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A fair-weather electric field has been observed near
the Earth’s surface for over two centuries. The field
is sustained by charge generation in distant disturbed
weather regions, through current flow in the global
electric circuit. Conventionally, the fair-weather part
of the global circuit has disregarded clouds, but
extensive layer clouds, important to climate, are
widespread globally. Such clouds are not electrically
inert, becoming charged at their upper and lower
horizontal boundaries from vertical current flow, in
a new electrical regime—neither fair nor disturbed
weather; hence it is described here as semi-fair weather.
Calculations and measurements show the upper cloud
boundary charge is usually positive, the cloud interior
positive and the lower cloud boundary negative,
with the upper charge density larger, but of the
same magnitude (∼nC m−2) as cloud base. Globally,
the total positive charge stored by layer clouds
is approximately 105 C, which, combined with the
positive charge in the atmospheric column above the
cloud up to the ionosphere, balances the total negative
surface charge of the fair-weather regions. Extensive
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layer clouds are, therefore, an intrinsic aspect of the global circuit, and the resulting natural
charging of their cloud droplets is a fundamental atmospheric feature.

1. Introduction
Some of the earliest measurements in atmospheric electricity established the existence of
electrification in the atmosphere in fair weather [1–3], subsequently quantified by Kelvin [4]
as a downward-directed vertical electric field. Establishing the origin of this field motivated
many of the original researchers in the subject of atmospheric electricity. Wilson resolved this
problem by suggesting electrical current flow between disturbed and fair-weather regions [5,6]
and providing a conceptual explanatory framework now known as the global electric circuit
(GEC) [6].1 The downward fair-weather electric field lines imply that the Earth carries a negative
charge density on its land and ocean surface. For the atmospheric system to be neutral overall,
a positive charge is, therefore, required in the fair-weather atmosphere. The distribution of fair-
weather atmospheric positive charge is discussed further here in the context of the complicating
effects of layer clouds, which have conventionally been neglected in many studies of the GEC.

Throughout the natural atmosphere, horizontal layer structures are common. For example,
up to about 3 km from the surface, there is a planetary boundary layer (PBL) within which drag
from the roughness of the surface has its greatest effects, and above which, in the so-called free
troposphere, the atmospheric flow is relatively unaffected. This near-surface region can be readily
identified in vertical profiles of many properties, such as in balloon ascents of temperature, which
show a distinctive step in their values at the top of the boundary layer. Clouds also frequently
show a well-defined layer structure, arising from the combined effects of a lower boundary caused
by rising moist air cooling to water vapour saturation, and an upper temperature inversion
limiting further ascent.

Charge is released in the atmosphere by ionization processes associated with galactic cosmic
rays and radioactivity near the Earth’s continental surface. Ionization creates positive and
negative molecular cluster ions (typically sub-nanometre and conventionally known as small
ions), which are the principal charge carriers providing the electrical conductivity of air [7].
When aerosol particles or droplets are present, the small ions become attached to the aerosol
or droplets, transferring their charge to the larger particles or droplets. The net charge occurring
in the lower atmosphere is, therefore, mostly present on a combination of small ions, charged
aerosol or charged droplets; their total charge per unit volume is known as the space charge. The
main regions of space charge within the lowest few kilometres of the atmosphere are within the
PBL and near and inside cloud layers. If this space charge is actively transported, e.g. by turbulent
processes in the PBL, the net effect can be that currents are generated which can contribute to the
global circuit [8].

The typical space charge within the PBL ranges from around 1 pC m−3 [9,10] to 100 pC m−3

[11], but this depends on the local aerosol properties and vertical distribution as well as the
turbulent state of the lower atmosphere; therefore, there is a variation in space charge with local
time of day. For example, the existence of an electrode layer which can form in calm conditions,
typically nocturnally, immediately adjacent to the surface, has been shown to contain substantial
space charge of several hundred pC m−3 [12], which disperses by mixing soon after sunrise.
Although the vertical profile of aerosol within the PBL influences the conductivity profile, and
is, therefore, key to modelling the GEC, the complexity and variability of processes occurring
within the PBL mean that the full treatment of this problem is complex and extensive, for
example requiring full large-eddy simulations [13,14]. This complexity has to be considered
when representing the turbulent convection currents generated within the PBL, which may also
contribute to charging currents within the GEC [8]. In contrast to the highly complex and variable

1The widespread use of the term ‘global circuit’ began at the end of the 1960s. Before then, the global atmospheric electrical
system was variously described as the ‘equivalent circuit’, or ‘classical picture’, sometimes summarized quantitatively by an
‘electrical balance sheet’.
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nature of charging processes within the PBL, the acquisition of space charge within stratiform
layer clouds occurs in an ordered way, because of the flow of small ions comprising the vertical
conduction current through the cloud boundary.

A further important aspect of the attachment of small ions to aerosol and droplets is the
associated reduction of the electrical conductivity, as the removal of small ions removes mobile
charge carriers; the larger aerosol and droplets to which the small ions’ charge is transferred are
considerably less mobile, and so the conductivity is reduced. This means that, at a boundary
between droplets and clear air, the conductivity is less in the droplet-laden region than in the
clear air region, forming an electrical transition. (The importance of this electrical transition
region was originally recognized by Gunn [15].) Such a situation arises at the upper and lower
horizontal edges of layer clouds, or the upper edge of a fog layer. In the natural atmosphere, the
global circuit is expected to drive a vertical current through extensive layer clouds and fogs. This
has been observed [16,17]; it leads to space charge accumulation at the cloud–air conductivity
transition [18,19]. For persistent extensive layer clouds, observations confirm positive space
charge accumulation at the upper horizontal transition from the clear air above the cloud, and
negative space charge at the lower transition from cloud to clearer air beneath [20]. An extensive
layer cloud, therefore, has two electrical effects: firstly, to modify the vertical conductivity profile
from that of clear air conditions (which typically increases exponentially with height) [21] and,
secondly, to provide boundaries at which accumulation of charge occurs. Hence, as a result of
the formation of a persistent layer cloud in which there is negligible internal mixing, an ordered
vertical separation of positive and negative charges occurs.

The clouds conventionally considered as ‘generators’ of current within the global circuit are
thunderstorms and electrified shower clouds (ESCs) [5], owing to the active charge separation
within them. By contrast, clouds in fair-weather regions provide a resistive load in the return part
of the circuit [22,23], with layer clouds acting as passive accumulators of charge [19]. Although
a full consideration of the effects of the lower atmosphere on the GEC and ionospheric potential
requires the inclusion of the electrical processes within the PBL, this is a complex task (for the
reasons mentioned previously), beyond the scope of the present paper. In this paper, we focus
on the circumstances well away from thunderstorms where there are extensive and persistent
layer clouds, which we refer to as semi-fair-weather conditions (defined as situations which can
include clouds, but where no substantial charging current is generated). We extend the global
atmospheric electric circuit concept to include the role of layer clouds, conventionally overlooked
when a solely electrical perspective is taken. Such clouds are known to cover around 30% of the
planet at any one time [24].

The structure of this paper is as follows: §2 describes various conceptual approaches to
represent the charge distribution in the GEC. In §3, a detailed analysis of the charge distribution
in the fair-weather region with layer clouds is presented and illustrated by the results of field
observations. Section 4 employs a current-network approach to analyse this charge structure from
a theoretical viewpoint, and §§5 and 6 provide further discussion and conclusions, respectively.

2. On the distribution of the electric charge in the global circuit
Historically, an analogy between the spherical Earth and a spherical capacitor has provided a
useful conceptual geometry with which to represent the DC global circuit [25,26]. It is based on
two well-established observational findings:

(1) the presence of a fair-weather electric field, directed downwards at the Earth’s surface,
(2) the presence of downward vertical current flow in fair-weather regions.

Two associated deductions can be made from findings (1) and (2), which are, respectively, that

(A) a negative charge is distributed across the fair-weather part of the terrestrial sphere,
(B) a sustained upper positive potential exists.
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Some calculations readily follow from these. Consider deduction (A) first. From finding (1) of
the existence of a fair-weather electric field Es at the surface, the fair-weather surface charge
density s can be found from Gauss’ law as (hereafter we use SI units)

s = ε0Es. (2.1)

Inserting a typical measured fair-weather field (Es = −120 V m−1) [27] and the permittivity of
free space ε0 = 8.85 × 10−12 F m−1, this gives s = −1 nC m−2. Assuming that fair-weather regions
cover all the Earth (i.e. neglecting disturbed weather regions which occur over only a small
portion of the Earth’s surface), multiplying s by the surface area of the Earth implies that the
total charge Qfw on the fair-weather part of the planet’s surface is as follows:

Qfw = 4πR2
Eε0Es. (2.2)

Using the value above for Es and RE = 6370 km, equation (2.2) gives Qfw = −5 × 105 C.
This estimate of Qfw has been known for a long time; it was thought to represent the

total electric charge of the Earth, which was counterbalanced by the charge of the atmosphere
[28, ch. 3]. However, it is important to emphasize that such an interpretation is inadequate: Qfw
is not the total charge on the Earth’s surface but only the charge of its fair-weather part. In fact,
although thunderstorm regions occupy a much smaller area than fair-weather regions, they are
characterized by much greater electric fields, allowing the magnitude of the total positive surface
charge beneath them to be of the same order as –Qfw [29]. In this study, however, we consider only
the fair-weather and semi-fair-weather (i.e. regions with layer clouds) parts of the global circuit.

Let us now consider deduction (B). Because there is a negative (i.e. downward) electric field
in fair weather, if the Earth is regarded to be at zero potential, the potential at positions away
from the surface must become increasingly positive with altitude. Observations such as those
considered by Markson [10] indicate that the rate of increase of fair-weather potential with height
(i.e. the potential gradient (PG), representing the electric field magnitude) is not constant; above
the boundary layer and outside clouds it decreases exponentially with height and the maximum
asymptotic value of potential is reached fairly rapidly, by about 10 km altitude. This potential
is the upper potential, Vu; the region in which it occurs was once termed the electrosphere. In
theoretical studies of the GEC, Vu is often termed the ‘ionospheric potential’, and a typical
value for it is about 240 kV [30]. Without this upper potential the global circuit would not exist.
The upper potential is also closely linked to the electrically active solar wind, which affects the
magnetosphere, but this is not considered further here.

The existence of the upper potential Vu together with the negative charge on the fair-
weather part of the Earth’s surface makes it natural to suppose that the entire GEC can be
well approximated by a spherical capacitor with the Earth’s surface as the inner electrode and
a compensating positive charge on the ionosphere serving as the outer electrode. However,
such a representation of the GEC can readily be seen to be misleading and inadequate: the
fair-weather electric field magnitude decreases exponentially with altitude and, as mentioned,
the potential nearly attains its asymptotic value Vu at about 10 km (much lower than the
height of the ionosphere, approx. 70 km). It, therefore, follows directly from Gauss’ law that a
substantial amount of positive charge is distributed throughout the lower part of the fair-weather
atmosphere: this contradicts the idea of the Earth–ionosphere spherical capacitor. Recently,
Haldoupis et al. [31] tried to revise the spherical capacitor approach by considering the distributed
outer electrode as a compensating positive charge in the lower atmosphere. However, modifying
the properties of spherical capacitor models does not alter the fact that they are not the most
natural way to represent the DC global circuit. This is because such models are primarily
electrostatic, and the equations of electrostatics are only formulated in terms of electric charges,
neglecting the fundamentally important aspect that the atmosphere itself is conductive.

The DC global circuit is a system of electric fields and currents maintained by certain source
currents (e.g. from charge separation in electrified clouds) in a medium with variable non-zero
conductivity. The structure and behaviour of these fields and currents are in many aspects
substantially different from those implied by simple electrostatic capacitor models. The most
natural way to discuss the global circuit is to represent it as a distributed current network rather
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than a capacitor; this approach to analysing and modelling the global electrical system has been
used since at least the 1950s [32–36]. More recent models of the DC global circuit are also based
on this representation; they solve equations for the electric potential in a distributed conductive
medium [37–40].

As noted, the lower fair-weather atmosphere contains a large amount of positive electric
charge. Given that extensive layer clouds of liquid water (i.e. stratiform clouds) occur in the
lower troposphere (below 3 km) where the conductivity is relatively small, and such clouds
are abundant, covering about 30% of the planetary surface [24], it is clear that they must also
significantly affect the fair-weather charge distribution. A careful and thorough analysis of the
charge distribution in the entire DC global circuit must be based on considering the semi-fair-
weather part of the Earth’s surface together with the regions occupied by electrified clouds (which
serve as GEC generators). Here, however, the attention is focused only on the electrical structure
of the fair-weather part of the DC global circuit in the presence of layer clouds, in which, as
far as possible, complications from the direct effects of the global circuit’s current generators are
neglected. Section 3 presents the electric charge structure in such regions inferred from the results
of field observations, while in §4 we shall employ a current-network approach to analyse this
charge structure from a theoretical viewpoint.

3. Observations of layer cloud charge

(a) In situmeasurements
The cloud edge charge density at the bottom and the top can be measured using in situ
instruments. Nicoll & Harrison [20] reported a series of measurements made using balloon-
carried electrometers attached to a meteorological radiosonde. An example flight through a
stratiform cloud over the UK is shown in figure 1. This shows well-defined layers of positive
charge at cloud top and negative charge at cloud base, with magnitudes reaching approximately
200 pC m−3. By sampling many stratiform cloud layers, Nicoll & Harrison [20] also demonstrated
that, on average, the upper cloud edge charge density has a greater magnitude than the cloud
base charge density. This is because the transition distances from clear air to cloudy air are
different at cloud top and cloud bottom, as different physical processes are acting. At the cloud
top, the boundary is established by a temperature inversion, and therefore tends to be quite
sharp (i.e. the cloud to air transition occurs in a relatively short vertical distance). At cloud
base, the effect of updrafts and variability in the condensation level lead to a less well-defined
transition. The consequence is that the cloud top boundary is sharper, with a greater gradient
in vertical conductivity. As a result, the cloud top charge density is greater, which leads to the
cloud carrying a net positive charge. Figure 2a shows a boxplot of the space charge densities at
cloud top and cloud base from 17 stratiform clouds over Reading, UK. Stratiform cloud bases are
typically negatively charged (median charge density by volume −1 pC m−3), and the stratiform
cloud tops positively charged (median charge density 43 pC m−3). The larger magnitude of the
charge density at cloud top is also evident. The few anomalous positive cloud base cases may
result from turbulence and downward mixing of upper cloud charge, as recently reported by
Harrison et al. [41].

Figure 2b shows a histogram of the integrated space charge within each of the 17 cloud layers
(where cloud top and base are defined as where the conductivity gradient starts to change). This
demonstrates that, although the clouds typically contain both polarities, on average they have a
net positive charge (mean charge density by area 0.087 nC m−2).

(b) Remote sensing cloud base charge measurements
Although in situ balloon measurements provide a useful instantaneous measurement of layer
cloud charge, they can only be used opportunistically, which limits the data available, particularly
for assessing the variability of layer cloud charge. A method of remotely sensing cloud charge
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Figure 1. Vertical profile through a stratocumulus layer over Reading University Atmospheric Observatory, UK, from a specially
instrumented radiosonde. (a) Temperature (grey) and relative humidity (RH) (black) measured by the radiosonde; (b) visual
range and downwards solar radiation measured by an optical cloud-droplet sensor showing the location of the cloud layer;
(c) space charge density measured by an electrostatic charge sensor. Adapted from Nicoll & Harrison [20].
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Figure 2. Summary of space charge densities measured from balloon-borne charge sensors at cloud top and cloud base in 17
stratiform clouds above Reading, UK. (a) Boxplot of mean charge (thick line represents median) at cloud base (blue) and top
(red). Data are averages over cloud top/base regions, where each point represents one cloud edge, for cloud layers with an
altitude less than 3 km. Adapted from Nicoll & Harrison [20]. (b) Histogram of integrated space charge inside the same cloud
layers as in (a). The median of the distribution is 0.087 nC m−2. (Online version in colour.)

has, therefore, been developed, based on the principle that low-level charged cloud bases affect
the electric field at the surface electrostatically. Recent measurements at Reading show that the
surface electric field is influenced for clouds with bases below about 1000 m [42]. As the edge
charging process occurs on a more rapid time scale than that of the dissipation of the cloud, if
there are slow variations in the cloud base height, the effects of such variations can also appear in
surface electric field measurements. This covariation allows the cloud base charge to be inferred
and, in some cases when conditions permit, the charge density can be calculated. Figure 3 shows
an example of the variation in surface electric field (represented here as PG) with local time and
with cloud base height for extensive layer cloud conditions, for three sites widely distributed
across the Earth—(a) Reading, UK (mid-latitude), (b) Sodankylä, Finland (northern polar latitude)
and (c) Halley, Antarctica (southern polar latitude). At Reading, the relationship between cloud
base height and PG is very apparent. For the purpose of identifying and comparing charges, the
simplest case of an equivalent representative point charge in the cloud base is considered. This is
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charged cloud bases are marked in blue (37 cases), and positively charged cloud bases (nine cases) in red. (Online version in
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derived according to the method presented in Harrison et al. [42] using a combination of surface
PG and cloud base height data from a laser ceilometer, and found to be −4.2 mC for Reading,
−0.9 mC for the Sodankylä cloud and −2.2 mC for Halley. These observations demonstrate that
negative charging in the base of layer clouds, which is expected to occur globally from theory
[18], is indeed a widespread phenomenon.
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Figure 4 shows a summary histogram of daily layer cloud base charge derived from PG and
cloud base (ceilometer) measurements between 2015 and 2018 made at Reading, UK, using the
remote sensing method detailed in Harrison et al. [42]. As for the clouds sampled by the in situ
method (figure 1), the polarity of the cloud base charge is mostly negative, with median surface
charge density −1 nC m−2. The occasional occurrence of layer clouds with positive lower charge
is likely to be due to the greater effects of dynamical mixing within some clouds (from turbulent
and convective processes), which re-distributes charge from the cloud edges. While this method
does not determine the cloud top charge, it is clear from the in situ measurements of figure 1a that
both cloud base and cloud top charges are of the same order of magnitude.

These observations lead to the conclusion that stratiform clouds readily acquire charge and, as
they are abundant globally, their charge accumulation is likely to form an intrinsic aspect of the
global circuit.

4. Theoretical aspects of layer cloud charging
The previous section demonstrated the widespread presence of charge in stratiform layer clouds,
and the typical magnitude of the charges. In order to determine how such charge influences the
vertical distribution of charge within the GEC, a more theoretical approach is required, which is
now developed to analyse the entire charge distribution in the atmospheric column containing
the cloud layer. The electric potential φ in fair-weather conditions satisfies the equation

div(σ grad φ) = 0, (4.1)

where σ is the conductivity. In the one-dimensional approximation, this becomes

d
dz

(
σ (z)

dφ

dz
(z)

)
= 0. (4.2)

From this, it follows that the conduction current density, jz, given by Ohm’s law as

jz = −σ (z)
dφ

dz
(z), (4.3)

does not vary with height z. The electric field profile is given by

Ez(z) = −dφ

dz
(z) = jz

σ (z)
. (4.4)

Hence the charge density, ρ, where

ρ = ε0div E, (4.5)

is expressed by the formula

ρ(z) = ε0
dEz

dz
(z) = ε0jz

d
dz

(
1
σ

)
(z) = − ε0jz

σ (z)2
dσ

dz
(z) (4.6)

(cf. [18]).
Demanding that φ(0) = 0, we can infer from (4.4) the potential profile

φ(z) = −jz

∫ z

0

dz
σ (z)

(4.7)

and the value of the ionospheric potential (upper potential)

Vu = −jz

∫ hu

0

dz
σ (z)

, (4.8)

where hu is the height of the upper boundary of the model atmosphere. In GEC models this
height hu is usually set at the lower limit of the ionosphere (where the conductivity becomes
essentially anisotropic) and taken to be about 60 or 70 km (e.g. [35,38,40]); calculations show that a
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certain variation of this value does not substantially affect the resulting distribution of the electric
potential, as this potential does not change much with height at ionospheric heights.

In order to find the value of jz, charge generation regions need to be considered as well (i.e.
regions occupied by thunderstorms and ESCs), since thunderstorm regions and fair-weather
regions are linked together in the GEC and hence a complete set of equations for the electric
potential φ in the atmosphere is global in its nature. This is because charge separation within
thunderstorms and ESCs maintain the current structure in the whole atmosphere, and the value
of the fair-weather current density jz is determined by the entire conductivity distribution in
the atmosphere together with the distribution of thunderstorm generators. However, here the
problem is only considered locally in the fair-weather region alone. Therefore, the value of jz is
regarded as a quantity provided by the global circuit to the local region considered.

Because water droplets remove the air ions principally responsible for air’s conductivity by
attachment and, as already described, because heavier water droplets are much less mobile
electrically than the lighter air ions, the in-cloud conductivity σ c is much less than the
conductivity of the clear air σ 0. If the transition distance from clear air to cloudy air is D, the
charge density can be approximated from (4.6) as [18]

|ρ| ≈ ε0|jz|
σ 2

c

σ0 − σc

D
= ε0|jz|

Dσ0

1 − K
K2 , (4.9)

where K = σ c/σ 0 (cf. [43]). Assuming, following Nicoll & Harrison [20], that K ∼ 0.2 and
D ∼ 100 m, and inserting −2 pA m−2 and 40 fS m−1 as typical values of jz and σ 0, respectively, this
gives a rough estimate for |ρ| of about 90 pC m−3. This is broadly consistent with the measured
space charge values shown in figure 1. In the absence of dynamical mixing within the cloud, this
charge density will be negative at the layer cloud base and positive at the cloud top.

To analyse the same problem more consistently, we employ equation (4.6). It is particularly
instructive to compare the situation where a layer cloud is present with that where there is no
cloud. Considering first the cloud-free case, we suppose, for simplicity, that the undisturbed
conductivity distribution in the atmosphere can be represented as

σ0(z) = σ00 exp
( z

H

)
(4.10)

with surface conductivity σ 00 = 40 fS m−1 and scale height H = 6 km. This is a simple profile
approximating more complicated conductivity representations used in GEC modelling; specific
values of σ 00 and H are those from Tinsley & Zhou [23]. (In particular, PBL effects are neglected,
which are extremely variable over the Earth’s surface.) Extrapolating conductivity profiles from
[23, fig. 10] corresponding to the altitude range above approximately 5 km down to the Earth’s
surface gives σ 00 ∼ 10 fS m−1. A more detailed analysis using equations from [23] shows that
40 fS m−1 provides a good estimate of the mean conductivity at the Earth’s surface if effects
of radon and aerosols, which vary substantially across different land and ocean locations, are
neglected. For the characteristic scale height H for the conductivity, the profiles of [23, fig. 10]
imply that this height is about 4 km below 15 km and then gradually increases beyond 10 km in
the upper stratosphere; accordingly H = 6 km is assumed as an intermediate value for the lower
atmosphere, where thunderstorm and ESC generators occur.

With the vertical current density being j0z = −2 pA m−2, and assuming hu = 70 km, the profile
(4.10) gives, according to (4.8), a value of Vu of about 300 kV, which is somewhat greater than
the value of about 240 kV actually observed [30]. This is the result of the simple exponential
conductivity profile (4.10) assumed instead of a more realistic but rather locally variable and
complicated dependency, with H depending on z. High precision is not intended here as the
actual value obtained does not affect the conclusions; to obtain a more realistic value of 240 kV, the
magnitude of jz could be decreased by 20% or, alternatively, σ 00 increased by the same amount.

In the other case, we suppose that the region between hbot = 800 m and htop = 1200 m is
occupied by a cloud, using typical cloud parameters observed at Reading (see Nicoll & Harrison
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Figure 5. Estimated vertical profiles of atmospheric electrical quantities in the lower atmosphere with a thin, horizontally
extensive layer cloud present at an altitude of 1 km: (a) assumed vertical profile of the conductivity, (b) corresponding vertical
profiles of the electric field intensity and (c,d) calculated charge density ((d) is the close-up of (c)). Also shown are the total
charges of the different regions per unit area. Red and blue sections of the plots indicate the positively and negatively charged
transition regions between the interior of the cloud and the clear air. Green dashed lines correspond to the casewhere the cloud
is absent (assuming the same value of the ionospheric potential). (Online version in colour.)

[20], and therefore the conductivity σ (z) in this region is reduced in accordance with the
discussion above. This is expressed by assuming that

σ (z) = σ0(z) ×
{

K, hbot < z < htop,

1, otherwise
(4.11)

with K = 0.2. Moreover, the transitions from K to 1 of the coefficient are smoothed in this formula,
using appropriate pieces of sine curves, the transition distances being (see [20]) Dbot = 130 m at
the lower boundary of the cloud (i.e. 65 m above and below z = hbot) and Dtop = 70 m at its upper
boundary (i.e. 35 m above and below z = htop). This smoothed conductivity profile is shown in
figure 5a (red and blue sections indicate transition regions), in which the green dashed line shows
the profile unperturbed by cloud. Note that this does not account for possible effects of the PBL
on the conductivity profile: these are discussed further at the end of this section.
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The introduction of a single cloud has a negligible effect on the ionospheric potential Vu, which
is determined by the global structure of distant thunderstorm and ESC generators in the entire
atmosphere and by the global fair-weather resistance. However, given that the resistance of an air
column containing cloud is greater than that of a cloud-free column, the vertical current must be
smaller in the cloudy column than in the clear column. Inferring from (4.8) that

Vu = −jz

∫ hu

0

dz
σ (z)

= −j0z

∫ hu

0

dz
σ0(z)

(4.12)

and calculating the integrals, we conclude that if in the absence of clouds j0z = −2 pA m−2 then in
the presence of a cloud jz = −1.74 pA m−2 (for the same global supply current and the same Vu).

For the case where a cloud is present, the vertical profiles of the electric field and charge
density calculated by means of formulae (4.4) and (4.6) are shown in figure 5b,c, respectively. The
latter figure also presents total charges per unit area of different regions (shown by alternating
colours); in the calculation of the charge of the uppermost region it has been assumed that the
upper boundary is set at hu = 70 km, and in the calculation of the charge of the lowermost region
it has been assumed that the lower boundary is set at 0 km. The green dashed line in figure 5b
shows the electric field profile in the no-cloud case; however, it seems nearly impossible to show
the corresponding charge density profile in figure 5c on the same axis scale. This is presented in
figure 5d, where the behaviour of the two charge density profiles is compared outside the two
transition regions; this figure also indicates the total charge per unit area in the no-cloud case.

Notwithstanding the fact that the absolute value of the charge density at the upper cloud
boundary is greater than that at the lower boundary, the total charge of the upper transition
region is clearly smaller than that of the lower transition region. Also, the total charge of the
entire cloud (including its interior and two transition zones) is positive. This is not surprising,
since, by integrating the equation

ρ(z) = ε0jz
d
dz

(
1
σ

)
(z) = −ε0|jz| d

dz

(
1
σ

)
(z), (4.13)

the charge per unit area of the region enclosed between z = a and z = b is given by

Q[a ≤ z ≤ b] = −ε0|jz|
∫ b

a

d
dz

(
1
σ

)
(z) dz = ε0|jz|

(
1

σ (a)
− 1

σ (b)

)
. (4.14)

As the conductivity above the cloud is evidently greater than the conductivity below the cloud,
the total charge of the cloud is positive (in agreement with the data shown in figure 2b). Note
that the charge of the region a ≤ z ≤ b is determined by σ (a) and σ (b) and does not depend on
the conductivity profile in the segment a ≤ z ≤ b (in the absence of non-conductive currents, e.g.
without allowing for the charge separation occurring inside electrified clouds).

Finally, the total charge per unit area of the column (from 0 km up to hu = 70 km) equals

Q[0 ≤ z ≤ hu] = ε0|jz|
(

1
σ (0)

− 1
σ (hu)

)
= ε0|jz|

σ00

(
1 − exp

(
−hu

H

))
, (4.15)

or 386.167 pC m−2. In comparison, the interface conditions for the electric field at the Earth’s
surface imply that its surface charge density

s = ε0Ez(0) = ε0
jz

σ (0)
= −ε0|jz|

σ00
, (4.16)

or −386.170 pC m−2 (clearly Ez(0) here is the same as Es in equation (2.1)). Thus the two charges
do not compensate for each other completely; the small difference between their absolute values,

− s − Q[0 ≤ z ≤ hu] = ε0|jz|
σ00

exp
(

−hu

H

)
= −ε0

jz
σ (hu)

= −ε0Ez(hu), (4.17)

is equal to the surface charge density at the upper boundary of the atmosphere (set in our model
at hu), provided we assume no electric field outside the model atmosphere.
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Figure 6. Estimated vertical profiles of the electric potential in the lower atmosphere, in the presence of a layer cloud (black
solid line) and in the no-cloud case (green dashed line). (Online version in colour.)

By comparing the total charge in the air column in the presence of a cloud with that in the
cloudless case (figure 5c,d) we observe that the former is smaller than the latter. This can be
easily explained by noting that the charge of the air column containing a cloud is determined
by equation (4.15), whereas in the no-cloud case it should be described by the same equation with
|jz| being replaced by |j0z | < |jz|.

Figure 6 compares the vertical profiles of the electric potential, estimated from equation (4.7)
in the presence and in the absence of a cloud. This figure illustrates how two somewhat different
potential profiles eventually reach the same value of Vu. This occurs because the integrals of Ez

are the same, as enhanced electric field values inside the cloud are balanced by reduced values
above and below the cloud. It is also evident that, above the layer cloud, a given potential is
reached at a lower altitude than where it would be reached in the cloudless case. This may have
some small practical benefit in reducing the height required for soundings intended to obtain Vu,
but only if the resistive regions are sufficiently homogeneous and horizontally extensive that the
above-cloud and below-cloud regions encountered can accurately compensate for the changes in
the charge distribution (e.g. [44]).

In the discussion above, the PBL was not considered, where the conductivity is often reduced.
Although the PBL is a very important aspect for atmospheric electricity, its properties vary
substantially across different land and oceanic locations [45]. From a theoretical viewpoint, the
PBL influences the GEC not only via conductivity reduction but also by the fact that processes
occurring within it may result in additional charging (non-conduction) currents serving as
generators contributing to the GEC along with thunderstorms and ESCs [8,46].

As discussed in the Introduction, appropriate detailed study of all these issues lies beyond the
scope of our present research, which is driven by the observations available; we note, however,
that, for the particular cloud layer considered here, the PBL height is effectively at the top of
the cloud layer. Since rapid charge density and conductivity changes in the vicinity of the cloud
are not observed, other than those related to the cloud itself [20, fig. 2c,d], we conclude that the
meteorological conditions are such that the charge in the PBL is well mixed. Thus, there is no
distinct layer of space charge at the PBL top, as has been observed in clear air conditions by other
investigators [47]. Hence, for this particular situation, the reduction of conductivity in the PBL
with height is gradual rather than marked. It is likely that in the theoretical analysis performed in
this section we have overestimated the conductivity in the vicinity of the Earth’s surface and, by
inference, underestimated the electric charge stored in this region (according to equation (4.14))
and the electric field magnitude at the Earth’s surface (according to equation (4.4)); however, this
does not affect our conclusions regarding the charge structure in the neighbourhood of such a
cloud, which is the purpose of this study.
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Figure 7. Description of the current flow in the global electric circuit in the fair-weather and semi-fair-weather regions. Left
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reached at a slightly lower altitude than in the cloudless case.

5. Conclusion
Stratiform layer clouds cover a substantial proportion of the planet at any given time and
influence their local electrical environment, yet their presence is typically neglected in the
conventional conceptual pictures of the GEC. The ability of layer clouds to perturb the vertical
profiles of conductivity, space charge density and potential compared with those of the fair-
weather atmosphere has motivated us to make a closer examination of the traditional conceptual
picture of how the charge is distributed within the GEC. A layer cloud acquires positive charge
at its upper boundary and negative charge at its lower boundary and contains positive charge
in its interior. Hence the meteorological processes leading to layer cloud formation also yield
consequences for the atmospheric charge structure. Note that the PBL is another very important
aspect of ‘semi-fair-weather’ electricity that can also affect charge balance in the atmosphere, but
PBL properties vary so substantially across different locations that a full investigation is beyond
the scope of this article.

The total column charges accumulated at the layer cloud boundaries differ, with the upper
boundary column charge being the greater in magnitude, but they are of the same order and
reach several nC m−2. Taking the absolute value of the median cloud base surface charge density
of −1 nC m−2 (figure 4) from Reading as an approximation for the cloud top charge (1 nC m−2), it
is possible to estimate the total charge present worldwide on the upper boundaries of stratiform
clouds. If 30% of the planet is covered by such clouds [24], the total positive charge stored by these
clouds at their upper boundary would be 1.5 × 105 C.

The total charge accumulated within the cloud (when its interior is considered together with
the two transition regions) is always positive, and may reach tens to hundreds of pC m−2.
Theoretical calculations also show that the total (positive) charge of a fair-weather column, even
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if layer cloud is present, is almost precisely compensated by the negative charge accumulated at
the Earth’s surface below this column. Although these findings have been obtained under the
assumption that the undisturbed conductivity profile can be parameterized by an exponential
form (equation (4.10)) with a surface conductivity 40 fS m−1 and scale height 6 km, our ultimate
conclusions regarding charge balance in the fair-weather column do not rely on their specific
values (or even on the specific equation describing the conductivity profile).

Extensive layer clouds are, in both abundance and function, an intrinsic part of the fair-weather
branch of the GEC. Figure 7 depicts a new representation of current flow in the GEC which
takes account of both fair-weather and semi-fair-weather regions. The middle and right panels
in figure 7 represent the return current flow (generated in the disturbed weather regions—left
panel in figure 7) in the fair-weather and semi-fair-weather regions, respectively. Note that in each
situation the positive space charge is regarded as being distributed throughout the column, rather
than being solely located in the base of the electrosphere. In the case of the semi-fair-weather
atmosphere, in which an extensive cloud layer is distinct, most of the charge is located beneath
the cloud top, leading to the upper potential being reached at a lower altitude than in the cloudless
case. The effect of layer clouds is to draw charge from the global circuit onto cloud droplets in an
ordered way. For the smallest droplets at least, their behaviour, which may be relevant to the layer
clouds’ effects on climate, can be strongly influenced by electric forces.
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