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SUMMARY 18 

Although the biochemical and genetic basis of lipid metabolism is clear in Arabidopsis, there 19 

is limited information concerning the relevant genes in soybean. To address this issue, here 20 

we constructed three-dimension genetic networks using six seed oil-related traits, fifty-two 21 

lipid-metabolism-related metabolites and 54,294 SNPs in at most 286 soybean accessions. 22 

As a result, 284 and 279 candidate genes were found by phenotypic and metabolic 23 

genome-wide association studies and multi-omics analyses, respectively, to be significantly 24 

associated with seed oil-related traits and metabolites; six seed oil-related traits were found 25 

by MCP and SCAD analyses to be significantly related to thirty-one metabolites. Among 26 

the above candidate genes, 36 genes were found to be associated with oil synthesis (27), 27 

amino acid synthesis (4) and TCA cycle (5), and four genes GmFATB1a, GmPDAT, 28 

GmPLDα1 and GmDAGAT1 are known oil-synthesis-related genes. Using the above 29 

information, 133 three-dimension genetic networks were constructed, in which 24 are 30 

known, e.g., pyruvate-GmPDAT-GmFATA2-oil content. Using these networks, GmPDAT, 31 

GmAGT and GmACP4 reveal the genetic relationships between pyruvate and the three 32 

major nutrients, and GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationships 33 

between amino acids and seed oil content. In addition, GmCds1, along with average 34 

temperature in July and rainfall, influence seed oil content across years. This study 35 

provides a new approach for three-dimension network construction and new information 36 

for soybean seed oil improvement and gene function identification. 37 

Keywords: seed oil related traits, lipid related metabolites, mGWAS, three-dimension 38 

genetic networks, soybean 39 
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Significance Statement 40 

One hundred and thirty-three three-dimension genetic networks among seed oil-related 41 

traits, lipid-metabolism-related metabolites and genes in soybean were constructed for the 42 

first time using phenotypic and metabolic genome-wide association studies and multi-omics 43 

analyses. These networks were tried to explain the genetic relationships among seed 44 

oil-related traits, oil-synthesis-related carbon metabolites, and oil-synthesis-related amino 45 

acids. 46 
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INTRODUCTION 47 

Scientists have focused on the genetic basis of seed oil-related traits in soybean for a long time, 48 

with the purpose of improving seed oil content and quality in this crop (Fang et al., 2017). 49 

However, the significant negative correlation between seed oil and protein contents (Chaudhary 50 

et al., 2015; Patil et al., 2017) has resulted in very slow progress in improving soybean quality by 51 

means of conventional breeding (Charron et al., 2005). Recently, metabolites, which act as a 52 

bridge between trait phenotype and its genes, have been shown to usually determine crop 53 

nutritional traits like seed oil content and its composition via a wide range of intermediate 54 

compounds such as fatty acids, phospholipids and carbohydrates (Wen et al., 2015; Chen et al., 55 

2016). Although many genes have been found to be associated with seed oil-related traits and 56 

lipid synthesis, these studies have usually involved phenotypic genome-wide association studies 57 

(GWAS) and linkage analysis (Hwang et al., 2014; Meng et al., 2016; Fang et al., 2017; Van & 58 

McHale, 2017; Leamy et al., 2019; Zuo et al., 2019; Zhang T et al., 2019). Therefore, modern 59 

crop breeding necessitates the construction of three-dimension genetic networks among seed 60 

oil-related traits, genes and oil biosynthesis metabolites. 61 

 62 

To date many genes have been reported to be involved in seed oil biosynthesis in Arabidopsis. 63 

For example, GPAT (Li et al., 2007), PDHC (Shen et al., 2006), ACCase (Roesler et al., 1994), 64 

KASI (Xiong et al., 2017), FATB and FATA2 (Bonaventure et al., 2003; Moreno et al., 2012) were 65 

found to be involved in the synthesis of short chain fatty acids; DGAT and PDAT (Jako et al., 66 

2001; Zhang et al., 2009; Pan et al., 2013; Fan et al., 2013) were found to be involved in 67 

triacylglycerol (TAG) biosynthesis; LACS (Lü et al., 2010; Katavic et al., 2014) was found to be 68 

involved in the synthesis of very long-chain fatty acid; PLP2/PLA2A (La et al., 2009; Yang et al., 69 

2012), Pgs1 or PGP1 (Tanoue et al., 2014), Cds1 (Zhou et al., 2013), LPEAT2 70 

(Jasieniecka-Gazarkiewicz et al., 2017), and TIM/PDTPI (López et al., 2016) were found to be 71 

involved in lipid synthesis; OLE1 (oleosin) was found to be involved in the storage of lipid 72 

droplets (Siloto et al., 2006; Shimada et al., 2010). Although a hundred genes relating to lipid 73 

synthesis have been reported to participate in the process of carbohydrate metabolism (Zhang et 74 

al., 2018), few genes have been reported to be related to the TCA cycle and amino acid synthesis 75 

http://europepmc.org/search?query=AUTH:
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(Wen et al., 2015; Zhang et al., 2018). In Arabidopsis, SDH1 (Huang et al., 2013), ACO1 (Park 76 

et al., 2018), MDH (Selinski et al., 2019), FUM1 (Zubimendi et al., 2018), IDH-V (Lemaitre et 77 

al., 2006) and 2OGDH (Araújo et al., 2014) were reported to participate in the reaction of TCA 78 

cycle; AGT (Zhang et al., 2002), P5C1 (Giberti et al., 2004), MTO (Goto et al., 2002), HMT2 79 

(Ranocha et al., 2000) and AtBCAT (Diebold et al., 2002) were reported to participate in the 80 

amino acid metabolism. 81 

 82 

In soybean, some transcription factors and genes encoding other functional proteins have been 83 

reported to be responsible for seed oil biosynthesis. The transcription factors GmDof4, GmDof11 84 

(Wang et al., 2007), GmbZIP123 (Song et al., 2013), GmLEC1a/GmLEC1b (Zhang et al., 2017), 85 

GmWRI1a (Chen et al., 2017), GmMYB73 (Liu et al., 2014), GmDREBL (Zhang et al., 2016), 86 

GmNFYA (Lu et al., 2016), GmLEC2 (Manan et al., 2017) and GmZF351 (Li et al., 2017) were 87 

found to participate in the regulation of lipid accumulation. The functional genes GmDGAT1 or 88 

GmDAGAT1 (Lardizabal et al., 2008; Chen et al., 2016), and GmOLE1 (desaturase) (Zhang D et 89 

al., 2019) were reported to play a key role in plant diacylglycerol/triacylglycerol (DAG/TAG) 90 

biosynthesis, and GmPLD (phospholipase D) and GmLPAT (lysophosphatidyl acyltransferase) 91 

(Zhao et al., 2012; Zhao, 2013) were found to regulate lipid synthesis. However, rare oil 92 

synthesis genes have been reported to be related to TCA cycle or amino acid synthesis in 93 

soybean. 94 

 95 

As we all know, metabolites have a significant influence on signal transmission, material 96 

synthesis and decomposition and other differentiation processes in each cell (Chen et al., 2014, 97 

2016; Wen et al., 2015). Using metabolome-based genome-wide association studies (mGWAS) 98 

and metabolome profiling analysis, recently, some genes have been identified to be associated 99 

with primary or secondary metabolites, which are responsible to complex traits (Chen et al., 100 

2016; Wu et al., 2018). For example, OMT1 encoding 5-hydroxyferulic acid O-methyltransferase 101 

in Arabidopsis was found to regulate 5-hydroxyferulic acid glucoside (Wu et al., 2018), which 102 

influences the synthesis of lignins and sinapoyl esters (Tohge et al., 2007); Os07g32060 103 

encoding flavone 5-O-glucosyltransferase in rice was found to regulate 5-O-glucoside, which 104 

influences the synthesis of flavonoids (Chen et al., 2014); Os12g27220 and Os12g27254 105 

http://xueshu.baidu.com/s?wd=paperuri:(a98330ef379474c4a31684399d13a549)&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http://en.cnki.com.cn/article_en/cjfdtotal-dbdn201307004.htm&ie=utf-8&sc_us=1060565465313523362
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encoding spermidine hydroxycinnamoyl transferases in rice was found to regulate 106 

N-hydroxycinnamoyl spermidines, which influences phenolamides biosynthesis (Dong et al., 107 

2015); Os02g57760 encoding nicotinic acid N-methyltransferase in rice was found to regulate 108 

trigonelline, which influences grain width (Chen et al., 2016). At present the studies on soybean 109 

mGWAS are relatively limited. 110 

 111 

As described above, the genetic relationships are derived mainly from either seed oil-related 112 

traits and genes, or metabolites and genes. In modern breeding strategies, it is very necessary to 113 

construct three-dimension genetic networks among seed oil-related traits, metabolites and genes. 114 

To address this issue, six seed oil-related traits, fifty-two lipid-related metabolites and 54,294 115 

SNP markers in at most 286 soybean accessions were used to conduct single- and multi-locus 116 

GWAS (Zhou et al., 2015; Zhou et al., 2015; Wang et al., 2016; Tamba et al., 2017; Zhang et al., 117 

2017; Wen et al., 2018; Ren et al., 2018) for seed oil-related traits and metabolites, and genetic 118 

relationships between seed oil-related traits and metabolites were also established by the 119 

minimax concave penalty (MCP) (Zhang et al., 2006) and smoothly clipped absolute deviation 120 

(SCAD) (Fan & Li, 2001) analyses. Candidate genes for seed oil-related traits and metabolites 121 

were predicted by bioinformatics, comparative genomics, and transcriptomics. Using the above 122 

results, 133 three-dimension genetic networks were constructed in this study. Using these 123 

networks, some new genetic relationships were uncovered, e.g., pyruvate and the three major 124 

nutrients, and amino acids and seed oil content. In addition, we also discuss the reasons of 125 

different seed oil contents across different years. Thus, this study provides a new approach for 126 

constructing three-dimensional genetic networks, which reveal some new genetic relationships 127 

among seed oil content, some metabolites (three major nutrients, malic acid, and amino acids) 128 

and genes. These relationships are useful for soybean quality improvement and gene function 129 

identification. 130 

RESULTS 131 

Distributions for six seed oil-related traits and fifty-two metabolites in soybean 132 

Seed oil-related traits in this study are seed oil content and its five oil constituents, including 133 

stearic acid, palmitic acid, oleic acid, linoleic acid and linolenic acid. These traits were measured 134 
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from 286 soybean accessions between 2014 and 2016. The averages plus standard deviations 135 

across the three years for the above six traits were 17.92 ± 2.16, 3.54 ± 0.46, 11.65 ± 1.21, 24.79 136 

± 4.53, 52.29 ± 3.63 and 7.73 ± 1.58 (%), respectively, and their average coefficients of variation 137 

(CV) across the three years were 12.03, 10.33, 12.92, 18.24, 6.95 and 20.40 (%), respectively 138 

(Table S1). Clearly, these traits have large variation and are typical quantitative traits. Although 139 

the trends for five seed oil constituents in the three years are almost the same (Figure 1a-e), seed 140 

oil content in 2016 (16.67 ± 1.92, %) was significantly lower than those in 2014 (19.06 ± 2.18, %) 141 

and 2015 (18.03 ± 2.37, %) (P-value < 0.001). 142 

 143 

A total of 52 lipid-related metabolites in the pathways of the tricarboxylic acid (TCA) cycle, 144 

amino acid metabolism, oil synthesis and soybean isoflavone synthesis were measured from 214 145 

soybean accessions in 2015. These metabolites are classified into organic acids, soybean 146 

isoflavone, phosphatidyl ethanolamines (PE), phosphatidyl cholines (PC), phosphatidyl inositols 147 

(PI) and amino acids. Organic acids measured in this study included pyruvic acid, succinic acid, 148 

fumaric acid, malic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid; 149 

their phenotypic values varied from 175.87 to 50980.18, 1.35 to 515.01, 1.25 to 440.91, 18.61 to 150 

5280.87, 0.9 to 342.63, 0.5 to 105.69, 0.15 to 112.67, 21.71 to 774.08 and 8.5 to 102.43 (μg/g), 151 

respectively; their CVs were 181.85, 123.82, 113.08, 82.37, 79.92, 75.57, 126.59, 90.47 and 152 

45.02 (%), respectively. Soybean isoflavone measured in this study included daidzein, daidzin, 153 

genistein, genistin and glycitin; their phenotypic values varied from 0.23 to 163.78, 0.50 to 154 

314.13, 0.22 to 87.65, 7.78 to 1611.42 and 0.002 to 238.69 (μg/g), respectively; their CVs were 155 

107.06, 110.34, 104.93, 74.56 and 109.61 (%), respectively. The phenotypic values for PE (6), PI 156 

(6), and PC (6) with eighteen molecular species (for detail information, see Measurement in 157 

Experimental Procedures) varied from 3.02 to 2160.52, 0.00 to 30568.93, and 0.00 to 2830.26 158 

(μg/g), respectively; their CVs were 91.88, 124.53, and 96.34 (%), respectively. A total of 159 

twenty amino acids were measured, their phenotypic values varied from 0.04 to 1864.51 (μg/g), 160 

and their CVs were from 41.89 to 236.48 (%). Detailed information for all the 52 metabolites is 161 

shown in Table S2. Clearly, these metabolites have large variations. 162 
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Genome-wide association studies for seed oil-related traits in soybean 163 

Detection of main-effect quantitative trait nucleotides (QTNs) for oil-related traits    With 164 

286 soybean accessions, six seed oil-related traits measured from 2014 to 2016, along with 165 

54,294 SNPs, were used to conduct phenotypic GWAS using GEMMA, mrMLM, 166 

FASTmrEMMA, ISIS EM-BLASSO, pLARmEB and pKWmEB. As a result, 334 significant 167 

QTNs were identified (Figure S1 and Table S3). Among these QTNs, they were distributed 168 

mainly on chromosomes 5, 6, 7, 8, 9, 13, 17, 18 and 19 (≥ 16 QTNs for each chromosome) and 169 

had 5.51% average proportion of total phenotypic variation explained by each QTN, and there 170 

were 56, 46, 50, 68, 75 and 39 QTNs, respectively, for palmitic, stearic, oleic, linoleic, linolenic 171 

acids and seed oil content. Thirty-five QTNs were detected in at least two environments, while 172 

309 QTNs were identified in only one environment. A total of 77 significant QTNs for the above 173 

six oil-related traits were detected in at least two environments or two GWAS methods (Table 174 

S4). Among these common QTNs, there were 11, 17, 12, 18, 7, and 12 QTNs, respectively, for 175 

linolenic, linoleic, stearic, oleic, palmitic acids and seed oil content. Based on previous studies at 176 

https://www.soybase.org/GWAS/, there are many QTNs on chromosome 5 and almost no QTNs 177 

on chromosome 13. In this study, five significant QTNs were positioned within 38.0-41.0 Mb at 178 

the distal end of chromosome 5 and eight QTNs were positioned on chromosome 13. 179 

 180 

Detection of QTN-by-environment interactions for oil-related traits    The above 181 

datasets in GWAS were also used to detect QTN-by-environment interactions (QEs) using 182 

quantitative trait interaction (G × E) module in the PLINK software (Purcell et al., 2007) 183 

(http://zzz.bwh.harvard.edu/plink/anal.shtml#qtgxe). As a result, 5, 1 and 3 significant QEs were 184 

found to be associated with linolenic acid, palmitic acid and stearic acid, respectively (Table S5). 185 

For example, the locus Chr18-4720420 was significantly associated with linolenic acid 186 

(P=6.53e-04). 187 

 188 

Detection of QTN-by-QTN interactions for oil-related traits     The above datasets in 189 

GWAS were again used to detect QTN-by-QTN interactions (QQs) using the online software 190 

PEPIS (http://bioinfo.noble.org/PolyGenic_QTL/) (Zhang et al., 2016). As a result, 2, 2, 3, 1, 1 191 

and 1 significant QQs were found to be associated with linoleic acid, seed oil content, palmitic 192 

https://www.soybase.org/GWAS/
http://zzz.bwh.harvard.edu/plink/anal.shtml#qtgxe
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acid, oleic acid, stearic acid and linolenic acid, respectively (Table 6S). For example, the 193 

epistasis between locus Chr13-20532852 bp and locus Chr13-20704034 bp was found to be 194 

significantly responsible for linolenic acid (LRT=24.37). 195 

 196 

Candidate genes for seed oil-related traits    In order to determine candidate genes for 197 

seed oil-related traits, we adopted the following analyses. First, we found all the genes between 198 

the 100 kb upstream and downstream regions for each of the 334 significantly QTNs. Using 199 

soybean metabolic pathway database, KEGG annotation (https://soycyc.soybase.org/) and soybean 200 

genome annotation database and Gene Ontology terms (https://soybase.org/genomeannotation/), 201 

then, all the above genes were used to mine the candidate genes or their Arabidopsis homologous 202 

genes that were annotated in fatty acid biosynthesis, phospholipid biosynthesis, phospholipid 203 

binding, phosphorylation and dephosphorylation, triacylglycerol biosynthesis, oxidoreductase 204 

activity, electron carrier activity and TCA cycle pathways. As a result, 284 genes were found to 205 

be associated with the above metabolic pathways. 206 

 207 

Among the above 284 genes, twenty-two were found to be related to lipid metabolism pathways, 208 

including 14 lipid biosynthesis related genes, 4 amino acid biosynthesis related genes and 4 TCA 209 

cycle related genes. In oil biosynthesis related genes, GmPDAT, GmDAGAT1, GmFATB1a, 210 

GmKASI, GmPgs1, GmACC, GmFATA2, GmCds1, GmWRI1b, GmNFYA, GmDof11, 211 

GmCYP78A10, Glyma.18g038400 and GmBS1 were found to be associated, respectively, with 212 

linolenic acid (LOD=4.15~4.20) and pyruvate (P-value=1.44e-05) (Liu, 2020), linolenic acid 213 

(P-value=8.28e-09~1.58e-06) (Chen et al., 2016), stearic acid (LOD=2.61~5.13) (Murad et al., 214 

2014), palmitic acid (LOD=3.09) (Xiong et al., 2017), linoleic acid (LOD=4.86) (Tanoue et al., 215 

2014), oil content (LOD=3.11~5.31) (Roesler et al., 2011), oil content (LOD=3.21) (Moreno et 216 

al., 2012), linolenic acid (P-value=1.56e-09) (Zhou et al., 2013), palmitic acid (LOD= 3.59) 217 

(Chen et al., 2017), oleic acid (P-value=3.82e-06) (Lu et al., 2016), linolenic acid (LOD=3.95) 218 

(Wang et al., 2007), linolenic acid (LOD=2.88) (Wang et al., 2015), palmitic acid 219 

(LOD=3.37~3.76) and palmitic acid (LOD=5.25) (Ge et al., 2016). Among these genes, 220 

GmWRI1b, GmNFYA and GmDof11 have no annotations of biochemical metabolic processes; 221 

GmPDAT, GmDAGAT1, GmFATB1a, GmPgs1 and GmFATA2 were differentially expressed 222 

https://soycyc.soybase.org/
https://soybase.org/genomeannotation/
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between wild and domesticated soybeans (Figure 2b and Table 1). In amino acid biosynthesis 223 

related genes, GmAGT, GmBCAT, GmHMT2 and GmP5C1 were found to be associated, 224 

respectively, with palmitic acid (LOD=3.39) (Zhang et al., 2002), palmitic acid (LOD=4.70) 225 

(Diebold et al., 2002), oleic acid (P=2.49e-09) (Ranocha et al., 2000) and linoleic acid 226 

(LOD=3.84) (Giberti et al., 2004). In TCA cycle related genes, GmACO1 (Glyma.01g162800), 227 

GmFUM1 (Glyma.02g015700), GmSDH1 (Glyma.01g175600) and GmMDH1 228 

(Glyma.13g104800) were found to be associated, respectively, with oleic acid (P=4.34e-06) 229 

(Park et al., 2018), linolenic acid (P=1.25e-06) (Zubimendi et al., 2018), linoleic acid 230 

(LOD=3.29~3.68) (Huang et al., 2013), and linolenic acid, P=2.24e-07) (Selinski et al., 2019) 231 

(Figure 2a and Table 2). 232 

Genome-wide association studies for acyl-lipid related metabolites in soybean 233 

Genome-wide association studies for acyl-lipid related metabolites    In 214 234 

soybean accessions, fifty-two acyl-lipid related metabolites measured in 2015, along with 54,294 235 

SNPs, were used to conduct metabolic GWAS using GEMMA, mrMLM, FASTmrEMMA, ISIS 236 

EM-BLASSO, pLARmEB and pKWmEB. As a result, 1,001 mQTNs were detected to be 237 

associated with the 52 acyl-lipid metabolites (Figure S2 and Table S7). Among these QTNs, they 238 

were distributed mainly on chromosomes 5, 7, 8, 13 to 18 and 20 (≥ 50 mQTNs for each 239 

chromosome) and had 6.63% average proportion of total phenotypic variation explained by each 240 

mQTN, and 230, 115, 66, 111, 96 and 383 SNPs were identified to be significantly associated, 241 

respectively, with 9 organic acids, 5 soybean isoflavones, 6 PEs, 6 PIs, 6 PCs and 20 amino acids 242 

in soybean (Figure S2). Forty-eight mQTNs were detected in at least two approaches (Table S8). 243 

In addition, there were some large-effect mQTNs, e.g., mQTNs Chr4-3969004, Chr5-2665256, 244 

Chr8-17117978 and Chr18-62242431 were found by ISIS EM-BLASSO to be associated, 245 

respectively, with glutamic acid (r2=21.15%), PI (34:3) (r2=9.31%), malate (r2=4.97%) and 246 

isoleucine (r2=6.75%), and mQTN Chr20-45754357 was found by mrMLM to be associated with 247 

pyruvate (r2=6.18%). 248 

 249 

Candidate genes associated with metabolites   The methodologies of determining the 250 

candidate genes for acyl-lipid related metabolites were the same as those for the above seed 251 
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oil-related traits. First, we found all the genes between the 100 kb upstream and downstream 252 

regions for each of all the significantly mQTNs. Using soybean metabolic pathway database, 253 

KEGG annotation (https://soycyc.soybase.org/) and soybean genome annotation database and 254 

Gene Ontology terms (https://soybase.org/genomeannotation/), then, all the above genes were 255 

used to mine the candidate genes or their Arabidopsis homologous genes that were annotated in 256 

fatty acid biosynthesis, fatty acid activation, phospholipid biosynthesis, flavonoid biosynthesis, 257 

amino acid transporters, brassinosteroid biosynthesis, glycolysis, triacylglycerol biosynthesis, 258 

cellulose biosynthesis, jasmonic acid biosynthesis, and TCA cycle pathways. As a result, 279 259 

genes were found to be associated with the above metabolic pathways. 260 

 261 

Among the above 279 genes, twenty were found to be related to lipid metabolism pathways, 262 

including 17 oil biosynthesis related genes, one amino acid biosynthesis related gene, two TCA 263 

cycle related genes, and one lipid-related gene in previous studies. Among these lipid 264 

metabolisms related genes, six were the same as those for seed oil-related traits, including 265 

GmPDAT, GmCds1, GmACO1, GmAGT, GmBS1, and GmPgs1. 266 

 267 

In oil biosynthesis related genes, GmPDAT, GmLPEAT2 (Glyma.03g019200), GmPDHC 268 

(Glyma.20g115500), GmLACS2 (Glyma.11g122500), GmACP4 (Glyma.20g230100), GmGPDH 269 

(Glyma.19g136100), GmPLDα1 (Glyma.08g211700), GmPLP2 (Glyma.05g049500), GmCds1 270 

(Glyma.18g055100), GmTIM (Glyma.13g146200), GmGPAT (Glyma.07g069700), GmPgs1 271 

(Glyma.18g302100), GmPLA2A (Glyma.14g081200), GmSAD (Glyma.14g121400), GmZF351 272 

(Glyma.06g290100), GmBS1 (Glyma10g38970), and Glyma.08g323100 were found to be 273 

associated, respectively, with Pyruvate (P=1.44e-05) (Liu, 2020), PI (34:3) (P=7.12e-10) 274 

(Jasieniecka-Gazarkiewicz et al., 2017), phenylalanine (LOD=4.05) (Zhang et al., 2016), 275 

linolenic acid (P=2.63e-07) (Lü et al., 2010; Katavic et al., 2014), pyruvate (LOD=14.68) (Feng 276 

et al., 2018), daidzin (LOD=4.71) (Shen et al., 2006), malate (LOD=3.11) (Zhao et al., 2012; 277 

Zhang G et al., 2019), PI (34:3) (LOD=4.26) (La et al., 2009), aspartic acid (LOD=5.65) (Zhou 278 

et al., 2013), glycytin (LOD=3.41) (López et al., 2016), serine (LOD=3.55) (Li et al., 2007), 279 

isoleucine (LOD=6.75) (Tanoue et al., 2014), PE (34:1) (LOD=3.92) (Yang et al 2009), stearic 280 

acid (LOD=5.42) (Lindqvist et al., 1996), phenylalanine (LOD = 3.96) (Li et al., 2017), oleic 281 

https://soycyc.soybase.org/
https://soybase.org/genomeannotation/
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acid (LOD=3.26) (Ge et al., 2016), and fumaric acid (LOD = 4.56). Note that gene GmZF351 282 

has no annotation of biochemical metabolic process, and eight genes (GmPDAT, GmLPEAT2, 283 

GmSAD, GmLACS2, GmPLDα1, GmPLP2, GmTIM and GmZF351) were differentially 284 

expressed between wild and cultivated soybeans (Figure 2b and Table 2). In genes related to 285 

amino acid biosynthesis, GmAGT (Glyma.08g302600) was found to be associated with palmitic 286 

acid (LOD=3.39) (Zhang et al., 2002). In TCA cycle related genes, GmIDH-V 287 

(Glyma.13g144900) and GmACO1 (Glyma.01g162800) were found to be associated, respectively, 288 

with γ-aminobutyric acid (LOD=2.78) (Lemaitre et al., 2006) and glycytin (P=2.63e-07) (Park et 289 

al., 2018) (Figure 3b and Table 3). 290 

Genetic relationships between seed oil-related traits and lipid metabolism 291 

related metabolites in soybean 292 

The MCP and SCAD algorithms were used to conduct multiple regression analysis of each seed 293 

oil-related trait on fifty-two acyl-lipid related metabolites, and the t-test was further used to 294 

determine the acyl-lipid related metabolites that were significantly associated with each 295 

oil-related trait. To reduce experimental error, the average of each seed oil-related trait in each 296 

accession across three years was used to conduct the above analysis. As a result, seed oil content, 297 

linoleic acid, linolenic acid, oleic acid and palmitic acid were found to be significantly associated, 298 

respectively, with 7, 5, 7, 2, 10 lipid metabolism related metabolites (Figure 3a and Table 3). 299 

Seed oil content had significant partial regression with genistein (0.526, P-value=0.002), PC 300 

(36:2) (0.679, P-value=1.09e-06), glutamic acid (0.243, P-value=0.038), daidzin (-0.842, 301 

P-value= 2.36e-06), PC (36:4) (-0.659, P-value=4.75e-06), PC (36:5) (-0.316, P-value=0.030) 302 

and aspartic acid (-0.172, P-value=0.034); linoleic acid had significant partial regression with 303 

fumarate (0.486, P-value=0.050), PC (36:5) (0.564, P-value=4.84e-05), daidzin (-0.911, 304 

P-value=0.003), PI (36:1) (-1.162, P-value=0.009) and stearic acid (-0.324, P-value=0.017); 305 

linolenic acid had significant partial regression with glycitin (0.664, P-value=0.008), PI (34:1) 306 

(1.367, P-value=4.19e-05), linolenic acid (metabolite) (-0.324, P-value=0.017), stearic acid 307 

(metabolite) (-0.633, P-value= 0.014), pyruvate (-0.026, P-value=0.050), fumarate (-0.662, 308 

P-value=0.017) and PI (34:2) (-1.420, P-value=0.045); oleic acid had significantly partial 309 

regression with daidzin (0.0732, P-value=3.11e-4) and isoleucine (-0.022, P-value=0.041); 310 
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palmitic acid had significant partial regression with daidzin (0.086, P-value=0.047), fumaric acid 311 

(0.220, P-value=1.09e-4), PC (36:2) (0.739, P-value=8.95e-4), PE (36:5) (0.383, 312 

P-value=1.24e-4), PI (34:1) (0.294, P-value=0.0387), tryptophan (0.142, P-value=0.004), 313 

aspartate (0.148, P-value=0.032), glutamic acid (-0.143, P-value=0.042), PC (34:2) (-1.020, 314 

P-value=0.002) and PI (36:2) (-0.162, P-value=0.005) (Table 1). No significant partial regression 315 

of stearic acid on acyl-lipid metabolites was identified. 316 

Protein-by-protein interaction (PPI) analysis 317 

The above 36 genes for seed oil-related traits and lipid related metabolites were used to identify 318 

the PPIs using the online software STRING (https://string-db.org/cgi/input.pl). As a result, the 319 

predicted values for 16 pairs of PPIs were larger than medium confidence value of 0.40 (Table 320 

S9), indicating the existence of significant PPIs. For example, Glyma13g16790.1 (GmPDAT) 321 

and Glyma18g36130.3 (GmFATA2) (0.69), GmCds1 (Glyma18g06190.1) and Glyma13g16790.1 322 

(GmPDAT) (0.43), Glyma06g44440.1 (GmZF351) and Glyma13g16790.1 (GmPDAT) (0.43), 323 

Glyma08g22600.1 (GmPLDα1) and Glyma18g06190.1 (GmCds1) (0.69), Glyma05g03510.1 324 

(GmPLP2) and Glyma13g16790.1 (GmPDAT) (0.57), Glyma13g16790.1 (GmPDAT) and 325 

Glyma08g08910.1 (GmKASI) (0.69), Glyma13g16560.1 (GmDAGAT1) and Glyma13g16790.1 326 

(GmPDAT) (0.75), Glyma13g20790.1 (GmIDH-V) and Glyma02g01920.1 (GmFUM1) (0.92), 327 

and Glyma14g27990.1 (GmSAD) and Glyma20g25833.1 (GmFATB1a) (0.90). Clearly, the 328 

above two PPIs between GmDAGAT1 and GmPDAT (Liu, 2020) and between GmPDAT and 329 

GmFATA2 (Figure 4) were confirmed in vivo using luciferase complementation image assay. In 330 

addition, the interactions between GmIDH-V and GmFUM1, and between GmDAGAT1 and 331 

GmPDAT were reported, respectively, in Zhang et al. (2017) and Liu (2020), and the PPI 332 

between GmDAGAT1 and GmPDAT was further validated by the interaction between two loci 333 

Chr13-20532852 and Chr13-20704079 bp (Table S6). 334 

 335 

Construction of three-dimension genetic networks from 6 soybean seed oil 336 

related traits, 23 lipid related metabolites, and 36 candidate genes in the 337 

pathways of fatty acids, amino acid synthesis and TCA cycle 338 

 339 
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First, primary metabolic networks in soybean were constructed. Making use of gene homogeneity, 340 

28 genes having functional annotations in the above 36 candidate genes were incorporated into 341 

primary metabolic networks in Arabidopsis thaliana (Wen et al., 2015; Zhang et al., 2016; Li et 342 

al., 2013). In the networks, there were 19 oil biosynthesis related genes, four amino acid 343 

biosynthesis related genes, five TCA cycle related genes, six seed oil related traits, and 43 344 

metabolites (Figure 2a). Among the 19 oil biosynthesis related genes, 12 were differentially 345 

expressed between four cultivated and two wild soybeans (Figure 2b). 346 

 347 

The above primary metabolic networks in soybean and all the above genetic information in this 348 

study were used to construct three-dimension genetic networks. In these networks, six oil-related 349 

traits, 23 lipid related metabolites, and the above 36 candidate genes were used to construct 133 350 

genetic sub-networks, which belong to one of the three types listed below. 351 

 352 

The first group included 33 sub-networks, in which each linked gene was identified commonly 353 

by phenotypic and metabolic GWAS. In isoleucine-GmPgs1-linolenic acid-GmPDAT 354 

sub-network, GmPgs1 was identified to be associated commonly with isoleucine (metabolite) 355 

and linolenic acid (trait). In pyruvate-GmPDAT-linolenic acid-GmCds1, PE 356 

(34:1)-GmPDAT-linolenic acid-GmDAGAT1 and PE (34:1)-GmPDAT-linolenic acid-GmCds1 357 

sub-networks, GmPDAT was identified to be associated commonly with linolenic acid (trait) and 358 

two metabolites [PE (34:1) and pyruvate]. In pyruvate-GmAGT-palmitic acid-GmKASI 359 

sub-network, GmAGT was identified to be associated with pyruvate (metabolite) and palmitic 360 

acid (trait). Among all the 33 sub-networks, five were known and the others were newly 361 

identified (Figure 3d and Table S10). To validate these results, five high-oil and five low-oil 362 

accessions were used to conduct hypothesis testing for each node (gene, metabolite or trait) in the 363 

above sub-networks. As a result, 5, 7, 14 and 7 sub-networks were found to have one, two, three, 364 

and four significant nodes, respectively, although the accessions used in traits and metabolite 365 

analyses had a little difference with those in gene expressional analysis (Table S11). 366 

 367 

The second group included 84 sub-networks, which were derived from the significant association 368 

of oil-related traits with metabolites (Tables 1 and S10). In GmPDAT-pyruvate-linolenic 369 

acid-GmDAGAT1 sub-network, pyruvate was significantly associated with linolenic acid 370 
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(P<0.050). In GmLACS2-linolenic acid (metabolite)-linolenic acid-GmDof11 sub-network, 371 

linolenic acid (metabolite) was significantly associated with linolenic acid (P=0.045). In 372 

GmTIM-glycitin-linolenic acid-GmPDAT/GmDAGAT1 sub-network, glycitin was significantly 373 

associated with linolenic acid (P= 0.008) (Table 1). Among all these sub-networks, 13 were 374 

known and the others were newly identified (Figure 3d and Table S10). Similarly, 15, 35, 31 and 375 

3 sub-networks were found to have one, two, three, and four significant nodes, respectively 376 

(Table S11). 377 

 378 

The third group included 16 sub-networks, which were derived from the interactions between the 379 

genes for oil-related traits and/or metabolites (Figure 3d and Table S10). In 380 

pyruvate-GmPDAT-GmFATA2-oil content and pyruvate-GmPDAT-GmKASI-palmitic acid 381 

sub-networks, the statistic scores for PPIs between GmPDAT and GmFATA2 and between 382 

GmPDAT and GmKASI were 0.69 and 0.69, respectively. Moreover, luciferase complementation 383 

image assays (LCI) validated the protein interaction between GmPDAT and GmFATA2 (Figure 384 

4). In phenylalanine-GmZF351-GmPDAT-linolenic acid sub-network, the statistic score for PPI 385 

between GmPDAT and GmZF351 was 0.43. In pyruvate-GmPDAT-GmCds1-linolenic acid 386 

sub-network, the statistic score for PPI between GmPDAT and GmCds1 was 0.43, while 387 

GmPDAT was significantly associated with linolenic acid and pyruvate. Among all these 388 

sub-networks, 6 were known and the others were newly identified. In the same way, 9, 1, and 6 389 

sub-networks were found to have two, three, and four significant nodes, respectively (Table S11). 390 

DISCUSSION 391 

One-dimension genetic networks among genes (Lin et al., 2017) or metabolites (Sauvage et al., 392 

2014), and two-dimension genetic networks between traits and genes (Wang et al., 2007) and 393 

between metabolites and genes (Wen et al., 2015; Chen et al., 2016) are frequently reported in 394 

previous studies. Recently, Shi et al. (2020) reported one two-dimension network between 395 

metabolites and traits in wheat. As we know, metabolites act as a bridge between traits and genes 396 

(Fiehn, 2002). Thus, it is very important and necessary to construct three-dimension genetic 397 

networks among traits, metabolites and genes. In these networks, 36 candidate genes were 398 

obtained from pGWAS and mGWAS, 23 metabolites were significantly associated with five 399 
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oil-related traits, and all the genetic information was used to construct 133 three-dimension 400 

genetic sub-networks. This study is novel in three aspects. To the best of our knowledge, first, 401 

this study reports the first 3D genetic networks in soybean. Among these sub-networks, 60 were 402 

found to be partly validated in previous molecular biology studies (Table 4), 21 were found to be 403 

involved in known KEGG metabolic pathways (https://www.kegg.jp/kegg/pathway.html) (Table 404 

S10), and 112 were newly identified in this study. Then, a series of GWAS approaches were used 405 

and all the significant QTNs across various environments or approaches were used to mine 406 

candidate genes in this study. This is because that the combination of several GWAS approaches 407 

has been recommended in a series of studies so as to improve the power in QTN detection 408 

(Chang et al. 2018; He et al. 2019; Li et al. 2019; Xu et al. 2019; Zhang et al. 2019a), and in 409 

practice some true genes for the traits of interest are found to be linked with the QTNs detected 410 

by only one GWAS method or in one environment (Zhang et al. 2019b). Finally, quite 411 

constructive, reasonable and interesting issues in these sub-networks have been discussed in this 412 

study. The results provide the theoretical basis for both functional identification of seed 413 

oil-related genes and quality improvement in soybean breeding. 414 

 415 

Using the three-dimension genetic networks, we may mine some candidate genes to uncover 416 

some genetic relationships, for example, pyruvate and the three major nutrients, and amino acids 417 

and seed oil content. In this discussion we will focus on these relationships (Figure 5 and Table 418 

4). 419 

GmPDAT, GmAGT and GmACP4 reveal the genetic relationships between 420 

pyruvate and three major nutrients 421 

Nutrients mainly include amino acids, fatty acids and carbohydrates. In the amino acid 422 

metabolism, the absence of pyruvate affected the synthesis of amino acids (Orsi et al., 2004; 423 

Feng et al., 2018), and AGT participated in the metabolism of aspartic acid in Arabidopsis 424 

thaliana (Zhang et al., 2013). In this study, GmAGT was found to be associated commonly with 425 

pyruvate (metabolite) and palmitic acid (trait) in the pyruvate-GmAGT-palmitic acid- 426 

GmBS1/GmWRI1b sub-network (Table 5), indicating the genetic relationship of GmAGT with 427 
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both pyruvate and palmitic acid. 428 

 429 

Pyruvate and adenosine triphosphate (ATP) are the basic molecules in the synthesis of 430 

acetyl-CoA, while acetyl-CoA is the main precursor in fatty acid synthesis (Weiss et al., 1974). 431 

Meanwhile, ACP acts as a carbon carrier for fatty acid synthesis, and GmPDAT and GmDAGAT1 432 

have been reported to be related to oil synthesis (Lardizabal et al., 2008; Chen et al., 2016; Liu, 433 

2020). In this study, pyruvate was found to be significantly associated with linolenic acid 434 

(P=0.050) (Table 1) and both GmPDAT and GmACP4 in the GmACP4-pyruvate-linolenic 435 

acid-GmDAGAT1 sub-network (Table 5). We deduce that pyruvate may regulate the synthesis of 436 

fatty acids through the action of GmACP4, GmPDAT and GmDAGAT1. 437 

 438 

In addition, pyruvate is an important product of glycolysis (Chen et al., 2019). Based on the 439 

above information, therefore, GmPDAT, GmAGT and GmACP4 may be key genes in the genetic 440 

relationships between pyruvate and three major nutrients. 441 

GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationship between 442 

amino acids and seed oil content 443 

Although seed oil content in soybean is negatively correlated to seed protein content, knowledge 444 

about the molecular mechanism of the negative correlation is limited (Chaudhary et al., 2015; 445 

Patil et al., 2017). Warrington et al. (2015) and Patil et al. (2017) revealed the significant 446 

correlation of crude protein with amino acid, especially for threonine. Note that threonine was 447 

the upstream mediator of isoleucine (Guo et al., 2015). If isoleucine content changed, threonine 448 

content would be influenced, followed by the protein and oil contents. In this study, GmZF351 449 

was found to interact with GmPDAT in the detection of PPIs; GmZF351 and GmPDAT were 450 

found to be associated with phenylalanine and linolenic acid (Table 4), respectively; GmZF351 451 

was reported to increase TAG content in soybean seed (Li et al., 2017). In addition, GmPgs1 was 452 

found to be significantly associated with isoleucine and linolenic acid in this study (Table 5), 453 

while Pgs1 participated in the biosynthesis of phosphatidylglycerol (Tanoue et al., 2014). Thus, 454 

GmPDAT, GmZF351 and GmPgs1 may be key genes in amino acid and oil synthesis, which may 455 

reveal the genetic relationship between amino acids and seed oil synthesis. 456 
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GmCds1, along with average temperature and rainfall, reveals interannual 457 

variation of seed oil content in soybean 458 

Paired t-test showed that all the six oil-related traits in 286 soybean accessions have significantly 459 

higher in 2015 and 2016 than in 2014 (P-values<1e-04; Figure 1 and Table S12). Here we would 460 

discuss the reasons. 461 

 462 

From the genetic perspective, several types of evidence were obtained. In this study, GmPDAT 463 

was found to be significantly associated with both pyruvate and linolenic acid; GmCds1 was 464 

found to be significantly associated with linolenic acid; the interaction between the locus 465 

Chr18-4720420 and environment was found to be significantly associated with linolenic acid. 466 

Around Chr18-4720420, GmCds1 is mined and annotated with phosphatidylglycerol 467 

biosynthesis in the soybean metabolic pathway database. Zhou et al. (2013) showed that CDS can 468 

influence the biosynthesis of phosphatidylglycerol in Arabidopsis. Meanwhile, GmCds1 had 469 

significantly higher expression in cultivated soybeans than in wild soybeans (Figure 2b). More 470 

importantly, soybean seeds in the plants with overexpression and interference of GmPDAT 471 

showed significant changes in linolenic acid and linoleic acid as compared with the controls (Liu, 472 

2020). As we know, CDS and PAP, along with PA as substrate, can form CDP-DAG and DAG, 473 

respectively (Nakamura, 2017). In extreme environments, thus, GmCds1 may affect the synthesis 474 

of DAG, which may reduce the synthesis of TAG with the aid of GmPDAT, possibly resulting in 475 

the decrease in seed oil-related traits. 476 

 477 

In addition, we conducted two analyses for environmental factors. First, we conducted 478 

correlation analysis between seed oil-related traits and average temperature from June to 479 

September in 2011, 2012, and 2014 to 2016. As a result, average temperatures in early and all the 480 

July were found to have significant correlation with linoleic acid (r=0.907, P-value=0.007; 481 

r=0.831, P-value=0.020), respectively (Table S13). Then, we calculated the rainfall from June to 482 

September. As a result, the rainfall in 2015 and 2016 was 1.57 and 1.42 times larger than that in 483 

2014 (Table S14), while seed oil content decreased by 5.4% and 12.5% in 2015 and 2016, 484 

respectively, as compared with that in 2014. 485 

 486 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakamura%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=28993119
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Therefore, GmCds1 and GmPDAT, along with average temperature in July and the rainfall, may 487 

influence the change of seed oil-related traits across years. 488 

EXPERIMENTAL PROCEDURES 489 

Association populations for phenotypic and metabolic GWAS 490 

As described by Zhou et al. (2015), the 286 soybean accessions were randomly selected from 6 491 

geographic regions in China using a stratified random sampling method, and included 14 wild, 492 

153 landrace, and 119 bred accessions. All the accessions were planted in three-row plots in a 493 

completely randomized design at the Jiangpu Experimental Station of Nanjing Agricultural 494 

University (Nanjing, 31°14′N, 118°22′E) in 2014, 2015 and 2016. The plots were 1.5 m wide and 495 

2 m long. Seeds for each accession in 2014 to 2016 were harvested from the middle row in 496 

three-row plots and used to measure seed oil content, palmitic acid, stearic acid, oleic acid, 497 

linoleic acid and linolenic acid at State Key Laboratory of Crop Genetics and Germplasm 498 

Enhancement of Nanjing Agricultural University. Among the 286 accessions in 2015, 214 were 499 

selected at 55 days after flowering (DAF) and used to measure acyl-lipid related metabolites at 500 

Beijing Pufeng Technology Co., Ltd. (Table S15). The mixture with at least three pods each from 501 

different plants for each accession was stored at -80°C before extraction and extracted for 502 

metabolite profiling. 503 

Measurement for six oil-related traits in 286 soybean accessions 504 

Approximate 10 g of seeds was collected from five plants per accession. Based on the method of 505 

Baydar and Akkurt (2001), five fatty acids (stearic, palmitic, oleic, linoleic and linolenic acids) 506 

(Fang et al., 2017; Zhang G et al., 2019; Zuo et al., 2019) for each accession were measured by 507 

gas chromatography with a flame ionization detector and a Permabond FFAP stainless steel 508 

column (50 m × 0.2 mm × 0.33 μm, ThermoFisher Scientific, Waltham, MA) at Nanjing 509 

Agricultural University in 2014, 2015 and 2016. After drying at 70°C for 3 h, approximately 2 g 510 

of mature and well-rounded seeds were milled to a fine powder with an electric grinder. Solid 511 

fractions were filtered out using a 0.20-mm sieve weigh 0.03 g of soybean powders into a 2 mL 512 
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tube adding 0.5 mL of 2 mg/mL heptadecanoic acid (used as an internal standard) and 1 mL 513 

N-hexane shaking 30 secs, placed at room temperature for 5 h. 750 μL of the hexane layer was 514 

transferred to a new 2 mL tube adding 0.5 mL of 0.4M KOH-methanol shaking 2 min placed at 515 

room temperature for 2 h. The hexane layer was transferred to a new 2 mL tube centrifugation for 516 

5 min at 6000 r/min, keep 500 μL of supernatant for further GC analysis. 1 μL of the prepared 517 

sample was injected into the Trace GC system (Thermo Fisher Scientific), which was equipped 518 

with a DB-23 column (Agilent Technologies, 60 m × 0.25 mm × 0.25 μm) at a split ratio of 1:20. 519 

The oven was programmed as follows: 150°C for 1 min, ramp to 200°C at 4°C/min, ramp to 520 

220°C at 3°C/min, and finally ramp to 250°C at 25°C/min, holding 5 min with 1.1 mL/min 521 

helium as carrier gas (Lisec et al., 2006; Marques et al., 2006). Using methyl heptadecanoate 522 

(C17) as internal standard, oil content was calculated by the method introduced by Zhou et al. 523 

(2016). 524 

Measurement for 52 acyl-lipid related Metabolites using LC–MS 525 

A liquid chromatography–mass spectrometry system was used for the relative quantification of 526 

widely targeted metabolites in pods harvested 55 DAF. The beans were crushed using a mixer 527 

mill (MM 200, Retsch) by MIX-3000 (Hangzhou Miou Instrument), 100 mg dried powder was 528 

weighted and extracted overnight at 4°C with 1.0 ml pure methanol acetonitrile water (1:1). 529 

Centrifuge sample at 14,000 × g and 4°C for 15 min. 1 μL of the prepared sample was injected 530 

into the LC-20AD system (Shimadzu). Separation was performed in a C18 column (150 × 2.1 531 

mm, 3.5 μm) using solvent A water (containing 0.01% heptafluorobutyric acid, 0.1% formic acid) 532 

and solvent B acetonitrile (containing 0.01% heptafluorobutyric acid, 0.1% formic acid) as 533 

mobile phases, column temperature, 50°C. The following MS conditions were used: gas 534 

temperature, 325°C; drying gas, 11 L/min; nebulizer, 40 psig; fragmentor, 120 V; and skimmer, 535 

65 V. The instrument was set to acquire over the m/z range 40-1,200 with an acquisition rate of 536 

1.2 spectra/s (Nygren et al., 2011). Quantification of metabolites was carried out using standard 537 

curve method (Nygren et al., 2011; Wen et al., 2015; Thiele et al., 2012).  538 

 539 

Fifty-two acyl-lipid related metabolites measured in this study included 9 organic acids (pyruvic, 540 
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succinic, fumaric, malic, palmitic (metabolite, m), stearic (m), oleic (m), linoleic and linolenic 541 

acids (m)), 5 soybean isoflavone (daidzein, daidzin, genistein, genistin and glycitin), 6 PEs [PE 542 

(34:1) (16:0/18:1), PE (34:2) (16:1/18:1), PE (36:2) (18:1/18:1), PE (36:3) (18:2/18:1), PE (36:4) 543 

(16:0/20:4) and PE (36:5) (16:1/20:4)], 6 PCs [PC (34:1) (16:0/18:1), PC (34:2) (16:0/18:2), PC 544 

(36:2) (18:0/18:2), PC (36:3) (18:1/18:2), PC (36:4) (18:1/18:3) and PC (36:5) (20:4/16:1)], 6 PIs 545 

[PI (34:1) (16:0/18:1), PI (34:2) (16:0/18:2), PI (34:3) (16:1/18:2), PI (36:2) (18:0/18:2), PI (36:3) 546 

(18:0/18:3) and PI (36:4) (16:0/20:4)], and 20 amino acids (alanine, arginine, γ-aminobutyric 547 

acid, phenylalanine, glycine, glutamic acid, glutamine, methionine, lysine, tyrosine, leucine, 548 

proline, tryptophan, serine, threonine, aspartic acid, asparagine, isoleucine, valine and histidine). 549 

The number of biological replicates for each accession was two. 550 

GWAS for oil-related traits and acyl-lipid related metabolites 551 

The preprocessing procedures for phenotypic and metabolic GWAS were as follows. Only SNPs 552 

with MAF ≥ 0.05 and missing rate < 0.1 in the mapping populations were used in the GWAS; the 553 

lines with more than 90% missing for trait phenotypes or metabolites were filtered out; the 554 

metabolites with more than 50% missing in 214 lines were excluded (Liaw et al., 2002). The 555 

population structure was calculated using the Bayesian clustering program fastStructure (Raj et 556 

al., 2014). Six oil-related traits in 286 accessions and 52 acyl-lipid related metabolites in 214 557 

accessions, along with the above SNP information, were used to conduct phenotypic and 558 

metabolic GWAS using GEMMA (Zhou & Stephens, 2012), mrMLM (Wang et al., 2016), ISIS 559 

EM-BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen et al., 560 

2018) and pKWmEB (Ren et al., 2018) methods. The K matrix was calculated in the above 561 

GEMMA and mrMLM programs. The threshold for significant QTN in phenotypic and 562 

metabolic GWAS was set at P-value ≤ 1/54,294=1.84e-05 for GEMMA and LOD ≥ 2.5 for the 563 

others (Xu et al., 2018; Zhang et al., 2019a). All the mQTNs were obtained from each biological 564 

replicate. 565 

 566 

The interactions between QTNs and environment (QEs) were detected using quantitative trait 567 

interaction (G × E) module in PLINK 1.9 (http://zzz.bwh.harvard.edu/plink/anal.shtml#qtgxe) 568 

(Purcell et al., 2007), and the critical P-value for significant QEs was set at 0.001. 569 

http://zzz.bwh.harvard.edu/plink/anal.shtml#qtgxe
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 570 

The QTN-by-QTN interactions (QQs) were detected using the online software PEPIS (Zhang et 571 

al., 2016) (http://bioinfo.noble.org//PolyGenic_QTL//Home.gy), and the critical P-value for 572 

significant QQs was set at LRT ≥ 13.815. The protein-protein interactions for candidate genes in 573 

phenotypic and metabolic GWAS were detected using the online tools STRING 574 

(https://string-db.org//) (Jensen et al., 2009). 575 

Genetic association analysis between oil-related traits and metabolites 576 

MCP (Zhang et al., 2006), SCAD (Fan & Li 2001) and t-test were used to construct the genetic 577 

relationships between six oil-related traits and 52 acyl-lipid related metabolites. To reduce 578 

experimental error, the average of each seed oil-related trait in each accession across 2014 to 579 

2016 was used to conduct the above analysis. Statistical significance was calculated using F-test 580 

for the total regression of each oil-related trait on several metabolites and t-test for the regression 581 

of each oil-related trait on each metabolite. *, ** and *** indicated significant probability levels 582 

0.05, 0.01 and 0.001, respectively. 583 

Candidate gene identification 584 

Candidate genes for each oil-related trait and metabolite were mined in two steps. First, all the 585 

genes between the 100 kb upstream and downstream regions for each of the significantly QTN or 586 

mQTNs were mined. Then, we downloaded the soybean metabolic pathway database, KEGG 587 

annotation (https://soycyc.soybase.org/) and soybean genome annotation database and Gene 588 

Ontology terms (https://soybase.org/genomeannotation/), and identified the genes or their 589 

Arabidopsis homologous genes, which were annotated with fatty acid biosynthesis, fatty acid 590 

activation, phosphatidylglycerol biosynthesis, flavonoid biosynthesis, amino acid transporters, 591 

brassinosteroid biosynthesis I, glycolysis, triacylglycerol biosynthesis, cellulose biosynthesis, 592 

jasmonic acid biosynthesis, and TCA cycle. 593 

Differentially expressed gene based on RNA-sequenced data 594 

Four cultivated soybeans (accession No. 101, 236, 257 and 276) with high seed oil content (20.9, 595 

https://soycyc.soybase.org/
https://soybase.org/genomeannotation/
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22.3, 17.2, and 17.8 (%), respectively) and two wild soybeans (accession No. 265 and 272) with 596 

low seed oil content (11.9 and 12.5 (%), respectively) were selected for RNA-seq analysis. Seeds 597 

were collected at five seed development stages (15, 25, 35, 45, and 55 DAF) for RNA extraction 598 

in 2014. Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA) according to 599 

the manufacturer’s instructions. The RNA was analyzed in an Illumina Hiseq 2500 Sequencer. 600 

Sequence reads were aligned using SAM format (Li et al., 2009). The raw reads were cleaned by 601 

removing reads with adapters and those of low quality. Clean reads were mapped to reference 602 

sequences using SOAPaligner/soap2 (http://soap.genomics.org.cn/ soapdenovo.html). 603 

Mismatches no more than two bases were allowed in the alignment. The gene expression level 604 

was calculated by using Reads Per kb per Million reads (RPKM method) (Mortazavi et al., 605 

2008). 606 

Construction and visualization of three-dimension genetic networks among 607 

oil-related traits, metabolites and candidate genes 608 

In the three-dimension genetic networks, oil-related traits, metabolites and candidate genes were 609 

the nodes of the networks, and the genetic relationships between oil-related traits and candidate 610 

genes, between metabolites and candidate genes, between oil-related traits and metabolites, and 611 

between candidate genes were the edges of the networks. The genetic relationships between 612 

oil-related traits and candidate genes were derived from phenotypic GWAS, ones between 613 

metabolites and candidate genes were derived from metabolic GWAS, ones between oil-related 614 

traits and metabolites were derived from the MCP, SCAD and t-test analyses, and ones between 615 

candidate genes were derived from the detection of both QQs and PPIs. Three-dimension genetic 616 

networks with the above nodes, edges and interactions were constructed by open-source software 617 

Cytoscape (Saito et al., 2012). 618 

Hypothesis tests for the differences of traits, metabolites and gene expressional 619 

levels in subnetworks between five high-oil and five low-oil soybean accessions 620 

Five high-oil (accession nos. 95, 146, 159, 183, and 215; the average oil content: 18.85 ± 0.81 621 

(SE) (%)) and five low-oil (accession nos. 214, 260, 261, 270, and 271; the average oil content: 622 

http://soap.genomics.org.cn/
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13.83 ± 1.69 (%)) soybean accessions were selected to conduct hypothesis tests for the 623 

differences of traits and metabolites in the constructed subnetworks, while four high-oil 624 

(accession nos. 101, 236, 257, and 276) and two low-oil (accession nos. 265 and 272) soybean 625 

accessions were selected to conduct hypothesis tests for the expressional level differences of 626 

genes in the constructed subnetworks. Trait phenotype for each accession was the average across 627 

three years (2004 to 2006), metabolite in pods harvested 55 DAF was measured by LC-MS in 628 

2015, and the expressional levels of genes at 15 DAF were measured by the RPKM values based 629 

on RNA-sequenced data. The t test was adopted in the hypothesis testing. 630 

Cloning and generation of plant LUC vectors 631 

Soybean (Glycine max Willimas 82) and N. benthamiana plants were grown at 16-hlight/8-h dark 632 

at 25°C for 30-60 d. Soybean total RNA was isolated using the trizol reagent (Invitrogen, Foster 633 

city, CA, USA), the first-strand cDNA was then synthesized using M-MLV reverse transcriptase 634 

(Promega). PCR-amplified DNA fragments were cloned into the N-LUC (LUC-luciferase) and 635 

C-LUC vector (Chen et al., 2008, Zhang et al., 2018). Full length CDS of GmPDAT and 636 

GmFATA2 were cloned into the BamHI and SalI sites of JW-771-N, as well as KpnI and SalI sites 637 

of JW-772-C, to produce N-gene and C-gene recombination vectors for the luciferase 638 

complementation image assays (LCI) (Krenek et al., 2015). Primers are listed in Table S16. 639 

Detection of interactions in vivo 640 

As described by Zhang et al. (2018), the recombinant plasmids like N-GmPDAT + C-GmFATA2, 641 

N-GmPDAT+C-LUC, N-LUC + C-GmGmFATA2 or N-LUC+C-LUC were transfected into 642 

Agrobacterium tumefaciens (GV3101). After growing 48h under the condition of 16h-light and 643 

8h-dark, leaf abaxial epidermis were daubed with 1mM luciferin (promega, E1602), the resulting 644 

luciferase signals were captured by Tanon-5200 image system (Tanon, Shanghai, China). These 645 

experiments were repeated three times to get similar results.646 
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ABC1 activity of bc1 complex homolog 1 

ACC acetyl coenzyme-A carboxylase 

ACP4 acyl carrier protein (ACP)-4 

ACO1 acyl-CoA oxidase 1 

AGT alanine glyoxylate aminotransferase 

ATP adenosine triphosphate 

DAF days after flowering 

DG diacylglycerol 

DGAT/ DAGAT acyl-CoA: diacylglycerol acytransferase 
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FATA fatty acid thioesterase A 

FATB fatty acid thioesterase B 

FUM1 fumonisin synthase gene 1 

GPDH glycerol phosphate dehydrogenase 

GWAS genome-wide association study 

IDH-V  isocitrate dehydrogenase V 

LACS long-chain acyl-CoA synthetase 

LTP lipid transfer protein 

MDH malate dehydrogenase 

mGWAS metabolome-based genome-wide association studies  

mrMLM Multi-locus random-SNP-effect mixed linear model 

OLE oleosins 

P5C1 pyrroline-carboxylic acid synthase 1 

PDAT phospholipid:diacylglycerol acyltransferase 

PDHC pyruvate dehydrogenase complex 

PC phosphatidylcholine 

PE phosphatidyl ethanolamine 

PI phosphatidylinositol 

PPI protein-protein interaction 

PLDα1 phospholipase Dα1 

Pgs1 phosphatidylglycerolphosphate synthase 1 

QTN quantitative trait nucleotides 

RPKM reads Per Kilobases per Millionreads 

LCI luciferase complementation image assay 

SAD sinapyl alcohol dehydrogenase 

SDH1 succinate dehydrogenase1 

SNP  single nucleotide polymorphism 

TAG triacylglycerol 

TIM translocases inner mitochondrial membrane 
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SUPPORTING INFORMATION 662 

Additional Supporting Information may be found in the online version of this article.  663 

Figure S1. Chromosomal distribution of oil-related trait QTNs for linoleic acid (blue), oleic acid 664 

(red), palmitic acid (green), stearic acid (pink), linolenic acid (navy blue) and seed oil content 665 

(black) on the soybean genome positions (x axis, cM). 666 

 667 

Figure S2. Chromosomal distribution of metabolic QTNs for amino acids (grey), daidzin group 668 

(green), organic acid (blue), fatty acid (orange), and PC, PE and PI (pink) on the soybean 669 

genome (x axis, cM). 670 

m1: alanine; m2: arginine; m3: γ-aminobutyric acid; m4: phenylalanine; m5: glycine; m6: 671 

glutamic acid; m7: glutamine; m8: methionine; m9: lysine; m10: tyrosine; m11: leucine; m12: 672 

proline; m13: tryptophan; m14: serine; m15: threonine; m16: aspartic acid; m17: asparagine; 673 

m18: isoleucine; m19: valine; m20: histidine; m21: daidzin; m22: daidzein; m23: glycitin; m24: 674 

genistein; m25: genistin; m26: pyruvate; m27: succinic acid; m28: malic acid; m29: fumaric acid; 675 

m30: linoleic acid; m31: stearic acid; m32: linolenic acid; m33: oleic acid; m34: palmitic acid; 676 

m35: PC (34:1); m36: PC (34:2); m37: PC (36:2); m38: PC (36:3); m39: PC (36:4); m40: PC 677 

(36:5); m41: PE (34:1); m42: PE (34:2); m43: PE (36:2); m44: PE (36:3); m45: PE (36:4); m46: 678 

PE (36:5); m47: PI (34:1); m48: PI (34:2); m49: PI (34:3); m50: PI (36:2); m51: PI (36:3); m52: 679 

PI (36:4). 680 

 681 

Table S1 | Phenotypic characteristics for seed oil related traits in 286 soybean accessions. 682 

 683 

Table S2 | Phenotypic characteristics for metabolites (μg/g) in 214 soybean accessions. 684 

 685 

Table S3 | Candidate genes in genome-wide association studies for seed oil-related traits. 686 

 687 

Table S4 | 77 QTNs of seed oil related traits detected commonly in two years or by at least two 688 

methods. 689 

 690 

Table S5 | Nine QTN-by-environment interactions for seed oil related traits in soybean. 691 

 692 
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Table S6 | Ten QTN-by-QTN interactions for seed oil related traits in soybean. 693 

 694 

Table S7 | Candidate genes in genome-wide association studies for fifty-two metabolites. 695 

 696 

Table S8 | 48 metabolic QTNs detected by at least two GWAS approaches. 697 

 698 

Table S9 | 16 pairs of significant PPIs between 36 candidate genes derived from phenotypic and 699 

metabolic GWAS 700 

 701 

Table S10 | 133 genetic sub-networks among oil related traits, metabolites and candidate genes. 702 

 703 

Table S11 | The significances for the differences of traits (t), metabolites (m) and gene 704 

expressional levels in 133 subnetworks between high-oil and low-oil soybean accessions 705 

 706 

Table S12 | Paired t-tests and their P-values for seed oil related traits between 2014 and the 707 

others. 708 

 709 

Table S13 | Correlation analysis between seed oil-related traits and average temperature at the 710 

seed developmental stages. 711 

 712 

Table S14 | Rainfall and annual average (mm) in 2014 to 2016 713 

 714 

Table S15 | 214 accessions used to measure acyl-lipid related metabolites at 55 days after 715 

flowering in 2015. 716 

 717 

Table S16 | Primers used in Luciferase complementation image assays.718 
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Table 1 | Twenty-two key candidate genes derived from genome-wide association studies for seed oil-related traits 1071 

Trait 

Genome-wide association studies  Comparative genomics 

P-value§ Reference 
Chr Position LOD score or P-value Method, year† Candidate genes 

Arabidopsis 

homologs 
Functional Annotation 

Oil content 18 42441603 1.47e-05 6, 2014  Glyma18g36130 GmFATA2 AT4G13050 Acyl-ACP thioesterase 0.050* Moreno et al. 2012 

 18 58420889 3.11~5.31 1, 2014; 3, 2014 & 2015  Glyma18g50020 GmACC AT5G15530.1 fatty acid biosynthetic process 0.121 Turlapati et al. 2011 

Linolenic acid 2 1549143 1.67e-08 6, 2015  Glyma02g01920 GmFUM1 AT2G47510.1 fumarase 1 0.083 Zubimendi et al. 2018 

 5 247186 2.88 2, 2014  Glyma05g00220 GmCYP78A10 AT1G74110 control of seed size in soybean 0.086 Wang et al. 2015 

 13 20274945 2.14e-6 6, 2014  Glyma.13g104800 GmMDH1 AT2G22780.1 peroxisomal NAD-malate dehydrogenase 1 0.070 Selinski et al. 2019 

 13 20532852 8.28e-09~1.58e-06 6, 2014 & 2015  Glyma13g16560 GmDAGAT1 AT2G19450.1 diacylglycerol acyltransferase 1 0.013* Chen et al. 2016 

 13 20704034 3.17e-06 6, 2014  Glyma13g16790 GmPDAT AT2G19450.1 diacylglycerol acyltransferase 1 0.016* Liu et al. 2019 

 13 40977541 3.95 2, 2016  Glyma.13g40420 GmDof11 AT2G28510 increase the content of total fatty acids and lipids 0.180 Wang et al. 2007 

 18 4720420 1.56e-09 6, 2014  Glyma.18g055100 GmCds1 AT2G45150.3 phosphatidylglycerol biosynthesis I 0.170 Zhou et al. 2013 

 18 62146771 4.86 4, 2015  Glyma18g54020 GmPgs1 AT2G39290.1 phosphatidylglycerolphosphate synthase 1 0.022* Tanoue et al. 2014 

Linoleic acid 1 51429468 3.29~3.68 4 & 5, 2016  Glyma05g33940 GmSDH1 AT5G66760.1 succinate dehydrogenase 1 0.055 Huang et al. 2013 

 3 36244172 3.84 5, 2015  Glyma03g28476 GmP5C1 AT5G14800 1-pyrroline-5-carboxylate reductas 0.002* Giberti et al. 2004 

Oleic acid 1 49157127 7.08e-06 6, 2014  Glyma01g36750 GmACO1 AT4G35830.1 aconitase 1 0.031* Park et al. 2018  

 2 50913342 3.82e-06 6, 2014  Glyma02g47380 GmNFYA AT3G20910.1 nuclear factor Y, subunit A 0.057 Lu et al. 2016  

 3 39102918 1.45e-08 6, 2014  Glyma03g31281 GmHMT2 AT3G63250.1 homocysteine methyltransferase 2 0.176 Ranocha et al. 2000 

Stearic acid 20 36599310 4.94~5.38 1 & 3, 2014; 2 & 4, 2015  Glyma05g08060 GmFATB1a AT1G08510.1 fatty acyl-ACP thioesterases B 0.041* Xue et al. 2013 

Palmitic acid 4 4161316 4.70 1, 2014  Glyma04g05190 GmBCAT AT5G28680.1 Serine/threonine protein kinase 0.322 Diebold et al. 2002 

 8 6430244 3.71 1, 2016  Glyma08g08910 GmKASI AT5G46290.1 beta-ketoacyl-acyl carrier protein synthase I 0.234 Xiong et al. 2017 

 8 16829990 3.59 4, 2015  Glyma08g24420 GmWRI1b AT3G54320.1 regulate the synthesis of fatty acids and triacylglycerols 0.098 Chen et al. 2017 

 8 41399047 3.39 4, 2014  Glyma.08g302600 GmAGT AT2G13360.1 glycine biosynthesis III  Zhang et al. 2002 

 10 46681643 5.25 1, 2016  Glyma10g38970 GmBS1 AT4G14720.1 seed size related gene 0.106 Ge et al. 2016 

 18 3091833 3.37~3.76 2 & 4, 2015  Glyma.18g038400 Glyma.18g038400 AT3G55470.2 phospholipid-binding protein   

§: The P-values were calculated using paired t-test from the average RPKM values at four stages between cultivated (high seed oil, n1=4) and wild (low seed oil, n2=2) soybeans, and their significances were marked by * (0.05 level); †: the methods 1072 

ISIS EM-BLASSO, mrMLM, FASTmrEMMA, pLARmEB, pKWmEB and GEMMA were indicated by 1 ~ 6, respectively.1073 

http://arabidopsis.org/servlets/TairObject?type=gene&name=AT1G74110
http://arabidopsis.org/servlets/TairObject?type=gene&name=AT3G55470.2
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Table 2 | Twenty key candidate genes derived from genome-wide association studies for acyl-lipid related metabolites 1074 

Trait 

Genome-wide association studies  Comparative genomics 

P-value§ Reference 

Chr Position LOD or P-value Method† Candidate genes 
Arabidopsis 

homologs 
Functional Annotation 

Pyruvate 8 41488353 4.21 5  Glyma.08g302600 GmAGT AT2G13360.1 glycine biosynthesis III NA Zhang et al. 2002 

 13 20743520 1.44e-05 6  Glyma13g16790 GmPDAT AT2G19450.1 diacylglycerol acyltransferase 1 0.016* Liu 2020 

PE (36:3) 1 49466364 5.68 4  Glyma01g36750 GmACO1 AT4G35830.1 aconitase 1 0.031* Park et al. 2018 

Oleic acid 10 46505619 3.26 1  Glyma10g38970 GmBS1 AT4G14720.1 seed size related gene 0.106 Ge et al. 2016 

PI (34:3) 3 1966012 7.12e-10 6  Glyma03g02171 GmLPEAT2 AT2G45670.1 predicted phosphate acyltransferase, 0.00* Jasieniecka-Gazarkiewicz et al. 2017 

 5 2665256 4.26 1  Glyma05g03510 GmPLP2 AT1G12640.1 phosphatidylcholine acyl editing 0.050* La et al. 2009 

Phenylalanine 20 34798928 4.05 2  Glyma20g24830 GmPDHC AT3G25860.1 acetyl-CoA biosynthetic process from pyruvate 0.170 Zhang et al. 2016; Shen et al. 2006 

Stearic acid 14 35956260 5.42 4 
 

Glyma14g27990 GmSAD AT1G43800.1 
Plant stearoyl-acyl-carrier-protein desaturase family 

protein 
0.032* Du et al. 2016 

Linolenic acid 11 9480133 2.63e-07 6  Glyma11g13050 GmLACS2 AT1G49430.1 long-chain acyl-CoA synthetase 2 0.043* Lü et al. 2010; Katavic et al. 2014 

Daidzein 15 7627221 4.33 1  Glyma15g10520 GmACP4 AT4G25050.1 acyl carrier protein 4 0.090 Feng et al. 2018 

Daidzin 19 35006105 4.71 1  Glyma19g31730 GmGPDH AT3G26720.1 Glycerol-3-phosphate dehydrogenase 0.231 Shen et al. 2006 

Malate 8 17117978 3.11 1  Glyma.08g211700 GmPLDα1 AT3G15730.1 phospholipase D alpha 1 0.011* Zhao et al. 2013 

Glycytin 13 24389546 3.41 1  Glyma13g20930 GmTIM AT2G21170.1 triose phosphate isomerase 0.031* López et al. 2016 

Aspartic acid 18 4792076 5.65 1  Glyma.18g055100 GmCds1 AT2G45150.3 cytidinediphosphate diacylglycerol synthase 0.170 Zhou et al. 2013 

Serine 7 6389701 3.55 5  Glyma07g07580 GmGPAT AT4G00400.1 triacylglycerol biosynthesis 0.381 Li et al. 2007 

Isoleucine 18 62242431 3.30 1  Glyma18g54020 GmPgs1 AT2G39290.1 phosphatidylglycerolphosphate synthase 1 0.022* Tanoue et al. 2014 

Phenylalanine 6 47437352 3.96 1  Glyma06g44440 GmZF351 AT1G03790.1 Zinc-Finger Protein 0.011* Li et al. 2017 

PE (34:1) 14 6990732 3.92 5  Glyma14g08920 GmPLA2A AT2G26560.1 phospholipase A 2A 0.045* Yang et al 2009 

γ-aminobutyric acid 13 24115317 2.78 4  Glyma13g20790 GmIDH-V AT5G03290.1 isocitrate dehydrogenase V 0.097 Lemaitre et al. 2006 

Fumaric acid 8 43127956 4.56 5  Glyma.08g323100 Glyma.08g323100 AT5G55380.1 long-chain-alcohol O-fatty-acyltransferase 0.316  

§: The P-values were calculated using paired t-test from the average RPKM values at four stages between landrace (high seed oil, n1=4) and wild (low seed oil, n2=2) soybeans, and their significances were marked by * (0.05 level); †: the 1075 

methods ISIS EM-BLASSO, mrMLM, FASTmrEMMA, pLARmEB, pKWmEB and GEMMA were indicated by 1 ~ 6, respectively.1076 

https://www.arabidopsis.org/servlets/TairObject?id=32102&type=locus
http://arabidopsis.org/servlets/TairObject?type=gene&name=AT3G25860
http://arabidopsis.org/servlets/TairObject?type=gene&name=AT1G03790
http://arabidopsis.org/servlets/TairObject?type=gene&name=AT5G55380.1
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Table 3 | The significant association of seed oil related traits with metabolites in soybean 1077 

Seed oil related traits Metabolite 
Partial regression 

coefficient 
t-test F-test  Seed oil related traits Metabolite 

Partial regression 

coefficient 
t-test F-test 

Linolenic acid Glycitin 0.664 0.008** 4.61e-07***  Palmitic acid Daidzin 0.086 0.047* 2.59e-15*** 

 Pyruvate -0.026 0.050*    Fumaric acid 0.220 1.09e-4***  

 Fumaric acid -0.662 0.017*    PC (34:2) -1.020 0.002**  

 PI (34:1) 1.367 4.19e-05***    PC (36:2) 0.739 8.95e-4***  

 PI (34:2) -1.420 0.045*    PE (36:5) 0.383 1.24e-4***  

 Linolenic acid (m) 0.444 0.045*    PI (34:1) 0.294 0.0387*  

 Stearic acid (m) -0.633 0.014*    PI (36:2) -0.162 0.005**  

Oil content Daidzin -0.842 2.36e-06*** 3.62e-10***   Asparagine 0.148 0.032*  

 Genistein 0.526 0.002**    Glutamic acid -0.143 0.042*  

 PC (36:2) 0.679 1.09e-06***    Tryptophan -0.142 0.004 **  

 PC( 36:4) -0.659 4.75e-06***   Linoleic acid Daidzin -0.911 0.003** 3.11e-05*** 

 PC (36:5) -0.316 0.030*    Fumarate 0.486 0.050*  

 Asparagine -0.172 0.034*    PC (36:5) 0.564 4.84e-05***  

 Glutamic acid 0.243 0.038*    PI (36:1) -1.162 0.009**  

Oleic acid Daidzin 0.073 3.11e-4*** 1.13e-4***   Stearic acid (m) -0.324 0.017*  

 Isoleucine -0.022 0.041*        

*, ** and***: significances at the 0.05, 0.01and 0.001 levels, respectively. 1078 
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Table 4 | Sixty genetic sub-networks that were partly validated by previous molecular biology studies 1079 

Sub-networks constructed in this study 

Evidences from previous molecular biology studies 

Sub-networks constructed in this study 

Evidences from previous molecular biology studies 

Group  No. Sub-network Known§ Group  No. Sub-network Known§ 

I 3 Aspartic acid—GmCds1—Linolenic acid—GmDAGAT1 New 
GmCds1—Linolenic acid (Zhou et al. 2013); 

Linolenic acid—GmDAGAT1 (Chen et al. 2016) 
II 34 Glyma.08g323100—Fumaric acid—Linolenic acid—GmPDAT New Linolenic acid—GmPDAT (Liu 2020) 

I 4 Aspartic acid—GmCds1—Linolenic acid—GmDof11 New 
GmCds1—Linolenic acid (Zhou et al. 2013); 

Linolenic acid—GmDof11 (Wang et al. 2007) 
II 35 Glyma.08g323100—Fumaric acid—Linolenic acid—GmDAGAT1 New Linolenic acid—GmDAGAT1 (Chen et al. 2016) 

I 7 Aspartic acid—GmCds1—Linolenic acid—GmPgs1 New 
GmCds1—Linolenic acid (Zhou et al. 2013); 

Linolenic acid—GmPgs1 (Tanoue et al. 2014) 
II 39 Glyma.08g323100—Fumaric acid—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) 

I 11 Isoleucine—GmPgs1—Linolenic acid—GmPDAT New 
GmPgs1—Linolenic acid—GmPgs1 (Tanoue et al. 2014); 

Linolenic acid—GmPDAT (Liu 2020) 
II 41 GmLACS2—Linolenic acid (m)—Linolenic acid—GmPDAT Known Linolenic acid—GmPDAT (Liu 2020) 

I 12 Isoleucine—GmPgs1—Linolenic acid—GmDof11 New 
GmPgs1—Linolenic acid (Tanoue et al. 2014); 

Linolenic acid—GmDof11 (Wang et al. 2007) 
II 42 GmLACS2—Linolenic acid (m)—Linolenic acid—GmDAGAT1 Known Linolenic acid—GmDAGAT1 (Chen et al. 2016) 

I 18 PE (36:3)—GmACO1—Oleic acid—GmNFYA New Oleic acid—GmNFYA (Lu et al. 2016) II 46 GmLACS2—Linolenic acid (m)—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) 

I 19 PE (34:1) —GmPDAT—Linolenic acid—GmDAGAT1 Known 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmDAGAT1 (hen et al. 2016) 
II 48 GmSAD—Stearic acid (m)—Linolenic acid—GmPDAT Known Linolenic acid—GmPDAT (Liu 2020) 

I 20 PE (34:1) —GmPDAT—Linolenic acid—GmPDAT Known 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmPDAT (Liu 2020) 
II 49 GmSAD—Stearic acid (m)—Linolenic acid—GmDAGAT1 Known Linolenic acid—GmDAGAT1 (Chen et al. 2016) 

I 22 Pyruvate—GmAGT—Palmitic acid—GmBS1 New Palmitic acid—GmBS1 (Ge et al. 2016) II 53 GmSAD—Stearic acid (m)—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) 

I 24 Pyruvate—GmPDAT—Linolenic acid—GmCds1 Known 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmCds1 (Zhou et al. 2013) 
II 56 GmGPDH—Daidzin—Oil content—GmFATA2 New Oil content—GmFATA2 (Moreno et al. 2012) 

I 26 Pyruvate—GmPDAT—Linolenic acid—GmDAGAT1 Known 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmDAGAT1 (Chen et al. 2016) 
II 58 GmCds1—Asparagine—Oil content—GmFATA2 New Oil content—GmFATA2 (Moreno et al. 2012) 

I 27 Pyruvate—GmPDAT—Linolenic acid—GmDof11 New 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmDof11 (Wang et al. 2007) 
II 61 GmGPDH—Daidzin—Palmitic acid—GmBS1 New Palmitic acid—GmBS1 (Ge et al. 2016) 

I 30 Pyruvate—GmPDAT—Linolenic acid—GmPgs1 New 
GmPDAT—Linolenic acid (Liu 2020); 

Linolenic acid—GmPgs1 (Tanoue et al. 2014) 
II 62 GmGPDH—Daidzin—Palmitic acid—GmWRI1b New Palmitic acid—GmWRI1b (Chen et al. 2017) 

I 31 Pyruvate—GmAGT—Palmitic acid—GmWRI1b New 
GmPDAT—Linolenic acid (Liu 2020); 

Palmitic acid—GmWRI1b (Chen et al. 2017) 
II 67 Glyma.08g323100—Fumaric acid—Palmitic acid—GmBS1 New Palmitic acid—GmBS1 (Ge et al. 2016) 

II 1 GmGPDH—Daidzin—Linoleic acid—GmPgs1 New Linoleic acid—GmPgs1 (Tanoue et al. 2014) II 68 Glyma.08g323100—Fumaric acid—Palmitic acid—GmWRI1b New Palmitic acid—GmWRI1b (Chen et al. 2017) 
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II 4 GmGPDH—Daidzin—Linoleic acid—GmPDAT New Linoleic acid—GmPDAT (Liu 2020) II 73 GmCds1—Asparagine—Palmitic acid—GmBS1 New Palmitic acid—GmBS1 (Ge et al. 2016) 

II 5 Glyma.08g323100—Fumarate—Linoleic acid—GmPgs1 New Linoleic acid—GmPgs1 (Tanoue et al. 2014) II 74 GmCds1—Asparagine—Palmitic acid—GmWRI1b New Palmitic acid—GmWRI1b (Chen et al. 2017) 

II 8 Glyma.08g323100—Fumarate—Linoleic acid—GmPDAT New Linoleic acid—GmPDAT (Liu 2020) II 79 GmGPDH—Daidzin—Oleic acid—GmNFYA New Oleic acid—GmNFYA (Lu et al. 2016) 

II 9 GmSAD—Stearic acid (m)—Linoleic acid—GmPgs1 Known Linoleic acid—GmPgs1 (Tanoue et al. 2014) II 80 GmACP4—Pyruvate—Linolenic acid—GmDAGAT1 New Linolenic acid—GmDAGAT1 (Chen et al. 2016) 

II 12 GmSAD—Stearic acid (m)—Linoleic acid—GmPDAT Known Linoleic acid—GmPDAT (Liu 2020) II 82 GmACP4—Pyruvate-Linolenic acid—GmPDAT New Linolenic acid—GmPDAT (Liu 2020) 

II 13 GmTIM—Glycitin—Linolenic acid—GmPDAT New Linolenic acid—GmPDAT (Liu 2020) II 83 GmACP4—Pyruvate—Linoleic acid—GmPgs1 New Linoleic acid—GmPgs1 (Tanoue et al. 2014) 

II 14 GmTIM—Glycitin—Linolenic acid—GmDAGAT1 New Linolenic acid—GmDAGAT1 (Chen et al. 2016) II 81 GmACP4—Pyruvate—Linolenic acid—GmLACS2 New Linolenic acid—GmLACS2 (Katavic et al. 2014) 

II 18 GmTIM—Glycitin—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) III 1 Stearic acid (m)—GmSAD—GmFATA2—Oil content Known GmFATA2—Oil content (Moreno et al. 2012) 

II 20 GmPDAT—Pyruvate—Linolenic acid—GmPDAT Known Linolenic acid—GmPDAT (Liu 2020) III 2 Stearic acid (m)—GmSAD—GmFATB1a—Palmitic acid Known GmFATB1a—Palmitic acid (Chen et al. 2017) 

II 21 GmPDAT—Pyruvate—Linolenic acid—GmDAGAT1 Known Linolenic acid—GmDAGAT1 (Chen et al. 2016) III 8 Pyruvate—GmPDAT—GmWRI1b—Palmitic acid New GmWRI1b—Palmitic acid (Chen et al. 2017) 

II 22 GmPDAT—Pyruvate—Linolenic acid—GmCds1 Known Linolenic acid—GmCds1 (Zhou et al. 2013) III 9 Pyruvate—GmPDAT—GmDAGAT1—Linolenic acid Known GmDAGAT1—Linolenic acid (Chen et al. 2016) 

II 25 GmPDAT—Pyruvate—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) III 10 Phenylalanine—GmZF351—GmPDAT—Linolenic acid New GmPDAT—Linolenic acid (Liu 2020) 

II 27 GmAGT—Pyruvate—Linolenic acid—GmPDAT New Linolenic acid—GmPDAT (Liu 2020) III 12 Pyruvate—GmPDAT—GmFATA2—Oil content Known GmFATA2—Oil content (Moreno et al. 2012) 

II 28 GmAGT—Pyruvate—Linolenic acid—GmDAGAT1 New Linolenic acid—GmDAGAT1 (Chen et al. 2016) III 13 Pyruvate—GmCds1—GmPDAT—Linolenic acid New GmPDAT—Linolenic acid (Liu 2020) 

II 32 GmAGT—Pyruvate—Linolenic acid—GmDof11 New Linolenic acid—GmDof11 (Wang et al. 2007) III 15 PI (34:3) —GmPLP2—GmPDAT—Linolenic acid Known GmPDAT—Linolenic acid (Liu 2020) 

§: “known” sub-networks could be found in the KEGG PATHWAY website (https://www.kegg.jp/kegg/pathway.html), and “New” ones were constructed in this study. 1080 



 44 / 46 
 

Table 5 | The significances for the differences of traits (t), metabolites (m) and gene expressional levels in six subnetworks between high-oil and low-oil soybean accessions 1081 

Subnetwork 

Node 1  Node 2  Node 3  Node 4 

Reference 

High Low P-value  High Low P-value  High Low P-value  High Low P-value 

1 

Pyruvate (m)  GmAGTǂ  Palmitic acid (t)  GmBS1 Zhang et al. 2002; Ge et al. 2016 

1339.57±891.57§ 437.61±62.53 0.043*  2.19±0.81 0.83±0.40 0.104  10.69±0.69 11.43±0.54 0.049*  19.54±1.71 10.71±1.72 0.018*  

2 

Pyruvate (m)  GmPDAT  Linolenic acid (t)  GmDAGAT1 Liu et al. 2020; Chen et al. 2016 

1339.57±891.57 437.61±62.53 0.043*  5.68±0.63 1.52±0.54 0.005**  7.51±0.06 12.34±0.58 0.000**  11.54±2.09 1.16±0.47 0.007**  

3 

Isoleucine (m)  GmPgs1  Linolenic acid (t)  GmPDAT Tanoue et al. 2014; Liu 2020 

83.86±43.86 31.61±18.38 0.027*  7.5±1.51 3.33±0.08 0.035*  7.51±0.06 12.34±0.58 0.000**  5.68±0.63 1.52±0.54 0.005**  

4 

Pyruvate (m)  GmAGTǂ  Palmitic acid (t)  GmWRI1b Zhang et al. 2002; Chen et al. 2017 

1339.57±891.57 437.61±62.53 0.043*  2.19±0.81 0.83±0.4 0.104  10.69±0.69 11.43±0.54 0.049*  16.67±2.76 9.23±1.15 0.036*  

5 

Pyruvate (m)  GmACP4ǂǂ  Linolenic acid (t)  GmDAGAT1 Feng et al. 2018; Chen et al. 2016 

1339.57±891.57 437.61±62.53 0.043*  3.17±1.08 0.92±0.92 0.099  7.51±0.06 12.34±0.58 0.000**  11.54±2.09 1.16±0.47 0.007**  

6 

Phenylalanine (m)  GmZF351  Linolenic acid (t)  GmPDAT Li et al. 2017; Liu et al. 2020 

116.61±43.74 75.16±14.15 0.050*  64.71±16.19 14.64±7.29 0.025*  7.51±0.06 12.34±0.58 0.000**  5.68±0.63 1.52±0.54 0.005**  

* and **: significances at the 0.05 and 0.01 levels, respectively. §: average ± standard deviation. The trait phenotype for each accession was the average across three years (2014 to 2016). The t values for the traits (t) and 1082 

metabolites (m) were calculated between five high-oil and five low-oil accessions, while the t values for gene expressional levels were calculated between four high-oil and two low-oil accessions. ǂ: GmAGT was found to have 1083 

significant difference in expression (P=0.004) between four high-oil accessions and one low-oil accession (no. 265) at 15, 25 and 35 DAF, respectively; ǂǂ: GmACP4 was found to have significant difference in expression 1084 

(P=0.033) between four high-oil accessions and one low-oil accession (no. 272) at 15, 25 and 35 DAF, respectively.1085 
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Figure Legends 1086 

Figure 1. Frequent distributions for seed oil content (f) and its constituents (a-e) in 286 soybean 1087 

accessions. The results in 2014, 2015 and 2016 were indicated by green, yellow and navy-blue 1088 

bars, respectively. Data are shown as the means ± standard deviation. *, ** and ***: the 0.05, 0.01 1089 

and 0.001 probability levels of significance, respectively, in the paired t-test (n=286). 1090 

 1091 

Figure 2. The primary metabolic networks in soybean (a) and the expression profiling of 19 key 1092 

seed oil-related genes identified in this study (b). These genes with red, pink and blue colors are in 1093 

the pathways of oil biosynthesis, amino acid biosynthesis and TCA cycle, respectively. The 1094 

metabolites and genes with grey color aren’t identified in this study. ABC1, activity of bc1 1095 

complex homolog 1; ACC, acetyl coenzyme-A carboxylase; ACO1, acyl-CoA oxidase 1; ACP4, 1096 

acyl carrier protein (ACP)-4; AGD, diaminopimelate aminotransferase; BCAT, branched-chain 1097 

amino acid transaminase; AGT, alanine glyoxylate aminotransferase; Agpat3, 1098 

acylglycerophosphate acyltransferase; CDS1, CDP-diacylglycerol synthase 1; CM, chorismate 1099 

mutase; DAGAT1, diacylglycerol acyltransferase enzymes 1; FATA, fatty acid thioesterase A; 1100 

FATB, fatty acid thioesterase B; LACS, long chain fatty acyl CoA synthetase; FUM1, fumonisin 1101 

synthase gene 1; GPAT, glycerol-3-phosphate acyltransferase; GPDH, glycerol phosphate 1102 

dehydrogenase; HMT2, homocysteine-S-methyltransferase 2; IDH-V isocitrate dehydrogenase V; 1103 

KASI, β-Ketoacyl-ACP synthase I; LPEAT2, lyso-PE acyltransferase 2; MDH, malate 1104 

dehydrogenase; MTO, mitochondrial tRNA modification gene; P5C1, pyrroline-carboxylic acid 1105 

synthase 1; PDAT1, phospholipid diacylglycerol acyltransferase 1; PDHC, pyruvate 1106 

dehydrogenase complex; PDK1, pyruvate dehydrogenase kinase 1; Pgs1, 1107 

phosphatidylglycerolphosphate synthase; PLA2A, phospholipase A2; PK, pyruvate kinase PLDα1, 1108 

phospholipase D gene 1; PLP2, proteolipid protein 2; SAD, sinapyl alcohol dehydrogenase; SDH1, 1109 

succinate dehydrogenase1; TIM, translocases inner mitochondrial membrane. DAF: days after 1110 

flowering. Domesticated soybeans include four high seed oil content accessions; wild soybeans 1111 

include two low oil soybean accessions. 1112 

 1113 

Figure 3. The significant associations of soybean seed oil-related traits with metabolites (a) and 1114 
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three-dimension genetic networks among seed oil-related traits, metabolites and candidate genes 1115 

(b and c). The red and green lines represent significantly positive and negative correlations 1116 

between seed oil-related trait and metabolite, respectively. In three-dimension genetic networks, 1117 

the nodes for oil-related traits and genes are indicated by red and yellow colors, respectively, and 1118 

the other nodes are indicated by blue (PC, PE, and PI), green (amino acids), pink (isoflavone) and 1119 

grey (organic acids) colors; the edges are indicated by the relationship among seed oil-related 1120 

traits, metabolites and candidate genes; bold red and black lines represent known and newly 1121 

identified sub-networks, respectively. I: the first group of sub-networks, in which the candidates 1122 

are significantly associated commonly with oil-related traits and metabolites; II: the second group 1123 

of sub-networks, in which oil-related traits are significantly related to metabolites; III: the third 1124 

group of sub-networks, in which one interacted gene is related to oil-related traits, and another 1125 

interacted one is related to metabolites. 1126 

 1127 

Figure 4. Luciferase complementation image assay of the interaction of GmPDAT with GmFATA2 1128 

in Agrobacterium-infiltrated N. benthamiana leaves under dark illumination. I and II represent 1129 

bright and dark fields, and their treatments are the same. The image shows the interaction between 1130 

GmPDAT and GmFATA2 in N. benthamiana leaves, with the LUC images of N. benthamiana 1131 

leaves co-infiltrated with the Agrobacterium strains containing N-GmPDAT and C-GmFATA2 1132 

(experimental group, top left corner), N-LUC and C-GmFATA2 (control, top right corner), 1133 

N-GmPDAT and C-LUC (control, bottom left corner), and N-LUC and C-LUC (control, bottom 1134 

right corner). LUC fluorescence was detected from 48 to 60 h after infiltration by confocal 1135 

microscopy. The experiment was repeated three times with similar results. 1136 

 1137 

Figure 5. The genetic relationships between pyruvate and three major nutrients, between amino 1138 

acids and seed oil content, and between malate and seed oil content are dissected by GmPDAT, 1139 

GmAGT and GmACP4 (red), GmPLDα and GmCds1 (pink), and GmPDAT, GmZF351 and 1140 

GmPgs1 (blue), respectively, in the three-dimension genetic networks. The genes are in italic. 1141 


