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Abstract
The availability of seasonal weather forecast information in Africa has potential to provide
advanced early warning of rainfall variability, informing preparedness actions to minimise adverse
impacts. Obtaining accurate forecast information for the spatial scales at which decisions are made
is vital. Here we examine the impact of spatial scales on the utility of seasonal rainfall forecasts in
Africa. Using observations alongside seasonal forecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF), we combine measures of local representativity and
skill to assess optimal spatial scales for anticipating local rainfall conditions. The results reveal
regions where spatial aggregation of gridded forecast data improves the quality of information
provided at the local scale, and regions where forecasts have useful skill without aggregation. More
generally this study presents a novel approach for evaluating the utility of forecast information
which is applicable both globally and at all timescales.

1. Introduction

Millions of livelihoods across Africa rely on rain-fed
agriculture as their main source of income and food.
Rainfall is a major water source for crops in Africa
and therefore rainfall deficits can lead to reduced soil
moisture, low yield (Rockström et al 2003, Traore et al
2013, Black et al 2016) with impacts on food security
(Khan et al 2014, Adebayo et al 2014). Accurate fore-
casts of seasonal rainfall variability (i.e. forecasts of
seasonal rainfall at lead times of one to severalmonths
ahead) are vital to help decision-makers anticipate
and prepare for drought conditions that could be det-
rimental to rain-fed agriculture.

To help anticipate drought events in Africa, the
main source of operational seasonal forecast inform-
ation available to decision makers are regional con-
sensus seasonal rainfall forecasts produced and dis-
seminated by the Regional Climate Outlook Forums
(RCOFs) in Southern, Western and Eastern Africa
(O’Brien et al 2003, Tarhule and Lamb 2003, Ogallo
et al 2008). Each RCOF reviews current climatic
conditions alongside a variety of seasonal forecast
information from dynamical and statistical models
for the coming season to produce a regional ‘con-
sensus’ forecast (Ogallo et al 2008). The consensus

forecast is summarised by a regional map indicat-
ing the probability of seasonal total precipitation fall-
ing within tercile categories. Fixed tercile probabil-
ities are issued over relatively large areas or zones,
on the order of several 100 km, considered more
likely to experience the same seasonal rainfall vari-
ability. This is justified by the assumption that the
main source of predictive skill at seasonal timescales
is from large-scale forcings (such as anomalous sea-
surface temperatures; SSTs) which typically drive a
large-scale atmospheric response, in turn generating
relatively spatially homogeneous anomalous rainfall
signals (Haylock andMcBride 2001,Moron et al 2006,
2007).

While RCOF forecasts have some prediction
skill (e.g. Mason and Chidzambwa 2008, Hansen
et al 2011, Bliefernicht et al 2019, Walker et al
2019), issuing fixed tercile probabilities over large
regions is problematic as it increases the likelihood
that the forecast information is irrelevant for sub-
regional scales, particularly over regions with marked
spatial variability in rainfall due to localised fea-
tures such as topography (Patt and Gwata 2002).
Finer horizontal-scale forecast information however
is available from dynamical models which predict the
evolution of physical processes in the climate system
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on a horizontal grid. Dynamical forecasts of sea-
sonal rainfall exhibit predictive skill at lead times of
0 to 5 months over East Africa during the October-
November-December short rains season (Mwangi
et al 2014, Ogutu et al 2017, Walker et al 2019)
and over southern Africa during December-January-
February (Weisheimer and Palmer 2014). Moreover,
seasonal forecasts from dynamical models may have
more skill than regional RCOF forecasts, as has been
shown during the short rains over East Africa (Walker
et al 2019). This suggests that skillful dynamical fore-
cast information at sub-regional spatial scales could
be more useful for decision making.

Spatially coarse (e.g. 200–300 km) model predic-
tions are commonly transformed to more locally rel-
evant, finer spatial scales using dynamical and stat-
istical downscalingmethods. Dynamical downscaling
is the approach of nesting high-resolution regional
model simulations within those of a spatially coarse
global climate model, whereas statistical downscal-
ing calibrates coarse simulations to local long-term
observations using various techniques such as bias
correction, regression analysis and spatial interpol-
ation. Although both approaches may improve sea-
sonal prediction skill in Africa (Landman et al 2009,
Siegmund et al 2015, Kipkogei et al 2017) some-
times they result in no clear skill improvements rel-
ative to coarse simulations (Diro et al 2012, Nikulin
et al 2018). Since seasonal predictions fromdynamical
models are increasingly moving towards higher resol-
utions (< 100 km, e.g.MacLachlan et al 2015, Johnson
et al 2019), this highlights the importance of assess-
ing whether current seasonal dynamical forecasts are
both skillful and relevant for local scales in Africa.

Taking into account the spatial scales at which sea-
sonal forecast information is issued is important if the
forecast is to be both representative of, and skillful
(able to accurately predict anomalous conditions) for,
local scales. Even in the presence of a spatially homo-
geneous large-scale circulation regime, tropical rain-
fall is highly localised due to the erratic nature of con-
vection and complexity of surface characteristics such
as orography. Since fine-scale rainfall fields are thus
highly spatially heterogeneous (noisy), spatial aggreg-
ation of a gridded rainfall forecastmay reduce this less
predictable heterogeneity (noise) by elucidating the
more predictable signal due to the large-scale circula-
tion (Gong et al 2003). Consequently, spatial aggreg-
ation may increase forecast skill (Gong et al 2003,
Diro et al 2012, Chardon et al 2016), but comes with
the obvious disadvantage of losing representativity
of local conditions. This trade-off of course depends
on the ‘regime’ of spatial variability, as illustrated in
an idealised sense by figure 1. Over regions where
rainfall variability is spatially homogeneous (poten-
tially because of the influence of a large-scale driver,
for example), spatial aggregation may provide little
benefit, leading to only small increases in forecast
skill (figure 1(a)). In contrast, spatial aggregationmay

substantially improve skill over a spatially heterogen-
eous rainfall region especially if the forecast initially
has poor skill at smaller spatial scales (figure 1(b)).
However in such cases, spatial aggregation will also
lead to a large loss of representativity. There is there-
fore an obvious trade-off between spatially aggregat-
ing to maximise skill without losing representativity
if a forecast is to be usable for sub-regional scales. A
representative forecast is useless if it has no predic-
tion skill, whereas a skillful forecast is useless if it is
not-representative.

The aimof this paper is therefore to investigate the
impact of spatial scale on the representativity and skill
of regional seasonal forecast information for provid-
ing information on drought risk at local scales. We
explore these aspects using rainfall observations and
seasonal forecasts from a dynamical forecast model,
described further in section 2. This is followed by the
results and conclusions in Sections 3 and 4.

2. Methods and data

2.1. Methodological approach
Our overarching aim is to investigate the represent-
ativity and skill of regional seasonal forecast inform-
ation for anticipating local rainfall conditions in
Africa. We analyse seasonal total rainfall during the
four calendar seasons ofDecember-January-February
(DJF), March-April-May (MAM), June-July-August
(JJA), September-October-November (SON), assess-
ing the utility of regional information of the interan-
nual variability of seasonal rainfall, with emphasis on
measuring variability of the seasonal rainfall distribu-
tion using tercile categories. Whilst it could be argued
that finer quantile categories (e.g. quintiles or deciles)
might providemore detailed and ‘useful’ information
on the seasonal rainfall distribution, terciles are ana-
lysed here since they are the primary format used to
communicate seasonal forecast information to users.
It should further be noted that the agricultural sector
in Africa is highly sensitive to rainfall variability and
even variability that is not statistically extreme (i.e.
lower tercile events) is likely to have widespread and
severe impacts.

2.1.1. Evaluating representativity
We use high horizontal resolution (0.05◦) rainfall
observations (section 2.2.1) to quantify representativ-
ity of regional rainfall variability of local conditions.
We measure regional representativity by linearly cor-
relating regional-mean with local inter-annual sea-
sonal rainfall observations using Pearson’s correla-
tion coefficient. Correlation magnitudes can range
between -1 (negative linear correlation) to 0 (no
linear correlation) to 1 (positive linear correlation).
Positive correlations close to 1 indicate strong co-
variability of regional and local rainfall and thus
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Figure 1. Schematics depicting idealised relationships between the horizontal spatial resolution (spatial aggregation scale) of
rainfall and the estimation/prediction skill (left y-axis), and representativity of local rainfall conditions (right y-axis), for (a)
spatially homogeneous and (b) spatially heterogeneous regimes of spatial rainfall variability. Skill can be defined as the accuracy
of rainfall predicted by a weather forecast relative to some observational reference data.

high representativity. Conversely, positive (or negat-
ive) correlations close to 0 indicate weak or no co-
variability and thus little to no-representativity. Cor-
relations are only presented if they are statistically
significantly different from a correlation of zero at
the 95% confidence level (p-value < 0.05) computed
using a two-tailed t-test.

We also quantify regional representativity of the
inter-annual variability of the seasonal rainfall distri-
bution as summarised by tercile categories. We meas-
ure this using the probability of detecting (POD) the
observed local tercile, using the tercile observed at the
regional scale, defined as follows:

POD=
H

H+M
(1)

Where, H is the total number of hits, i.e. the num-
ber of times that the local tercile is correctly detec-
ted by the regional tercile, andM is the total number
of misses, i.e the number of times that the local ter-
cile is not detected by the regional tercile, for a given
tercile category. POD values therefore range from 0
to 1, with 1 representing perfect local tercile detec-
tion and 0 indicating that all local tercile events were
missed. Computing the POD in observations there-
fore provides an indication of the maximum possible
representativity that could be obtained if a regional
tercile forecast was perfect.

2.1.2. Evaluating skill
We evaluate the skill of ensemble seasonal rainfall
hindcasts (re-forecasts) from a dynamical forecast
model, which are gridded at a horizontal resolution of
1◦ (section 2.2.2). Skill is evaluated in two ways. First,
we quantify the potential ‘local’ skill of this type of
forecast information by verifying the 1◦ predictions
against 0.05◦ observations. Second, we quantify the
impact of spatial aggregation on forecast skill by veri-
fying the predictions aggregated to different spatial

scales against observations aggregated to the same
spatial scales as the model.

We use two skill scores to verify the skill of the
ensemble seasonal hindcasts. Ensemble mean skill is
assessed using the Anomaly Correlation Coefficient
(ACC); the Pearson correlation between the observed
anomalies and forecast anomalies. The ACC ranges
from -1 to 1, with positive values indicating agree-
ment between the observed and hindcast anomalies.
ACCs are deemed statistically significantly different
from a correlation of zero using the 95% confid-
ence level (p-value < 0.05). Note that for a given sea-
son, observed anomalies are computed relative to
the observed climatology, whereas hindcast anom-
alies are computed relative to the hindcast climato-
logy. Moreover, anomalies for each year are always
computed with the year removed from the respect-
ive climatology to simulate an independent skill
evaluation.

We also assess the skill of tercile probabilities from
the hindcasts using the Relative Operating Charac-
teristic (ROC) Area which measures the ability of
the hindcast probabilities to discriminate events for a
given tercile category. The ROC area is the area under
a ROC curve, created by plotting the hit rate against
the false alarm rate for different hindcast probab-
ility thresholds for the tercile category of interest.
ROC Area values of 1 correspond to perfect discrim-
ination, values of 0.5 correspond to no discrimina-
tion skill and are equivalent to the skill of random
chance (equal likelihood of a hit and false alarm),
and values < 0.5 indicate that events may be discrim-
inated but mislabelled. The statistical significance
(p-value < 0.05) of the ROC Area values are calcu-
lated using a Mann-Whitney U test (Mason and Gra-
ham 2002). For each year in a given season, respect-
ive tercile boundaries in observations and hindcasts
are computed with the year of interest removed
from the corresponding observed and hindcast
climatologies.
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2.1.3. Combining representativity and skill
As described in section 1, skill and representativity
must be examined in tandem in order to find the
optimal spatial scale to use a forecast (e.g. figure 1).
We illustrate this within the context of tercile fore-
casts, by determining the amount of spatial aggreg-
ation required to reach a certain threshold of forecast
skill, whilst maintaining a reasonable level of repres-
entativity of the local scale. The optimal spatial scale
is the scale at which the hindcasts meet pre-defined
thresholds of both tercile skill and representativity
metrics defined previously (sections 2.1.1 and 2.1.2).
To find the optimal spatial scale, we apply the follow-
ing two-step process:

(a) As model skill depends on spatial scale and can
be improved by applying spatial aggregation
to obtain the skillful spatial scale (Von Storch
et al 1993), we first compute the skillful spa-
tial scales for each grid-box of the hindcasts.
We define this as the smallest spatial aggrega-
tion scale at which the tercile hindcast prob-
abilities satisfy a skill threshold when evaluated
against observations at the same scale. Using the
ROC Area, the skill threshold applied is that
at which the ROC Area is statistically signific-
ant at the 95% level (p< 0.05) computed from
a Mann-Whitney U test. This ensures that the
skill threshold is both statistically robust and
sufficiently large to exceed the skill of random
chance.

(b) We obtain the representativity of the skillful
spatial scales found in (a) using the POD rep-
resentativity metric at the equivalent scale in
the observations. If the POD at that scale satis-
fies the pre-defined representativity threshold,
then the forecast is considered both skillful and
representative. Otherwise, the forecast is con-
sidered not-representative.

2.2. Data
2.2.1. CHIRPS rainfall observations
For reference rainfall observations, we use seasonal
rainfall totals accumulated from daily rainfall estim-
ates from the Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS) version 2.0
(Funk et al 2015a). CHIRPS is ideal for examining
spatial rainfall variability due to its high spatial res-
olution of 0.05◦ and complete long-term daily record
from 1981 to present. CHIRPS rainfall estimates are
derived from geostationary infrared satellite retrievals
of cloud top temperature merged with available rain
gauge data. We use CHIRPS for the period 1983 to
2017 as CHIRPS is more reliant on re-analysis rain-
fall during the early 1980s, due to missing satellite
data over Africa during this period (Knapp et al 2011,
Dinku et al 2018). Evaluations against rain gauge
observations show that CHIRPS performs very well
over many regions of Africa (Tote et al 2015, Funk

et al 2015a, Maidment et al 2017, Muthoni et al 2019)
especially when accumulated over timescales of sev-
eral days to months (Dinku et al 2018, Ayehu et al
2018). However, it should be highlighted that, like all
satellite-gauge based rainfall estimates, CHIRPS will
be more uncertain over regions with low gauge dens-
ity, such as central Africa (Funk et al 2015a).

2.2.2. Dynamical hindcasts of seasonal rainfall
We analyse hindcasts repetition of seasonal total
precipitation produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) sea-
sonal forecasting System 5 (SEAS5, Johnson et al
2019) obtained from the Copernicus Climate Change
Service (C3S) Climate Data Store (Raoult et al 2017).
The hindcasts have 25 ensemble members, are at
a horizontal resolution of 1◦ and span the 24 year
period of 1993-2016. 23 re-forecast samples are used
per season to keep sample sizes the same as DJF
(e.g. DJF 1994 includes December 1993, January 1994
and February 1994). We use hindcasts initialised at
a lead time of 1 month before the start of the sea-
son, which is within the timescale at which sea-
sonal forecast information is utilised for decision-
making. We additionally analysed hindcasts from
three other dynamical seasonal forecasting systems
produced by the UK Met Office, Météo France and
DeutscherWetterdienst. However, for brevity we only
present results for SEAS5 because it has highest over-
all skill compared to the othermodels. Skill results for
all models are presented in Supplementary Material
(stacks.iop.org/ERL/15/094023/mmedia).

3. Results and discussion

3.1. Representativity of regional forecasts at the
local scale
Comparisons between representativity and spatial
scale for wet seasons at five locations in Africa are
illustrated in figure 2. As spatial scale is increased,
both the correlation between regional and local
inter-annual rainfall variability and the POD for
the lower tercile category decrease at a rate highly
dependant on location (figures 2 (c) and (d)). This
location-dependence of representativity can be seen
by examining both metrics at 5◦; a typical spatial
scale at which a regional forecast might be issued.
At three locations (Zambia, Somalia, DRC), regional-
local rainfall is strongly positively correlated (> 0.9)
and the POD is relatively high (> 0.8) suggesting that
regional variability is highly homogeneous and thus
representative of local variability there. In contrast,
lower correlations at Fort Portal, Uganda and the Jos
Plateau, Nigeria where the topography is complex,
reveal that the regional scale is less-representative due
to highly localised inter-annual variability due to oro-
graphic effects and the characteristics of convective
systems.
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Figure 2. (a) Topographic map of Africa (height in meters above sea-level; m.s.l.) and (b) magnification of Fort Portal, Uganda
and the surrounding region illustrating the context of different spatial scales. Coloured stars in (a) mark five locations used for (c)
Pearson correlations (statistically significant at the 95% level) between CHIRPS seasonal rainfall totals at nominal spatial
resolution of 0.05◦ and areal mean rainfall in X◦ ×X◦ square regions surrounding each 0.05◦ location. (d) Probability of
Detecting (POD) lower tercile events at 0.05◦ using the tercile observed from areal mean rainfall in X◦ ×X◦ square regions
surrounding each location in (a). Panels (e)-(h) show mean total seasonal rainfall and (g)-(j) show the Pearson correlations
between seasonal rainfall observed at 0.05◦ and areal mean rainfall in 5◦ × 5◦ square regions surrounding each 0.05◦ pixel
between 1983 and 2017. Correlations in panels (c) and (i)-(l) are only shown where they are statistically significant at the 95%
level and where seasonal mean rainfall totals are > 100 mm as outlined by the black contour. The geographic coordinates of the
four locations are provided in table S1.

The representativity of the typical spatial scale of a
regional forecast varies seasonally and spatially across
Africa, as shown by mapping correlations between
regional (5◦) and local (0.05◦) interannual variability
at every 0.05◦ grid-box in the CHIRPS data (figures
2(i)–(l)). High correlations indicate regionally homo-
geneous interannual variability, highlighting regions
where seasonal rainfall is modulated by large-scale
drivers. Such regions include southern Africa (DJF
wet-season), East Africa (MAM; long rains and SON;
short rains) and the Guinea Coast of southern West
Africa (JJA; West African monsoon) where rainfall
variability is known to be strongly linked to large-
scale drivers (Black et al 2003, Cook et al 2004,
Hastenrath 2007, Nicholson 2013, Cretat et al 2019,
e.g.). Strong spatial homogeneity in inter-annual
variability over East Africa during the short rains cor-
roborates with previous studies (Moron et al 2007,

Camberlin et al 2009). Conversely, lower correlations
indicate increasingly localised variability and exhibit
more complex spatial patterns over central Africa and
highland areas, including the Ethiopian, Cameroon
and Guinea Highlands, and the East African Rift
system (c.f. figure 2). Such regions experience high
interannual variability in deep convection (Hart et al
2019), are where convective systems preferentially
form (Rowell and Milford 1993, Laing and Fritsch
1993, Hodges and Thorncroft 1997, Laing et al 2008,
Jackson et al 2009), and rainfall is locally enhanced by
orography (e.g. Kamara 1986, Nicholson 1996). Cru-
cially, these correlation maps suggest that regional-
scale forecasts of seasonal rainfall, such as those
produced by RCOFs, are more likely to be represent-
ative and therefore locally useful over southern Africa
and East Africa where there is strong co-variability
between regional and local seasonal rainfall. Note
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that these representativity results may be less certain
over some regions with low gauge density in CHIRPS
(e.g. Central Africa). However, the spatial precipit-
ation patterns estimated by CHIRPS can be treated
with some confidence since they are highly depend-
ant on satellite observations of deep convective sys-
tems, underpinned by a high-resolution climatology
(Funk et al 2015a,b).

The local representativity of regional forecasts
also depends on whether their information content
(i.e. tercile probabilities) is a representative indicator
of local conditions. This is evaluated by mapping the
local tercile POD when using the terciles observed
at the regional spatial scale of 5◦ in CHIRPS (fig-
ures 3(a)–(h)). Unsurprisingly, POD values for the
below normal tercile are high over regions of homo-
geneous inter-annual variability and low over regions
of heterogeneous variability, introduced previously
in figure 2. Similar spatial patterns and magnitudes
of POD are found for the above normal tercile cat-
egory as shown in figure S1 in Supplementary Mater-
ial. However, for the normal category the POD is sub-
stantially lower (< 0.6), revealing frequent disagree-
ment between the regional tercile and normal tercile
observed at the local scale. This disagreement might
be expected since by definition the normal category
is more constrained, requiring rainfall totals to fall
within both the lower and upper boundaries of the
category. Conversely, single boundaries for the lower
and upper terciles are more likely to be crossed in
the presence of a large-scale anomalous atmospheric
signal driven by external forcing. However, the low
POD for the normal category strongly emphasises
that the information content of any regional tercile
forecast of the normal category, is frequently unrep-
resentative and therefore has little value for decision-
making at local scales. This is of particular concern
for regional scale tercile forecasts issued by RCOFs of
the normal category, which tend to be over-forecast
and for which the probabilities are generally not reli-
able (Mason and Chidzambwa 2008, Hansen et al
2011, Bliefernicht et al 2019, Walker et al 2019).
In contrast, re-calculating the POD using a regional
scale of 1◦ instead of 5◦ causes a widespread increase
(POD >0.7) in representativity even over heterogen-
eous rainfall regions. This marked increase can be
explained by the fact that the smaller spatial scale
of 1◦ is much closer to the spatial correlation scales
of rainfall variability from convective systems at sea-
sonal timescales (Lebel and Le Barbe 1997, Ali et al
2003, Maidment et al 2013). Therefore a skillful ter-
cile forecast at a spatial scale of 1◦ could be highly rel-
evant for local monitoring. Skillful forecasts at even
smaller spatial scales may yield higher representativ-
ity over some regions (e.g. figure 2(d) observed POD
≥ 0.8 at spatial scales ≤ 1◦). However, the relatively
high POD at 1◦ is encouraging since 1◦ is approxim-
ately the typical spatial scale at which gridded dynam-
ical forecasts are available for users.

3.2. Skill of dynamical seasonal forecasts at the
local scale
An assessment of the prediction skill of 1◦ SEAS5
hindcasts verified against the 0.05◦ CHIRPS obser-
vations is shown in figure 4. Regions of ensemble
mean skill (ACC > 0) and lower tercile probability
skill (ROC Area > 0.5) are very similar, with the skill
patterns consistent with a spatially coarser evaluation
of SEAS5 at 2.5◦ by Johnson et al (2019). Similar skill
patterns are also found for the above normal tercile
category, and in hindcasts from three other dynamical
models (see figures S2-S5 in Supplementary Mater-
ial). Statistically significant high skill regions include
Southern Africa (DJF), East Africa (DJF, SON) and
southern West Africa (JJA), where seasonal rainfall
has known predictability (Weisheimer and Palmer
2014, Mwangi et al 2014, Ogutu et al 2017, Walker
et al 2019) due to strong teleconnections with SST
variability particularly in the Pacific (via the El-Niño
Southern Oscillation; ENSO) and Indian Oceans
(Mason et al 1996, Nicholson and Jeeyoung 1997,
Indeje et al 2000). Over high skill regions the SEAS5
hindcasts can therefore be expected to provide skill-
ful predictions of the expected sign of the seasonal
rainfall anomalies and the lower and upper terciles
of the rainfall distribution. In contrast, no skill (ACC
≤ 0, ROC Area = 0.5) is present over areas in Cent-
ral Africa, Northern West Africa (JJA, SON), South-
ern Africa and orographic regions, where deep con-
vective activity is frequent (Bennartz and Schroeder
2012, Hart et al 2019) and precipitation processes are
complicated by localised orographic effects (Kamara
1986, Oettli and Camberlin 2005). Note that the lack
of statistically significant skill regions are a likely
consequence of the relatively short hindcast period
analysed. The overall skill patterns are comparable
with the representativity results described in section
3.1. Regions of statistically significant high skill are
strongly concomitant with the spatially homogen-
eous and thus representative regional rainfall regions
presented in figures 2 and 3. Higher forecast skill over
regions experiencing larger spatial scales of rainfall
variability has also been shown at sub-seasonal times-
cales by Moron and Robertson (2020). This is expec-
ted since regions of highly spatially homogeneous
rainfall variability are more likely to represent areas
where the rainfall variability is driven by more pre-
dictable large-scale anomalous conditions (Haylock
and McBride 2001, Moron et al 2006, Moron et al
2007).

3.3. Impact of spatial aggregation on skill
Figure 5 shows the dependence of SEAS5 skill on spa-
tial aggregation when evaluated against CHIRPS at
the same spatial aggregation scales at the five loc-
ations introduced previously in figure 2. The skill
dependence with spatial aggregation is highly vari-
able between the locations which have been chosen
specifically to illustrate the ‘regimes’ of skill and
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Figure 3. Probability of detecting (POD) the local (0.05◦) interannual rainfall tercile using the tercile derived from the 5◦ × 5◦

(below normal, (a)-(d); normal, (e)-(h)) and 1◦ × 1◦ (below normal, (i)-(l); normal, (m)-(p)) regional mean during DJF, MAM,
JJA and SON, 1984-2017. POD values are only shown where seasonal mean rainfall totals are > 100 mm as outlined by the black
contour. Results for the above normal tercile category are shown in figure S1 in Supplementary Material.

Figure 4. Evaluation of SEAS5 prediction skill at 1◦ using CHIRPS at 0.05◦. Panels (a)-(d) show the skill of the ensemble mean
measured using the Anomaly Correlation Coefficient (ACC) and (e)-(h) show skill for lower tercile probabilities using the
Relative Operating Characteristic (ROC) Area. Stippling denotes regions where skill scores are statistically significant at the 95%
confidence level (p < 0.05) and skill scores are only shown where seasonal mean rainfall totals are > 100 mm as outlined by the
black contour.

representativity introduced in figure 1. Livingstone
and Southern Somalia (SON) are locations with
skill within homogeneous regions, whereas North-
ern DRC and Southern Somalia (MAM) are loca-
tions with no-skill within homogeneous regions (c.f.
figure 5 and figures 2(c) and (d)). In contrast, the
Jos Plateau is a location with skill within a hetero-
geneous region, while Fort Portal is a location with

no-skill within a heterogeneous region. While spa-
tial aggregation increases skill at Southern Somalia
(MAM), Northern DRC and Fort Portal, it has no
impact on skill in Southern Somalia (SON) and
even degrades skill at Jos Plateau. Moreover, the skill
response to spatial aggregation can be different for
the ensemble mean compared to the lower tercile
probabilities (e.g. Livingstone). Skill increases with
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Figure 5. (a) Anomaly Correlation Coefficient (ACC) and (b) Relative Operating Characteristic (ROC) Area for the below normal
tercile category as a function of spatial aggregation scale at five locations in Africa during 1994-2016. SEAS5 is verified against
CHIRPS at the same spatial scales. Open circles denote skill scores which are statistically significant at the 95% confidence level
(p < 0.05).

Figure 6. (a)-(d) spatial aggregation scales at which the ROC Area for lower tercile probabilities from SEAS5 hindcasts for each
season are statistically significant (p< 0.05) according to a Mann-Whitney U test. (e)–(h) probabilities of detecting (POD) the
local tercile observed at 0.05◦ by CHIRPS using the tercile observed at the ‘skillful’ spatial aggregation scales in (a)–(d). (i)–(l)
yes/no maps delineating areas where the spatial aggregation scales of skill (a)–(d), have a POD of the lower tercile in (e)–(h)
greater than 0.75. In each panel grey areas denote regions where the ROC Area threshold is not fulfilled by spatial aggregation.
Results are only shown where seasonal mean rainfall totals are> 100 mm as outlined by the black contour.

aggregationmay indicate locations where aggregation
helps to reduce the less-predictable noise of localised
rainfall variability, isolating the large-scale predict-
able rainfall signal (Gong et al 2003). However, skill
increases with aggregation may also be due to the
conflation of gridpoints from neighbouring regions
with higher skill. In contrast, skill degradation with
aggregation may indicate locations where aggrega-
tion conflates neighbouring regions with different cli-
matic rainfall regimes and/or low skill. These res-
ults also reveal that the skill response to aggregation
can be opposite over locations with similar repres-
entativity. For example, skill increases with aggrega-
tion at Fort Portal and decreases with aggregation at

Jos Plateau even though both are located within relat-
ively spatially heterogeneous regions. Moreover, even
if spatial aggregation improves skill, representativity
may be substantially lost (e.g. Fort Portal, c.f. figure
1). These combined impacts of aggregation emphas-
ise the importance of using representativity alongside
skill to decide whether spatial aggregation is useful.

3.4. Optimal spatial scales for presenting seasonal
forecast information
Finally, we combine skill and representativity to map
out the optimal spatial scales for presenting seasonal
forecast information across Africa, using SEAS5 as an
example (figure 6). The spatial aggregation scales at
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which the SEAS5 tercile probabilities of below normal
rainfall exhibit skill are shown in figures 6(a)–(d) (see
figures S6 and S7 in SupplementaryMaterial for equi-
valent results for the above normal and near-normal
tercile categories). Aggregation is not required over
spatially homogeneous rainfall regions where SEAS5
is already skillful at 1◦ (e.g. Southern and East Africa,
c.f. figures 2 and 4). However, increasing aggregation
is typically required towards the edges of such regions.
In these transition regions, seasonal rainfall variab-
ility progressively becomes less predictable at smal-
ler scales because of the stronger influence of more
localised rainfall processes and weaker influence of
large-scale drivers. The skill threshold is not exceeded
over areas of Central Africa, East Africa, West Africa,
Madagascar and the outer regions of the domain,
highlighting deficiencies in skillful seasonal predic-
tion there which cannot be sufficiently resolved by
spatial aggregation.

We next present the ‘local’ representativity of the
skillful aggregation scales using the CHIRPS lower
tercile POD at the skillful spatial aggregation scales
of SEAS5 at each grid-box (figure 6(e)–(h)). Over
many regions where hindcasts meet the skill criteria
without aggregation, such as East Africa (SON), the
POD is near 1 and thus the native 1◦ scale of the
model is both skillful and representative of local con-
ditions. Conversely, locations where spatial aggrega-
tion both satisfies the skill criteria and exhibits relat-
ively high POD values (e.g. > 0.7) are extensive but
more localised. Many areas where substantial spatial
aggregation is needed to obtain skill (> 5◦) are associ-
ated with POD <0.5, highlighting regions where skill
gains from aggregation reduce the utility of the fore-
cast because of the large representativity lost.

To help delineate such regions, we finally apply
a representativity threshold of 0.75 to the POD val-
ues in figure 6(e)–(h) to combine skill and represent-
ativity, showing where the skillful aggregation scales
of the hindcasts are locally useful (figure 6(i)–(l)).
Skillful and representative locations are spatially vari-
able and not only limited to the more predictable
homogeneous rainfall regions (e.g. central Africa).
Although such results depend on the skill and repres-
entativity thresholds used, they provide an example of
the type of approach which could be used to diagnose
the utility of seasonal forecast information alongside
spatial scale, while allowing a user the flexibility to
choose thresholds relevant to their risk aversion and
requirements of the forecast information.

4. Conclusions

Due to the marked spatial variability of rainfall across
Africa, it is important that the spatial scales at which
seasonal forecast information is presented are optim-
ised such that forecasts are both representative and
skillful at scales most relevant for decision making.
Consequently, we have examined the impact of spatial

scale on the representativity and skill of seasonal fore-
cast information in Africa. The main conclusions are
summarised as follows:

(1) Representativity: Regional and local scale sea-
sonal inter-annual rainfall variability is highly
correlated over areas of East, Southern andWest
Africa, and thus regional scale seasonal forecast
information, including that summarised using
lower and upper terciles of the rainfall distri-
bution, can be highly representative over such
regions. However, near-normal tercile events
at regional and local scales frequently disagree
and therefore the normal tercile category at
a regional scale is unrepresentative over most
regions of Africa.

(2) Skill: 1◦ gridded ensemble mean and probabil-
istic tercile hindcasts from the SEAS5 dynamical
seasonal forecasting model have highest skill
over representative regions in Africa where sea-
sonal rainfall has known predictability due to
strong teleconnections with large-scale drivers.
These results are also reflected in three addi-
tional dynamical forecasting systems (see Sup-
plementary Material). Spatially aggregating the
hindcasts may increase skill over regions with
low skill.

(3) Representativity and Skill: An approach applied
to assess the optimal spatial scales to maxim-
ise representativity and skill of gridded sea-
sonal forecast information reveals that spatial
aggregation can both maintain representativity
and improve skill over certain regions with low
forecast skill. However, in more predictable cli-
mates, seasonal forecasts should be presented at
their native scale to maximise representativity.
This approach can be applied to other forecast-
ing models, globally and at all timescales.

Overall, these findings have important implica-
tions for both providers and users of regional-scale
seasonal forecast information. Regional forecast pro-
viders, particularly those involved in producing the
RCOF consensus forecasts, should consider alternat-
ives to issuing regional forecasts of the normal ter-
cile and also consider moving towards issuing more
locally-relevant, higher spatial resolution forecasts
guided by available information on the seasonal fore-
cast skill of dynamical models. Users must interpret
regional-scale seasonal forecasts of the normal tercile
category with great caution, including regional fore-
casts issued over regions with heterogeneous inter-
annual rainfall variability.

It is also important to stress that the conclusions
based on CHIRPS may be less reliable over regions
with low gauge density (e.g. central Africa) which is
an unavoidable source of uncertainty in observing
rainfall variability in Africa (Washington et al 2013,
Maidment et al 2015). Additionally, our results are
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based upon seasonal forecast data provided by the
Copernicus Climate Change Service’s Climate Data
Store, which is freely available to users, but limited
to a relatively short hindcast period (24 years) and
a horizontal resolution of 1◦. Short hindcasts may
limit obtaining robust estimates of model skill (Barn-
ston et al 2012, Shi et al 2015). Moreover, the original
horizontal resolution of the SEAS5 model is ~ 35 km;
almost three times higher than the SEAS5 data avail-
able on the Climate Data Store. Whilst higher resol-
ution forecasts like this could be even more repres-
entative of local conditions (figures 2(c)–(d)), these
data are not as accessible to users in Africa, and our
analysis of CHIRPS shows that data at scales of 1◦

can still be highly representative (figure 3). Future
work will examine these aspects alongside the rela-
tionship between spatial scale, skill and representativ-
ity at sub-seasonal timescales and its impacts on other
agriculturally-relevant metrics, such as soil moisture
and dry spells.
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