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Abstract: Studies in Asian Indians have examined the association of metabolic traits with vitamin D
status. However, findings have been quite inconsistent. Hence, we aimed to explore the relationship
between metabolic traits and 25-hydroxyvitamin D [25(OH)D] concentrations. We investigate whether
this relationship was modified by lifestyle factors using a nutrigenetic approach in 545 Asian Indians
randomly selected from the Chennai Urban Rural Epidemiology Study (219 normal glucose tolerant
individuals, 151 with pre-diabetes and 175 individuals with type 2 diabetes). A metabolic genetic
risk score (GRS) was developed using five common metabolic disease-related genetic variants.
There was a significant interaction between metabolic GRS and carbohydrate intake (energy%) on
25(OH)D (Pinteraction = 0.047). Individuals consuming a low carbohydrate diet (≤62%) and those
having lesser number of metabolic risk alleles (GRS ≤ 1) had significantly higher levels of 25(OH)D
(p = 0.033). Conversely, individuals consuming a high carbohydrate diet despite having lesser number
of risk alleles did not show a significant increase in 25(OH)D (p = 0.662). In summary, our findings
show that individuals carrying a smaller number of metabolic risk alleles are likely to have higher
25(OH)D levels if they consume a low carbohydrate diet. These data support the current dietary
carbohydrate recommendations of 50%–60% energy suggesting that reduced metabolic genetic risk
increases 25(OH)D.
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1. Introduction

Interaction between genetic and lifestyle factors have been shown to contribute to the development
of metabolic disorders such as obesity and type 2 diabetes (T2D) [1,2]. The prevalence of
metabolic diseases is increasing worldwide, and Asian Indians have a greater predisposition [3,4].
The Asian Indian population have a unique clinical phenotype characterized by increased visceral
fat and waist circumference (WC), increased susceptibility to type 2 diabetes at a younger age,
hyperinsulinemia, insulin resistance and dyslipidemia with raised triglycerides and low high density
lipoprotein–cholesterol (HDL-c) levels at normal ranges of body mass index (BMI) collectively known
as “Asian Indian Phenotype” [5,6]. Furthermore, several studies have demonstrated that metabolic
diseases are associated with micronutrient deficiencies, such as vitamin D deficiency [7–10].

Vitamin D is a fat-soluble vitamin, known for its impact on skeletal and extra-skeletal physiological
processes. Vitamin D deficiency exists in endemic proportions all over India, with a prevalence
ranging from 80%–90% [11]. Adequate levels of vitamin D are important for calcium absorption,
bone mineralization and skeletal growth as well as a multitude of biologic functions at the cellular level
such as cell growth, proliferation, differentiation, inflammation and apoptosis. Additionally, vitamin D
has been linked to cancer, cardiovascular diseases, inflammation and autoimmune diseases [12–14].
Several observational studies have associated vitamin D deficiency with increased obesity and reported
inverse relationship between 25(OH)D concentration and BMI, WC and total body fat; however,
the causal effect was not established [15,16]. Nevertheless, a Mendelian Randomization analysis in
42,024 participants of European ancestry concluded that increased BMI leads to reduced 25(OH)D
concentrations while there was no causal association between lower 25(OH)D concentrations and
higher BMI [17]. Given that observational studies are often prone to bias and confounding, a genetic
approach to explain the relationship between metabolic diseases and vitamin D deficiency may be a
better option to reduce any influence from unmeasured confounding factors.

Association of several genetic variants with metabolic diseases has been identified by candidate
gene and genome-wide association studies (GWAS) [2,18–20]. Currently, the fat mass and
obesity-associated (FTO) gene is the strongest risk loci for obesity [1,21]. The FTO gene is the
first obesity susceptibility gene to be identified by two GWAS in European populations [22,23]. A study
in an Asian Indian population has shown that lifestyle factors can influence the association of FTO
gene with obesity traits [21]. Besides the FTO, Melanocortin 4 Receptor (MC4R) and Transcription
Factor 7-Like 2 (TCF7L2) genes are the two commonly studied candidate genes for obesity and
T2D [24–38]. In the present study, we examined the association of a metabolic-genetic risk score
(GRS) developed from five single-nucleotide polymorphisms (SNPs) [FTO (rs8050136 and rs2388405),
MC4R (rs17782313) and TCF7L2 (rs12255372 and rs7903146)] with metabolic traits and vitamin D
concentrations. In addition, we investigated the link between metabolic traits and vitamin D status by
exploring the interactions between the metabolic GRS and lifestyle factors such as diet and physical
activity on metabolic traits and vitamin D concentrations in an Asian Indian population.

2. Methods

2.1. Study Population

Five hundred forty-five study participants were recruited randomly from the Chennai Urban
Rural Epidemiology Study (CURES) follow-up study (Figure 1), aged 29–85 years old [3]. CURES is
an epidemiological cross-sectional study conducted on participants from Chennai city population
in southern India, which is the fourth largest city in India. Details of the methodology have been
previously published [39]. In brief, the CURES study was conducted in three phases. Phase 1:
26,001 adult participants (>20 years of age) were recruited using a systematic random sampling
method covering the whole Chennai city and all participants were screened for diabetes. Phase 2:
all 1382 diabetic participants were invited for further investigation (90.4% compliance). Phase 3:
2207 adult participants designated by way of every tenth participant from Phase 1, excluding diabetics,
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underwent further detailed investigations. Phases 2 & 3 constitutes the CURES follow-up cohort
(n = 3589) [40]. For present study, 545 individuals were randomly selected from the follow-up
cohort, which included: 219 normal glucose tolerant (NGT), 151 prediabetic and 175 T2D individuals.
Three exclusion criteria were applied in this study: known cases of type 1 diabetes, diabetes secondary
to other causes, and intake vitamin D supplements. The Madras Diabetes Research Foundation
Institutional Ethics Committee granted ethical approval, and informed consent was obtained from the
study participants. All clinical investigations were conducted according to the principles expressed in
the Declaration of Helsinki (ICH GCP).
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Figure 1. Selection of study participants from the Chennai Urban Rural Epidemiological Study
(CURES follow-up study).

2.2. Anthropometric and Biochemical Measurements

Standardized methods were used to measure weight, height and WC. BMI was calculated based
on the body weight in kilograms divided by the square of body height in meters. Generalized obesity
was defined according to the World Health Organization Asia Pacific Guidelines for Asians
(The Asia Pacific perspective 2000) as non-obese (BMI < 25 kg/m2) and obese (BMI ≥ 25 kg/m2) [41].
The following biochemical measurements were performed using kits supplied by Roche Diagnostics
(Mannheim) on a Hitachi-912 Auto Analyzer (Hitachi, Mannheim, Germany): fasting plasma glucose
(glucose oxidase-peroxidase), serum total cholesterol (cholesterol oxidase-phenol-4-amino-antipyrene
peroxidase), serum triglycerides (glycerol phosphatase oxidase-phenol-4-amino-antipyrene peroxidase)
and HDL-c (direct method; polyethylene glycol-pretreated enzymes) [42]. The Friedewald formula
was used to calculate low-density lipoprotein cholesterol (LDL-c). Glycated hemoglobin (HbA1c)
was determined by high-performance liquid chromatography using a Variant™ machine (Bio-Rad,
Hercules, CA, USA). Serum insulin and 25(OH)D vitamin D concentrations were estimated
using the electrochemiluminescence (ECLIA) using a Roche e601Cobas immunoassay analyzer
(Roche Diagnostics, Indianapolis, IN, USA) [21]. The intra- and inter-assay coefficients of variation for
vitamin D assay was 3.62% and 6.38%, respectively.

2.3. Assessment of Dietary Intake and Physical Activity

A validated, interviewer administered semi-quantitative food frequency questionnaire (FFQ)
consisting of 222 different foods was used to assess dietary intake for the previous year [43]. In brief,
participant had an interview ranging from 20 and 30 min where they had to estimate their usual
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portion size and usual frequencies (per day, week, month, year, never) with the help of visual aids
of measurement equipment and food sizes. Description of the development of FFQ and the data
on reproducibility and validity was previously published [43]. Daily average food and nutrient
intake including macronutrient and total energy intake were analyzed and estimated by the EpiNu
database system. A validated self-report questionnaire was used to assess physical activity levels of
the participants [44]. Individuals were classified into three groups: 1. Vigorously active: where the
participants exercised and engaged in demanding work activities; 2. Moderately active: where the
participants either exercised or performed heavy physical work; 3. Sedentary: those participants who
did not exercise or have physically demanding work.

2.4. SNP Selection and Genotyping

For the present study, five SNPs were chosen from three different genes based on their previous
associations with obesity and T2D in several populations: FTO (rs8050136 & rs2388405) [21,25,26,38,45–50],
TCF7L2 (rs12255372 & rs7903146) [24,28,51–55] and MC4R (rs17782313) [25,27,34,37,38]. FTO gene variants
are known to be the strongest genetic predictors of obesity to date [56,57]. The FTO SNP rs8050136
has shown a strong association with obesity and T2D [27,49,50,57,58]. Furthermore, the FTO SNPs,
rs8050136 and rs2388405, have also been reported as intronic enhancers, as they may have an influence on
the gene expression [45,59,60]. MC4R SNP rs17782313 was shown to be associated with obesity in European
populations [34,38] and this finding then replicated in other populations including South Asians [27,37,61].
TCF7L2 SNPs, rs12255372 and rs7903146, were shown to be associated with increased susceptibility to
T2D in two large multiethnic meta-analyses [52,55]. Some studies have reported that the TCF7L2 SNPs
are involved in modulating and reducing adiposity through changes in the lifestyle [62–64]. Based on
the previous studies, the above mentioned five SNPs were chosen for the present study.

Phenol–chloroform method of DNA extraction from whole blood was performed. The genotyping
methodology for the five SNPs have been previously published [4,24,28]. Direct sequencing by an ABI
310 genetic analyzer (Applied Biosystems, Foster City, CA) was performed to confirm the efficiency of
the genotyping; there was 99% concordance based on random duplicates of 20% of the samples.

2.5. Statistical Analysis

Statistical analyses were performed using SPSS statistical software (version 24; SPSS, Inc., Chicago,
IL, USA). Allele frequencies were calculated by gene counting and chi-squared test was carried out
to compare the proportions of genotypes/alleles. The genotypic frequencies of the five SNPs were in
the Hardy–Weinberg Equilibrium (p > 0.05) (Table S1). To obtain normal distribution, all metabolic
outcomes and vitamin D values were log transformed. The difference in the means of continuous
variables between the participants with NGT vs. pre-diabetes and NGT vs. T2D was analyzed by
independent sample t-test. Descriptive statistics for continuous variables are presented as means and
standard deviation (SD). The chi-squared test was used to analyze and compare physical activity levels
(vigorously active, moderately active and sedentary) between individuals with NGT vs. those with
pre-diabetes and individuals with NGT vs. those with T2D. Unweighted metabolic GRS was calculated
for each participant by adding the number of risk alleles for metabolic diseases. The SNPs, rs8050136,
rs2388405, rs12255372, rs7903146 and rs17782313, were used to generate the GRS. A value of zero,
one and two was assigned to each SNP, which indicates the number of metabolic disease-related risk
alleles. These values were then calculated by adding the number of metabolic disease-related risk
alleles across each SNP. The risk allele score was then divided by the median into those carrying ≤1
risk allele vs. those with >1 risk allele.

A schematic representation of the study objectives is presented in Figure 2. Association analysis
between the GRS and continuous and categorical variables were carried out using general linear and
binary logistic regression models, respectively, adjusting for age, BMI, T2D and month of sample
collection, wherever appropriate. The variable ‘month of sample collection’ was created based on
the three seasons in India: summer (March to June), autumn/monsoon (July to October) and winter
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(November to February) [65]. Linear and logistic regression analyses were also used for investigating
the interaction between SNPs and lifestyle factors (dietary intake and physical activity), where the
interaction terms were incorporated into the models and adjusted for age, gender, BMI, T2D, total energy
intake and month of sample collection wherever appropriate. Further tertile stratification of the lifestyle
factor (diet/physical activity) was performed when there was a significant interaction between metabolic
GRS and lifestyle factors on 25(OH)D concentrations and metabolic traits. Power calculation was not
performed, given that there are no studies on metabolic GRS and no previously reported effect sizes
for South Asians.

Nutrients 2020, 11, x FOR PEER REVIEW 5 of 18 

three seasons in India: summer (March to June), autumn/monsoon (July to October) and winter 
(November to February) [65]. Linear and logistic regression analyses were also used for investigating 
the interaction between SNPs and lifestyle factors (dietary intake and physical activity), where the 
interaction terms were incorporated into the models and adjusted for age, gender, BMI, T2D, total 
energy intake and month of sample collection wherever appropriate. Further tertile stratification of 
the lifestyle factor (diet/physical activity) was performed when there was a significant interaction 
between metabolic GRS and lifestyle factors on 25(OH)D concentrations and metabolic traits. Power 
calculation was not performed, given that there are no studies on metabolic GRS and no previously 
reported effect sizes for South Asians. 

 
Figure 2. Study objectives. The unbroken one-sided arrows indicate the associations that were tested 
between the metabolic GRS and vitamin D concentrations and metabolic disease related traits. The 
broken one-sided arrows represent the interactions that were investigated between the GRS and 
lifestyle factors (diet and physical activity levels) on serum vitamin D and metabolic disease related 
traits. The one-sided dotted arrow indicates the interaction that was examined between metabolic 
GRS and 25(OH)D concentrations on metabolic disease -related traits. 

3. Results 

3.1. Characteristics of Study Participants 

The anthropometric, biochemical and lifestyle characteristics of the CURES participants are 
presented in Table 1. Significant differences were found between individuals with NGT, pre-diabetes 
and T2D, where individuals with T2D were older (p < 0.001), had higher WC (p < 0.001), fasting 
plasma insulin (p < 0.001), systolic and diastolic blood pressure (p < 0.001) and serum triglycerides (p 
< 0.001). However, individuals with pre-diabetes had higher BMI (p = 0.001) and LDL-c (p = 0.004) 
than individuals with NGT and T2D. No significant differences were observed in the levels of vitamin 
D, diastolic blood pressure, total cholesterol, HDL-c and dietary intakes across the three groups (p > 
0.05). 

Figure 2. Study objectives. The unbroken one-sided arrows indicate the associations that were
tested between the metabolic GRS and vitamin D concentrations and metabolic disease related traits.
The broken one-sided arrows represent the interactions that were investigated between the GRS and
lifestyle factors (diet and physical activity levels) on serum vitamin D and metabolic disease related
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3. Results

3.1. Characteristics of Study Participants

The anthropometric, biochemical and lifestyle characteristics of the CURES participants are
presented in Table 1. Significant differences were found between individuals with NGT, pre-diabetes
and T2D, where individuals with T2D were older (p < 0.001), had higher WC (p < 0.001), fasting plasma
insulin (p < 0.001), systolic and diastolic blood pressure (p < 0.001) and serum triglycerides (p < 0.001).
However, individuals with pre-diabetes had higher BMI (p = 0.001) and LDL-c (p = 0.004) than
individuals with NGT and T2D. No significant differences were observed in the levels of vitamin D,
diastolic blood pressure, total cholesterol, HDL-c and dietary intakes across the three groups (p > 0.05).

3.2. Association of 25(OH)D Concentrations with Obesity and Type 2 Diabetes

There was a significant association of 25(OH)D concentrations with BMI (p = 0.017) and WC
(p = 0.047) after adjusting for age, gender, month of sample collection and T2D. However, there was no
association of 25(OH)D concentrations with fasting plasma glucose (p = 0.739), HbA1c (p = 0.823) and
fasting plasma insulin (p = 0.387) after adjusting for age, gender, month of sample collection and BMI.

3.3. Association of the Metabolic GRS with 25(OH)D Level and Metabolic-Related Traits

No significant associations were observed between metabolic GRS and 25(OH)D concentrations
(p = 0.34). None of the clinical and biochemical parameters such as BMI, WC, fasting plasma glucose and
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insulin, HbA1c, systolic and diastolic blood pressure, total cholesterol, HDL-c, LDL-c, and triglycerides,
showed a significant association with metabolic GRS (p > 0.19 for all comparisons) (Table S2).

Table 1. Baseline characteristics of the study participants.

Characteristics of
Study Participants n Normal Glucose

Tolerance n Pre-Diabetes n Type 2 Diabetes p Value

Age (years) 219 46.82 ± 10.54 151 47.79 ± 11.5 175 54.19 ± 11.04 <0.001 α γ

BMI (kg/m2) 219 26.10 ± 5.15 151 27.95 ± 5.22 174 26.56 ± 4.58 0.001 β

WC (cm) 219 86.04 ± 11.73 151 89.54 ± 11.2 173 90.11 ± 10.27 <0.001 α β

Vitamin D (ng/mL) 219 19.55 ± 13.5 151 19.14 ± 10.47 175 17.8 ± 10.03 0.381
Fasting plasma

glucose (mg/dL) 201 89.74 ± 6.54 144 103.43 ± 11.59 172 156.28 ± 64.43 <0.001 α β γ

HbA1c (%) 219 5.61 ± 0.47 151 5.91 ± 0.59 175 8.19 ± 2.07 <0.001 α β γ

Fasting plasma
insulin (µLU/mL) 216 7.76 ± 5.13 139 8.13 ± 4.73 132 11.48 ± 7.69 <0.001 α γ

Systolic BP (mmHg) 219 125.77 ± 20.97 151 126.54 ± 17.77 175 134.53 ± 19.6 <0.001α γ

Diastolic BP (mmHg) 219 79.17 ± 12.84 151 79.79 ± 10.78 175 80.67 ± 10.95 0.320
Total cholesterol

(mg/dL) 219 181.07 ± 35.81 151 187.72 ± 35.28 175 181.2 ± 38.77 0.126

LDL cholesterol
(mg/dL) 219 114.58 ± 31.58 151 119.17 ± 31.43 175 107.74 ± 34.63 0.004 α γ

HDL cholesterol
(mg/dL) 219 42.06 ± 9.57 151 40.10 ± 7.82 175 40.32 ± 8.58 0.093

Serum triglycerides
(mg/dL) 219 122.15 ± 63.7 151 142.25 ± 83.08 175 165.71 ± 95.93 <0.001 α β γ

Total energy intake
(kcal) 185 2620.04 ± 752.02 83 2535.29 ± 803.78 93 2585.85 ± 787.79 0.609

Protein energy% 185 11.28 ± 1.19 83 11.31 ± 0.89 93 11.38 ± 1.2 0.758
Fat energy% 185 23.91 ± 4.76 83 23.33 ± 4.51 93 24 ± 4.72 0.582

Carbohydrate
energy% 185 64.09 ± 6.69 83 64.89 ± 5.51 93 64.36 ± 5.97 0.556

Protein (g) 185 73.47 ± 21.39 83 71.59 ± 23.74 93 72.78 ± 21.2 0.704
Fat (g) 185 69.62 ± 25.15 83 65.92 ± 26.97 93 67.94 ± 22.15 0.407

Carbohydrate (g) 185 417.24 ± 115.73 83 409.91 ± 125.98 93 418.82 ± 142.37 0.847
Dietary fiber (g) 185 32.18 ± 10.91 83 30.77 ± 11.4 93 33.01 ± 11.85 0.235

Physical activity level 171 Sedentary (80.1%) 73 Sedentary (83.6%) 81 Sedentary (84.0%) 0.676 δ

Moderate (18.7%) Moderate (13.7%) Moderate (13.6%)
Vigorous (1.2%) Vigorous (2.7%) Vigorous (2.5%)

Data shown are represented as means ± SD; p values were calculated using one-way ANOVA; δ p values were
calculated using the chi-squared test. α indicates significance between non-diabetics and T2D individuals, β indicates
significance between normal glucose tolerance and pre-diabetics, γ indicates significance between pre-diabetes and
Type 2 diabetes. Abbreviations: CURES: Chennai Urban Rural Epidemiological Study, BMI: body mass index, WC:
waist circumference, BP: blood pressure, LDL: low-density lipoprotein, HDL: high-density lipoprotein.

3.4. Interaction between Metabolic GRS and 25(OH)D Concentrations on Metabolic Traits

There was a borderline interaction between the metabolic GRS and 25(OH)D concentrations on
HbA1c level (p = 0.048) after adjusting for age, gender, BMI, T2D and month of sample collection.
However, no association was detected between the metabolic GRS and HbA1c when participants were
grouped in tertiles of 25(OH)D concentrations (tertile 1, p = 0.471; tertile 2, p = 0.870; tertile 3, p = 0.486).

3.5. Interaction between Metabolic GRS and Lifestyle Factors on 25(OH)D Concentrations

After adjusting for age, gender, BMI, T2D and month of sample collection, there was a
significant interaction between the GRS and dietary carbohydrate intake on 25(OH)D concentrations
(P-interaction = 0.047). Tertile analysis was performed where individuals were grouped based on the
tertiles of carbohydrate intake (energy%) [low≤62%, medium = 62%–67% and high > 67%)]. There were
significant differences between the two GRS groups only among those who were in the first tertile
of carbohydrate intake (p = 0.003), where individuals with lesser number of risk alleles (GRS ≤ 1)
had greater 25(OH)D concentrations compared to those with higher number of risk alleles (GRS > 1)
(Figure 3). Among individuals who had a higher carbohydrate intake (>67.28%), despite having lesser
number of metabolic risk alleles, did not show a significant higher 25(OH)D concentrations (p = 0.66)
compared to those with higher number of risk alleles (GRS > 1) (Figure 3).
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3.6. Interaction between the GRS and Lifestyle Factors on Clinical and Biochemical Parameters Traits
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Table 2. Interaction between genetic risk score and lifestyle factors on clinical and biochemical
parameters.

Outcome
Measures

Physical
Activity Levels Protein% Fat% Carbohydrates% Saturated Fatty

Acids g/d *
Polyunsaturated
Fatty Acids g/d *

Monounsaturated
Fatty Acids g/d *

Body Mass
Index 0.89 0.94 0.16 0.20 - - -

Waist
Circumference 0.45 0.70 0.54 0.47 - - -

25(OH)D ** 0.90 0.69 0.32 0.047 - - -
Fasting
Plasma
Glucose

0.12 0.90 0.16 0.09 - - -

Glycated
Hemoglobin 0.13 0.52 0.44 0.32 - - -

Fasting
Plasma Insulin 0.84 0.41 0.14 0.76

Systolic Blood
Pressure 0.72 0.19 0.96 0.62 - - -

Diastolic
Blood

Pressure
0.93 0.93 0.22 0.54 - - -

Total
Cholesterol 0.80 0.40 0.47 0.55 - - -

Low density
lipoprotein
Cholesterol

0.90 0.12 0.032 0.028 0.21 0.28 0.27

High density
lipoprotein
cholesterol

0.68 0.55 0.72 0.80 - - -

Fasting serum
triglycerides 0.87 0.11 0.26 0.11 - - -

p value for interactions obtained by general linear univariate analysis. All interactions were adjusted for age,
gender, type 2 diabetes and BMI (except BMI) * Adjusted for log-total energy intake; ** Adjusted for month of
sample collection.

4. Discussion

Our study is the first to investigate gene-lifestyle interactions on 25(OH)D concentrations in
Asian Indians. The main finding of our study is the interaction between carbohydrate intake and
metabolic GRS, generated from five common metabolic-disease-related genetic variants, on 25(OH)D
concentrations, where individuals who had less number of risk alleles (GRS ≤ 1) and consumed
lower amounts of carbohydrates (≤62%) had significantly higher levels of 25(OH)D. Achieving and
maintaining adequate levels of vitamin D is a desirable outcome as vitamin D deficiency is linked
to several chronic diseases [66]. Given that previous studies have reported that Asian Indians have
lower 25(OH)D concentrations [11,67], our findings suggest that, even if the genetic risk is lower,
following the dietary carbohydrate recommendations (50%–60%) is required to improve the vitamin D
status in this Asian Indian population.

Epidemiological studies have demonstrated a link between metabolic diseases such as obesity
and T2D and vitamin D deficiency; however, it remains uncertain whether improving the metabolic
status would reduce the risk of vitamin D deficiency [68–71]. The association between obesity and
vitamin D status was consistent across different populations in several meta-analyses [70,71]. A large
meta-analysis of 23 studies (n = 65,445) of mixed races reported that 35% of obese individuals suffer
from vitamin D deficiency [70]. Several longitudinal studies have shown an inverse association between
25(OH)D status and T2D [66]. A meta-analysis in 2320 Caucasians showed that participants with
adequate 25(OH)D concentrations had a 43% reduced risk of T2D [68]. However, unlike observational
studies, vitamin D supplementation (4000 IU/day intake of vitamin D3) did not show beneficial effects
on glycemic measures in two randomized, controlled trials (RCTs). In the first trial, well-controlled
patients with T2D (n = 127) did not show any improvement in β-cell function, insulin secretion rate,
nor in HbA1c levels after 48 weeks of supplementation [72]. In the second trial, 2423 prediabetic adults
were evaluated for the development of diabetes for an average of 2.5 years; at the end of the study,
293 out of 1211 participants (24.2%) in the vitamin D supplementation group developed diabetes
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compared to 323 out of 1212 (26.7%) in the placebo group [73]. Furthermore, majority of RCTs also did
not show an effect of vitamin D supplementation on weight loss [74].

Genetic studies are considered to be an effective approach in investigating the relationship between
vitamin D and metabolic outcomes [75], as they are free from confounding and bias, which have been
shown to affect the association between vitamin D levels and metabolic diseases. To our knowledge,
there are no previous studies that have investigated the effect of metabolic disease-related genetic
variants on vitamin D status. However, there are genetic association studies that have investigated the
effect of vitamin D-related genetic variants on metabolic disease outcomes; but, the findings have been
quite inconsistent [76–79]. A large bidirectional meta-analysis of 42,024 Europeans reported that there
was no association between vitamin D-related genetic score and higher BMI; however, there was a
significant association between genetically instrumented BMI and low vitamin D status [17]. In our
study, the phenotypic associations of 25(OH)D concentrations with BMI and WC were statistically
significant; but, the metabolic GRS did not show any association with 25(OH)D concentrations
suggesting that the phenotypic associations are highly confounded.

To understand whether the genetic risk of metabolic diseases was influenced by vitamin D
status, we tested for the interaction between the metabolic GRS and 25(OH)D concentrations on
metabolic-disease related traits. None of the interactions were significant, except for a borderline
interaction between the metabolic GRS and 25(OH)D concentrations on HbA1c level (p = 0.048);
however, there was no association between metabolic GRS and HbA1c levels when participants were
grouped into tertiles of 25(OH)D concentrations suggesting that there was no evidence for metabolic
genetic risk acting as effect modifiers of the association between vitamin D status and metabolic
traits. A study in 5160 participants of European ancestry also provided no evidence of vitamin
D-related genetic variants acting as major modifiers of the association between 25(OH)D levels and
cardio-metabolic risk [80]. Hence, these findings including the results from the present study indicate
that vitamin D status is unlikely to have a significant impact on metabolic disease risk.

In the present study we found an interaction between the metabolic GRS and carbohydrate intake
on vitamin D levels where lower consumption of carbohydrates was shown to be associated with higher
25(OH)D concentrations in the presence of reduced genetic risk. In the CURES, the carbohydrate intake
included cereal grains, pulses, legumes, tubers, fruits, sweets, sweet beverages, carbonated beverages,
junk food and added sugar, where consumption of refined cereals (i.e., mainly white rice) accounted
for 78.1% of total calories [81]. This is a high intake compared to the recommended carbohydrate
intake 50%–60% of total calories for Asian Indians [82], and the WHO (2002) recommendations of total
carbohydrate intake at 55%–75% of total dietary energy [83]. The lowest tertile of the carbohydrate
intake (≤62%), where we observed the positive association with vitamin D status, was close to the
recommended dietary intake for Asian Indians (50%–60%), which supports the benefits of the current
carbohydrate recommendations for Asian Indians. Our findings are also in line with a five-week
intervention study [84], which used a reduced carbohydrate diet (43% carbohydrate; 27% fat) in
28 obese African American girls (9–14 years). The study showed that 25(OH)D concentrations were
inversely associated with fasting glucose levels providing evidence that vitamin D may exert alterations
in the biologic response to macronutrients such as dietary carbohydrates.

A further interesting finding in our study is the significant interaction between metabolic GRS
and fat intake (%) on LDL-c concentrations, where despite having higher metabolic risk alleles,
individuals who consumed a low-fat diet (≤21.89%) had significantly lower LDL-c levels. This suggests
that lower dietary fat intake may influence the genetic risk of higher serum LDC-c concentrations,
although mechanisms of action are unclear. This finding is in accordance with a GWAS on lipids
in 541 individuals from the Quebec Family Study which reported an interaction between GRS
(29 SNPs) and total fat intake on LDL-c concentrations (p << 10−5) [85]. The recommended dietary
fat intake for Asian Indians is <30% [82]; however, in our study, only those individuals consuming
total fat <21.8% demonstrated a significantly lower serum LDL-c concentrations, despite higher
genetic susceptibility. Hence, our findings, if replicated using larger cohorts and dietary intervention
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studies, may have significant implications in providing dietary recommendations for those with higher
metabolic-risk alleles.

The present study has several strengths, which include the use of a representative sample of
Chennai [39] and an extensive and a validated semi-quantitative FFQ for dietary assessment [43].
In addition, the semi-quantitative FFQ has demonstrated high reproducibility and validity for
macronutrient intakes such as dietary carbohydrate and fiber intake. Furthermore, the use of a
metabolic GRS, which combines the effect of multiple SNPs, has been shown to increase the statistical
power and an effective approach to study metabolic diseases [86,87]. However, there are some
underlying limitations that need to be acknowledged. The measurement bias that is associated
with self-reported FFQ and physical activity questionnaire cannot be ruled out. The study used a
cross-sectional design and hence, no cause and effect conclusions can be established. Even though
potential confounders were adjusted in all our statistical analyses, confounding factors such as sun
exposure cannot be ruled out; however, we have adjusted for month of sample collection to overcome
this limitation [65]. Finally, small sample size could be considered as another limitation in our study;
nevertheless, we have identified significant findings, which suggest that the study is statistically
powered to identify gene-diet interactions.

5. Conclusions

The present study has identified a novel interaction between metabolic GRS and carbohydrate
intake on 25(OH)D levels in an Asian Indian population where individuals carrying a lesser number of
metabolic risk alleles are likely to have higher 25(OH)D concentrations, only if they have a carbohydrate
intake <62% energy. This is broadly in line with current dietary recommendations in India (50%–60%
energy). This finding needs to be replicated in a larger cohort before these data can be confirmed.
Mechanistic links also need to be identified.
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T2D type 2 diabetes
25(OH)D 25-hydroxyvitamin D
WC waist circumference
BMI body mass index
LDL-c low density lipoprotein cholesterol
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GWAS genome wide association studies
FTO fat mass and obesity-associated gene
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