

and for the mixture of P[RF]4/[RF]4 (5:5, v/v) with NaBH4, as shown in Figure 6b. This 

effect is associated with the fluorescence signal. 

The insertion of Cu2+ ions in these systems promoted the appearance of two sharp 

peaks at 105-109 cm-1 and 160-174 cm-1, characterized by the hydrogen-bond vibrations 

and N-Cu-N angle bend, respectively.[68, 69] The band at 214 cm-1 is associated with the 

oriented crystal growth CuO.[70] These bands confirm the self-assembly changes by the 

interaction of the Cu2+ ions, as observed previously by TEM. Another considerable effect 

is the concentration of metal ions solutions. As the Cu2+ concentration increased more 
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prominent and defined were the peaks, suggesting an enhancement of the surface-enhanced 

Raman scattering (SERS) by the signal amplification of the AuNPs resonance band. 
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Figure 6. Dispersive Raman spectra of 22 µmolL-1 solutions of a) [RF]4, b) P[RF]4/[RF]4 (5:5, v/v), 

and c) P[RF]4 in the absence and the presence of AuNPs. Comparison of the dispersive Raman 

spectra of the systems d) (1), e) (3), f) (5), g) (6), h) (8) and i) (10) with solutions containing 22, 75 

and 223 µmolL-1 of Cu2+. The insert shows the Cu2+ peaks. 

 

In this case, copper(II) ions can coordinate with the amine or carboxylic groups present 

in the peptide-binding core.[71] Considering that our systems are composed of hybrids with 

gold nanoparticles nucleated with the β-amyloid peptides, the insertion of the Cu2+ 

promotes an enhancement of the aggregation of nanoparticles, due to the complexation 

process with functional groups from amino acid residues, as shown in Figure 7. Also, the 

SERS-enhanced bands at 170, 242 and 401 cm-1, which are all absent before the Cu2+ 

assembly, are assignable to N-Cu-N, Cu-Cl, and Cu-O vibrations, respectively, indicating 

that these bonds are aligned close to perpendicular to the gold nanoparticles surface in the 

Cu2+(peptide) self-assembled complexes. A similar study showed the same results for L-

Cysteine adsorbed on gold nanoparticles.[45] 

 

 

Figure 7. Schematic representation of the Cu2+ coordination to the AuNP-peptide conjugates. 

 

The affinity site of the sensor proposed in this work was also tested for nickel ions 

under all experimental conditions. The Raman spectra results, considering systems (3) and 

(8), clearly show that this ion does not interfere in the sensor response using the same 

procedure. The comparison of the Cu2+ and Ni2+ Raman bands is shown in Figure S6. 

Additionally, the proposed method shows applicability to the analysis of a real water 

sample. For this, 300 µL of water (rain and tap) were mixed with 80 µL of AuNP sensors 

(1, 3, 5, 6, 8, and 10), respectively, and the mixtures were analyzed by UV/Vis 

spectrophotometry. The obtained results in Table S3 show approximately 7.0 µmol L-1 of 

Cu2+ in the rain, and 15 µmol L-1 of Cu2+ in the tap water. Thus, these materials could act 

as sensitive metal ion detectors and as residual water cleaners. 
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4. CONCLUSIONS 

We have shown that arginine/phenylalanine based peptides can be used to control the 

aggregation of gold nanoparticles in different ways depending on the chemical conditions 

of the colloidal solutions. The peptides form nanofibrils with β-sheet secondary structures, 

which can nucleate the deposition of gold nanoparticles. The use of NaBH4 or EGCG as 

AuNP reductant leads to distinct morphologies of gold-decorated fibrils or spherical gold 

NP aggregates, respectively 

The dimensions of the nanofibrils observed in solutions with NaBH4 reduced AuNPs 

were carefully analyzed via form factor fits of solution SAXS data. This shows a decrease 

in the cylinder core radius with increasing P[RF]4 content in the mixture of the peptides. 

Use of a mix of [RF]4 and P[RF]4 peptides are shown to be viable means to control the 

width of fibrils decorated with gold NPs. In contrast, EGCG nucleates spherical AuNPs in 

the presence of the peptide mixtures. 

The AuNPs are well dispersed in solution at acidic pH, a condition that stabilizes the 

gold nanoparticles with a radius approximately 10-20 nm. Colorimetric assays show these 

hybrids can act as probes to identify Cu2+ ions in solution, highlighting their efficiency in 

metal ion detection in water. These peptide AuNP systems show great promise as sensitive 

detection systems for metal ion analysis.  
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