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Moments-Based Spillovers across Gold and Oil Markets† 

 

Abstract 

In this paper, we use intraday futures market data on gold and oil to compute returns, realized volatility, 

volatility jumps, realized skewness and realized kurtosis. Using these daily metrics associated with two 

markets over the period of December 2, 1997 to May 26, 2017, we conduct linear, nonparametric, and 

time-varying (rolling) tests of causality, with the latter two approaches motivated due to the existence 

of nonlinearity and structural breaks. While, there is hardly any evidence of spillovers between the 

returns of these two markets, strong evidence of bidirectional causality is detected for realized volatility, 

which seems to be resulting from volatility jumps. Evidence of spillovers are also detected for the crash 

risk variables, i.e., realized skewness, and for realized kurtosis as well, with the effect on the latter being 

relatively stronger. Based on a moments-based test of causality, evidence of co-volatility is deduced, 

whereby we find that extreme positive and negative returns of gold and oil tend to drive the volatilities 

in these markets. In our robustness check, we identify a causal chain in the realized volatility from oil 

to gold via the financial stress. Our results have important implications for not only investors, but also 

policymakers. 
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Keywords: Gold and Oil Markets; Linear, Nonparametric and Time-Varying Causality Tests; 

Moments-Based Spillovers 
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1. Introduction 

The severity of the recent global financial crisis highlighted the risks associated with portfolios 

containing only conventional financial market assets (Balcilar et al., 2017; Lau et al., 2017; Muteba 

Mwamba et al., 2017; Bilgin et al., 2018). This in turn has triggered an interest in considering 

investment opportunities in the energy (specifically oil) market (Degiannakis and Filis, 2017; Bahloul 

et al., 2018; Cunado et al., 2019), since the recent financialization of the commodity (including oil) 

market (Tang and Xiong, 2012; Silvennoinen and Thorp, 2013;Bonato and Taschini, 2016;Bonato, 2019) 

has resulted in an increased participation of hedge funds, pension funds, and insurance companies in 

the market, with investment in oil now being considered as a profitable alternative instrument in the 

portfolio decisions of financial institutions (Akram, 2009; Fattouh et al., 2013; Büyükşahin and Robe, 

2014; Antonakakis et al., 2018). Not surprisingly, the market-size of oil stands at $1.7 trillion per year 

at current spot prices, with 34 billion barrels produced each year and over 1.7 trillion barrels of crude 

oil in remaining reserves (U.S. Energy Information Administration (EIA); BP Statistical Review of 

World Energy). 

At the same time, with gold being the most recognized “safe haven” (Bilgin et al., 2018; Bouoiyour et 

al., 2018)1, recent studies have analyzed returns and volatility spillovers across the gold and oil markets 

( Coronado et al., 2018; Balcilar et al., 2019; Asasi et al., forthcoming; Tiwari et al., forthcoming)2. 

Note that, gold is the world’s largest metal market by dollar value, which in turn is $170 billion per year 

at current spot prices, with a production of over 3200 tonnes per annum and 54,000 tonnes of 

economically extractable gold reserves remaining (World Gold Council). The emphasis on returns and 

volatility connectedness between oil and gold is understandably due to the fact that such causal 

 
1 See also the large literature in this regard in the works of Baur and Lucey (2010), Baur and McDermott (2010), 
Reboredo (2013a), Agyei-Ampomah et al., (2014), Gürgün and Ünalmis (2014), Beckmann et al., (2015, 2019), 
and Balcilar et al., (2016). 
2 Other relevant studies in this regard involves the work of Ewing and Malik( 2013), Mensi et al., (2013), Reboredo 
(2013b), Bampinas and Panagiotidis, 2015; and Yaya et al., (2016).. 
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relationships is of paramount importance to international investors and portfolio managers in devising 

optimal portfolio and dynamic hedging strategies (Chang et al., 2018a). 

In this regard, it is also important to point out that financial market participants care not only about the 

nature of volatility, but also its level, with traders making the distinction between “good” and “bad” 

volatility (Giot et al., 2010; Caporin et al., 2016). Good volatility is directional, persistent, and relatively 

easy to predict, while bad volatility is jumpy and comparatively difficult to foresee. Therefore, good 

volatility is generally associated with the continuous and persistent part of volatility, while bad volatility 

captures the discontinuous and jump component of volatility, with jumps shown to account for a 

significant percentage of variation in total return volatility of assets in general (Andersen et al., 2007; 

Dunham and Friesen, 2007; Bollerslev et al., 2009; Corsi et al., 2010), and also for gold and oil volatility 

(Balcilar et al., 2017; Demirer et al., 2019; Gkillas et al., forthcoming). Given this, studies like Amaya 

et al., (2015) and Nolte and Xu (2015) point out that investment strategies using jump risks, as well as 

skewness and kurtosis are shown to reveal additional information and deliver incremental economic 

benefits over strategies using total volatility alone. Note that, skewness account for the asymmetry in 

the returns process, while kurtosis captures the extremes of the same, with the former also considered 

as capturing crash-risks in asset markets (Kräussl et al., 2016; Greenwood-Nimmo et al., 2016; Ben 

Nasr et al., 2019). 

In light of the above-mentioned importance of higher-moments of assets in improving portfolio 

performances, we, for the first time, analyze the causal relationship between not only returns and overall 

variance of gold and oil markets, but also volatility jumps, skewness and kurtosis. With the availability 

of high-frequency, i.e., intraday data, research on modelling higher moments has taken new directions, 

and hence, we use 5-minute futures market data on gold and oil returns, which are then used to compute 

realized volatility, jumps, realized skewness and kurtosis, over the daily period of December 2, 1997 to 

May 26, 2017. We then analyze the causal relationship between these metrics for gold and oil markets, 

using linear, nonparametric and time-varying approaches, with the latter two methods providing robust 

inferences in the presence of nonlinearity and structural breaks between the variables of concern, which 
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we show to exist based on statistical tests. In addition, we also rely on a moments-based test of causality, 

which allows us to test for spillovers of returns, variances and quantiles.      

The remainder of the paper is organized as follows: Section 2 outlines the various methodologies used, 

while Section 3 presents the intraday data and the details associated with the calculation of realized 

volatility, jumps, realized skewness and kurtosis. Then, Section 4 discusses the empirical results, with 

Section 5 presents the robustness check. Section 6 provides concluding remarks and implications. 

 

2. Methodologies 

We carried out four forms of Granger causality analysis to fully reveal the causal relationships between 

gold and oil with various considerations. We discuss the merits and drawbacks of different causality 

tests in this section, and technical details of methodologies are provided in Appendix A. To be specific, 

four forms of casualty analysis include: i) linear causality analysis, which is the basic and standard 

Granger causality analysis; ii) nonlinear causality analysis developed by Diks and Panchenko (2006); 

iii) trivariate causality analysis and the rolling-window scheme, developed by Hill (2007); iv) causality 

in moments developed by Chen (2016). More importantly, our causality analysis is not only at the first 

moment but also at higher moments, including volatility, jump, skewness, kurtosis, and quantiles. For 

volatility, skewness, and kurtosis, we are using the realized versions calculated by the high-frequency 

intraday data.  

The linear causality analysis serves as the benchmark of this study. Given two scalar stationary time 

series {𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡 , 𝑡𝑡 ≥ 1}, the linear causality analysis can be easily tested in the framework of bivariate 

VAR with 𝑝𝑝 lags.  

 

𝑌𝑌𝑡𝑡 = 𝛼𝛼1 + �𝛽𝛽1𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+�𝛾𝛾1𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

𝑋𝑋𝑡𝑡 = 𝛼𝛼2 + �𝛽𝛽2𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝛾𝛾2𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(1) 
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With all other information as the same, 𝑌𝑌𝑡𝑡 does not Granger cause 𝑋𝑋𝑡𝑡 if the lags of 𝑌𝑌𝑡𝑡 does not bring 

additional contribution to the forecasting performance of 𝑋𝑋𝑡𝑡, (Granger, 1969). Thus, the null hypothesis 

that 𝑌𝑌𝑡𝑡  does not Granger cause 𝑋𝑋𝑡𝑡 , denoted as 𝑌𝑌𝑡𝑡 ↛ 𝑋𝑋𝑡𝑡 , can be formulated by testing whether all 

coefficients of lags of 𝑌𝑌𝑡𝑡 are jointly equal to zero in the equation that 𝑋𝑋𝑡𝑡 is the dependent variable. The 

direct way to perform the Granger causality in such a setting is to use a standard 𝐹𝐹-test on the following 

restrictions 

 𝛽𝛽21 = 𝛽𝛽22 = ⋯ = 𝛽𝛽2𝑝𝑝 (2) 

If the 𝐹𝐹-test is rejected, then there is evidence to support that that 𝑌𝑌𝑡𝑡 Granger cause 𝑋𝑋𝑡𝑡. The optimal lag 

length 𝑝𝑝 of VAR is typically selected by information criteria. 

The linear causality analysis based on Equation (1) is straightforward, but it sometimes oversimplifies 

the actual relationship between economic variables. A vast number of empirical studies found evidence 

that economic relationships could be nonlinear, especially involving high-frequency data (Kumar, 

2017), as we show by the Brock et al., (1996, BDS) test for our dataset in Section 4.2. Hiemstra and 

Jones (1994) proposed a nonparametric test for both linear and nonlinear Granger causality by using 

conditional independence. However, the size of their test (rejection rate under the null hypothesis) is 

argued to be inflated and increases with the sample size (Diks and Panchenko, 2005). Diks and 

Panchenko (2006) further developed a revised nonparametric test for nonlinear Granger causality with 

reasonable control on the size of the test. 

Based on Wald tests for the null hypothesis of joint zero parameter restrictions, Hill (2007) developed 

a sequential multiple-horizon non-causality test procedure for trivariate VAR processes (with one 

auxiliary variable) in both whole sample and rolling-window scheme. 3  Comparing with the linear and 

nonlinear causality analysis, there are two merits associated with the framework of Hill (2007) causality 

test. The first merit is due to the trivariate framework, which is useful to distinguish between the direct 

causality and the causal chain. With an extra auxiliary variable, the causality relationship can be existed 

 
3 The rolling-window scheme in Hill (2007) can be used for both bivariate and trivariate framework. In Hill (2007), 
he studied the rolling-window causality from money to income with one auxiliary variable, i.e. the trivariate 
framework. Bampinas and Panagiotidis (2015) employed the bivariate setting of Hill’s (2007) test to investigate 
the rolling-window causality between oil and gold.  
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in two channels: 1) 𝑌𝑌𝑡𝑡 directly causes 𝑋𝑋𝑡𝑡, representing a direct causality; and 2) 𝑌𝑌𝑡𝑡 causes the auxiliary 

variable 𝑈𝑈𝑡𝑡 and 𝑈𝑈𝑡𝑡 further causes 𝑋𝑋𝑡𝑡, which is characterized as the causal chain. In our Section 5, we 

employ the trivariate version of Hill (2007) test procedure with one auxiliary variable in order to check 

the robustness of the causality between gold and oil. The second merit of Hill (2007) is with regards to 

the rolling-window scheme. During a long sample periods, the economic variables are typically subject 

to structural breaks, which may affect the causal relationships (Balcilar, et al., 2010). Our dataset lasts 

for about two decades, and it is highly likely that the causal relationships we are investigating are subject 

to structural breaks. With little loss in generality, we use a bivariate version (i.e. without the auxiliary 

variable) of Hill (2007) test at horizon one4 in the rolling-window scheme in our Section 4.3.  

Given the possibility of Granger causality in the cross quantiles and moments, we expand our analysis 

by using return series to perform the casualty-in-moments test suggested by Chen (2016). Unlike the 

existing causality tests, the major novelty of Chen (2016) test is due to its extension in studying the 

causality in mean, variance, quantiles and more importantly, their cross-causality (a.k.a. cross-

correlation in Chen (2016)). For instance, it possible that the left tail in a return distribution could cause 

the right tail in another return distribution. The question related to the cross-causality cannot be revealed 

by using the realized moments in other causality test frameworks, and thus Chen (2016) can provide 

additional information on the comprehensive causality analysis between gold and return, which are 

reported in our Section 4.4.   

 

3. Data and Higher-Moment Statistics  

3.1. The Dataset 

We use intraday data on gold and West Texas Intermediate (WTI) oil futures that are traded at NYMEX 

over a 24 hour trading day (pit and electronic), to construct daily measures of returns (r), standard 

realized volatility (RV), volatility jumps (RJ), and realized skewness (RSK) and realized kurtosis (RKU). 

The futures intraday price data, in continuous format, are obtained from two sources,  

 
4 According to Theorem 2.1 in Hill (2007), causality exists at any horizon if and only if it exists at horizon one. 
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www.disktrading.com (1997-2008)5 and www.kibot.com (2009-2017). Close to expiration of a contract, 

the position is rolled over to the next available contract, provided that activity has increased. Daily 

returns are computed as the end of day (New York time) price difference (close to close). In the case of 

intraday returns, 5-minute prices are obtained via last-tick interpolation, and 5-minute returns are then 

computed by taking the log-differences of these prices, which in turn are used to compute the realized 

moments. Our data covers the period of December 2, 1997 to May 26, 2017, i.e., giving us a total of 

5762 observations. Figure B1 in the Appendix B plots the various metrics for gold and oil, while Table 

B1 summarizes the basic statistics for r, RV, RJ, RSK and RKU of both gold and oil markets. As can be 

seen from Table B1, both gold and oil are negatively skewed and have excess kurtosis, which results in 

non-normal distributions as indicated by the overwhelming rejection of the null of normality under the 

Jarque-Bera test. Oil is also found to be more volatile than gold, though the mean returns are similar 

across the two markets. Further, as seen from Figure B1, RV, RJ, RSK and RKU are non-constant, with 

their magnitudes evolving over time, and hence, provides an initial motivation to analyze the causal 

relationship between these metrics across the gold and oil markets. 

An advantage of using intraday data is that we are also able to compute measures of higher moments, 

like realized volatility, volatility jumps, realized skewness and realized kurtosis. Below, we provide the 

details for the realized measures considered in the analysis. 

 

3.2. Realized Volatility Estimator 

The first measure we consider is the classical estimator of realized volatility, i.e. the sum of squared 

intraday returns (Andersen and Bollerslev, 1998), expressed as 

 𝑅𝑅𝑅𝑅𝑡𝑡 =  �𝑟𝑟𝑡𝑡,𝑖𝑖
2

𝑀𝑀

𝑖𝑖=1

 (3) 

where 𝑟𝑟𝑡𝑡,𝑖𝑖 is the intraday 𝑀𝑀 × 1 return vector and 𝑖𝑖 = 1, … ,𝑀𝑀 the number of intraday returns. 

 

 
5 www.disktrading.com is no longer accessible due to the termination of its services. The data of computed 
realized moments will be available online on the article webpage. 

http://www.disktrading.com/
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3.3. Volatility Jump Estimator 

A number of studies including Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), 

Andersen et al. (2007) have documented the presence of volatility jumps in higher frequency time series. 

Barndorff-Nielsen and Shephard (2004) show that realized volatility converges into permanent and 

discontinuous (jump) components as 

 lim
𝑀𝑀→∞

𝑅𝑅𝑅𝑅𝑡𝑡 = � 𝜎𝜎2(𝑠𝑠)𝑑𝑑𝑠𝑠 + �𝑘𝑘𝑡𝑡,𝑗𝑗,
2

𝑁𝑁𝑡𝑡

𝑗𝑗=1

𝑡𝑡

𝑡𝑡−1
 (4) 

where 𝑁𝑁𝑡𝑡 is the number of jumps within day 𝑡𝑡 and 𝑘𝑘𝑡𝑡,𝑗𝑗 is the jump size. This specification suggests that 

𝑅𝑅𝑅𝑅𝑡𝑡 is a consistent estimator of the integrated variance ∫ 𝜎𝜎2(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
𝑡𝑡−1  plus the jump contribution. The 

asymptotic results of Barndorff-Nielsen and Shephard (2004, 2006) further show that 

 lim
𝑀𝑀→∞

𝐵𝐵𝑅𝑅𝑡𝑡 = � 𝜎𝜎2(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−1
 (5) 

where 𝐵𝐵𝑅𝑅𝑡𝑡 is the realized bipolar variation defined as 

 𝐵𝐵𝑅𝑅𝑡𝑡 = 𝜇𝜇1−1 �
𝑁𝑁

𝑀𝑀 − 1
���𝑟𝑟𝑡𝑡,𝑖𝑖−1��𝑟𝑟𝑖𝑖,𝑡𝑡� =

𝜋𝜋
2

𝑀𝑀

𝑖𝑖=2

��𝑟𝑟𝑡𝑡,𝑖𝑖−1��𝑟𝑟𝑖𝑖,𝑡𝑡�
𝑀𝑀

𝑖𝑖=2

 (6) 

and 

 𝜇𝜇𝑎𝑎 = 𝐸𝐸(|𝑍𝑍|𝑎𝑎),𝑍𝑍~𝑁𝑁(0,1),𝑎𝑎 > 0. (7) 

Having defined the continuous component of realized volatility, a consistent estimator of the pure jump 

contribution can then be expressed as 

 𝐽𝐽𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑡𝑡 − 𝐵𝐵𝑅𝑅𝑡𝑡 (8) 

In order to test the significance of the jumps, we adopt the following formal test estimator proposed by 

Barndorff-Nielsen and Shephard (2006) 

 𝐽𝐽𝐽𝐽𝑡𝑡 =
𝑅𝑅𝑅𝑅𝑡𝑡 − 𝐵𝐵𝑅𝑅𝑡𝑡

(𝑣𝑣𝑏𝑏𝑏𝑏 − 𝑣𝑣𝑞𝑞𝑞𝑞) 1
𝑁𝑁𝑄𝑄𝑄𝑄𝑡𝑡

 (9) 

where 𝑄𝑄𝑄𝑄𝑡𝑡 is the Tri-Power Quarticity defined as 

 𝐽𝐽𝑄𝑄𝑡𝑡 = 𝑀𝑀𝜇𝜇4/3
−3 �

𝑀𝑀
𝑀𝑀 − 1

�� |𝑟𝑟𝑡𝑡,𝑖𝑖−2|4/3
𝑀𝑀

𝑖𝑖=3

|𝑟𝑟𝑡𝑡,𝑖𝑖|4/3 (10) 
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which converges to 

 𝐽𝐽𝑄𝑄𝑡𝑡 → � 𝜎𝜎4(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−1
 (11) 

even in the presence of jumps. 𝑣𝑣𝑏𝑏𝑏𝑏 = �𝜋𝜋
2
�
2

+ 𝜋𝜋 − 3 and 𝑣𝑣𝑞𝑞𝑞𝑞 = 2. Note that for each 𝑡𝑡, 𝐽𝐽𝐽𝐽𝑡𝑡  ~𝑁𝑁(0,1) 

as 𝑀𝑀 → ∞. 

As can be seen in Equation (25), the jump contribution to 𝑅𝑅𝑅𝑅𝑡𝑡 is either positive or null. Therefore, in 

order to avoid having negative empirical contributions, we follow Zhou and Zhu (2012) and re-define 

the jump measure as 

 𝑅𝑅𝐽𝐽𝑡𝑡 = max (𝑅𝑅𝑅𝑅𝑡𝑡 − 𝐵𝐵𝑅𝑅𝑡𝑡; 0) (12) 

 

3.4. Realized Skewness and Realized Kurtosis 

We compute realized skewness, RSK, and realized kurtosis, RKU, as measures of the higher-moments 

of the daily returns distribution computed from intra-day returns. Like Amaya et al. (2015), we consider 

RSK as a measure of the asymmetry of the daily returns distribution and RKU as a measure that accounts 

for extremes. Given the intraday returns and realized volatility realized skewness (RSK) on day t as 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 =
√𝑁𝑁∑ (𝑟𝑟𝑖𝑖,𝑡𝑡)3𝑁𝑁

𝑖𝑖=1

𝑅𝑅𝑅𝑅𝑡𝑡
3/2  (13) 

While, realized kurtosis (RKU) on day t is given by 

 𝑅𝑅𝑅𝑅𝑈𝑈𝑡𝑡 =
𝑁𝑁∑ (𝑟𝑟𝑖𝑖,𝑡𝑡)4𝑁𝑁

𝑖𝑖=1

𝑅𝑅𝑅𝑅𝑡𝑡2
 (14) 

The scaling of RSK and RKU by 𝑁𝑁1/2 and 𝑁𝑁 respectively, makes sure that their magnitudes correspond 

to daily skewness and kurtosis. 

 

4. Empirical Results 

In this section, we first present the results for three causality tests (linear, Diks and Panchenko (2006), 

and rolling-window of bivariate version of Hill (2007)) between the returns of gold and oil, not only in 

the mean but also in the realized higher moments, including volatility, skewness, and kurtosis. In 
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addition, the Chen (2016) test is employed to test the causality between gold and oil returns in mean, 

variance, quantiles, and their cross-causality.  

 

4.1. Linear Causality Analysis 

After choosing the optimal lag length for VAR by Bayesian Information Criterion (BIC),6 we perform 

the linear causality analysis on the returns of gold and oil and their realized higher moments. The results 

are shown in Table 1. For the returns (r), there is no causality between gold and oil at 5% significance 

level.  But there is weak evidence at 10% for the causality from gold to oil. For RV, RJ, and RKU, we 

can observe the bi-directional causality between gold and oil at the 5% significance level, but not for 

RSK in any direction even at the 10% level.  

Table 1. Results of Linear Granger Causality 

  Causality F-Statistic p-value Lags 

r gold ↛ oil 3.50 6.15% 1 
oil ↛ gold 0.15 69.99% 

RV gold ↛ oil 6.36 0.00% 13 
oil ↛ gold 10.41 0.00% 

RJ gold ↛ oil 6.25 0.00% 6 
oil ↛ gold 4.31 0.02% 

RSK gold ↛ oil 0.21 64.49% 
1 

oil ↛ gold 0.40 52.80% 

RKU gold ↛ oil 5.61 0.00% 
6 

oil ↛ gold 7.76 0.00% 
Note: r: returns; RV: realized volatility; RJ: jumps; RSK: realized skewness, and; RKU: realized kurtosis. 

 

4.2. Nonlinear Causality Analysis 

To motivate the use of a nonlinear causality approach, we conducted the BDS test on the residuals of 

the VAR(p) model used for the linear test of causality, with the results reported in Table B2 in the 

Appendix B of the paper. As can be seen, the null of i.i.d. residuals is overwhelmingly rejected in all 

cases, and hence, suggests the existence of uncaptured nonlinearity between returns and higher 

 
6 The maximum lag length of the VAR is set to be 15 in the standard linear causality test. 
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moments of the gold and oil markets. This motivates the use of the nonparametric causality test of Diks 

and Panchenko (2006), to which we turn next.  

Before carrying out the Diks and Panchenko (2006) test, it is important to select the value of bandwidth. 

We follow the optimal bandwidth choice in terms of the smallest mean squared error detailed in Diks 

and Panchenko (2006), which is derived on the basis of the ARCH process. For our dataset, the 

estimated ARCH parameter for return on gold is 0.2213, giving the optimal bandwidth 0.8633; and the 

estimated ARCH parameter for return on oil is 0.2142, giving the optimal bandwidth 0.8815. Therefore, 

we choose 0.87 which is close to the optimal bandwidth of returns of both gold and oil. Table 2 shows 

the p-values of 𝐽𝐽𝑛𝑛 test developed by Diks and Panchenko (2006) in both directions, for lags ranging 

from 1 to 10. For the returns, we can find evidence of causality from gold to oil at lags 4 and 5, but not 

verse visa. In terms of the RV, we cannot find evidence of causality in most lags. The only evidence of 

causality can be found from oil to gold at lag 5. Regarding RJ, RSK and RKU, we can find strong 

evidence of bidirectional causality between gold and oil for all lags. In summary, the nonlinear causality 

analysis is consistent with the linear causality analysis barring the lack of evidence of causality for RV 

and the opposite (i.e., strong evidence of spillover) for RSK. 

Table 2. p-Values of Nonlinear Causality Test 

Panel A: gold ↛ oil 
Lag r RV RJ RSK RKU 
1 38.99% 77.58% 0.00% 0.00% 0.27% 
2 47.43% 76.99% 0.00% 0.00% 0.02% 
3 17.76% 39.05% 0.00% 0.00% 0.05% 
4 2.54% 25.65% 0.00% 0.00% 0.02% 
5 2.51% 25.96% 0.00% 0.04% 0.00% 
6 6.67% 20.19% 0.00% 0.05% 0.00% 
7 9.49% 11.81% 0.00% 1.62% 0.00% 
8 8.96% 13.79% 0.00% 1.62% 0.00% 
9 22.16% 15.52% 0.00% 2.26% 0.01% 
10 17.64% 23.15% 0.00% 3.07% 0.00% 

Panel B: oil ↛ gold 
Lag r RV RJ RSK RKU 
1 91.06% 25.88% 0.00% 0.00% 0.09% 
2 94.43% 41.71% 0.00% 0.00% 0.14% 
3 90.67% 29.29% 0.00% 0.00% 0.02% 
4 31.67% 18.18% 0.00% 0.00% 0.05% 
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5 15.39% 4.12% 0.00% 0.01% 0.34% 
6 17.70% 8.06% 0.00% 0.03% 0.06% 
7 17.46% 14.86% 0.00% 0.04% 0.07% 
8 16.65% 18.93% 0.00% 0.28% 0.48% 
9 24.42% 21.77% 0.00% 0.82% 4.83% 
10 40.26% 34.79% 0.00% 0.67% 0.06% 

 Note: See Notes to Table 1. 

 

4.3. Rolling-Window Causality Analysis 

To motivate the rolling-window causality test, we conducted tests of multiple structural breaks on the 

individual equations of the VAR(p) model used for the linear Granger causality test. In this regard, we 

applied the multiple structural break test of Bai and Perron (2003), and the change-point test of Horvath 

et al. (2017). The results have been reported in Tables B3 and B4 in the Appendix B respectively, and 

in general shows regimes changes for higher moments rather than returns (and realized volatility under 

the change point test). Not surprisingly, the break dates are concentrated around the global financial 

crisis, the European sovereign debt crisis, and the decline in oil prices of 2014. The structural breaks, 

as well as nonlinearity, warrants the need for a time-varying causality approach for our variables of 

concern. 

Following Bampinas and Panagiotidis (2015), we perform a rolling-window study on the causality 

between the various metrics of gold and oil, based on the Hill (2007) framework with a bivariate VAR 

at horizon one.7 The rolling window length is set to be 522 days (close to 2 years of daily data), giving 

total number of widows equal to 5241. The causality analysis is carried out for each rolling-window, 

and we generated both parametric and bootstrapped p-values. We collect the number of rejections at 5% 

significance level, and then calculate the rejection rate, which is basically the number of rejections 

divided by the total number of windows, shown in Table 3. It is worthwhile to clarify that the numbers 

in Table 3 are the rejection rates, rather than p-values, and thus a larger number means rejecting the 

 
7 Throughout this paper, the setting of Hill (2007) test is as follows: 1) the maximum lag length of VAR is 15; 2) 
the optimal lag length of VAR is selected by BIC; 3) the bootstrap repetition is set to be 500 times. 
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non-causality more frequently, which implies that the causality occurs in a large percentage of total 

number of windows. 

The parametric and the bootstrap methods produce similar rejection rates, though the bootstrap p-values 

should have better approximation to the significance level under the null. We can hardly find casualty 

in both directions for the returns. Regarding RV, we find casualty in both direction among most of the 

rolling windows. This result is consistent with the linear causality analysis, but does not generally agree 

with the nonlinear test. In terms of RJ, we can find roughly 25% of the rolling windows with causality 

in both directions. When we focus on RSK, we find very rare causality in the rolling windows from gold 

to oil, and 9% of the rolling windows with causality in the opposite direction. This result is 

understandable as the crash-risk measured by RSK, is likely to be especially low for gold, given its 

well-established role as a safe haven. We can obverse causality in about 6% of rolling windows for the 

RKU in the direction from gold to oil, but 12% in the opposite direction. In summary, although nonlinear 

causality analysis suggests causality in RJ, RSK, and RKU, the rolling window causality analyses reveal 

that the causality only occurs in certain specific periods to drive the overall results under the nonlinear 

tests.  

Table 3. Rejection Rates of Rolling Window Causality  

  gold ↛ oil oil ↛ gold 
  Parametric Bootstrap Parametric Bootstrap 
R 0.90% 1.01% 2.96% 3.07% 
RV 79.97% 72.68% 77.94% 75.73% 
RJ 29.98% 29.31% 24.96% 24.61% 
RSK 0.06% 0.31% 9.25% 9.29% 
RKU 6.22% 5.88% 12.27% 12.17% 

Note: See Notes to Table 1; a larger number of rejection rate indicates a higher frequency of causality in the 
sample period.  

In order to reveal the exact timing where the causality occurs, we plot the bootstrapped p-values of the 

rolling window causality test in Figures 1 to 5. Firstly, we can observe that the p-values of causality of 

returns in both directions are mostly above 5%, with some weak evidence observed in both directions 

in an intermittent fashion. Secondly, the causality in RV is significant in the majority of the sample 

periods, but it is insignificant before 2002, during 2007 and 2012, and after 2015. Thirdly, the causality 

in RJ is mainly significant in 2006 and 2007. Fourthly, the causality in RSK from oil to gold is significant 
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before 2001, while the opposite direction is typically insignificant. Lastly, the causality in RKU is 

significant only occasionally in the sample period around 2002, 2005 and 2012, primarily from gold to 

oil, and the other way round during the end of the sample period. In sum then, consistent with the linear 

causality, the evidence of spillover across the volatilities of the two markets are quite strong especially 

during periods of turmoil,8 with jumps (primarily associated with negative returns (bad) volatility) 

playing an important role in this process, as observed for the linear and nonlinear tests of causality 

earlier.9 Based on the similar rejection rates of non-causality when compared within the various metrics 

of gold and oil tends to suggest that these two markets are equally likely to affect each other in various 

dimensions, though the period during which this happens is likely to differ.  

 

Figure 1. Rolling-Window Causality of Returns (r) 
Note: Gold ↛ Oil (black line) and Oil ↛ Gold (grey line) bootstrap p-values for rolling-window causality analysis. 
The red horizontal line denotes the 5% significance level. 

 
8 The importance of volatility spillovers is in line with the indirect suggestion made by Bampinas and Panagiotidis 
(2015) in terms of causality of volatility. These authors showed that when the returns are filtered by a GARCH-
BEKK (1,1) model, then causality between gold and oil returns no longer exists under the Diks and Panchenko 
(2006) framework, implying that nonlinear causality is due to volatility  
effects.  
9  The relatively stronger rejection rates under realized bad volatility compared to realized good volatility 
(particularly from gold to oil), results of which are available upon request from the authors, confirmed our 
conclusions associated with causality in RJ.  
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Figure 2. Rolling-Window Causality of Realized Volatility (RV) 
Note: See Notes to Figure 1.  
 

 

 

 

Figure 3. Rolling-Window Causality of Jumps (RJ) 
Note: See Notes to Figure 1.  
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Figure 4. Rolling-Window Causality of Realized Skewness (RSK) 
Note: See Notes to Figure 1.  
 

 

 

 

Figure 5. Rolling-Window Causality of Realized Kurtosis (RKU) 
Note: See Notes to Figure 1. 
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4.4. Causality-in-Moments Analysis 

Given the possibility of Granger causality in the cross moments (and quantiles), we expand our analysis 

by using the return series to perform the casualty in mean, variance, quantiles and more importantly, 

their cross-causality, as suggested by Chen (2016).   

Before applying the test, it is important to specify the conditional model for 𝑦𝑦𝑖𝑖𝑡𝑡|𝔜𝔜𝑖𝑖,𝑡𝑡−1. Following Chen 

(2016), we use the AR(1)-GARCH(1,1) as the basic model for the first two moments and AR(1)-

GARCH(1,1)-APD, developed by Komunjer (2007), as the model for the  quantiles and higher moments. 

The lags in the generalized cross-causality, 𝑛𝑛, is set to be up to 1, 5, and 10. We consider the causality 

in five quantiles and denote them as 𝑞𝑞1 (0-0.2); 𝑞𝑞2 (0.2-0.4); 𝑞𝑞3 (0.4-0.6); 𝑞𝑞4 (0.6-0.8); and 𝑞𝑞5 (0.8-1). 

Table 4 shows the p-values of the causality test in mean, variance, quantiles and their cross-causality, 

as developed by Chen (2016). The results of causality in mean is consistent with the three previous tests, 

i.e. there is no causality. Note, our results of lack in causality across the returns of the two markets is 

quite different from that of the recent work of Bampinas and Panagiotidis (2015), who, using linear, 

nonparametric and rolling-window causality tests like we use above, found that oil returns consistently 

caused gold returns, but the reverse is only true during episodes of crisis. But, it must be realized that, 

unlike these authors, we are focussing on futures prices, rather than spot prices, which makes our paper 

more relevant for practical applications in the context of hedging and/or safe-haven analyses, given the 

low transaction costs associated with futures trading. Furthermore, one can expect price discovery to 

take place primarily in the futures market as these prices respond to new information faster than the 

spot price due to lower transaction costs and ease of short selling associated with the futures contracts 

(Shrestha, 2014). This in turn, could be resulting in no impact on returns, but effects on higher moments 

through faster trading. 

However, we find cross-causality from the first moment of gold to the second moment and some higher 

quantiles of oil (q3, q4, and q5) and, in the opposite direction, from the first moment of oil to the second 

moment of gold. The causality in variance can only be found from gold to oil, but there is no cross-

causality with the first moment and any quantiles. Interestingly, there is a strong cross-causality in q1 

and the second moment in both directions. This is expected and can be easily explained by the fact that 
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q1 is the left tail of returns associated with negative shocks to the markets, and therefore has a significant 

impact on the second moment. Following the same logic, we also find the cross-causality in q5 and the 

second moment.10  

Overall, these results are in line with the idea of (partial) co-volatility spillovers, since the returns shock 

from financial asset k affects the co-volatility between two financial assets, i and j, one of which can be 

asset k (Chang et al., 2018b).     

Table 4. p-Values of Casualty-in-Moments Test 

     Panel A: gold ↛ oil 
  N 𝝋𝝋𝟏𝟏𝟏𝟏

(𝟏𝟏) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝟐𝟐) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝟏𝟏) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝒒𝒒𝟐𝟐) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝒒𝒒𝒒𝒒) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝟏𝟏) 

1 23.0% 3.3% 38.8% 56.7% 4.9% 2.3% 0.6% 
5 15.4% 35.1% 36.0% 40.4% 24.7% 14.0% 12.4% 

10 40.2% 38.0% 65.6% 81.1% 29.9% 6.9% 16.3% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝟐𝟐) 

1 79.0% 33.7% 72.1% 57.8% 45.5% 69.3% 91.9% 
5 89.4% 43.2% 72.6% 57.2% 95.3% 18.8% 98.7% 

10 76.2% 2.2% 73.2% 65.0% 3.8% 23.4% 16.9% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝟏𝟏) 

1 74.6% 2.1% 17.7% 86.0% 2.9% 46.3% 12.0% 
5 58.9% 3.3% 65.2% 9.5% 26.7% 94.1% 18.9% 

10 37.4% 9.1% 76.2% 17.3% 17.7% 48.6% 8.2% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝟐𝟐) 

1 46.0% 65.4% 88.7% 77.3% 29.8% 8.7% 29.7% 
5 80.4% 77.2% 81.4% 79.8% 40.4% 51.1% 76.9% 

10 95.7% 93.8% 93.6% 89.0% 78.2% 32.3% 94.2% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 35.7% 77.3% 16.3% 76.6% 79.9% 48.0% 49.1% 
5 19.6% 1.1% 0.6% 68.4% 38.7% 14.3% 65.3% 

10 32.2% 0.8% 0.4% 58.7% 35.4% 22.5% 4.8% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 22.4% 99.4% 20.1% 48.4% 18.3% 28.7% 46.1% 
5 84.0% 99.4% 60.4% 38.5% 60.2% 44.6% 63.5% 

10 40.4% 85.8% 25.2% 43.0% 71.0% 46.2% 80.3% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 14.9% 11.0% 16.6% 96.7% 4.2% 5.5% 0.5% 
5 19.3% 39.7% 5.0% 95.8% 25.0% 8.5% 10.0% 

10 48.5% 1.6% 1.3% 70.6% 9.7% 4.7% 3.0% 
    Panel B:  oil ↛ gold  
  N 𝝋𝝋𝟏𝟏𝟏𝟏

(𝟏𝟏) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝟐𝟐) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝟏𝟏) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝒒𝒒𝟐𝟐) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 𝝋𝝋𝟏𝟏𝟏𝟏
(𝒒𝒒𝒒𝒒) 𝝋𝝋𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝟏𝟏) 

1 32.7% 18.5% 69.1% 33.2% 45.1% 42.4% 16.6% 
5 27.5% 0.4% 10.5% 74.2% 33.0% 95.9% 13.6% 

10 37.8% 4.4% 38.3% 28.5% 37.1% 98.6% 8.4% 
1 49.0% 80.9% 88.6% 38.5% 81.1% 70.7% 48.1% 

 
10 In Table B5 in the Appendix B of the paper, we report the results from the out-of-sample version of Chen’s 
(2016) test, with a spilt of 70% of the data as in-sample and the remaining 30% as the out-of-sample, as in the 
original paper. As can be seen from Table B5, our results are qualitatively similar, with the main conclusion still 
holding over the out-of-sample period of January 2, 2012 to May 26, 2017. 
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𝝋𝝋𝟐𝟐𝟏𝟏
(𝟐𝟐) 

5 64.8% 32.5% 39.4% 23.8% 77.6% 76.8% 38.3% 
10 80.6% 8.1% 5.0% 25.6% 12.1% 32.3% 13.9% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝟏𝟏) 

1 64.5% 2.1% 64.3% 18.6% 49.1% 30.3% 25.6% 
5 32.4% 0.6% 2.1% 52.4% 8.6% 74.5% 25.5% 

10 66.8% 1.3% 4.2% 50.4% 14.0% 55.0% 1.9% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝟐𝟐) 

1 34.1% 26.5% 6.2% 2.4% 84.4% 44.7% 66.9% 
5 49.6% 49.2% 20.8% 18.9% 99.3% 79.0% 72.3% 

10 43.8% 64.0% 32.5% 19.3% 26.8% 27.8% 0.1% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 20.7% 2.9% 98.7% 10.5% 22.3% 2.9% 63.4% 
5 0.3% 8.4% 8.3% 19.0% 0.4% 31.8% 5.5% 

10 1.0% 9.2% 18.2% 52.4% 0.1% 40.4% 25.8% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 0.2% 82.4% 5.2% 37.6% 87.8% 25.3% 5.2% 
5 8.0% 28.2% 34.2% 24.0% 82.9% 84.6% 46.9% 

10 21.3% 49.4% 76.3% 32.6% 39.6% 94.2% 20.4% 

𝝋𝝋𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 59.7% 88.2% 53.0% 68.3% 61.1% 50.0% 86.7% 
5 41.6% 0.6% 54.1% 38.7% 50.4% 89.8% 25.7% 

10 21.7% 7.4% 79.9% 48.5% 5.3% 97.8% 16.1% 
Note: 𝜙𝜙𝑖𝑖𝑡𝑡

(1) is the first moment, 𝜙𝜙𝑖𝑖𝑡𝑡
(2) is the second moment, 𝜙𝜙𝑖𝑖𝑡𝑡

(𝑞𝑞1) is the quantile of (0,0.2), 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞2) is the quantile of 

(0.2,0.4), 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞3) is the quantile of (0.4,0.6), 𝜙𝜙𝑖𝑖𝑡𝑡

(𝑞𝑞4) is the quantile of (0.6,0.8), and 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞5) is the quantile of (0.8,1). 

 

5.  Robustness Check 

In order to check the robustness of the causality between gold and oil, we employ the trivariate setting 

of Hill (2007) causality test with one auxiliary variable. Literatures suggest that the causality between 

gold and oil may be subject to other variables, such as “safe-heaven” currencies, in our case the Swiss 

Franc (Balcilar et al., forthcoming), sentiment (Balcilar et al., 2017), and financial stress (Das et al., 

2018). We will consider them as the auxiliary variable in the framework of Hill (2007) trivariate 

causality test. We are interested in whether adding an auxiliary variable can change the causality 

relationship obtained in Section 4.  

5.1. Trivariate Causality among Gold, Oil, and CHF 

There are many assets, other than gold, which are also deemed as the “safe-heaven”. We investigate 

whether any other assets that are generally considered as “safe” could play a role in the causality 

between gold and oil. To this end, we download the intraday return of Swiss Franc (CHF)11 and 

 
11 Data for which is obtained from π-Trading.com (https://pitrading.com/historical-market-data.html). Due to the 
data availability, we restrict the period to July 1st, 2003 to August 28th, 2015.   

https://pitrading.com/historical-market-data.html
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calculate its RV, RJ, RSK, and RKU. We use the relevant moment of CHF as the auxiliary variable in 

Hill (2007) framework to study the causality of various moments between gold and oil.12  

Table 5 presents the p-values of the Hill (2007) test results with CHF as the auxiliary variable. There is 

strong evidence of bidirectional causality (rejection of Test 0.1 and 0.2) between gold and oil in terms 

of their RV and RJ, and such bidirectional causality is believed to be direct (rejection of Test 1.0), rather 

than a causal chain. This direct causality in both directions can lasts for at least five days (rejection of 

Test 2.0-5.0 at bounded 5% level).  

Additionally, we obtain the evidence of broken causal chains from gold to oil in terms of their return 

and RSK. Specifically, gold can cause CHF, yet CHF does not cause oil (rejection of 1.1; no rejection 

of 1.2), and thus a causal chain from gold to oil via CHF cannot be established. Regarding RSK and 

RKU in the direction from oil to gold, there is no evidence of direct causality or causal chain (no 

rejection of Test 0.1, 0.2, and 1.0-1.2).  

It is interesting to observe that return of oil cannot cause the return of gold in any horizon (no rejection 

of Test 0.1 and 0.2) but Test 1.0 is still rejected at the same time. Such kind of conflict also appeared in 

Hill (2007) and Salamaliki and Venetis (2013). 13 Strictly speaking, Hill (2007, p755) stipulate that “if 

both hypotheses are rejected then proceed to test for horizon-specific non-causation”, and the result of 

Test 0.1 and 0.2 should be prioritized over Test 1.0-1.2. Thus, we conclude that there is no evidence of 

causality from return of oil to return of gold at any horizon.  

 

 

 
12 For example, RV of CHF is the auxiliary variable when analyse the causality between RV of gold and oil. 
13 Hill (2007) allowed for simultaneous detection of non-causality at all horizons 𝑌𝑌 ↛

(∞)
𝑋𝑋 and causality at some 

horizon,  𝑌𝑌 →
ℎ
𝑋𝑋, in their empirical study of causality between M1 and real income. Salamaliki and Venetis (2013) 

employed Hill (2007) test to study the causality between energy consumption and real GDP, and their result also 

indicate the possible conflict between non-causality at all horizons and at some horizon. 
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5.2. Trivariate Causality among Gold, Oil, and Sentiment  

A number of papers have found that sentiment can have an impact on gold and oil return volatility (e.g. 

Balcilar et al, 2017). It is worthwhile to consider market sentiment as the auxiliary variable in the Hill 

(2007) test as well. Among different choices of sentiment measures, we select the Financial and 

Economic Attitudes Revealed by Search (FEARS) with thirty search terms, i.e. FEARS30, developed 

by Da et al. (2015).14 It should be noted that we always employ FEARS, rather than its higher moments 

which are unavailable, as the auxiliary variable to investigate the casualty between the different 

moments of gold and oil. 

The p-values of Hill (2007) test with FEARS as the auxiliary variable are shown in Table 6. There is 

strong evidence of bidirectional causality between gold and oil of their RV and RKU (rejection of Test 

0.1 and 0.2), and such causality relationship is direct (rejection of Test 1.0), which lasts for at least five 

days (rejection of Test 2.0-5.0 at bounded 5% level). Focusing on RJ, the direct causality is found from 

oil to gold (rejection of Test 1.0), but not in the opposite direction which shows a broken casual chain 

(rejection of Test 1.1; no rejection of Test 1.2). Moreover, broken causal chains are also found in the 

return of gold and oil in both directions. There is no evidence of causality in any form for the RSK (no 

rejection of any test).         

 5.3. Trivariate Causality among Gold, Oil, and Financial Stress    

Das et al. (2018) found that financial stress affects both returns and variance of gold and crude oil. Thus, 

financial stress can potentially change the casual relationship between gold and oil of their different 

moments. To investigate such issue, we choose the Office of Financial Research (OFR) Financial Stress 

Index (FSI) as the measure of the financial stress and treat it as the auxiliary variable in the Hill (2007) 

 
14 We download the data of FEARS from Zhi Da’s website (https://www3.nd.edu/~zda/, accessed on February 
23rd, 2020). Due the data availability, we restrict the period between July 1st, 2004 and December 30th, 2011. We 
also tried FEARS25 and FEARS35, and there is no difference in the conclusion of causality.  

https://www3.nd.edu/%7Ezda/
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test.15 Similar to Section 5.2, we employ FSI itself, rather than its higher moments, as the auxiliary 

variable. 

Table 7 shows the p-values of Hill (2007) test with FSI as the auxiliary variable. The direct causality 

relationship can be observed in RV and RJ in both directions (rejection of Test 0.1, 0.2, and 1.0), while 

this direct causality only appears in RV from gold to oil. The broken causal chains are found in both 

direction of RSK and one direction of return from oil to gold (rejection of Test 1.0; no rejection of both 

Test 1.1 and 1.2). 

It is noteworthy to point out that we find a causal chain in RV from oil to gold via FSI. This causal 

chain can be denoted as  𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑜𝑜𝑖𝑖𝑜𝑜
1
→𝐹𝐹𝑅𝑅𝐹𝐹

1
→𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑔𝑔𝑜𝑜𝑜𝑜𝑑𝑑. To elaborate on this casual chain, the RV of 

oil does not directly cause the RV of gold, and it is actual that the RV of oil firstly causes FSI and then 

FSI further cause the RV of gold. This observation is valuable in the sense that the volatility spillover 

from oil to gold is through the intermediary of FSI. Regarding the return series, the causal chain seems 

to be established from gold to oil, but however the rejection of Test 0.2 overrides the result, suggesting 

there is no causality at any horizon in this case.      

In conclusion, the results from the Hill (2007) trivariate framework with different auxiliary variable are 

generally consistent with our findings in our Section 4. We can hardly find any causality in the returns 

and RSK of gold and oil, but the direct causality can be identified in most cases of RV, RJ, and RKU. 

The most valuable observation in this section is that we find a causal chain in RV from oil to gold via 

FSI, which cannot be revealed in any bivariate causality tests.    

 

  

 
15 We download the data of OFR FSI from the OFR website (https://www.financialresearch.gov/financial-stress-
index, accessed on February 23rd, 2020). Due the data availability, we restrict the period between January 4th, 
2000 and May 26th, 2017. 

https://www.financialresearch.gov/financial-stress-index
https://www.financialresearch.gov/financial-stress-index
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Table 5. p-values of Hill (2007) Trivariate Causality Test with CHF as the Auxiliary Variable 

  Test Conclusion on Causality 

  0.1 0.2 1.0 1.1 1.2 2.0 3.0 4.0 5.0 Any horizon Direct or Chain Overall 

Panel A: gold (Y) ↛ oil (X) 

r 11.00% 14.20% 51.40% 0.00% 6.20% 12.00%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.00% 0.00% 0.00% 0.00% 91.20% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋  𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RJ 0.00% 0.00% 0.00% 0.00% 47.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋  𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RSK 95.20% 49.40% 73.60% 0.00% 29.00% 51.20%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RKU 5.40% 5.20% 2.00% 100.00% 21.80% 4.00%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋  

Panel B: oil (Y) ↛ gold (X) 

r 12.00% 14.20% 2.80% 0.00% 18.80% 11.80%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RJ 0.00% 0.00% 0.00% 100.00% 34.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RSK 16.20% 49.20% 46.60% 100.00% 49.00% 47.20%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑋𝑋;  𝑌𝑌 ↛

1
𝑈𝑈;  𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋  

RKU 61.80% 28.80% 39.80% 100.00% 10.80% 28.60%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑋𝑋;  𝑌𝑌 ↛

1
𝑈𝑈;  𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

Note: p-values in blue background are related to Step 1 of Hill (2007) test. Fail to reject either Test 0.1 or Test 0.2 implies the detection of non-causality at all 
horizons. Rejection in both Test 0.1 and 0.2 leads to proceed with the horizon-specific non-causality test. p-values in the yellow background are related to Step 
2 of Hill (2007) test. Rejection of Test 1.0 suggests a direct causality from Y to X at horizon one. Fail to reject Test 1.0 and reject both Test 1.1 and 1.2 indicates 
the presentence of a causal chain. p-values in the grey background are related to Step 3 of Hill (2007) test. Test 2.0-5.0 is for testing non-causality up to horizon 
ℎ ≥ 2. Bonferroni-type test size bound should be used in Step 3. In blue and yellow background, p-values in bold and italic font are significant at 5% level. In 
grey background, p-values in bold and italic font are significant at bounded 5% level. 
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Table 6. p-values of Hill (2007) Trivariate Causality Test with FEARS as the Auxiliary Variable 

  Test Conclusion on Causality 

  0.1 0.2 1.0 1.1 1.2 2.0 3.0 4.0 5.0 Any horizon Direct or Chain Overall 

Panel A: gold (Y) ↛ oil (X) 

r 71.60% 60.00% 66.20% 0.00% 32.20% 66.20%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.00% 0.00% 0.00% 0.00% 8.80% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋  𝑌𝑌

1
→𝑋𝑋 

RJ 3.14% 5.40% 13.76% 0.00% 45.28% 6.76% 6.54% 9.54% 4.30% 𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RSK 99.00% 97.40% 91.00% 100.00% 89.60% 98.60%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑋𝑋;  𝑌𝑌 ↛

1
𝑈𝑈;  𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RKU 0.00% 0.00% 0.00% 0.00% 78.40% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

Panel B: oil (Y) ↛ gold (X) 

r 23.20% 91.00% 87.40% 0.00% 68.00% 89.80%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.00% 0.00% 0.00% 0.00% 1.80% 0.60% 0.20% 0.00% 0.20% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RJ 3.00% 0.00% 3.40% 0.00% 0.80% 2.20% 1.40% 0.20% 0.40% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RSK 20.40% 8.40% 8.00% 100.00% 14.20% 9.00%       𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑋𝑋;  𝑌𝑌 ↛

1
𝑈𝑈;  𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RKU 3.40% 4.40% 0.20% 100.00% 79.20% 0.60% 0.60% 1.00% 0.20% 𝑌𝑌 
(∞)
��𝑋𝑋 𝑌𝑌

1
→𝑋𝑋  𝑌𝑌

1
→𝑋𝑋 

Note: See Notes to Table 5. 
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Table 7. p-values of Hill (2007) Trivariate Causality Test with FSI as the Auxiliary Variable 

  Test Conclusion on Causality 

  0.1 0.2 1.0 1.1 1.2 2.0 3.0 4.0 5.0 Any horizon Horizon-Specific Overall 

Panel A: gold (Y) ↛ oil (X) 

r 0.80% 60.00% 67.80% 0.00% 0.00% 26.40% 42.40%     𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈

1
→𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋  

RJ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

RSK 96.60% 44.60% 87.60% 100.00% 0.00% 6.40% 14.00%     𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑈𝑈

1
→𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RKU 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋  

Panel B: oil (Y) ↛ gold (X) 

r 16.20% 95.00% 83.20% 0.00% 40.20% 90.40% 3.40%     𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌
1
→𝑈𝑈 ↛

1
𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RV 0.40% 0.00% 21.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑈𝑈

1
→𝑋𝑋 𝑌𝑌

1
→𝑈𝑈

1
→𝑋𝑋 

RJ 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋  

RSK 57.60% 19.40% 80.80% 100.00% 0.00% 0.00% 49.80%     𝑌𝑌 ↛
(∞)

𝑋𝑋 𝑌𝑌 ↛
1
𝑈𝑈

1
→𝑋𝑋 𝑌𝑌 ↛

(∞)
𝑋𝑋 

RKU 0.40% 0.20% 0.00% 100.00% 2.80% 0.00% 0.00% 0.00% 0.00% 𝑌𝑌 
(∞)
�⎯�𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 𝑌𝑌

1
→𝑋𝑋 

 Note: See Notes to Table 5. 



26 
 

6. Concluding Remarks 

In this paper, we analyze the causal relationship between not only returns and overall variance of gold 

and oil markets, but also volatility jumps, skewness and kurtosis. In this regard, we use 5-minute futures 

market data on gold and oil returns, which are then used to compute realized volatility, jumps, realized 

skewness and kurtosis, over the daily period of December 2, 1997 to May 26, 2017. We then analyze 

the causal relationships between these metrics for gold and oil markets, using linear, nonparametric and 

time-varying approaches, with the latter two methods providing robust inferences in the presence of 

nonlinearity and structural breaks, which we show to exist between the variables of concern. In addition, 

we use a moments-based test of causality, which allows us to test for cross-casualty of returns, variances 

and quantiles. To check the robustness, we employ the trivariate causality test of Hill (2007) to 

investigate whether an additional auxiliary variable can have an impact on the causality between gold 

and oil.    

We find that, while there is hardly any evidence of spillovers between the returns of these two markets, 

strong evidence of bidirectional causality is detected for realized volatility, which seems to be resulting 

from volatility jumps. Evidence of spillovers is also detected for the realized skewness and realized 

kurtosis as well, with the effect in terms of the latter being relatively stronger, suggesting spillovers 

during extreme market situations. Moreover, based on the moments-based test of causality, evidence of 

co-volatility is obtained, which implied that extreme positive and negative returns of gold and oil tend 

to drive the volatilities in these markets. Finally, the trivariate causality test suggests a causal chain in 

the realized volatility from oil to gold via the financial stress. 

Our results are likely to have important implications for economic agents. In this regard, as highlighted 

in the introduction, recent studies have indicated that that using information on volatility jumps, realized 

skewness and realized kurtosis, investors can improve portfolio performance since these realized 

measures contain incremental information over simple realized variances. Naturally, our results have 

important implications for portfolio managers aiming to design optimal portfolios involving these two 

important commodities, since they will now have to take account of not only spillovers associated with 

realized volatility, but also, with those resulting between jumps (or bad volatility), and realized 
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skewness and realized kurtosis capturing crash and extreme risks respectively.16 In addition, given that 

there is spillover of realized skewness, implies that the possibility of a bubble in one of these two major 

commodity markets, particularly from the oil market, is likely to spread to the other market as well, and 

with commodity markets historically considered as leading indicators of the macroeconomy (Stock and 

Watson, 2003; Plakandaras et al., 2017; Pierdzioch and Gupta, 2019), recessionary impacts could be 

deep and persistent when these bubbles burst. In light of this, policymakers would need to vigilant and 

design appropriate counteractive policies ahead of time based on this high-frequency information. 

Future research will investigate the specific portfolio benefits by taking the causality between higher 

moments of gold and oil into consideration.  
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Appendix A. Technical Details 
 
A.1. Nonlinear Causality Test 

We briefly summarize the test statistics of Diks and Panchenko (2006) and its asymptotic properties. 

Under the null hypothesis of Granger non-causality 

𝐻𝐻0: 𝑋𝑋𝑡𝑡 does not Granger cause 𝑌𝑌𝑡𝑡 

Denote 𝑍𝑍𝑡𝑡 = 𝑌𝑌𝑡𝑡+1  and 𝑊𝑊𝑡𝑡 = (𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡 ,𝑍𝑍𝑡𝑡). The distribution of 𝑊𝑊𝑡𝑡  is invariant under 𝐻𝐻0  and thus it is 

convenient to drop the time subscripts and make the notation more compact as 𝑊𝑊 = (𝑋𝑋,𝑌𝑌,𝑍𝑍).  Based 

on the idea of conditional independence under the null, the joint probability density function 

𝑜𝑜𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and its marginals must follow 

 
𝑜𝑜𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑜𝑜𝑌𝑌(𝑦𝑦)
=
𝑜𝑜𝑋𝑋,𝑌𝑌(𝑥𝑥, 𝑦𝑦)
𝑜𝑜𝑌𝑌(𝑦𝑦)

𝑜𝑜𝑌𝑌,𝑍𝑍(𝑦𝑦, 𝑧𝑧)
𝑜𝑜𝑌𝑌(𝑦𝑦)

 (15) 

where (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) are the fixed values of (𝑋𝑋,𝑌𝑌,𝑍𝑍). DP firstly show that equation (15) implies 

 𝑞𝑞𝑔𝑔 ≡ 𝔼𝔼 ��
𝑜𝑜𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑜𝑜𝑌𝑌(𝑦𝑦) −
𝑜𝑜𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)
𝑜𝑜𝑌𝑌(𝑦𝑦)

𝑜𝑜𝑌𝑌,𝑍𝑍(𝑦𝑦, 𝑧𝑧)
𝑜𝑜𝑌𝑌(𝑦𝑦) �𝑔𝑔(𝑋𝑋,𝑌𝑌,𝑍𝑍)� = 0 (16) 

By choosing a symmetric weighting function 𝑔𝑔(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝑜𝑜𝑌𝑌2(𝑦𝑦), Equation (16) is simplified as  

 𝑞𝑞 = 𝔼𝔼�𝑜𝑜𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑜𝑜𝑌𝑌(𝑦𝑦) − 𝑜𝑜𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)𝑜𝑜𝑌𝑌,𝑍𝑍(𝑦𝑦, 𝑧𝑧)� = 0 (17) 

At this point, it is necessary to have local density estimators of a 𝑑𝑑𝑤𝑤-variate random vector 𝑊𝑊 at 𝑊𝑊𝑖𝑖. 

Denote the local density estimators as 

  𝑜𝑜𝑊𝑊(𝑊𝑊𝑖𝑖) =
(2𝜀𝜀)−𝑑𝑑𝑊𝑊
𝑛𝑛 − 1

� 𝕀𝕀(�𝑊𝑊𝑖𝑖 −𝑊𝑊𝑗𝑗� < 𝜀𝜀)
𝑗𝑗,𝑗𝑗≠𝑖𝑖

 (18) 

where 𝕀𝕀(⋅) is the indicator function and 𝜀𝜀 is the bandwidth. Diks and Panchenko (2006) further propose 

an estimator 𝐽𝐽𝑛𝑛 for 𝑞𝑞. 

 𝐽𝐽𝑛𝑛(𝜀𝜀) =
𝑛𝑛 − 1

𝑛𝑛(𝑛𝑛 − 2)
��𝑜𝑜𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖)𝑜𝑜𝑌𝑌(𝑌𝑌𝑖𝑖) − 𝑜𝑜𝑋𝑋,𝑌𝑌(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖)𝑜𝑜𝑌𝑌,𝑍𝑍(𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖)�
𝑖𝑖

 (19) 
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With the choice of the bandwidth depending on the sample size, 𝜀𝜀𝑛𝑛 = 𝐶𝐶𝑛𝑛−𝛽𝛽 , 𝐶𝐶 > 0  and 𝛽𝛽 ∈

�1
4� , 1

3� �, Diks and Panchenko (2006) derives the asympototics for 𝐽𝐽𝑛𝑛(𝜀𝜀𝑛𝑛) as 

 √𝑛𝑛
(𝐽𝐽𝑛𝑛(𝜀𝜀𝑛𝑛) − 𝑞𝑞)

𝑅𝑅𝑛𝑛
 →
𝑑𝑑

 𝑁𝑁(0,1) (20) 

where 𝑅𝑅𝑛𝑛 is the estimated standard error of 𝐽𝐽𝑛𝑛(𝜀𝜀𝑛𝑛). For the optimal choice of the bandwidth 𝜀𝜀𝑛𝑛, an 

interested reader can refer to the discussion in Diks and Panchenko (2006).  

A.2. Hill (2007) Causality Test 

Given a trivariate VAR of order 𝑝𝑝 with zero constants 

 𝑅𝑅𝑡𝑡 = �𝜋𝜋𝑖𝑖𝑅𝑅𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡

𝑝𝑝

𝑖𝑖=1

 (21) 

where 𝑅𝑅𝑡𝑡 = (𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡 ,𝑈𝑈𝑡𝑡)′, Ut is the auxiliary variable, 𝜋𝜋𝑖𝑖 is the coefficients matrix with dimension 

3 × 3. Then it is easy to use recursion to show an ℎ-step-ahead linear forecast of 𝑅𝑅𝑡𝑡+ℎ, give the 

information set 𝐹𝐹𝑉𝑉(𝑡𝑡). 

 𝑅𝑅�𝑡𝑡+ℎ|𝐹𝐹𝑉𝑉(𝑡𝑡) = �𝜋𝜋𝑖𝑖𝑅𝑅�𝑡𝑡+ℎ−𝑖𝑖|𝐹𝐹𝑉𝑉(𝑡𝑡)
𝑝𝑝

𝑖𝑖=1

= �𝜋𝜋𝑖𝑖
(ℎ)𝑅𝑅�𝑡𝑡+1−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 (22) 

where the ℎ-step-ahead coefficients matrix �𝜋𝜋𝑖𝑖
(ℎ)�

𝑖𝑖=1

𝑝𝑝
  satisfying the nonlinear recursion 

 𝜋𝜋1
(0) = 𝐹𝐹𝑚𝑚, 𝜋𝜋𝑗𝑗

(1) = 𝜋𝜋𝑗𝑗,        𝜋𝜋𝑗𝑗
(ℎ) = 𝜋𝜋𝑗𝑗+1

(ℎ−1) + 𝜋𝜋1
(ℎ−1)𝜋𝜋𝑗𝑗 (23) 

Then coefficients matrix 𝜋𝜋𝑖𝑖
(ℎ) can be expressed as 

 𝜋𝜋𝑗𝑗
(ℎ) =

⎣
⎢
⎢
⎢
⎡𝜋𝜋𝑋𝑋𝑋𝑋,𝑗𝑗

(ℎ) 𝜋𝜋𝑋𝑋𝑌𝑌,𝑗𝑗
(ℎ) 𝜋𝜋𝑋𝑋𝑋𝑋,𝑗𝑗

(ℎ)

𝜋𝜋𝑌𝑌𝑋𝑋,𝑗𝑗
(ℎ) 𝜋𝜋𝑌𝑌𝑌𝑌,𝑗𝑗

(ℎ) 𝜋𝜋𝑌𝑌𝑋𝑋,𝑗𝑗
(ℎ)

𝜋𝜋𝑋𝑋𝑋𝑋,𝑗𝑗
(ℎ) 𝜋𝜋𝑋𝑋𝑌𝑌,𝑗𝑗

(ℎ) 𝜋𝜋𝑋𝑋𝑋𝑋,𝑗𝑗
(ℎ)

⎦
⎥
⎥
⎥
⎤
 (24) 

Given Equation (24), Dufour and Renault (1998) shows how to use Wald statistics to formulate the 

noncausality test.  

𝑌𝑌𝑡𝑡 ↛
ℎ
𝑋𝑋𝑡𝑡|𝐹𝐹𝑋𝑋𝑋𝑋 if and only 𝜋𝜋𝑋𝑋𝑌𝑌,𝑗𝑗

(ℎ) = 0, ∀𝑗𝑗 = 1,2, …𝑝𝑝 
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The sequential test procedure is consisted by three steps. Step 1 is to test whether 𝑌𝑌 ever causes 𝑋𝑋 at all 

horizon ℎ > 0. 

   𝐻𝐻0
(∞):𝑌𝑌 ↛

1
(𝑋𝑋,𝑈𝑈) (Test 0.1) 

   𝐻𝐻0
(∞): (𝑌𝑌,𝑈𝑈)  ↛

1
𝑋𝑋 (Test 0.2) 

According to Hill (2007, Theorem 2.1), if  𝑌𝑌 ↛
1

(𝑋𝑋,𝑈𝑈)|𝐹𝐹𝑋𝑋𝑋𝑋 or (𝑌𝑌,𝑈𝑈) ↛
1
𝑋𝑋|𝐹𝐹𝑋𝑋𝑍𝑍, then 𝑌𝑌 ↛

(∞)
𝑋𝑋|𝐹𝐹𝑋𝑋𝑍𝑍. 

Fail to reject either Test 0.1 or Test 0.2 implies the detection of non-causality at all horizons. 

Rejection in both Test 0.1 and 0.2 leads to proceed with the horizon-specific non-causality test 

in the following two steps. Step 2 is to initially test whether 𝑌𝑌 does not cause 𝑋𝑋 one-step-ahead 

(Test 1.0).  

𝐻𝐻0
(1.0):𝑌𝑌 ↛

1
𝑋𝑋 (Test 1.0) 

Rejection of Test 1.0 suggests a direct causality from Y to X at horizon one. If fail to reject 

Test 1.0, then proceed to investigate the existence of a causal chain by the two tests below. 

𝐻𝐻0
(1.1):𝑌𝑌 ↛

1
𝑈𝑈 (Test 1.1) 

𝐻𝐻0
(1.2):𝑈𝑈 ↛

1
𝑋𝑋 (Test 1.2) 

If fail to reject either Test 1.1 or 1.2, there is a broken causal chain and it can be concluded that 𝑌𝑌 never 

causes 𝑋𝑋. Conversely, the rejection of both Test 1.1 and 1.2 indicates the presentence of a causal chain 

and proceed with Step 3 which aims to test non-causality up to horizon ℎ ≥ 2. 

𝐻𝐻0
(ℎ.0):𝑌𝑌 ↛

(ℎ)
𝑋𝑋 (Test h.0) 

The asymptotic distribution of the Wald-type statistics follows 𝜒𝜒2, which is a poor proxy under the 

finite small samples and the standard Wald tests in multivariate models tend to over-reject the null 

hypothesis (Dufour et al., 2006). Thus, Hill (2007) applied a parametric bootstrap method to obtain the 

p-values of the test, which can provide reasonable approximations to the chosen significance levels. It 

is important to highlight that Hill (2007) test procedure is subject to the multiple testing problem. To 
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tackle such problem, it is necessary to correct the overall size of the test by using Bonferroni-type test 

size bound, which is elaborated in Hill (2007, p756). In addition, Hill (2007) applied the test procedure 

based on a rolling-window to reveal the evolution in the long-run causality.  

A.3. Causality in Moments Test 

Chen (2016) developed a generalized parametric approach to test Granger causality in various moments 

and establish a class of cross-causality tests for Granger causality in mean, variance, quantile, and cross-

causality for a pair of returns series {𝑦𝑦𝑖𝑖𝑡𝑡}, 𝑖𝑖 = 1,2 and 𝑡𝑡 = 1, … ,𝐽𝐽. Chen’s (2016) test is applicable for 

the full-sample and out-of-sample contexts. Here we briefly summarize the test in the full-sample 

context. 

Denote 𝔜𝔜𝑖𝑖,𝑡𝑡−1 as the information set generated by the 𝑦𝑦𝑖𝑖,𝑡𝑡−𝑘𝑘 for all 𝑘𝑘 > 0 and 𝔜𝔜𝑡𝑡−1 ≡ (𝔜𝔜1,𝑡𝑡−1,𝔜𝔜2,𝑡𝑡−1). 

The null hypothesis that 𝑦𝑦2𝑡𝑡 does not Granger cause 𝑦𝑦1𝑡𝑡 in various moments can be formulated as 

 𝔼𝔼(𝜙𝜙(𝑦𝑦1𝑡𝑡)|𝔜𝔜𝑡𝑡−1) = 𝔼𝔼�𝜙𝜙(𝑦𝑦1𝑡𝑡)�𝔜𝔜1,𝑡𝑡−1� (25) 

Some special cases17 with the specification for the moment function 𝜙𝜙(⋅) are as follows. 

• No causality in mean:  

 𝔼𝔼(𝜙𝜙1(𝑦𝑦1𝑡𝑡)|𝔜𝔜𝑡𝑡−1) = 𝔼𝔼�𝜙𝜙1(𝑦𝑦1𝑡𝑡)�𝔜𝔜1,𝑡𝑡−1�, where 𝜙𝜙1(𝑦𝑦1𝑡𝑡) ≡ 𝑦𝑦1𝑡𝑡  (26) 

• No causality in variance:  

 𝔼𝔼(𝜙𝜙2(𝑦𝑦1𝑡𝑡)|𝔜𝔜𝑡𝑡−1) = 𝔼𝔼�𝜙𝜙2(𝑦𝑦1𝑡𝑡)�𝔜𝔜1,𝑡𝑡−1�, where 𝜙𝜙2(𝑦𝑦1𝑡𝑡) ≡ 𝑦𝑦1𝑡𝑡2   (27) 

• No causality in quantiles:  

 

𝔼𝔼�𝜙𝜙𝑞𝑞(𝑦𝑦1𝑡𝑡)�𝔜𝔜𝑡𝑡−1� = 𝔼𝔼�𝜙𝜙𝑞𝑞(𝑦𝑦1𝑡𝑡)�𝔜𝔜1,𝑡𝑡−1�,  

where 𝜙𝜙𝑞𝑞(𝑦𝑦1𝑡𝑡) ≡ 𝕀𝕀�𝑄𝑄𝑖𝑖𝑡𝑡(𝜏𝜏1) < 𝑦𝑦1𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑡𝑡(𝜏𝜏2)�  

and 𝑄𝑄𝑖𝑖𝑡𝑡(𝜏𝜏) is the 𝜏𝜏-quantile of 𝐹𝐹𝑖𝑖�⋅ �𝔜𝔜1,𝑡𝑡−1� with 𝜏𝜏 ∈ [0,1]   

(28) 

 
17 The cross-causality tests can be defined in a similar way, such as no causality from quantiles to mean/variance 
and vice versa.   
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The test is based on the standardized residuals {𝜀𝜀𝑖𝑖𝑡𝑡}, 𝑖𝑖 = 1,2  from a GARCH-type model with 

parameter 𝜃𝜃 for the raw return. In a similar way, define the moment functions φ(⋅) for the standardized 

residuals, 𝜀𝜀𝑖𝑖𝑡𝑡. 

 

φ𝑖𝑖𝑡𝑡
(1) ≡ 𝜀𝜀𝑖𝑖𝑡𝑡 

φ𝑖𝑖t
(2) ≡ 𝜀𝜀𝑖𝑖𝑡𝑡2 − 1 

φ𝑖𝑖t
(𝑞𝑞) ≡ 𝕀𝕀�𝑄𝑄𝜀𝜀,𝑖𝑖𝑡𝑡(𝜏𝜏1|𝛽𝛽𝑖𝑖) < 𝜀𝜀𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝜀𝜀,𝑖𝑖𝑡𝑡(𝜏𝜏2|𝛽𝛽𝑖𝑖) − (𝜏𝜏2 − 𝜏𝜏1)� 

(29) 

Define 𝜑𝜑𝑖𝑖𝑡𝑡 ≡ 𝜑𝜑𝑖𝑖𝑡𝑡(𝜃𝜃𝑖𝑖) as φ𝑖𝑖𝑡𝑡
(1), φ𝑖𝑖t

(2),  φ𝑖𝑖t
(𝑞𝑞) or any other zero-mean transformation of 𝜀𝜀𝑖𝑖𝑡𝑡 , where 𝜃𝜃𝑖𝑖  is 

parameter vector (containing 𝛽𝛽𝑖𝑖) of the conditional model for 𝑦𝑦𝑖𝑖𝑡𝑡|𝔜𝔜𝑖𝑖,𝑡𝑡−1. In order to estimate the sample 

cross-causality, it is necessary to introduce some more notations, φ𝑖𝑖,𝑜𝑜𝑡𝑡 ≡ 𝜑𝜑(𝜃𝜃𝑖𝑖𝑜𝑜) , φ𝑖𝑖,𝑜𝑜𝑡𝑡𝑐𝑐 ≡ φ𝑖𝑖,𝑜𝑜𝑡𝑡 −

𝔼𝔼[𝜑𝜑(𝜃𝜃𝑖𝑖𝑜𝑜)] , 𝜎𝜎𝑖𝑖2 ≡ 𝔼𝔼 ��φ𝑖𝑖,𝑜𝑜𝑡𝑡𝑐𝑐 �2� , 𝜑𝜑�𝑖𝑖𝑡𝑡 ≡ 𝜑𝜑𝑖𝑖𝑡𝑡�𝜃𝜃�𝑖𝑖𝑡𝑡� ,  𝜑𝜑𝚤𝚤� ≡ 𝐽𝐽−1 ∑ 𝜑𝜑�𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=1 ,  𝜑𝜑�𝑖𝑖𝑡𝑡𝑐𝑐 ≡ 𝜑𝜑�𝑖𝑖𝑡𝑡 − 𝜑𝜑𝚤𝚤�  and  𝜎𝜎�𝑖𝑖2 ≡

𝐽𝐽−1 ∑ (𝜑𝜑�𝑖𝑖𝑡𝑡𝑐𝑐 )2𝑇𝑇
𝑡𝑡=1 .  Then the generalized cross-causality at lag 𝑘𝑘 is defined as 𝜌𝜌𝑘𝑘 ≡ 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟�φ1,𝑜𝑜𝑡𝑡,φ2,𝑜𝑜𝑡𝑡−𝑘𝑘� 

and its finite sample version can be estimated by  

 𝜌𝜌�𝑘𝑘 ≡
1
𝐽𝐽
��

𝜑𝜑�1𝑡𝑡𝑐𝑐

𝜎𝜎�1 �
𝑇𝑇

𝑡𝑡=1

�
𝜑𝜑�2,𝑡𝑡−𝑘𝑘
𝑐𝑐

𝜎𝜎�2
� (30) 

Denote 𝜌𝜌� ≡ (𝜌𝜌�1,𝜌𝜌�2, … ,𝜌𝜌�𝑛𝑛) and  𝒱𝒱� ≡ (𝜎𝜎�1𝜎𝜎�2) × 𝐹𝐹𝑛𝑛 , where 𝑛𝑛 is a finite integer that 𝑛𝑛 ≪ 𝐽𝐽. Finally, the 

null hypothesis is tested by the proposed 𝐺𝐺𝜌𝜌 statistics with its asymptotic distribution.  

  𝐺𝐺𝜌𝜌 ≡ 𝐽𝐽(𝒮𝒮𝜌𝜌� )⊤�𝒮𝒮𝒱𝒱�−1Ω�𝒱𝒱�−1𝒮𝒮⊤�−1(𝒮𝒮𝜌𝜌� )  →
𝑑𝑑
𝜒𝜒2(𝑞𝑞) (31) 

 

 

where 𝒮𝒮 is a weighting matrix with dimension 𝑞𝑞 × 𝑛𝑛 and Ω� is the variance covariance matrix.   
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Appendix B. Additional Results 
 

Table B1. Summary Statistics 

  Gold  Oil 
Statistic r RV RJ RSK RKU  r RV RJ RSK RKU 
 Mean 0.0002 0.0001 0 -0.0073 9.8412  0.0002 0.0004 0 -0.0373 9.7147 
 Median 0.0003 0.0001 0 -0.0155 6.5458  0.0003 0.0003 0 -0.0368 6.8049 
 Maximum 0.0959 0.0044 0.0006 10.1096 382.7679  0.1722 0.005 0.0015 9.9328 244.7567 
 Minimum -0.0858 0 0 -10.2952 1.6671  -0.1654 0 0 -13.0038 1.5 
 Std. Dev. 0.0102 0.0002 0 1.2173 12.9393  0.0214 0.0005 0 1.1781 12.2363 
 Skewness -0.1182 8.9481 18.696 0.2813 9.4266  -0.1694 3.4334 12.6465 0.1336 8.1639 
 Kurtosis 10.1319 139.1781 509.4392 16.6456 168.6773  7.3764 19.6604 361.0132 18.519 103.2092 
 Jarque-Bera 12225.15 4529114 61912395 44779.78 6675373  4625.901 77960.62 30925903 57838.82 2474895 
 p-value 0 0 0 0 0  0 0 0 0 0 
N 5762 

Note: r: returns; RV: realized volatility; RJ: jumps; RSK: realized skewness, and; RKU: realized kurtosis; Std. Dev: standard deviation; p-value corresponds to the 
Jarque-Bera test with the null of normality.
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Table B2. BDS Test of Nonlinearity 

Dependent 
Variable 

Dimension 

2 3 4 5 6 
r: Gold 9.981*** 11.579*** 12.868*** 13.839*** 15.089*** 
r: Oil 9.542*** 13.104*** 15.091*** 17.094*** 19.133*** 
RV: Gold 31.797*** 36.482*** 39.539*** 42.785*** 46.546*** 
RV: Oil 34.438*** 40.788*** 45.583*** 50.127*** 55.656*** 
RJ: Gold 27.647*** 34.423*** 39.837*** 44.983*** 50.502*** 
RJ: Oil 30.026*** 36.812*** 42.462*** 48.072*** 54.154*** 
RSK: Gold 6.457*** 9.869*** 13.726*** 16.668*** 19.598*** 
RSK: Oil 8.652*** 11.863*** 15.214*** 17.659*** 19.947*** 
RKU: Gold 7.965*** 9.687*** 12.336*** 14.484*** 16.116*** 
RKU: Oil 5.291*** 6.687*** 7.461*** 8.019*** 8.725*** 

Note: See Notes to Table B1; The test is performed on the residuals of the individual equation of the VAR(p) 
model used for the linear Granger causality test; *** indicates the rejection of the null of i.i.d. residuals at the 1% 
level of significance, with the entries in the Table being Brock et al.,’s (1996) z-statistic. 
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Table B3. Bai and Perron (2003) Test of Multiple Structural Breaks 

Dependent Variable Dates 
r: Gold No Breaks 
r: Oil No Breaks 
RV: Gold 2/7/2002; 1/16/2006; 10/29/2008; 9/29/2011 
RV: Oil 1/16/2002; 3/12/2006; 1/9/2009; 8/18/2014 
RJ: Gold 6/4/2001; 12/3/2006 
RJ: Oil 6/11/2001; 5/21/2006 
RSK: Gold 08/07/2013 
RSK: Oil 3/16/2014 
RKU: Gold 2/23/2009;  2/21/2012 
RKU: Oil 11/22/2006 

Note: See Notes to Table B1; The test is applied on each equation of the VAR(p) model used for the linear Granger 
causality test. 
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Table B4. Test Statistics of the Change-Point Test of Horvath et al. (2017) 

  Dependent Variable: Oil Dependent Variable: Gold 

r 2.350 1.830 

RV 1.421 2.250 

RJ 26.614*** 18.230*** 

RSK 11.166*** 4.741** 

RKU 29.099*** 16.489*** 

Note: See Notes to Table B1; The test is applied on each equation of the VAR(p) model used for the linear Granger 
causality test; Critical values are 3.54 at 10%; 4.46 at 5% ; and 6.43 at 1%; *** indicates rejection of the null of 
no-change at 1% level of significance.  
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Table B5. p-Values of Casualty-in-Moments Test over an Out-of-Sample Period of January 2, 2012-
May 26, 2017 

    Panel A: gold ↛ oil 
  N 𝝓𝝓𝟏𝟏𝟏𝟏

(𝟏𝟏) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝟐𝟐) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝟏𝟏) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝒒𝒒𝟐𝟐) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝒒𝒒𝒒𝒒) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝟏𝟏) 

1 75.9% 5.6% 7.8% 61.6% 5.8% 20.9% 5.9% 
5 67.0% 35.3% 48.3% 35.1% 29.7% 54.8% 43.6% 

10 70.5% 11.8% 80.5% 45.3% 55.6% 27.3% 39.1% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝟐𝟐) 

1 61.1% 35.4% 30.9% 85.4% 7.6% 69.8% 65.6% 
5 86.1% 25.1% 24.1% 17.8% 25.5% 21.3% 57.7% 

10 84.8% 15.1% 54.5% 11.8% 25.0% 21.6% 25.9% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝟏𝟏) 

1 67.4% 4.5% 6.7% 27.2% 12.4% 28.2% 7.2% 
5 87.3% 13.3% 43.1% 10.7% 69.2% 70.0% 26.3% 

10 85.4% 13.7% 76.6% 31.1% 32.7% 89.0% 17.4% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝟐𝟐) 

1 38.0% 64.9% 61.6% 81.1% 67.5% 96.4% 78.0% 
5 6.6% 11.3% 34.4% 48.3% 85.7% 99.6% 55.8% 

10 16.9% 41.0% 32.5% 67.9% 91.0% 90.5% 89.9% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 13.9% 65.1% 26.6% 51.8% 59.1% 82.4% 8.5% 
5 50.1% 36.2% 39.0% 51.2% 32.8% 79.0% 47.9% 

10 83.2% 0.7% 6.4% 38.0% 0.5% 88.0% 10.9% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 15.3% 4.6% 8.8% 74.0% 74.2% 69.3% 54.6% 
5 31.2% 29.6% 3.7% 19.1% 65.5% 78.2% 96.7% 

10 43.7% 77.2% 22.0% 37.6% 94.3% 49.4% 70.2% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 80.7% 30.5% 28.3% 75.1% 19.7% 69.6% 21.5% 
5 61.3% 74.1% 17.5% 16.8% 7.0% 98.9% 63.9% 

10 62.2% 48.5% 19.2% 51.4% 15.6% 94.7% 50.1% 
    Panel B:  oil ↛ gold  
  N 𝝓𝝓𝟏𝟏𝟏𝟏

(𝟏𝟏) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝟐𝟐) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝟏𝟏) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝒒𝒒𝟐𝟐) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 𝝓𝝓𝟏𝟏𝟏𝟏
(𝒒𝒒𝒒𝒒) 𝝓𝝓𝟏𝟏𝟏𝟏

(𝒒𝒒𝒒𝒒) 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝟏𝟏) 

1 6.8% 9.2% 24.5% 39.0% 53.4% 81.0% 10.8% 
5 8.5% 38.0% 7.7% 42.3% 23.0% 51.5% 46.0% 

10 9.7% 54.1% 12.8% 23.6% 15.8% 59.8% 28.8% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝟐𝟐) 

1 1.8% 97.4% 6.3% 49.6% 48.0% 22.5% 10.8% 
5 20.5% 83.9% 0.1% 4.1% 62.4% 66.5% 0.1% 

10 4.8% 5.1% 0.0% 23.3% 0.1% 42.7% 0.0% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝟏𝟏) 

1 7.2% 3.2% 33.9% 20.6% 66.2% 90.6% 6.1% 
5 11.8% 36.2% 0.1% 20.1% 17.2% 21.0% 13.0% 

10 22.9% 10.9% 1.0% 15.9% 33.8% 37.2% 3.2% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝟐𝟐) 

1 99.8% 9.6% 21.0% 2.6% 97.5% 38.1% 72.7% 
5 99.4% 36.0% 21.3% 12.6% 53.5% 36.8% 92.7% 

10 61.8% 34.9% 19.7% 41.2% 49.6% 20.7% 10.3% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 98.7% 13.0% 60.2% 64.7% 26.1% 15.5% 66.8% 
5 21.7% 37.3% 5.0% 68.5% 52.6% 9.7% 12.1% 

10 21.3% 21.9% 7.5% 86.7% 18.0% 1.6% 4.2% 

𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 1.5% 63.1% 2.8% 47.7% 49.2% 48.9% 6.3% 
5 12.2% 69.1% 22.3% 82.1% 66.4% 4.5% 39.0% 

10 30.8% 38.2% 31.9% 97.4% 44.9% 13.1% 61.9% 
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𝝓𝝓𝟐𝟐𝟏𝟏
(𝒒𝒒𝒒𝒒) 

1 63.5% 19.6% 43.9% 99.3% 96.7% 88.4% 55.2% 
5 73.2% 1.4% 81.2% 80.8% 50.0% 3.9% 21.6% 

10 32.4% 4.4% 8.0% 82.4% 3.7% 6.1% 32.6% 
Note: 𝜙𝜙𝑖𝑖𝑡𝑡

(1) is the first moment, 𝜙𝜙𝑖𝑖𝑡𝑡
(2) is the second moment, 𝜙𝜙𝑖𝑖𝑡𝑡

(𝑞𝑞1) is the quantile of (0,0.2), 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞2) is the quantile of 

(0.2,0.4), 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞3) is the quantile of (0.4,0.6), 𝜙𝜙𝑖𝑖𝑡𝑡

(𝑞𝑞4) is the quantile of (0.6,0.8), and 𝜙𝜙𝑖𝑖𝑡𝑡
(𝑞𝑞5) is the quantile of (0.8,1). 
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Figure B1 (a). Data Plots of Gold Market 

Note: r: returns; RV: realized volatility; RJ: jumps; RSK: realized skewness, and; RKU: realized kurtosis. 
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Figure B1 (b). Data Plots of Oil Market 

Note: r: returns; RV: realized volatility; RJ: jumps; RSK: realized skewness, and; RKU: realized kurtosis. 
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