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DRprofiling: Deep Reinforcement User Profiling for
Recommendations in Heterogenous Information

Networks
Huizhi Liang

Abstract—Recommender systems are popular for personalization in online communities. Users, items, and other affiliated information
such as tags, item genres, and user friends of an online community form a heterogenous information network. User profiling is the
foundation of personalized recommender systems. It provides the basis to discover knowledge about an individual user’s interests to
items. Typically, users are profiled with their direct explicit or implicit ratings, which ignored the inter-connections among users, items,
and other entity nodes of the information network. This paper proposes a deep reinforcement user profiling approach for recommender
systems. The user profiling process is framed as a sequential decision making problem which can be solved with a Reinforcement
Learning (RL) agent. The RL agent interacts with the external heterogenous information network environment and learns a decision
making policy network to decide whether there is an interest or preference path between a user and an unobserved item. To effectively
train the RL agent, this paper proposes a multi-iteration training process to combine both expert and data-specific knowledge to
profile users, generate meta-paths, and make recommendations. The effectiveness of the proposed approaches is demonstrated in
experiments conducted on three datasets.

Index Terms—Reinforcement Learning, Recommender Systems, User Profiling

F

1 Introduction

Recommender systems are popular for personalisation. They
can help to reduce information overload for users in online
communities, i.e., making suggestions regarding which in-
formation is most relevant to an individual user [1]. User
profiling is the foundation of personalised recommender sys-
tems. It provides the basis to discover knowledge about
users’ interests, preferences, and information needs, from user
behavioural information such as ratings, purchasing, social
tagging, and clicks [2]. A typical online community not only
has explicit or implicit rating data, but also has other affiliated
information such as item genres, categories, tags, and friends.
Together with users and items, they form heterogeneous infor-
mation networks or graphs [3]. Because of the profoundness of
human beings and the complexity of heterogenous information
network, how to profile users effectively and make quality
recommendations remain important open research questions.

The most commonly used user profiling approach in rec-
ommender systems is to represent users directly based on
their explicit or implicit ratings or called direct user-item
interactions. For example, a user can be profiled with a set
of observed items based on the binary user-item interactions
(e.g., purchase transactions). Based on user profiles, collabo-
rative filtering approaches (CF) [1] such as neighborhood based
and matrix factorisation approach [4] are used to make rating
predictions or Top-N item recommendations [1]. However,
the recommendation quality is largely limited due to the
commonly existing data sparsity problem of direct user-item
interactions [5]. Moreover, these approaches ignored those
useful affiliated information and fail to consider the inter-
connections among all the nodes in information networks. To
alleviate this problem, graph-based algorithms and link pre-

diction algorithms [5] have been proposed to explore transitive
user-item associations.

The recommendation problem can be viewed as a link pre-
diction problem in heterogenous information networks, which
is to predict wether there is a link between a user node and an
unobserved item node or to infer the connectivity probability
between them in information networks [6]. To achieve quality
recommendations, it is critical to find the most informative
or predictive paths between user nodes and item nodes. For
a target user, if we can find the predictive paths that lead to
this user’s observed items, then it is more likely that these
paths will help to find those unobserved items that he or she
will be interested. For easy explaination, we define the process
of finding the predictive paths between a user node and item
nodes in heterogenous information networks as User Profiling
process in this paper.

Deep reinforcement learning techniques [7] have emerged
as a promising framework for various applications, such as
game playing [7], decision making [8]. Value based and pol-
icy based approaches are two main approaches to solve RL
problems [8]. RL framework has been successfully applied
to many game settings, such as Atari and Go [7]. Applying
RL framework to recommender systems arouses increasing
interests in both academic and industry recently. Compar-
ing with traditional CF and deep neural network based ap-
proaches, reinforcement learning can optimise a sequence of
recommendation decisions for a long term goal such as profit,
loyalty, or user long term engagement [9, 10, 11]. Most ex-
isting work proposed approaches to train a RL recommender
agent to interact with a logged online target user. For these
approaches, the environment is usually a logged online target
user [12, 11]. This setting of environment has a few challenges
in recommendation systems, because of the complexity of
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human behaviour and the difficulty of getting large samples
from online users to train a good policy [12]. One important
fact that existing approaches ignored is that the target user
is connected to a heterogeneous information network that
formed by other users, items, and other information such
as item content, genres, taxonomy categories, tags, review,
friends, occupations, and social networks. In this paper, the
heterogenous information network is used as important infor-
mation source to model the user decision making patterns.

This paper sets the heterogeneous information network
as the environment, then frames the user profiling process
of inferring whether a user is interested in an item in het-
erogenous information networks as a Markov Decision Process
(MDP). A Reinforcement Learning (RL) agent is proposed
to solve the Markov Decision Process. The RL agent will
interact with the external heterogenous information network
environment and receive rewards. It will learn a decision
making model to decide which actions to take to find potential
interesting item nodes. The training process will be guided by
both expert knowledge and data-specific knowledge. The RL
agent will conduct both random search and meta-path guided
search to find potential interesting item nodes in the external
information network environment.

Moreover, meta-paths based approaches have been popu-
larly used to make recommendations in heterogenous informa-
tion networks [13, 14, 15]. However, these existing approaches
usually assumed that meta-paths are given by experts, while
very few work discuss how to generate quality meta-paths [16].
As the proposed reinforcement user profiling approach can be
regarded as a meta-path generating approach, this paper also
bridges the gap of current research through combining both
expert and data-specific knowledge to generate quality meta-
paths. To make use of the meta-paths, this paper proposes an
approach to construct path based user profiles that record
each user’s potential preference weights to items following
a set of meta-paths. Based on the path based user profiles,
a user-based collaborative filtering approach is proposed to
make Top-N recommendations.

The major contributions of this paper are as follows.

• This is the first work to use reinforcement learning
methods for user profiling and recommendation in
heterogenous information network environment.

• This work combines both expert knowledge and
data-specific knowledge to learn a policy network
for an RL agent to generate user profiles.

• This work bridges the gap of lacking effective
approaches to generate quality meta-paths in het-
erogenous information networks.

• This work proposed neighbourhood based collab-
orative filtering recommendation approach based
on the generated meta-paths and user profiles.

The rest of the paper is organized as follows. In Section 2,
the related work will be briefly reviewed. Then the proposed
approaches will be discussed in details in Section 3. In this
section, the problem definition will be given first. Followed
by the detailed discussion of the proposed reinforcement user
profiling framework, the training process will be described. In
Section 4, the experiments and results will be discussed. The
conclusions will be given in Section 5.

2 Related Work

Recommender systems have been an active research area
for more than a decade, with the main focus being rec-
ommendation approaches based on explicit ratings. Popular
recommender systems applications include predicting ratings
and recommending items to a user. Rating prediction is the
task of predicting the rating a user will give to an item,
while item recommendation is the task of recommending a
set of unobserved/unrated or new items to a target user [1].
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) are widely used to measure the accuracy of rating
predictions, while precision and recall are commonly used to
evaluate Top-N item recommendation. For explicit ratings,
both tasks are applicable, while for implicit ratings, Top-N
recommendation is more applicable [1]. Recommender sys-
tems can be broadly classified into three categories: content-
based, collaborative filtering (CF), and hybrid approaches [1].
neighborhood methods [1] and latent factor methods [4] are
the two primary collaborative filtering approaches.

User profiling is the base of personalization and recom-
mendations [1]. A typical user profile of recommender systems
consists of a set of items rated or preferred by the user together
with ratings to these items. However, not all users like to be
involved to vote or rate explicitly. Thus, explicit ratings are
not always available or applicable in real life applications [1].
Implicit ratings are important information sources for user
profiling and recommendation generation [1, 17]. Rather than
directly use rating information, many approaches such as MF
use learned latent representations to profile users. Besides
explicit or implicit ratings, other side information about users
and items such as item content, genres, taxonomy categories,
tags, review, social media, and social networks are popularly
available. Together with users and items, all these information
form heterogenous information networks [3].

Meta-paths based approaches are popularly used to make
recommendations in heterogenous information networks [3].
The meta-path similarity measure framework [13] of heteroge-
nous information networks provides a powerful mechanism
for a user to measure the possibility of an unobserved user-
item interaction in the information network under different
semantic assumptions. The work [3] proposed a duel simi-
larity regularisation to integrate the similarity information
of users and items based on different semantic meta-paths.
Link prediction has been an important problem in network
modelling and has recently been studied in social network,
genetic interaction network, literature citation networks, and
recommender systems [5]. Some work [5] considered the user-
item interactions in graphs and employ link prediction ap-
proaches to explore transitive user-item associations. How-
ever, how to profile users and make recommendations based
on heterogenous information networks still need to be ex-
plored. Moreover, in many meta-path based approaches in
heterogenous information networks, meta-paths are assumed
to be given by experts. Very few work has discussed how to
generate quality meta-paths [16]. This work [16] discussed
an approach to generate data-specific meta-paths from data.
How to combine both expert knowledge and data-specific
knowledge to generate quality meta-paths remains an open
research question.

Deep learning techniques [8] have recently emerged as a



3

promising framework for automatically training models in
various tasks such as object detection, speech recognition, and
language translations over large-scale high-dimensional data
(e.g., images, text, and audio) [8]. Deep learning has been
applied in recommender systems to take the side information
of user-item rating matrix into consideration [18, 19]. For
example, more recently, Cheng et al. [20] proposed to apply
wide and deep network to make explicit rating predictions.
The side information is wide network. Wang et al. [21]
proposed a RippleNet to consider the hop-n item knowledge
graph to propagate user preferences to unknown items. Rip-
pleNet only considers the item network that formed by item
related features, ignored the interactions of users and items.
However, these user models that represented by a learned
latent vector fail to model the decision making process of
each user explicitly, for example, either a user likes items with
specific topics, or because her friend likes that item. More
recently, Wang et al. [22] proposed a graph attention network
to take all the hop-n connections between user and item nodes
into consideration. The input graphs of both RippleNet [21]
and knowledge graph attention network [22] are expanded
based on the original graphs, which challenge the scalability
of these approaches.

Deep reinforcement learning revolutionises the field of
AI and represents a step towards building autonomous sys-
tems [8]. Value based and policy based approaches are two
main approaches to solve RL problems [8]. Different with
traditional CF and deep neural network based approaches
that usually optimise one recommendation process, reinforce-
ment learning usually optimise a sequence of recommendation
decisions for a long term goal [9, 23, 10, 11]. The majority of
reinforcement learning based recommender system are model
free approaches, which typically requires lots of interactions
with the environment in order to learn a good policy [24, 25].
For example, Heocharous et al. [26] discussed a personalised
Advertisement recommendation systems for life-time value
optimisation with off policy evaluation guarantees. Zhou et
al. [11] proposed a MDP-based solution to track user’s in-
terests shift and directly optimise both instant metrics and
delayed metrics of user engagement. As an online user will
quickly abandon the service if the recommendation looks
random and do not meet his/her interests, model-based RL
approaches has been proposed to avoid the large sample
complexity of model-free approaches [12]. For example, more
recently, Chen et al. [12] proposed a model based RL approach
to learn a user model based on page view and interaction
patterns. One common drawback of existing approaches is
that they set the target user as the environment and ignored
the fact that the target user is connected to a heterogeneous
information network.

Different with existing reinforcement learning based rec-
ommender systems, this paper defines the environment as
a heterogenous information network that formed by users,
items, and other information such as item content, gen-
res, taxonomy categories, tags, review, friends, occupations,
and social networks. Reinforcement learning has been used
in knowledge graphs to conduct relation reasoning tasks
such as link prediction and fact prediction in knowledge
graphs [27]. DeepPath [27] is a reinforcement learning method
for knowledge graph reasoning. It used a policy-based agent
with continuous states based on knowledge graph embed-

dings [28, 29, 30]. DeepPath [27] outperformed path ranking
approach and knowledge graph embedding methods [28, 29] in
the tasks of link prediction and fact prediction in knowledge
graphs. However, relation reasoning task is to find a set of
paths that are equivalent to a given type of relation, it is
different with recommendation generation task that predict-
ing which item a user will be interested. Thus, it is not
applicable to directly apply relation reasoning approaches
to make recommendations. This paper proposes to apply
deep reinforcement learning to the area of user profiling in
heterogenous information networks and combine both expert
and data-specific knowledge to profile users, generate meta-
paths, and make recommendations.

3 Proposed Approach
In this section, the problem definition will be given first.
Then the proposed reinforcement user profiling framework
and training process will be discussed. After that, the rec-
ommendation generation process will be discussed.

3.1 Problem Definition
To describe the proposed approach, we define some key con-
cepts used in this paper:

• Network schema. A network schema C = (T,R),
consists of a set of node types T = {T1, T2, ..., Tm}
and a set of relation types R . R includes relations
among node types, i.e. R = {Rij |i = 1...|T|, j =
1...|T|, i 6= j}, where Rij denotes the connection
relation of type Ti and Tj . If the number of node
types |T| > 1, the network is called heterogeneous
information network; otherwise, it is called a ho-
mogeneous information network. R−1

ij denote the
reversed relation of Rij . Note this paper do not
differentiate the term ”network” and ”graph”.

• Information network. An information network
is defined as a directed graph G = (V, E) with a
network schema C. Each node v ∈ V belongs to
one particular node type of T. Each edge e ∈ E
belongs to a particular type of relation of R.

• Meta-Path. A meta-pathM is a sequence of node
types and relation types in an information network
schema C. A meta-path M = (ij...kl) = Ti

Rij→
Tj ...Tk

Rkl→ Tl. A path is a sequence of nodes
and relations in an information network G. The
length of M (denoted as |M|) is the number of
relations (i.e., hops) inM.

In recommendation scenario, users and items are two
basic node types in an information network G. Users: U =
{u1, u2, ..., uk} is the set of all users in an online community.
Items (e.g., Products or Businesses): P = {p1, p2, ..., pz} is
the set of all items rated by users in U . The explicit and
implicit rating behaviour form user-item relationship RUP
and connected these two types of nodes in G. For simplicity,
only binary implicit ratings are discussed in this paper.

The relationship RUP is the basic relation type that
describes whether a user is interested in an item or not.
Based on this relation type, we can construct user profiles.
Let ~ui denote the rating based user profile of ui, for ex-
ample in the form of a set of items with binary ratings,
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~ui = {(p1, ri1), (p2, ri2), ..., (pz, riz)}, where rij ∈ {0, 1}. If
rij = 1, then there is an edge (i.e., link) between nodes ui and
pj in G, otherwise, there is no edge between them. Graph G is
an unweighted graph.

From the perspective of rating prediction, for a target user
ui and an unobserved item pj , the recommendation task is to
predict or infer whether there is a hop-n(n > 1) path between
them in G.

Example 1: The left graph of Figure 1 shows an example
heterogeneous information network. It contains three types of
nodes: Users U = {u1, u2, ..., u3}, Items P = {p1, p2, ..., p4}
and Tags T = {t1, t2, ..., t4}, six types of hop-1 relations,
R = {RUP , R−1

UP , RUT , R−1
UT , RTP , R−1

TP }. The example
recommendation task is to predict whether user u1 is inter-
ested in an unobserved item p3. From the perspective of graph
analysis, it is to predict whether there is a hop-n(n > 1) link
between node u1 and p3. The rating based user profile of u1 is
~u1 = {(p1, 1), (p2, 1), (p3, 0), (p4, 0), (p5, 0), (p6, 0)}.

3.2 Reinforcement User Profiling Framework
For a target user ui and an item pj in information network
G, the hop-n(n > 1) paths finding problem is considered
as a sequential decision making process in this paper. This
process starts from node ui, then the decision making model
decides which relation to follow and transit to another node
(i.e., intermediate neighbour node), repeat this process until
finding the target item pj or exceeding maximum allowed
steps. If the decision making model is effective, we can find
and recommend correct potential interesting items for each
target user ui.

In this paper, user profiling is defined as a process of
learning a decision making model for each target user ui.
Based on a user profile, we learn a decision making model. The
difference between user profiling and recommendation process
is that the former is the model learning process while the latter
is the model application process. More specifically, we define
user profiling process as a sequential decision making problem.
It can be solved with a Reinforcement Learning (RL) agent.

The proposed reinforcement learning framework includes
the external environment and the RL agent A. The external
environment is the heterogenous information network G de-
fined under C. The interaction between the RL agent and the
environment can be modelled as a Markov Decision Process
(MDP). Every state and action pair receives an immediate
reward at the state transitions. To solve an RL problem is to
find the best policy for it. In a MDP, a policy describes the
general rules of which actions for an agent to perform at each
time step, given a history of state and action pairs since time
τ = 0.

The MDP aims to optimise the long term overall rewards
for the entire process. The MDP is defined as < S,A,P,< >,
where S = {s1, s2, ..., sn} indicates states, A = {a1, a2, ..., al}
indicates actions, P indicates the transition probability from
one state sτ to the next state sτ+1 after taking action aτ at
time τ , P = P(sτ+1|sτ , aτ ), and < indicates the immediate
rewards when transitioning from state sτ to sτ+1 by taking
action aτ at time τ . The details of these components are
discussed as below.

Actions: The action space is defined as the set of relation
types R ∈ C. For a given user ui and each observed item pj

in a user profile, the agent is expected to learn which relation
types and nodes to follow to find item pj . In other words, the
agent is expected to find the most informative or predictive
paths linking these two nodes. After taking an action a ∈ A,
the transition probability P will decide which state the agent
will move to. Starting from ui, the sequence of nodes and
relation types that reaches pj is an success episode of ui and
pj . The sequence of nodes and relation types forms an episode
path, which is defined as below.

Episode Path. An episode path is a sequence of nodes in
an information network G and a sequence of relation types in
an network schema C. For a given pair of nodes vi and vl,
and a given meta-pathM = (ij...kl) defined in schema C, an
episode path E is defined as E =< vi,Rij , vj , ..., vk,Rkl, vl >.
Let eij denote the edge between node vi and vj with relation
type Rij , episode path E also can be defined as a set of nodes
and edges in G, E = vi

eij→ vj ...vk
ekl→ vl.

States: The external environment is information network
G and its schema C. Each state captures the agent’s position
in the information network G. The nodes and types of edges
(i.e., relations) in G are naturally discrete atomic symbols.
To capture the latent semantic information of these sym-
bols, translation-based embeddings such as TransE [28] and
TransH [29] are used to learn the latent representations of
the nodes and relation types. Each node and relation type is
represented by a k-dimensional continuous vector. After tak-
ing an action, the agent will move from one node to another.
Embedding the goal (e.g., the target node) in the training
process is a common practice in reinforcement learning [31]
to reduce the time needed to train the agent. As how far the
agent is from the target node can help to identify the position
of the agent, both the current node and the distance between
the target and current node are considered [27]. Given an node
pair (vs, vt), let S(vτ ) denote the state of current node vτ ,
the state S(vτ ) is defined as the concatenation of the latent
vectors of current node vτ and the distance between target
node vt and current node vτ .

sτ = S(vτ ) = (vτ ,vt − vτ ) (1)

Where vτ denote the latent vector of the current node vτ
and vt denote that of the target node vt. Note, this setting
is for offline training environment when a (user, item) pair is
given. In online training environment, the state is defined as
the current state sτ = vτ .

Rewards: To encourage the agent to find predictive
episode paths, the proposed reward functions considers both
the global reward rg and the path efficiency reward re. For
a given user ui and an observed item pj , starting with ui, if
the agent reaches pj , then the agent will be given a positive
global reward rg = +1 for this success episode path. If the
agent fails to reach pj , then the agent will be given a negative
global reward rg = −1 for this failed episode path. As short
paths tend to provide more reliable reasoning evidence than
longer paths [27], the efficiency reward is defined as re = 1

|E| ,
where |E| is the length of an episode path E. The reward is the
linear combination of these two parts. It is defined as below:

< = α ∗ rg + (1− α) ∗ re (2)

Where α is parameter, 0 ≤ α ≤ 1
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Fig. 1: The framework of the proposed approach

Agent: The agent starts with ui node and interacts with
the environment and learns a decision making model to decide
which action to take (i.e., which relation type to follow) to
find important intermediate transition nodes that lead to the
target item pj . Random search is popularly used for RL agent
to find paths in environment [27]. This strategy will find
data-specific paths. On the other hand, meta-paths contain
semantic meanings and expert knowledge for finding useful
nodes [13]. We can search based on meta-paths provided by
experts. To take the advantages of both approaches, a Meta-
Path Base M is introduced to store meta-paths given by
experts and learned from data. We use a policy network to
represent a decision making model. The agent A is mainly
represented by a policy network [7], a Meta-Path Base M, and
a stochastic action selector. Let θ denote a set of parameters,
the policy network πθ is a probability function that maps
states S to actions A. For a given state and action pair
(s, a), s ∈ S, a ∈ A, πθ(s, a) = P(a|s; θ), where P denote
the probability distribution.

In this paper, a fully-connected neural network is used as
the policy function. The input layer has the same number of
dimensions with a state s ∈ S, the output layer is normalised
using a softmax function over the action space (i.e., the rela-
tion type R space). The parameter θ is randomly initialised
and will be learned during the user profiling process through
the interaction between the agent and the environment.

Example 2: Figure 1 shows the proposed reinforce-
ment user profiling framework. It contains the graph en-
vironment and the RL agent. The RL agent has Meta-
Path Base M, policy network πθ and a stochastic ac-
tion selector. The agent interacts with the graph envi-
ronment, take actions and get rewards. The action space
A = {RUP ,R−1

UP ,RUT ,R
−1
UT ,RTP ,R

−1
TP }, Assume meta-

path M = (UTP ), E =< u1,RUT , t2,RTP , p1 > is one
episode path guided by the meta-pathM.

3.3 Training Process
To train an effective policy network, usually a large amount of
training data or episodes is needed. It usually will take a very
long time to converge, if we directly train the RL agent by
trial and errors. The training process will be guided by both
expert knowledge and data-specific knowledge. The RL agent

will conduct both random search and meta-path guided search
to find potential interesting item node in external information
network environment.

Lifelong Machine Learning or Lifelong Learning is an
advanced machine learning paradigm that learns continu-
ously, accumulates the knowledge learned in the past, and
uses/adapts it to help future learning and problem solv-
ing [32]. A Meta-Path Base is introduced to store meta-
paths given by experts and learned from data. To make use
of the learned meta-paths knowledge and support life-long
learning [33], this paper proposes a multi-iteration training
process to train the RL agent. The generated meta-paths at
each iteration will be stored in Meta-Path Base. The updated
Meta-Path knowledge base will be used to train the RL agent
at the next iteration until no new knowledge or performance
gain achieved. Note Multi-iteration training is different with
multi-epoch training. The former one is to update the Meta-
Path Base while the latter one is to learn a policy network
with a given Meta-Path Base.

The Meta-Path Base M is initialised to a set of meta-paths
given by experts. At each iteration, similar to AlphaGo [7]
and deepPath [27], we first train a supervised policy network
based on experts moves. Then we use reward functions to
retrain the supervised policy network. At the end of each
iteration, the prediction accuracy of the training process will
be evaluated. The learned popular new meta-paths are merged
with existing meta-paths in M. The training process continues
until it reaches the predefined maximum iteration number or
the prediction accuracy stops to improve. Firstly, the Pre-
training and Reinforcement Learning at one iteration will be
discussed, then follows the multi-iteration training process.

3.3.1 Pre-training
For a given user ui, we firstly get a positive sample data
Dp = {< ui, pj >} from this user’s profile. For each user-item
pair < ui, pj >, we need to get a set of success episode paths
to guide the training of the policy network. Each success
episode E starts with ui and ends with pj . A commonly
used approach to find a path in a graph is to use randomised
breadth-first search(BFS) [27]. However, in heterogenous
information networks, meta-paths that given by experts
usually reflect the semantics of information networks. To
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incorporate the semantics of an information network from
the viewpoint of experts, this paper proposes to find success
episodes following meta-paths pre-defined by experts, as well
as by randomised breadth-first search.

For an success episode path E =<
ui,Rul, vl, ..., vk,Rkj , pj >, the state of an agent
is initialised to the state of the starting node ui,
s0 = S(ui). We can get the sequence of agent states
SE =< s0 = S(ui), s1 = S(vl), ..., s|E| = S(pj) >, and actions
AE =< a0 = Rul, ..., a|E|−1 = Rkj > based on each success
episode path E. At each time step τ , τ = 0, 1, ..., |E| − 1,
the policy network that parameterised with θ will predict
the action aτ based on sτ and get the prediction probability
π(aτ = Rτ |sτ ; θ). We maximise the expected cumulative
reward using Monte-Carlo Policy Gradient [34]:

J(θ) = Eaτ∼π(aτ |sτ ;θ)(
∑
τ

<sτ ,aτ )

=
∑
τ

∑
aτ∈A

π(aτ |sτ ; θ)<sτ ,aτ
(3)

where J(θ) is the expected total rewards for one episode, τ =
0, 1, ..., |E|−1, <sτ ,aτ is the reward after taking action aτ . For
supervised learning, we give a positive reward of +1 for each
step of a successful episode E, <sτ ,aτ = rg = +1.

The approximated gradient used to update the parameter
θ of policy network is shown below:

∇θJ(θ) =
∑
τ

∑
aτ∈A

π(aτ |sτ ; θ)∇θ log π(aτ |sτ ; θ)

≈ ∇θ
|E|−1∑
τ=0

log π(aτ = Rτ |sτ ; θ)<sτ ,aτ

(4)

The parameter θ is batch updated after each success episode
path. The detail of the pre-training process is shown in
Algorithm 1.

3.3.2 Reinforcement Learning

After the pre-training process, we use the reward function to
retrain the policy network and further update parameter θ
in reinforcement learning process. For a user ui, the agent
will start with initial state s0, and predict the probability
distribution of each action a ∈ A with π(aτ |sτ ; θ) at each
time step τ . Different with pre-training process, the agent
employs a stochastic selection policy to randomly select an
action based on the predicted probability distribution over all
actions.

The sequence of actions may form a success episode path,
or it may fail. The agent will receive negative rewards for
those failed steps. We penalise the failed actions with negative
rewards <sτ ,aτ = rg = −1. As the agent selects actions based
on a stochastic policy, the agent will not get stuck by repeating
an incorrect step.

To improve the training efficiency, an upper bound nmax
is set to limit the episode path length. The episode ends if the
agent fails to reach the target node within nmax steps. After
each success episode, the policy network will be updated using
Equation 4 with <sτ ,aτ = α ∗ rg + (1 − α) ∗ re. The detail of
the reinforcement training process is shown in Algorithm 2.

Algorithm 1: Pre-training Procedure
Input:
- Graph G, Graph schema C, Meta-Path Base M
- Maximum number of path search mmax

- Latent vectors of nodes V and relations E
- Positive data samples Dp = {(vs, vt)|vs, vt ∈ V, vs 6= vt}
Output:
- policy network parameter θ

1:Random initialise policy network parameter θ // Initialization
2:For each node pair (vs, vt) ∈ Dp:
3: E ← {} // Initialise successful episode set
4: For eachM ∈ M:
5: Search G based onM
6: Get successful episodes EM , E ← E ∪ EM
7: For i = 1 to mmax − |M|
7: Search G with random walk
8: Get successful episodes EW , E ← E ∪ EW
9: For each path E =< vs,R0, v1, ...,R|E|−1, vt >∈ E
10: Get states SE =< s0, s1, ..., s|E| > // s0 = S(vs)
11: Get actions AE =< a0, a1, ..., a|E|−1 >
12: For τ = 0, ..., |E| − 1:
13: Get prediction probability π(aτ = Rτ |sτ ; θ)
14: //Batch update after each successful episode
15: Update θ with gradient g ∝ ∇θ

∑
τ

logπ(aτ = Rτ |sτ ; θ) ∗ (+1)

Algorithm 2: Reinforce Training Procedure
Input:
- Graph G, Graph schema C
- Latent vectors of nodes V and relations E
- Data samples D = {(vs, vt)}
- Policy network parameter θ
- Maximum length of an episode nmax
Output:
- Policy network parameter θ

1:For each node pair (vs, vt) ∈ D://
2: //Initialisation
3: State vector s0 = S(vs)
4: Negative instance path E− ← {}, Success← False
5: Episode E ← {< vs >}, episode step τ = 0
6: //Reinforce exploration
7: While τ < nmax do:
8: Get prediction probability P = π(aτ |sτ ; θ)
9: //Stochastic policy selection
10: Randomly sample aτ ∼ A based on P
11: Observe reward <τ and next state sτ
12: E ← E ∪ {< Rτ , vτ >}
13: If <τ = −1 then: // Failed
14: E− ← E−∪ < vτ ,Rτ , vτ+1 >
15: If <τ = 1 then: // Success
16: Success← True
17: break
18: τ ← τ + 1
19: If E− 6= {} then: //Penalise negative steps E−
20: Update θ, g ∝ ∇θ

∑|E−|−1
τ=0

logπ(aτ = Rτ |sτ ; θ) ∗ (−1)
21: If Success then: //Update θ after each successful episode
22: < = α1 ∗ rg + α2 ∗ re
23: Update θ, g ∝ ∇θ

∑|E|−1
τ=0

logπ(aτ = Rτ |sτ ; θ) ∗ <

3.3.3 Multi-iteration Training

To support life-long learning [32] and making use of the gener-
ated meta-paths, the Meta-Path Base M is introduced to store
all the predefined or learned meta-paths. At iteration i = 0,
M is initialised to the meta-paths given by experts. For a
given success episode path E =< ui,Ril, vl, ..., vk,Rkj , pj >,
if we keep the relations in order, we can get a meta-path
M = (il...kj). At each iteration, we can get a set of generated
meta-paths. We update the Meta-Path Base M at the end of
each iteration. LetMDR denote the meta-path set that gener-
ated at iteration I. As short meta-paths are computationally
more efficient than long meta-paths, we rank the meta-paths
ofMDR based on their length and frequency. For a meta-path
M∈MDR, the rank is calculated by the Equation below:

rank = β
1
|M|

+ (1− β)fM (5)

Where β is a parameter, 0 ≤ β ≤ 1, |M| denote the length
ofM and fM denote the frequency ofM inMDR. A sub set
of frequent short meta-paths are selected to update the Meta-
Path Base M. At the end of each iteration, we can measure
the prediction accuracy of the training process. The training
process continues until it reaches the pre-defined maximum
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Algorithm 3: Multi-iteration Training
Input:
- Meta-Path Base M
- Maximum number of iteration imax
Output:
- Meta-Path Base M

1:Initialise Meta-Path Base M // M← {} or M is provided by experts
2:Initialise iteration I = 0
3:While I < imax do:
4: MDR ← {} //Initialise meta-path setMDR at iteration I
5: Conduct pre-training with Algorithm 1
6: Conduct reinforcement training with Algorithm 2.
7: If accuracy at iteration I improves:
8: Get the meta-path setMDR generated by policy network.
9: Rank all the meta-paths ofMDR based on Equation 5
10: //Add the selected meta-pathsMs

DR ofMDR to Meta-Path Base.
11: M← M ∪Ms

DR
12: Else:
13: break
14: I = I + 1

iteration number imax or the accuracy performance stops
to improve. The detailed multi-iteration training process is
shown in Algorithm 3.

3.3.4 Time complexity Analysis
This subsection discusses the time complexity of the proposed
approach. From Algorithm 3, we can see that the multi-
iteration training process is controlled by the maximum it-
eration imax and an early stopping mechanism based on the
accuracy performance. Each iteration of training includes pre-
training and RL-training.

In the stage of pre-training, the time complexity is mainly
dependent of the two search functions: meta-path based
search and random walk based search. For a given user-item
pair, let n be the average number of out neighbour nodes per
node, the time complexity of finding a path between the given
user-item pair for meta-path based search can be calculated
by the multiplication of the adjacency vectors of each relation
along a given meta-pathM. The longer the meta-path is, the
more time is needed. Let l be the averaged meta-path length of
Meta-Path Base M, the total time cost of searching the graph
environment based on M is |M| × nl.

For random walk based search, the time complexity in the
worst case is O(|V| + |E|) for graph environment G. Let w
denote the averaged length of path that generated by random
walk based search, the time complicity of random walk based
search is nw. Letmmax be the total number of search attempts
between the given user-item pair. As the proposed approach
has both meta-path based search and random search, the total
time cost is (mmax − |M|) × nw + |M| × nl. In the imple-
mentation, we can decrease the time complexity by using bi-
directional search. As long paths are usually computationally
expensive and less explainable, we can set up a maximum path
length to avoid generating very long paths.

In the stage of RL-training, the time complexity is mainly
dependent of the time cost of 1) conducting policy based
search and 2) penalising negative steps. The former one is
controlled by the maximum step nmax and the time cost is
close to a meta-path based search. The latter one is dependent
of the size of negative path setE−. Usually the size ofE− is big
at the beginning of RL training. With the increasing of each
iteration, the size of M increases while the size of negative
path set E− usually decreases, after a better policy network
is trained. Thus, the time complexity of each iteration is not
always the same. For the test stage, the time complexity is the
same with meta-path based search following meta-path Base
M.

3.4 Recommendation Generation
After the training process, we can predict ratings. Based on
the generated meta-paths, we can make Top-N recommenda-
tions. This section discusses how to make recommendations
based on the proposed reinforcement user profiling model.
Both rating prediction and Top-N recommendation will be
discussed.

3.4.1 Rating prediction
As the user profiling process learned the predictive path
between a given user and all the observed items, we can
directly apply the policy network to predict whether a user
is interested in an unobserved item (i.e., whether there is a
link between them). Let v∗ be the last node of an episode
< ui, π(a1|s1; θ), ..., v∗ > decided by policy network πθ,
let I be a function, if v∗ = pj , I(v∗, pj) = 1; otherwise,
I(v∗, pj) = 0. Let ui ∈ U be a target user, Oi be the item
set that the user ui already has, the prediction between a
target user ui ∈ U and an unobserved item pj ∈ P − Oi can
be calculated with the equation below.

Ld(ui, pj) = I(v∗, pj) (6)

3.4.2 Top-N recommendation
The neighborhood based collaborative filtering approaches
are popularly used recommendation approaches. Comparing
with matrix factorisation and deep learning models, they are
simple, explainable, and easy to implement. In this paper, we
discuss how to use neighborhood based approaches to make
recommendations based on the generated meta-paths. Let pj
be a candidate item of target user ui ∈ U , pj ∈ (P −Oi) is one
candidate items for user ui. Let Lu(ui, pj) be the predicted
score of how much the user ui would be interested in the item
pk, the problem of Top-N recommendation is to generate a set
of (i.e., N numbers of ) ordered items pl, ..., pm ∈ P − Oi to
the use ui, where Lu(ui, pl) ≥ ... ≥ Lu(ui, pm).

Neighbourhood formation is the process of generating like-
minded peers (i.e., the k nearest neighbours, “k-NN” ) for
a target user ui ∈ U . The similarity of two users ui and
uk can be measured by the similarity of their user profiles.
The more accurate a user profile is, the higher quality the
user’s neighbourhood. In heterogeneous information network,
the prediction score of a user ui and item pj can be estimated
by the probability of walking from the user node to item node.

Meta-path based random walk can capture the complex
semantics in heterogeneous information networks [30]. We
can uses the generated meta-paths in the training process
to estimate a user’s preference weight to items. This paper
assumes each connection(i.e., edge) between any two nodes
are equally important. Let M denote the updated meta-paths
knowledge base after the multi-iteration training process.

For a given meta-path M ∈ M, M = (il...kj) = Ti
Ril→

Tl...Tk
Rkj→ Tj . Let T (vi) be the function of obtaining the

type of node vi, the walk transition probability at time τ from
one node wτ = vi to another wτ+1 = vj is generated based on
the following distribution:

P(vi, vl) = P(wτ+1 = vl|wτ = vi,M)

=
{ 1
|LTτ+1(vi)|

if T (vi) = Ti and T (vl) = Tl
0 otherwise

(7)



8

Where |LTτ+1 (vi)| is the number of nodes that node vi has
linked based on relationship Ril of meta-pathM. Following a
meta-pathM∈M, the transition probability from start node
vi to end node vj can be calculated by the following equation:

P(vi, vj |M) = P(vi, vl) ∗ ... ∗P(vk, vj) (8)

To calculate the preference weight of user ui ∈ U to item
pj ∈ P , we take the frequency of a meta-path in M into
consideration. Let fM be the frequency of the meta-pathM∈
M,W(ui, pj |M) be the preference weight of user ui to item pj ,
W(ui, pj |M) can be calculated by the weighted summation of
the random walk probability from node ui to pj , following
each meta-pathM of M:

W(ui, pj |M) =
∑
M∈M

P(ui, pj |M) ∗ fM (9)

Based on Equation 9, we can make recommendations.
To further improve the recommendation accuracy, we can
apply the popularly used user based collaborative filtering ap-
proach [17]. For this approach, each user is profiled with an ex-
tended profile that generated by meta-paths with Equation 9.
We calculate the similarity of each user with other users, those
items that are popularly used by nearest neighbour users will
be selected as recommended items. Specifically, each user is
represented by a vector of items with their preference weights,
which is called extended rating based user profile and reflects
the combination of a set of hop-n(n > 0) User-Item relation-
ship. Let ũi denote the path based user profile based on M, ũi =
{(p0,W(ui, p0|M), (p1,W(ui, p1|M), ..., (pz,W(ui, pz|M))}.

The distance or similarity measure can be calculated
through various kinds of proximity computing approaches
such as cosine similarity or Pearson’s correlation. Cosine is
used to measure the similarity of two users in this paper.
The similarity of any two users ui ∈ U and uj ∈ U can be
calculated as:

sim(ui, uj) = cosine(ũi, ũj) (10)

The neighborhood of user ui is denoted as N (ui) =
{uj |uj ∈ maxKuj∈U{sim(ui, uj)}}, uj ∈ U , where maxK{}
returns the top-k most similar users to ui. For each target user
ui, the prediction score of how much ui will be interested in
an unobserved candidate item pj ∈ P − Oi is calculated by
considering the similarities between user ui and those users
who are neighbors of ui and have rated item pj [1]:

Lu(ui, pj) =
∑

uk∈(Nui∩Lj)

sim(ui, uk) (11)

Where Lj denotes the user nodes that item node pj has linked
based on hop-1 relation RUP−1 (i.e., those users that has
rated item pj). The Top N items with high prediction scores
will be recommended to the target user ui. This is a user-based
approach.

4 Experiments
4.1 Datasets
To evaluate the effectiveness of the proposed approaches,
this work conducted rating prediction and Top-N (N =

[5,10,15,20,25,30,40,50,60,70,80,90,100]) recommendation ex-
periments on the following three datasets.

D1: MovieLens-Tagging Dataset. The MovieLens 10M
Dataset is a movie rating and social tagging dataset. As
this paper only considers binary relations, only the tagging
assignment dataset (i.e., tags.dat file, represents meta-path
(UTP ), or triplets RUTP ) were used in the experiments.
The recommended items are movies. 1 The action space
A = {RUP , R−1

UP , RUT , R
−1
UT , RTP , R

−1
TP }.

D2: HetRec2011-MovieLens Dataset. This is an ex-
tension of MovieLens 10M dataset. It has enriched with
various kinds of affiliated information about movies. This
includes the following data files or relations: the tagging
assignment user-taggedmovies.dat that represents meta-path
(UTP ), the movie-genres.dat that represents relation RPG,
movie-directors.dat that represents relation RPD, movie-
actors.dat that represents relation RPA, movie-countries.dat
that represents relation RPC . The recommended items are
movies. 2 The action space A = {RUP , R−1

UP , RUT , R−1
UT ,

RTP , R
−1
TP , RPG, R−1

PG, RPD, R−1
PD, RPC , R−1

PC , RPA, R−1
PA}.

D3: HetRec2011-LastFM Dataset. This dataset con-
tains social networking, tagging, and user music artist
listening information from Last.fm online music sys-
tem. The user-taggedartists.dat that represents meta-
path (UTP ), user-friends.dat that represents relation
RUF were used in the experiments. The recommended
items are musical artists. 3 The action space A =
{RUP , R−1

UP , RUT , R
−1
UT , RTP , R

−1
TP , RUF , R

−1
UF }.

To reduce the sparseness in the dataset, this work filtered
out those entities nodes (e.g., users, items, tags, genres, direc-
tors, actors) that have been occurred only once in the data.
For each test user, an RL agent was trained. As training an
RL agent is time consuming, we randomly selected 100 users
as the test user set. To reduce the randomness caused by very
few training samples, each test user has tagged at least 100
items. As the task is to predict or recommend items, we only
keep User-Item RUP relation in the Training Set and Test
Set. For a target user, we randomly selected 40% of User-
Item relation as Training set and 20% of User-Item relation as
Test Set, the rest including 40% of User-Item relation and the
affiliated information forms the graph Environment Set.

The statistics of the three datasets after preprocessing and
the networks are shown in Table 1. D1 only contains tagging
information, D2 has various kinds of affiliated information
about items, and D3 has affiliated relation about users. On
average, each node of D1 has 6.16 edges, while D2 has 2.88
edges, D3 has 13.15 edges.

4.2 Experimental Setup and Results
Top-N recommendation task is popularly used for implicit
or binary ratings [1]. The Precision and Recall are used to
measure the performance of the Top-N item recommendation
task. The averaged values of all target users are used to mea-
sure the overall performance of recommendation approaches.
The HitRatio is used to measure the accuracy of rating
prediction task. It is defined as the ratio of correct rating

1. https://grouplens.org/datasets/movielens/
2. https://grouplens.org/datasets/hetrec-2011/
3. http://www.last.fm,https://grouplens.org/datasets/

hetrec-2011/
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TABLE 1: The basic statistics of datasets

Nodes Number Relations Number
D1: MovieLens-Tagging

Users U 3,706
Movies P 6,145
Tags T 7,272 Triplets RUT P 85,021

Nodes V 23,597 Edges E 145,297
D2: HetRec2011-MovieLens

Users U 1,887
Movies P 4,442
Tags T 3,994 Triplets RUT P 41,656

Movie Genres G 19 RP G 10,212
Directors D 795 RP D 3,272

Actors A 18,919 RP A 71,790
Countries C 39 RP C 4,428

Nodes V 55,865 Edges E 161,349
D3: HetRec2011-LastFM

Users U 1,832
Artists P 10,753 Triplets RUT P 179,501
Tags T 4,373 RUF 24,162

Nodes V 17,123 Edges E 225,234

TABLE 2: The statistics of generated meta-paths

Length Example MetaPaths
Avg. Med. Max

MovieLens-Tagging
MDP 4.57 3 13 (UP UP ), (UP UT P T UP UT P )
M1

DR 6.2 3 16 (UT P UP )
M2

DR 3.0 3 5 (UP T P UP ), (UT P UP )
M3

DR 4.5 3 12 (UPUPUP)
HetRec2011-Movielens

MDP 7.8 6 16 (UP GP UP ), (UT P ), (UP GP T P UP )
M1

DR 4.6 3.5 11 (UT UP AP ), (UP GP UP )
M2

DR 2.4 3 3 (UP AP GP ), (UP DP AP )
M3

DR 4.4 3 9 (UP GP UP ), (UT UP AP )
HetRec2011-Last.fm

MDP 5.0 4 11 (UT UT UT P ), (UP UP UF P )
M1

DR 5.0 5 9 (F UP ), (UP T UF P )
M2

DR 6.8 4 19 (UF P UP ), (UF T P )
M3

DR 5.3 4 9 (UP T UF P )

TABLE 3: Synthetic dataset

Name Hop-1 Hop-2 Hop-3 Scale Name Hop-1 Hop-2 Hop-3 Scale
SD1 7,354 28,858 63,788 105 SD4 132,972 6,696,908 33,363,528 108

SD2 22,032 209,968 768,020 106 SD5 297,796 33,363,528 966,332,912 109

SD3 57,180 1,257,822 8,685,000 107 SD6 545,806 111,987,626 5,798,026,166 6× 109
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Fig. 2: Top-N Precision results
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Fig. 3: Top-N Recall results
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prediction over the total number of test items of a target
user. Let nr denotes the number of correct rating predictions,
nt denotes the total number of test items of a target user,
HitRatio = nr

nt
.

In the experiments, TransE [28] approach is used to train
the embeddings of each node and each relation of the graph,
the embeddings were trained for 1,000 epochs. The settings
of parameters are: embedding dimension k = 20, batch size
= 128, maximum length of an episode nmax= 20, α = 0.5,
β = 0.5, the maximum number of iterations of the training
process imax was set to 3, the maximum number of search
attempt mmax was set to 20. As discussed before, short paths
are more efficient and have higher explainability than long
paths. The policy network is a fully connected neural network

with 4 layers in total, the setting of the number of nodes of
the two hidden layers are 512 and 1024. The RL agents were
trained on a desktop server with 16 GB Memory and 12 Intel
Core i7-8700 CPU with 3.20GHz.

4.2.1 Recommendation Results
This set of experiments compared the effectiveness of the
proposed approach with the-state-of-the-art Top-N recom-
mendation based-line models. We compared the Top N rec-
ommendation of the following approaches:
• DR: the proposed recommendation approach.
• CF : the traditional user-based CF approach [1].
• P S: the state-of-the-art recommendation approach

based on meta-path based similarity [3]. For fair com-
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parison, it was based on the same set of pre-selected
meta-paths with DR.

• DW : a Top-N recommendation approach based on
Deep&Wide neural network [20]. The existing work
is based on explicit ratings. To make DW work for
implicit ratings with only positive samples, this paper
adopted the same process of Bayesian Personalized
Ranking [35].

• RN : the RippleNet approach [21], a recommendation
approach based on a knowledge graph constructed by
items and their feature entities. The input graph is an
item-item hop-n graph that generated by item-feature
relations. The same with [21], n = 2.

• GA: the state-of-the-art recommendation approach
based on knowledge graph attention network [22]. The
input graph is an expanded graph that generated by
the combination of various types of hop-n item-feature
relations. The same with [22], n = [1, 2, 3].

The parameter of the compared approaches are set to the
most optimised values. To decrease the degree of the random-
ness of these approaches, the proposed approach was run 3
times. the average and standard deviation of the prediction
accuracy values were used. The Top-N Precision and Recall
results of these compared approaches on the three datasets
are shown in Figure 2 and Figure 3. We can see that the
proposed approach DR performed better than P S in both
Precision and Recall. This demonstrates that the proposed
recommendation approach can effectively find similar users
than the path based similarity regulation based approach P S.

CF performed the worst among all the compared models.
This can be explained that CF only considered the typical
user-item relation while the other relations that can help to
find potential interesting items were ignored. DW performed
better than CF but not better than the other compared
models in Recall. DW only considered the features of items
or users, but ignored the multiple relationship among users,
items, and features. GA performed better than RN and
DW in Recall. This can be explained that GA based on the
combination of hop-1, hop-2, hop-3 relations, while RN is
only based on hop-2 relations. Overall, the proposed approach
DR performed the best. This shows that the proposed rein-
forcement learning based approach can effectively profile users
and make recommendations.

4.2.2 Detailed analysis of the proposed approach
This subsection discusses the detailed analysis of the proposed
approach. The proposed approach DR introduces Meta-Path
Base M to store the pre-selected or generated meta-path and
supports multi-iteration training. It considers both expert
knowledge and data-specific knowledge in the training pro-
cess. The first set of experiments analysed the effectiveness
of the setting of Meta-path Base M and the effectiveness of
the proposed approach from the aspect of generating meta-
paths. The HitRatio value of DR were compared with the
the following two approaches:

• DE: the version of the proposed approach that only
based on experts pre-selected meta-paths. Different
with DR, it only follows the pre-selected meta-paths.
It does not support multi-iteration training.

• DP : the version of the proposed approach that only
based on random search. This is inspired by Deep-
Path [27], a reinforcement learning approach for knowl-
edge graph relation reasoning. It does not support
meta-path based search or multi-iteration training.

To decrease the degree of the randomness of these ap-
proaches, each model was run 3 times. MI denotes the Meta-
Path Base after the I-th iteration of training. Notation DRI

is used to denote the proposed approach after training itera-
tion I. MDP denotes the generated meta-path sets.

M0 represents the pre-selected meta-path set. Each meta-
path starts with a user node and ends with an item node.
The pre-selected meta-path set includes those short paths that
are popularly used in literature and easy to be interpreted in
terms of semantic meanings. Let M∗ = {(UTP ), (UTUP ),
(UPTP ), (UTPUP ), (UPTUP ), (UTUTP ), (UPUTP ),
(UTPTP ), (UP ), (UPUP )}. This set of meta-paths are based
on the tagging graph. Among them, some meta-paths can
be interpreted as collaborative filtering based approaches
such as (UPUP ), while some are content based approaches
such as (UTP ), (UPTP ), and (UTPTP ), or hybrid ap-
proaches such as (UTPUP ) and (UPUTP ). For Dataset
D1, M0 = M∗. For Dataset D2, a set of popular paths
that contain more item feature related entity nodes were
added. M0 = M∗∪ { (UPGP ), (UPDP ), (UPAP ), (UPCP ),
(UPTP ), (UPTPGP ), (UPTPDP )}. For Dataset D3, a set
of meta-paths that contain user-friends relations were added.
M0 = M∗∪ {(UFUP ), (UTUFP ), (UPUFP )}.

Table 2 shows the statistics of the generated meta-paths
of DP and DR as well as some example generated meta-
paths. We can see that the average lengths of generated meta-
paths of DP are usually longer than DR. DP can generate
interesting meta-paths from the data. It generated popu-
lar meta-paths that are overlapped with expert pre-selected
meta-paths M0, for example, (UPUP ) for D1 and (UTP ) for
D2. However, DP failed to generate some important meta-
paths. For example, (UPTUP ), (UFP ), (UPAP ) were not
included in the generated meta-paths set of DP . Instead, DP
generated very long meta-paths with low interpretability such
as (UPTPUTPUTPTUP ) for D1. The paths generated by
DR are relatively short, interesting, and creative. It can find
interesting data-specific meta-paths that are missed by ex-
perts. For example, (UTUPAP ) and (UPGPUP ) for Dataset
D2 and (FUP ) for dataset D3.

The HitRatio results of the 3 compared models on dataset
D2 are shown in Figure 4 (a). We can see that DE some-
times performed better than DP , while sometimes performed
worse than DP . It can be explained that if the expert-based
approach DE equipped with the meta-paths that reflect the
characteristics of the data, then it can achieve performances
similar to or even better than DP that has random explo-
rations. DR achieved the best performance at iteration I = 2
or I = 3. This can be explained that after updating the
knowledge base or meta-paths Base with those novel meta-
paths generated at previous iterations, DR can better capture
the successful meta-paths that lead to those items that a user
might be interested.

For dataset D1, the Top 5 most frequent meta-paths
includeM1 = (UP ),M2 = (UTP ),M3 = (UPUP ),M4 =
(UPTP ), and M5 = (UPUTP ). For dataset D2, the Top 5
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frequent meta-paths include M1 = (UP ), M2 = (UPDP ),
M3 = (UPUP ), M4 = (UPGP ), and M5 = (UPGPUP ).
For dataset D3, the Top 5 most frequent meta-paths include
M1 = (UP ), M2 = (FUP ), M3 = (UPUP ), M4 =
(UFUP ), andM5 = (UPUFP ). The HitRatio of these meta-
path on dataset D2 are shown in Figure 4 (b). The HitRatio
of the proposed approach with different parameter settings
of α and β for dataset D2 are shown in Figure 4 (c). The
proposed recommendation approach based on Equation 9 is
denoted as DRm. The Precision and Recall of DRm based on
D2 are shown in the upper chart of Figure 4 (d). The accuracy
of DRm is slightly lower than DR. This can be explained that
the user based approach DR can help to find more potentially
interested items from those similar users with extended user
profiles which are generated by meta-path based approach.

4.2.3 Efficiency Discussion
We compared the training and test time of DR with two
recent models RN and GA on dataset D2. The batch size
is set to 1024. The experiments were conducted with the same
hardware and software environment. The averaged training
time of 1 epoch is 19.83 seconds for RN and 426.34 seconds
for GA. As they require different number of epochs to con-
verge, the total training time for GA is 22 hours and that for
RN is 2 hours. On average, it took about 3 hours to train
one RL agent on one core. As it is easy and natural to train
multiple RL agents for different users at the same time, the
training for DR was completed in 46 hours.

The averaged testing time for one test user for RN , GA,
and DR is 0.94 seconds, 0.01 seconds, and 0.85 seconds
respectively. DR has the longest training time but had good
performance in the test stage. This shows that the RL agent
can make quick decisions after equipped with the trained
policy network. GA had very long training time as it con-
sidered multi-hop relations in the training. After the network
is trained, GA can make predictions quickly with no need to
explore the graph along meta-paths or propagate the graph
like DR and RN did. It performed the best in test stage.

To compare the scalability of DR and GA, a set of
synthetic datasets is generated with various input graph size
(i.e., hop-1 relations). The set of synthetic datasets is shown in
Table 3. It has 6 sub datasets: SD1 to SD6. Each sub dataset
contains different number of hop-1 relations, and generated
hop-2 and hop-3 relations based on the hop-1 relations. The
size (i.e., total number of relations) of each sub dataset is at
different scale. The average training time for 1 epoch of these
two approaches for different sub datasets are shown in the
lower chart of Figure 4 (d). We can see that GA performed
better than DR when the data size is relatively small. How-
ever, the training time of GA scales up significantly for SD6,
when large number of hop-2 and hop-3 relations are generated
with an increased number of hop-1 relations. The scalability
of DR is better than GA for large datasets. 4

5 Conclusion
This paper proposed a deep reinforcement user profiling ap-
proach for recommender systems in heterogenous information

4. The author would like to thank PhD student Thanet Markchom
for his help in the scalability experiment.

networks. This paper defines user profiling in heterogenous in-
formation networks as a process of learning a decision making
model for each target user. A multi-iteration training process
is proposed to train an RL agent to interact with the external
heterogenous information network environment and receive
rewards. It learns a decision making model to decide which
actions to take to find potential interesting item nodes. The
reward functions consider both global accuracy and efficiency
to further improve the training efficiency. At each iteration,
the training process combines both expert knowledge and
data-specific knowledge to learn a policy network. It firstly
train the policy network in a supervised way based on experts
moves. Then re-train the policy network with reinforcement
learning. A Meta-Path Base is introduced to store the learned
knowledge (i.e., the generated meta-paths) at each iteration.
The meta-paths of the updated Meta-Path Base are used to
train the RL agent at the next iteration. The multi-iteration
training process makes use of learned knowledge about ef-
fective meta-paths and supports life-long learning [33]. This
paper contributes to a novel user profiling approach and a
new application area of reinforcement learning.

Moreover, the proposed training process and RL agent
can be used to generate quality meta-paths in heterogenous
information networks. Although meta-paths based approaches
have been popular to make recommendations in heterogenous
information networks, many existing approaches fully rely
on experts to provide meta-paths. This paper bridges this
gap through combining expert knowledge and data-specific
knowledge to generate meta-paths. It contributes to a novel
meta-paths generation approach. This work proposed neigh-
bourhood based collaborative filtering recommendation ap-
proach based on the generated meta-paths and user profiles.
This paper conducted experiments on three datasets. The
proposed approaches were compared with baseline models on
both rating prediction task and Top-N recommendation task.
This paper also analysed and discussed the quality of the
generated meta-paths.

This work has some limitations. The learning process is
trained and tested on offline environment, not in a real-
time online mode that has dynamic environment. The future
work will extend it to real-time dynamic environment and
will improve the reward function, consider explicit rating,
and combine the text content of nodes such as reviews
with relations. Moreover, the future work will explore the
following directions: 1) extend the Markov hypothesis and
explore model-based RL approach; 2) further improve the
explainability of user profiling agent; 3) explore item-based
RL approach; 4) explore RL approaches for warm-start and
cold-start problems.
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