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Abstract. When the same weather or climate simulation is
run on different high-performance computing (HPC) plat-
forms, model outputs may not be identical for a given ini-
tial condition. While the role of HPC platforms in delivering
better climate projections is to some extent discussed in the
literature, attention is mainly focused on scalability and per-
formance rather than on the impact of machine-dependent
processes on the numerical solution.

Here we investigate the behaviour of the Preindustrial (PI)
simulation prepared by the UK Met Office for the forth-
coming CMIP6 (Coupled Model Intercomparison Project
Phase 6) under different computing environments.

Discrepancies between the means of key climate variables
were analysed at different timescales, from decadal to cen-
tennial. We found that for the two simulations to be statis-
tically indistinguishable, a 200-year averaging period must
be used for the analysis of the results. Thus, constant-forcing
climate simulations using the HadGEM3-GC3.1 model are
reproducible on different HPC platforms provided that a suf-
ficiently long duration of simulation is used.

In regions where El Niño–Southern Oscillation (ENSO)
teleconnection patterns were detected, we found large
sea surface temperature and sea ice concentration differ-
ences on centennial timescales. This indicates that a 100-
year constant-forcing climate simulation may not be long
enough to adequately capture the internal variability of the
HadGEM3-GC3.1 model, despite this being the minimum
simulation length recommended by CMIP6 protocols for
many MIP (Model Intercomparison Project) experiments.

On the basis of our findings, we recommend a minimum
simulation length of 200 years whenever possible.

1 Introduction

The UK CMIP6 (Coupled Model Intercomparison Project
Phase 6) community runs individual MIP (Model Intercom-
parison Project) experiments on differing computing plat-
forms but will generally compare results against the refer-
ence simulations run on the UK Met Office platform. For
this reason, within the UK CMIP community, the possible
influence of machine dependence on simulation results is of-
ten informally discussed among scientists, but surprisingly
an analysis to quantify its impact has not been attempted.

The issue of being able to reproduce identical simula-
tion results across different supercomputers, or following
a system upgrade on the same supercomputer, has long
been known by numerical modellers and computer scientists.
However, the impact that a different computing environment
can have on otherwise identical numerical simulations ap-
pears to be little known by climate model users and model
data analysts. In fact, the subject is rarely ever addressed in
a way that helps the community understand the magnitude
of the problem or to develop practical guidelines that take
account of the issue.

To the extent of our knowledge, only a few authors have
discussed the existence of machine dependence uncertainty
and highlighted the importance of bit-for-bit numerical re-
producibility in the context of climate model simulations.
Song et al. (2012) and Hong et al. (2013) investigated the
uncertainty due to the round-off error in climate simulations.
Liu et al. (2015a, b) discussed the importance of bitwise iden-
tical reproducibility in climate models.

In this paper, we investigate the behaviour of the
UK CMIP6 Preindustrial (PI) control simulation with the
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140 M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations

HadGEM3-GC3.1 model on two different high-performance
computing (HPC) platforms. We first study whether the two
versions of the PI simulation show significant differences in
their long-term statistics. This answers our first question of
whether the HadGEM3-GC3.1 model gives different results
on different HPC platforms.

Machine-dependent processes can influence the model in-
ternal variability by causing it to be sampled differently on
the two platforms (i.e. similarly to what happens to en-
semble members initiated from different initial conditions).
Therefore, our second objective is to quantify discrepancies
between the two simulations at different timescales (from
decadal to centennial) in order to identify an averaging pe-
riod and/or simulation length for which the two simulations
return the same internal variability.

Note that the PI control simulation is a constant-forcing
simulation. Therefore, no ensemble members are required for
such an experiment because, provided that the simulation is
long enough, it will return a picture of the natural climate
variability.

The remainder of the paper is organized as follows. In
Sect. 2, mechanisms by which the computing environment
can influence the numerical solution of chaotic dynamical
systems are reviewed and discussed. In Sect. 3, the numerical
simulations are presented, and the methodology used for the
data analysis is described. In Sect. 4, the simulation results
are presented and discussed. In Sect. 5, the main conclusions
of the present study are summarized.

2 The impact of machine dependence on the numerical
solution

In this section, possible known ways in which machine-
dependent processes can influence the numerical solution of
chaotic dynamical systems are reviewed and discussed.

Different compiling options, degrees of code optimization,
and basic library functions all have the potential to affect the
reproducibility of model results across different HPC plat-
forms and on the same platform under different computing
environments. Here we provide a few examples of machine-
dependent numerical solutions using the 3-D Lorenz model
(Lorenz, 1963), which is a simplified model for convection
in deterministic flows. The Lorenz model consists of the fol-
lowing three differential equations:

dx
dt
= α(y− x), (1)

dy
dt
= γ x− y− zx, (2)

dz
dt
= xy−βz, (3)

where the parameters α = 10, γ = 28, and β = 8/3 were
chosen to allow for the generation of flow instabilities and
obtain chaotic solutions (Lorenz, 1963). The model was ini-

tialized with (x0,y0,z0) ≡ (1, 1, 1) and numerically inte-
grated with a 4th-order Runge–Kutta scheme using a time
step of 0.01. The Lorenz model was run on two HPC plat-
forms, namely the UK Met Office Supercomputer (here-
inafter simply “MO”) and ARCHER.

To first demonstrate the implications of switching between
different computing environments, the Lorenz model was run
on the ARCHER platform using the following:

– two different FORTRAN compilers (cce8.5.8 and in-
tel17.0; see Fig. 1a and b);

– same FORTRAN compiler (cce8.5.8) but different
degrees of floating-point optimization (-hfp0 and
-hfp3; see Fig. 1c and d); and

– the same FORTRAN (cce8.5.8) compiler and compil-
ing options, but the x component in Eqs. (1)–(3) was
perturbed by adding a noise term obtained using the
random_number and random_seed intrinsic FOR-
TRAN functions. In particular, the seed of the random
number generator was set to 1 and 3 in two separate ex-
periments; see Fig. 1e and f.

Finally, to illustrate the role of using different HPC plat-
forms, the Lorenz model was run on the ARCHER and MO
platforms using the same compiler (intel17.0) and identical
compiling options (i.e. level of code optimization, floating-
point precision, vectorization) (Fig. 1g and h).

The divergence of the solutions in Fig. 1a and b can likely
be explained by the different “computation order” of the two
compilers (i.e. the order in which the same arithmetic expres-
sion is computed). In Fig. 1c and d, solutions differ because
of the round-off error introduced by the different precision
of floating-point computation. In Fig. 1e and f, the different
seed used to generate random numbers caused the system to
be perturbed differently in the two cases. While this conclu-
sion is straightforward, it is worth mentioning that the use
of random numbers is widespread in weather and climate
modelling. Random number generators are largely used in
physics parameterizations for initialization and perturbation
purposes (e.g. clouds, radiation, and turbulence parameteri-
zations) as well as in stochastic parameterizations. The pro-
cesses by which initial seeds are selected within the model
code are thus crucial in order to ensure numerical repro-
ducibility. Furthermore, different compilers may have differ-
ent default seeds.

As for Fig. 1g and h, this is probably the most relevant
result for the present paper. It highlights the influence of the
HPC platform (and of its hardware specifications) on the final
numerical solution. In Fig. 1g and h the two solutions diverge
in time similarly to Fig. 1a–d; however, identifying reasons
for the observed differences is not straightforward. While we
speculate that reasons may be down to the machine archi-
tecture and/or chip set, further investigations on the subject
were not pursued as this would be beyond the scope of this
study.

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/



M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations 141

Figure 1. Attractor (left-hand side) and time series of the x component (right-hand side) of the 3-D Lorenz model for simulations run on
ARCHER using the cce8.5.8 and intel17.0 compilers (a, b), the same compiler (cce8.5.8) but a different level of floating-point optimization
(hfp0, hfp3) (c, d), and the same compiler (cce8.5.8) and compiling options but a different seed for the random number generator (seed 1, 3)
(e, f). Panels (g) and (h) are the Lorenz attractor and the x component time series for the Lorenz model run on MO and ARCHER using the
same compiler (intel17.0) and compiling options.

www.geosci-model-dev.net/13/139/2020/ Geosci. Model Dev., 13, 139–154, 2020



142 M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations

The three mechanisms discussed above were selected be-
cause they are illustrative of the problem and easily testable
via a simple model such as the Lorenz model. However, there
are a number of additional software and hardware specifica-
tions that can influence numerical reproducibility and that
only emerge when more complex codes, like weather and
climate models, are run. These are the number of processors
and processor decomposition, communications software (i.e.
MPI libraries), and threading (i.e. OpenMP libraries).

We conclude this section by stressing that the four case
studies presented in Fig. 1 (and the additional mechanisms
discussed in this section) are all essentially a consequence of
the chaotic nature of the system. When machine-dependent
processes introduce a small perturbation or error into the sys-
tem (no matter by which means), they cause it to evolve dif-
ferently after a few time steps.

3 Methodology

3.1 Numerical simulations

In this study, we consider two versions of the Preindustrial
(PI) control simulation prepared by the UK Met Office for
the Sixth Coupled Model Intercomparison Project, CMIP6
(Eyring et al., 2016). This PI control experiment is used to
study the (natural) unforced variability of the climate system,
and it is one of the reference simulations against which many
of the other CMIP6 experiments will be analysed.

The PI simulation considered in this paper uses the
N96 resolution version of the HadGEM3-GC3.1 climate
model (N96ORCA1). The model set-up, initialization, per-
formance, and physical basis are documented in Menary
et al. (2018) and Williams et al. (2018), to which the
reader is referred for a detailed description. In summary,
HadGEM3-GC3.1 is a global coupled atmosphere–land–
ocean–ice model that comprises the Unified Model (UM) at-
mosphere model (Walters et al., 2017), the JULES land sur-
face model (Walters et al., 2017), the NEMO ocean model
(Madec and the NEMO Team, 2015), and the CICE sea ice
model (Ridley et al., 2018b). The UM vertical grid contains
85 pressure levels (terrain-following hybrid height coordi-
nates), while the NEMO vertical grid contains 75 depth lev-
els (rescaled height coordinates). In the N96 resolution ver-
sion, the atmospheric model utilizes a horizontal grid spac-
ing of approximately 135 km on a regular latitude–longitude
grid. The grid spacing of the ocean model, which employs an
orthogonal curvilinear grid, is 1◦ everywhere but decreases
down to 0.33◦ between 15◦ N and 15◦ S of the Equator, as
described by Kuhlbrodt et al. (2018).

Following the CMIP6 guidelines, the model was initial-
ized using constant 1850 greenhouse gas (GHG), ozone,
solar, tropospheric aerosol, stratospheric volcanic aerosol,
and land use forcings. The UK CMIP6 PI control simu-
lation (hereinafter referred to as PIMO) was originally run

Table 1. Hardware and software specifications of the ARCHER and
MO HPC platforms as used to run the HadGEM3-GC3.1 model.

HPC platform Machine Compiler Processor

MO Cray XC40 cce 8.3.4 Broadwell
ARCHER Cray XC30 cce 8.5.8 Ivy Bridge

on the MO HPC platform on 2500 cores. The model was
at first run for 700 model years to allow the atmospheric
and oceanic masses to attain a steady state (model spin-
up) and then run for a further 500 model years (actual run
length) (see Menary et al., 2018 for details). A copy of the
PI control simulation was ported to the ARCHER HPC plat-
form (hereinafter referred to as PIAR), initialized using the
atmospheric and oceanic fields from the end of the spin-
up, and run for 200 model years using 1500 cores. The
source codes of the atmosphere and ocean models were
compiled on the two platforms using the same levels of
code optimization (-O option), vectorization (-Ovector
option), and floating-point precision (-hfp option) and, for
numerical reproducibility purposes, selecting the least tol-
erant behaviour in terms of code optimization when the
number of ranks or threads varies (-hflex_mp option).
For the atmosphere component the following options were
used: -O2 -Ovector1 -hfp0 -hflex_mp=strict.
For the ocean component the following options were used:
-O3 -Ovector1 -hfp0 -hflex_mp=strict.

Table 1 provides an overview of the hardware and software
specifications of the two HPC platforms on which the model
was run.

Of the possible mechanisms discussed in Sect. 2, the
ARCHER and MO simulations were likely affected by differ-
ences in compiler, processor type, number of processors, and
processor decomposition (alongside the different machine).

Note that the porting of the HadGEM3-GC3.1 model from
the Met Office computing platform to the ARCHER plat-
form was tested by running 50 ensemble members (each 24 h
long) on both platforms (this was done by the UK Met Office
and NCAS-CMS teams). Each ensemble member was cre-
ated by adding a random bit-level perturbation to a set of se-
lected variables (x and y components of the wind, air poten-
tial temperature, specific humidity, longwave radiation, etc.).
Variables from each set of ensembles were then tested for
significance using a Kolmogorov–Smirnov test to determine
whether they can be assumed to be drawn from the same
distribution. These tests did not reveal any significant prob-
lem with the porting of the HadGEM3-GC3.1 model (David
Case, National Centre for Atmospheric Science, University
of Reading, Reading, UK, personal communications, 2019).
However, this method is restricted to timescales shorter than
1 d. The centennial simulations presented in this paper will
help us understand whether or not differences can arise on
longer timescales in the HadGEM3-GC3.1 model.

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/
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3.2 Data post-processing and analysis

During the analysis of the results, the following climate vari-
ables were considered: sea surface temperature (SST), sea ice
area and sea ice concentration (SIA, SIC), 1.5 m air temper-
ature (SAT), the outgoing longwave and shortwave radiation
fluxes at top of the atmosphere (LW TOA and SW TOA),
and the precipitation flux (P ). These variables were selected
as representative of the ocean and atmosphere domains and
because they are commonly used to evaluate the status of the
climate system.

Discrepancies between the means of the selected vari-
ables were analysed at different timescales, from decadal to
centennial. To compute 10-, 30-, 50-, and 100-year means,
(PIMO − PIAR) 200-year time series were divided into 20,
6, 4, and 2 segments, respectively. Spatial maps were simply
created by averaging each segment over time. Additionally,
to create the scatter plots presented in Sect. 4.1, the time av-
erage was combined with an area-weighted spatial average.
Except for SIC, all the variables were averaged globally. Ad-
ditionally, SIC, SST, and SAT were regionally averaged over
the Northern and Southern Hemisphere, while SW TOA, LW
TOA, and P were regionally averaged over the tropics, north-
ern extratropics, and southern extratropics according to the
underlying physical processes.

Note that, when calculating (PIMO − PIAR) differences,
PIMO and PIAR segments are subtracted in chronological or-
der. Thus, for example, the first 10 years of PIAR are sub-
tracted from the first 10 years of PIMO and so on. In fact, be-
cause the PI control simulation is run with a constant climate
forcing, using a “chronological order” in the strictest sense is
meaningless, as every 10-year segment is equally represen-
tative of the pre-industrial decadal variability. We acknowl-
edge that an equally valid alternative approach would be to
subtract the PIAR and PIMO segments without a prescribed
order.

Discrepancies in the results between the two runs were
quantified by computing the signal-to-noise ratio (SNR) for
each considered variable at each timescale. The signal is
represented by the mean of the differences between PIMO
and PIAR (µMO−AR), and the noise is represented by the
standard deviation of PIMO (σMO), our “reference” simula-
tion. Because of the basic properties of variance, for which
VarX−Y = VarX+VarY −2Cov(X,Y ) (Loeve, 1977), we can
more conveniently express the noise as σMO =

σMO−AR√
2

un-
der the assumption that PIMO and PIAR are uncorrelated
(Cov(MO,AR)= 0) and have the same variance (VarMO =

VarAR). This allowed us to compute SNR on one grid and
avoid divisions by (nearly) zero when the sea ice field be-
tween PIMO and PIAR evolved differently, resulting in unre-
alistically high SNR values along the sea ice edges. Finally,
SNR is defined as

SNR=
|µMO−AR|

σMO
=
|µMO−AR|
σMO−AR
√

2

. (4)

When SNR< 1, (PIMO − PIAR) differences can be inter-
preted as fluctuations within the estimated range of internal
variability. When SNR> 1, (PIMO − PIAR) differences in the
mean are outside the expected range of internal variability.
This eventuality indicates either a true difference in the mean
or that the expected range of variability is underestimated.

For the final step of the analysis, the El Niño–Southern
Oscillation (ENSO) signal was computed for the ARCHER
and MO simulations. We used the Niño 3.4 index, with a 3-
month running mean, defined as follows:

NINO3.4= SSTmnth−SST30 yr

if 5 ◦N ≤ latitude ≤ 5 ◦S and
120 ◦W ≤ longitude ≤ 170 ◦W, (5)

where SSTmnth is the monthly sea surface temperature and
SST30 yr is the climatological mean of the first 30 years of
simulation used to compute the anomalies.

4 Results and discussion

4.1 Multiple timescales

The long-term means of the selected variables and the associ-
ated SNR are shown in Figs. 2 and 3. All the variables exhibit
SNR< 1, indicating that on multi-centennial timescales the
differences observed between the two simulations fall into
the expected range of variability of the PI control run.

When maps like the ones in Figs. 2 and 3 are computed
using 10-, 30-, 50-, and 100-year averaging periods (not
shown), the magnitude of the anomalies increases and (PIMO
− PIAR) differences become significant (SNR� 1). This be-
haviour is discussed below.

Figures 4 to 9 show annual mean time series of spatially
averaged SST, SIA, SAT, SW TOA, LW TOA, and P , respec-
tively. Figures 4d to 9d show (PIMO − PIAR) differences as
a function of the averaging timescale for each variable (see
Sect. 3.2 for details on the computation of the means). The
200-year global mean and standard deviation of each variable
are shown in Table 2.

For all the considered variables, PIMO and PIAR start di-
verging quickly after the first few time steps once the system
has lost memory of the initial conditions (Figs. 4 to 9, pan-
els a, b, c). See Sect. 2 (Fig. 1) for a further discussion on
how machine-dependent processes can influence the tempo-
ral evolution of the system.

SST, SAT, SW TOA, and LW TOA differ the most
in the Northern Hemisphere (and particularly on decadal
timescales) (yellow diamonds in Figs. 4d, 6d, 7d, 8d), while
SIA anomalies are particularly high in the Southern Hemi-
sphere (red crosses in Fig. 5d) and P anomalies in the trop-
ics (green circles in Fig. 9d). Overall, discrepancies are the
largest at decadal timescales at which the spread between the
two simulations can reach |0.2| ◦C in global mean air tem-
perature (Fig. 6d), |1.2|million km2 in Southern Hemisphere

www.geosci-model-dev.net/13/139/2020/ Geosci. Model Dev., 13, 139–154, 2020



144 M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations

Figure 2. The 200-year means and corresponding SNR of (PIMO − PIAR) differences for NH SST (a, b), SH SST (c, d), NH SIC (e, f), and
SH SIC (g, h).

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/
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Figure 3. The 200-year means and corresponding SNR of (PIMO − PIAR) differences for SAT (a, b), SW TOA (c, d), LW TOA (e, f), and
P (g, h).

sea ice area (Fig. 5d), or |1|W m−2 in global TOA outgoing
LW flux (Fig. 8d).

On decadal timescales, the averaging period is too short to
adequately sample the model interannual variability; there-
fore, the estimated mean is not stable, and the estimated stan-
dard deviation is likely to be underestimated compared with
the true standard deviation of the model internal variability.

Large differences in the mean and SNR� 1 are thus not sur-
prising when analysing decadal periods.

On longer timescales, the estimates of the mean and stan-
dard deviation converge toward their “true” values. Accord-
ingly, we see that the differences in the mean between PIMO
and PIAR become smaller and approach zero as the timescale
increases (Figs. 4d to 9d). When we consider the 200-year
timescale, we find no SNR value greater than 1 (Figs. 2 and

www.geosci-model-dev.net/13/139/2020/ Geosci. Model Dev., 13, 139–154, 2020



146 M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations

Figure 4. Annual mean time series of global SST (a), Northern Hemisphere SST (b), and Southern Hemisphere SST (c) for PIMO (grey line)
and PIAR (dashed line). Panel (d) shows how SST differences vary as a function of the timescale.

Figure 5. Annual mean time series of Northern Hemisphere SIA (a) and Southern Hemisphere SIA (b) for PIMO (grey line) and PIAR
(dashed line). The 200-year mean of the NH and SH SIA seasonal cycle is shown in (c). Panel (d) shows how SIA differences vary as a
function of the timescale.

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/
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Figure 6. As in Fig. 4 but for SAT.

Figure 7. Annual mean time series of SW TOA in the tropics (a), SW TOA in the northern extratropics (b), and SW TOA in the southern
extratropics (c) for PIMO (grey line) and PIAR (dashed line). Panel (d) shows how SW TOA differences vary as a function of the timescale.

www.geosci-model-dev.net/13/139/2020/ Geosci. Model Dev., 13, 139–154, 2020
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Figure 8. As in Fig. 4 but for LW TOA.

Figure 9. As in Fig. 4 but for P .

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/
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Table 2. The 200-year global mean and standard deviation for SST,
SIA, SAT, SW TOA, LW TOA, and P .

MO ARCHER

Mean, SD Mean, SD

SST (◦C) 17.93, 0.07 17.95, 0.08
SIA (106 km2) 21.44, 0.65 21.30, 0.68
SAT (°C) 13.71, 0.10 13.75, 0.12
SW TOA (W m−2) 98.83, 0.24 98.76, 0.27
LW TOA (W m−2) 241.29, 0.27 241.36, 0.33
P (10−6 kg m−2 s−1) 36.22, 0.12 36.25, 0.14

3). Following this diagnostic and for the variables we as-
sessed, our results show that there is no significant differ-
ence in the simulated mean between the two PIMO and PIAR
HadGEM3-GC3.1 simulations when a 200-year-long period
is considered.

In Figs. 4d to 9d, the variation of (PIMO − PIAR) differ-
ences with the timescale suggests the existence of a power-
law relationship.1 To investigate this behaviour, a base-10
logarithmic transformation was applied to the x and y axes
in Figs. 4d to 9d, and linear regression was used to find the
straight lines that best fit the data.

Figure 10 shows log–log plots for SST, SAT, SW TOA,
LW TOA, and P for the maximum (PIMO − PIAR) values
at each timescale. To ease the comparison, all the variables
were averaged globally and over the Southern Hemisphere
(SH) and Northern Hemisphere (NH). Global, NH, and SH
mean data all align along a straight line, supporting the ex-
istence of a power law. However, the most interesting result
emerges at the global scale on which (PIMO − PIAR) dif-
ferences vary following the same power-law relationship, re-
gardless of the physical quantity considered. More precisely,
the actual slope values for SST, SAT, SW TOA, LW TOA,
and P are −0.65, −0.65, −0.64, −0.66, and −0.67, respec-
tively. Thus, the straight lines that best fit the global mean
data in Fig. 10 all have a slope of ≈ 2/3. The existence of
a ≈ 2/3 power law, which does not depend on the single
quantity, shows a consistent scaling of (PIMO − PIAR) dif-
ferences with the timescale that approaches a plateau near
the 200-year timescale (note that an actual plateau can only
be reached for longer simulations, as differences computed
over all timescales longer than 200 years would be ≈ 0).

SIA (not shown) was the only variable that did not show
a ≈ 2/3 power-law relationship. This, however, should not
invalidate the analysis presented above. The sea ice area is
an integral computed over a limited area, and not a mean
computed on a globally uniform surface (like all the other

1Note that, for readability, the ticks of the x axes in Figs. 4d
to 9d were equally spaced. This partially masks the power-law be-
haviour discussed in the paper, which can be better detected when
the natural x axes are used.

variables considered here), and thus represents a signal of a
different nature.

In summary, although large differences can be observed
at smaller timescales (see the next section for a further dis-
cussion), the climate of PIMO and PIAR is indistinguishable
on the 200-year timescale. We thus conclude that the mean
climate properties simulated by the HadGEM3-GC3.1 model
are reproducible on different HPC platforms, provided that a
sufficiently long simulation length is used.

Our results also show that HadGEM3-GC3.1 does not suf-
fer from compiler bugs that would make the model behave
differently on different machines for integration times longer
than 24 h (for which the model was previously tested; see
Sect. 3.1).

4.2 The 100-year timescale

The large differences observed on timescales shorter than
200 years are a direct consequence of the (potentially under-
estimated) internal variability of the model and triggered (at
least initially) by machine-dependent processes (compiler,
machine architecture, etc.; see Sects. 2 and 3.1 for details).
The two simulations behave similarly to ensemble members
initiated from different initial conditions. Therefore, they ex-
hibit different phases of the same internal variability, but over
longer timescales differences converge to zero (Figs. 4–9).

While in Sect. 4.1 we showed that PIMO and PIAR neces-
sitate 200 years to become statistically indistinguishable, an
interesting case to look at is the 100-year timescale.

For instance, the minimum simulation length required by
CMIP6 protocols for a few of the MIP experiments (ex-
cluding the DECK and Historical simulations) is 100 years
or less, and ensembles are not always requested (e.g. some
of the Tier 1, 2, and 3 experiments of PMIP, Otto-Bleisner
et al., 2017; nonlinMIP, Good et al., 2016; GeoMIP, Kravitz
et al., 2015; HighResMIP, Haarsma et al., 2016; FAFMIP,
Gregory et al., 2016). This is likely because longer fully
coupled climate simulations are not always possible. They
demand significant computational resources or impractically
long running times (for example, simulating 200 years with
the HadGEM3-GC3.1 model on ARCHER in its CMIP6 con-
figuration takes about 4 months).

Our results show that 100 years may not be long enough to
sample the same climate variability when HadGEM3-GC3.1
is run on different HPC platforms. This is particularity evi-
dent when we look at the spatial patterns of (PIMO − PIAR)
differences and at the associated SNR (see below).

In Fig. 11, (PIMO − PIAR) differences materialize into spa-
tial patterns that are signatures of physical processes. SST
(Fig. 11a, b) and SIC (Fig. 11c, d) anomalies are the largest
in West Antarctica where ENSO teleconnection patterns are
expected; they correspond to regions where SNR becomes
equal to or larger than 1. This suggests that (PIMO − PIAR)
differences are driven by two different ENSO regimes (the
connection between SIC (and SST) anomalies in the South-
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Figure 10. Log–log plots of SST (a), SAT (b), SW TOA (c), LW TOA (d), and P (e) representing maximum (PIMO − PIAR) differences as a
function of the timescale. All the variables were averaged globally (green circles) and over the SH (red crosses) and NH (yellow diamonds).
The straight lines represent the best-fit lines for the data obtained by linear regression.

ern Hemisphere and ENSO has been widely documented in
the literature; e.g. Kwok and Comiso, 2002; Liu et al., 2002;
Turner, 2004; Welhouse et al., 2016; Pope et al., 2017).

This hypothesis is confirmed by the ENSO signal in
Fig. 12. A few times, a strong El Niño (La Niña) event in
PIMO corresponds to a strong La Niña (El Niño) event in
PIAR. This opposite behaviour enlarges SIC (and SST) dif-
ferences between the two runs and strengthens the µMO−AR
signal, resulting in a strong SNR.

As ENSO provides a medium-frequency modulation of the
climate system, it is not surprising that it takes longer than
100 years for its variability to be fully represented (see e.g.
Wittenberg, 2009).

Finally, we want to know whether the two ENSO regimes
in PIMO and PIAR are a reflection of the different computing
environment or solely the result of natural variability (i.e. if
a similar behaviour can be detected for simulations run on
the same machine). This can be done by splitting the 200-
year simulations in two segments and assuming that each
100-year period of PIMO and PIAR is a member of an ensem-
ble of size two. Therefore, the ARCHER ensemble is made
of PIAR1st and PIAR2nd, and the MO ensemble comprises
PIMO1st and PIMO2nd.

Figure 11e and f show the signal-to-noise ratio corre-
sponding to SST differences between PIAR1st and PIAR2nd
and between PIMO1st and PIMO2nd. In Fig. 11e, the SNR
pattern exhibited by the ARCHER ensemble members re-

sembles the one shown by (PIMO − PIAR) differences
in Fig. 11b. Thus, we conclude that differences between
ARCHER and MO are comparable to differences between
ensemble members run on a single machine.

As for PIMO, in Fig. 11f large differences (and SNR>
1) between the two ensemble members are found in East
Antarctica. While this suggests that in this case a climate
process other than ENSO is in action, the large SNR con-
firms that 100 years is too short a length for constant-forcing
HadGEM3-GC3.1 simulations even on the same machine.

In summary, the analysis above confirms that (PIMO −

PIAR) differences, while triggered by the computing environ-
ment, are largely dominated by the internal variability as they
persist among ensemble members on the same machine (in
Fig. 11 SNR > 1).

5 Discussion and conclusions

In this paper, the effects of different computing environments
on the reproducibility of coupled climate model simulations
are discussed. Two versions of the UK CMIP6 PI control
simulation, one run on the UK Met Office supercomputer
(MO) (PIMO) and the other run on the ARCHER (PIAR) HPC
platform, were used to investigate the impact of machine-
dependent processes of the N96ORCA1 HadGEM3-GC3.1
model.
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Figure 11. The 100-year means and corresponding SNR of (PIMO − PIAR) differences for SH SST (a, b) and SH SIC (c, d). Panels (e) and
(f) show SNR of (PIAR1st − PIAR2nd) and (PIMO1st − PIMO2nd) differences for SH SST, respectively.

Discrepancies between the means of key climate variables
(SST, SIA /SIC, SAT, SW TOA, LW TOA, and P ) were
analysed at different timescales, from decadal to centennial
(see Sect. 3.2 for details on methodology).

Although the two versions of the same PI control simula-
tion do not bit-compare, we found that the long-term statis-
tics of the two runs are similar and that, on multi-centennial
timescales, the considered variables show a signal-to-noise
ratio (SNR) less than 1. We conclude that in order for PIMO
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Figure 12. The Niño 3.4 index for PIMO and PIAR. A 3-month running mean was applied to the ENSO signal, and values greater and smaller
than or equal to ±0.5 are shaded in orange and green.

and PIAR to be statistically indistinguishable, a 200-year av-
eraging period must be used for the analysis of the results.
This indicates that simulations using the HadGEM3-GC3.1
model are reproducible on different HPC platforms (in their
mean climate properties), provided that a sufficiently long
simulation length is used.

Additionally, the relationship between global mean differ-
ences and timescale exhibits a ≈ 2/3 power-law behaviour,
regardless the physical quantity considered, that approaches
a plateau near the 200-year timescale. Thus, there is a con-
sistent time-dependent scaling of (PIMO − PIAR) differences
across the whole climate simulation so that variables con-
verge toward their true values at the same rate, independently
of the physical processes that they represent.

Larger inconsistencies between the two runs were found
for shorter timescales (at which SNR≥ 1), the largest be-
ing at decadal timescales. For example, when a 10-year av-
eraging period is used, discrepancies between the runs can
be up to |0.2| ◦C global mean air temperature anomalies, or
|1.2|million km2 Southern Hemisphere sea ice area anoma-
lies. The observed differences are a direct consequence of
the different sampling of the internal variability when the
same climate simulation is run on different machines. They
become approximately zero when a 200-year averaging pe-
riod is used, confirming that the overall physical behaviour
of the model was not affected by the different computing en-
vironments.

On a 100-year timescale, large SST and SIC differences
(with SNR≥ 1) were found where ENSO teleconnection pat-
terns are expected. Medium-frequency climate processes like
ENSO need longer than 100 years to be fully represented.
Thus, a 100-year constant-forcing simulation may not be
long enough to correctly capture the internal variability of

the HadGEM3-GC3.1 model (on the same or on a different
machine). While this result is not unexpected per se, it is rele-
vant to CMIP6 experiments as CMIP6 protocols recommend
a minimum simulation length of 100 years (or less) for many
of the MIP experiments.

This result has immediate implications for members of the
UK CMIP6 community who will run individual MIP exper-
iments on the ARCHER HPC platform and will compare
results against the reference PI simulation run on the MO
platform by the UK Met Office. The magnitude of (PIMO
− PIAR) differences presented in this paper should be re-
garded as threshold values below which differences between
ARCHER and MO simulations must be interpreted with cau-
tion (as they might be the consequence of a wrong sampling
of the model internal variability rather than the climate re-
sponse to a different forcing).

In light of our results, our recommendation to the UK
MIPs studying the climate response to different forcings is
to run HadGEM3-GC3.1 for at least 200 years, even when
CMIP6 minimum requirements are 100 years (see, for exam-
ple, the PMIP protocols; Otto-Bleisner et al., 2017).

Finally, although the quantitative analysis presented in this
paper applies strictly to HadGEM3-GC3.1 constant-forcing
climate simulations only, this study has the broader purpose
of increasing awareness in the climate modelling community
of the subject of the machine dependence of climate simula-
tions.

Code availability. Access to the model code used in the paper has
been granted to the editor. The source code of the UM is available
under licence. To apply for a licence, go to http://www.metoffice.
gov.uk/research/modelling-systems/unified-model (UK Met Office,
2020). JULES is available under licence free of charge; see
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https://jules-lsm.github.io/ (Joint UK Land Environment Simula-
tor, 2020). The NEMO model code is available from http://www.
nemo-ocean.eu (NEMO Consortium, 2020). The model code for
CICE can be downloaded from https://code.metoffice.gov.uk/trac/
cice/browser (CICE Consortium, 2020).
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https://doi.org/10.22033/ESGF/CMIP6.419; Ridley et al., 2018a),
the data repository for all CMIP6 output. CMIP6 outputs are
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of the PI simulation ported to ARCHER can be shared, under
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Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung,
L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R.,
Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J.,
and von Storch, J.-S.: High Resolution Model Intercomparison
Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9,
4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.

Hong, S.-Y., Koo, M.-S., Jang, J., Esther Kim, J.-E., Park, H., Joh,
M.-S., Kang, J.-H., and Oh, T.-J.: An evaluation of the soft-
ware system dependency of a global atmospheric model, Mon.
Weather Rev., 141, 4165–4172, 2013.

Joint UK Land Environment Simulator: JULES, available at: https:
//jules-lsm.github.io/, last access: 13 January 2020.

Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M.,
Irvine, P. J., Jones, A., Lawrence, M. G., MacCracken, M.,
Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J.,
Storelvmo, T., Wang, H., and Watanabe, S.: The Geoengineering
Model Intercomparison Project Phase 6 (GeoMIP6): simulation
design and preliminary results, Geosci. Model Dev., 8, 3379–
3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015.

Kuhlbrodt, T., Jones, C. G., Sellar, A., Storkey, D., Blockley, E.,
Stringer, M., Hill, R., Graham, T., Ridley, J., Blaker, A., Calvert,
D., Copsey, D., Ellis, R., Hewitt, H., Hyder, P., Ineson, S., Mulc-
ahy, J., Siahaan, A., and Walton, J.: The Low-Resolution Version
of HadGEM3 GC3. 1: Development and Evaluation for Global
Climate, J. Adv. Model. Earth Sy., 10, 2865–2888, 2018.

Kwok, R. and Comiso, J. C.: Spatial patterns of variability
in Antarctic surface temperature: Connections to the South-
ern Hemisphere Annular Mode and the Southern Oscillation,
Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015415,
2002.

Liu, J., Yuan, X., Rind, D., and Martinson, D. G.: Mechanism study
of the ENSO and southern high latitude climate teleconnections,
Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015143,
2002.

Liu, L., Li, R., Zhang, C., Yang, G., Wang, B., and Dong, L.: En-
hancement for bitwise identical reproducibility of Earth system
modeling on the C-Coupler platform, Geosci. Model Dev. Dis-
cuss., 8, 2403–2435, https://doi.org/10.5194/gmdd-8-2403-2015,
2015a.

Liu, L., Peng, S., Zhang, C., Li, R., Wang, B., Sun, C., Liu, Q.,
Dong, L., Li, L., Shi, Y., He, Y., Zhao, W., and Yang, G.: Impor-
tance of bitwise identical reproducibility in earth system mod-

www.geosci-model-dev.net/13/139/2020/ Geosci. Model Dev., 13, 139–154, 2020

https://jules-lsm.github.io/
http://www.nemo-ocean.eu
http://www.nemo-ocean.eu
https://code.metoffice.gov.uk/trac/cice/browser
https://code.metoffice.gov.uk/trac/cice/browser
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MOHC.HadGEM3-GC31-LL
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MOHC.HadGEM3-GC31-LL
https://doi.org/10.22033/ESGF/CMIP6.419
https://help.ceda.ac.uk
http://www.archer.ac.uk
https://github.com/CICE-Consortium
https://github.com/CICE-Consortium
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-4019-2016
https://doi.org/10.5194/gmd-9-3993-2016
https://doi.org/10.5194/gmd-9-4185-2016
https://jules-lsm.github.io/
https://jules-lsm.github.io/
https://doi.org/10.5194/gmd-8-3379-2015
https://doi.org/10.1029/2002GL015415
https://doi.org/10.1029/2002GL015143
https://doi.org/10.5194/gmdd-8-2403-2015


154 M.-V. Guarino et al.: Machine dependence and reproducibility for coupled climate simulations

eling and status report, Geosci. Model Dev. Discuss., 8, 4375–
4400, https://doi.org/10.5194/gmdd-8-4375-2015, 2015b.

Loeve, M.: Elementary probability theory, in: Probability Theory I,
Springer, 1–52, 1977.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130–141, 1963.

Madec, G. and the NEMO Team: NEMO ocean engine,
available at: https://epic.awi.de/id/eprint/39698/1/NEMO_book_
v6039.pdf (last access: 13 January 2020), 2015.

Menary, M. B., Kuhlbrodt, T., Ridley, J., Andrews, M. B., Dimdore-
Miles, O. B., Deshayes, J., Eade, R., Gray, L., Ineson, S.,
Mignot, J., Roberts, C. and Robson, J., Wood, R., and Xavier, P.:
Preindustrial Control Simulations With HadGEM3-GC3. 1 for
CMIP6, J. Adv. Model. Earth Sy., 10, 3049–3075, 2018.

NEMO Consortium: NEMO, available at: https://www.
nemo-ocean.eu/, last access: 13 January 2020.

Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J.,
Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson,
A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Hay-
wood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann,
G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peter-
schmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The
PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scien-
tific objective and experimental design for Holocene and Last
Interglacial simulations, Geosci. Model Dev., 10, 3979–4003,
https://doi.org/10.5194/gmd-10-3979-2017, 2017.

Pope, J. O., Holland, P. R., Orr, A., Marshall, G. J., and Phillips, T.:
The impacts of El Niño on the observed sea ice budget of West
Antarctica, Geophys. Res. Lett., 44, 6200–6208, 2017.

Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and An-
drews, T.: MOHC HadGEM3-GC31-LL model output pre-
pared for CMIP6 CMIP, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.419, 2018a.

Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L.,
West, A. E., and Schroeder, D.: The sea ice model compo-
nent of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723,
https://doi.org/10.5194/gmd-11-713-2018, 2018b.

Song, Z., Qiao, F., Lei, X., and Wang, C.: Influence of par-
allel computational uncertainty on simulations of the Cou-
pled General Climate Model, Geosci. Model Dev., 5, 313–319,
https://doi.org/10.5194/gmd-5-313-2012, 2012.

Turner, J.: The El Niño–Southern Oscillation and Antarctica, Int. J.
Climatol., 24, 1–31, 2004.

UK Met Office: Unified Model, available at: http://www.metoffice.
gov.uk/research/modelling-systems/unified-model, last access:
13 January 2020.

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper,
S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A.,
Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman,
S., Harris, C., Heming, J., Klingaman, N., Levine, R., Man-
ners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C.,
Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling,
A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson,
J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office
Unified Model Global Atmosphere 6.0/6.1 and JULES Global
Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–
1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.

Welhouse, L. J., Lazzara, M. A., Keller, L. M., Tripoli, G. J., and
Hitchman, M. H.: Composite analysis of the effects of ENSO
events on Antarctica, J. Climate, 29, 1797–1808, 2016.

Williams, K., Copsey, D., Blockley, E., Bodas-Salcedo, A., Calvert,
D., Comer, R., Davis, P., Graham, T., Hewitt, H., Hill, R., Hyder,
P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann,
A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A.,
Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters,
D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.:
The Met Office global coupled model 3.0 and 3.1 (GC3.0 and
GC3.1) configurations, J. Adv. Model. Earth Sy., 10, 357–380,
2018.

Wittenberg, A. T.: Are historical records sufficient to con-
strain ENSO simulations?, Geophys. Res Lett., 36, L12702,
https://doi.org/10.1029/2009GL038710, 2009.

Geosci. Model Dev., 13, 139–154, 2020 www.geosci-model-dev.net/13/139/2020/

https://doi.org/10.5194/gmdd-8-4375-2015
https://epic.awi.de/id/eprint/39698/1/NEMO_book_v6039.pdf
https://epic.awi.de/id/eprint/39698/1/NEMO_book_v6039.pdf
https://www.nemo-ocean.eu/
https://www.nemo-ocean.eu/
https://doi.org/10.5194/gmd-10-3979-2017
https://doi.org/10.22033/ESGF/CMIP6.419
https://doi.org/10.5194/gmd-11-713-2018
https://doi.org/10.5194/gmd-5-313-2012
http://www.metoffice.gov.uk/research/modelling-systems/unified-model
http://www.metoffice.gov.uk/research/modelling-systems/unified-model
https://doi.org/10.5194/gmd-10-1487-2017
https://doi.org/10.1029/2009GL038710

	Abstract
	Introduction
	The impact of machine dependence on the numerical solution
	Methodology
	Numerical simulations
	Data post-processing and analysis

	Results and discussion
	Multiple timescales
	The 100-year timescale

	Discussion and conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

