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ABSTRACT
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The sensitivity of the climate to CO2 forcing depends on spatially-varying

radiative feedbacks which act both locally and nonlocally. We assess whether

a method employing multiple regression can be used to estimate local and

nonlocal radiative feedbacks from internal variability. We test this method on

millennial-length simulations performed with six coupled atmosphere-ocean

general circulation models (AOGCMs). Given the spatial pattern of warming,

the method does quite well at recreating the top-of-atmosphere flux response

for most regions of the Earth, except over the Southern Ocean where it consis-

tently overestimates the change, leading to an overestimate of the sensitivity.

For five of the six models, the method finds that local feedbacks are posi-

tive due to cloud processes, balanced by negative nonlocal shortwave cloud

feedbacks associated with regions of tropical convection. For four of these

models, the magnitude of both are comparable to the Planck feedback, so that

changes in the ratio between them could lead to large changes in climate sen-

sitivity. The positive local feedback explains why observational studies that

estimate spatial feedbacks using only local regressions predict an unstable cli-

mate. The method implies that sensitivity in these AOGCMs increases over

time due to a reduction in the share of warming occurring in tropical convect-

ing regions and the resulting weakening of associated shortwave cloud and

longwave clear-sky feedbacks. Our results provide a step towards an observa-

tional estimate of time-varying climate sensitivity by demonstrating that many

aspects of spatial feedbacks appear to be the same between internal variability

and the forced response.
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1. Introduction34

Forecasting global warming is one of climate science’s key challenges. As the atmospheric car-35

bon dioxide concentration increases, the planet’s radiation of energy to space becomes less than its36

absorption of sunlight (Arrhenius 1896). This energy imbalance, the radiative forcing, warms the37

surface, setting off processes (radiative feedbacks) that close the imbalance, restoring the system38

to a new steady state. We call the global average of the radiative feedbacks the climate feedback39

(also called the climate feedback parameter, Charney et al. (1979), or the thermal damping rate,40

Dessler (2012)). The total warming in response to a given increase in CO2 is thus determined by41

the resulting radiative forcing and the climate feedback (Charney et al. 1979). The rate of warming42

also involves the thermal inertia of the surface, mostly due to oceanic heat uptake (Gregory et al.43

2002). Uncertainty in the climate feedback contributes the most to uncertainty in future warming44

(Otto et al. 2013; Lewis and Curry 2015; Lutsko and Popp 2019), in part because of the inverse45

relationship between feedback and sensitivity (Roe and Baker 2007).46

Directly simulating radiative feedbacks is difficult primarily because cloud feedbacks depend47

on small-scale processes (Wetherald and Manabe 1988). Alternatively, the climate feedback can48

be inferred from observations, either by solving for it using the observed warming, observed deep49

ocean heat uptake, and simulated radiative forcing (Gregory et al. 2002; Otto et al. 2013), or by50

analyzing how the planet’s energy imbalance changes as the surface temperatures varies month-51

to-month or year-to-year (Forster and Gregory 2006; Murphy et al. 2009; Dessler 2010; Cox et al.52

2018; Lutsko and Takahashi 2018; Jiménez-de-la Cuesta and Mauritsen 2019; Libardoni et al.53

2019). These observational methods often assume that the climate feedback is constant, but many54

studies have shown that it typically changes with time in simulations (e.g., Murphy 1995; Wat-55

terson 2000; Senior and Mitchell 2000; Armour et al. 2012; Jonko et al. 2012; Andrews et al.56
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2015). While the temperature dependence of feedbacks can cause this to occur under sufficient57

(and likely strong) warming (Meraner et al. 2013; Bloch-Johnson et al. 2015), the change occurs58

even after relatively small amounts of warming (e.g., Armour et al. 2012; Andrews et al. 2015;59

Rugenstein et al. 2016). Since warming in different regions sets off radiative feedbacks of differ-60

ent strengths, the inconstancy of the climate feedback is likely caused by the change in the spatial61

pattern of warming with time (Winton et al. 2010; Armour et al. 2012). Since the temperature62

pattern associated with internal variability differs from the forced response, we should expect the63

climate feedback associated with each to differ (Dessler 2012; Colman and Hanson 2017), and in64

fact the climate feedback appears to vary across the historical record (Gregory and Andrews 2016;65

Fueglistaler 2019). The climate feedback may vary between historical and future warming (Zhou66

et al. 2016; Armour 2017; Proistosescu and Huybers 2017; Andrews et al. 2018), although the67

importance of this effect may be modest (Lewis and Curry 2018).68

Recent modelling work has explored a new framework in which the climate feedback is a linear69

combination of radiative feedbacks associated with different regions of the surface, weighted by70

the temperature change in each region (Zhou et al. 2017; Dong et al. 2019). This assumes that71

the spatial radiative feedbacks themselves are constant, with only the map of surface tempera-72

ture change evolving. This paper explores a corollary: since internal variability creates an ever-73

changing pattern of surface temperature and top-of-atmosphere radiative imbalance, a sufficiently74

long record of this variability should exhibit the behavior of these spatial radiative feedbacks. In75

this paper, we propose and evaluate a multiple regression (MR) method to estimate the spatial76

radiative feedbacks of six atmosphere-ocean general circulation models from control simulations,77

which we compare to existing methods for estimating feedbacks from internal variability (Section78

2). We do so in spite of the known bias in regression methods related to stochastic variation in79

top-of-atmosphere fluxes (Spencer and Braswell 2008, 2011; Choi et al. 2014; Proistosescu et al.80
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2018). We test the method by convolving the estimated spatial feedbacks with warming patterns81

from forced simulations performed with the respective models (Section 3), assessing the method’s82

accuracy in recreating aspects of the forced response. We discuss insights the MR method pro-83

vides into climate dynamics, such as the competing nature of local and nonlocal cloud feedbacks84

(Section 4) and summarize our findings (Section 5).85

2. Illustrating the MR method with a conceptual model86

In this section, we present a method for predicting spatial feedbacks from records of unforced87

variability using multiple regression. We first set up a conceptual climate model designed to illus-88

trate the method and capture some features of the complex climate models discussed in Section 3.89

This conceptual model has two regions of equal area. In each, the change in surface temperature90

(Ti) is proportional to the net energy gain of that region, which is the sum of the net downwards91

top-of-atmosphere (TOA) radiative flux (Ni), the net gain from horizontal energy transport from92

the atmosphere and ocean combined (−H in region 1, H in region 2), and additional random93

forcing (Fsur f ,i):94

c1
dT1

dt
= N1−H +Fsur f ,1 (1)

c2
dT2

dt
= N2 +H +Fsur f ,2 (2)

where ci is the surface thermal inertia associated with region i. This model can be re-expressed in95

terms of anomalies relative to an initial equilibrium state, so that we consider T ′i , N′i , H ′, and F ′sur f ,i96

instead of Ti, Ni, H, and Fsur f ,i. We assume that heat transport is proportional to the temperature97

gradient between the two regions:98

H ′ = γ(T ′1−T ′2) (3)
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Changes in a region’s top-of-atmosphere radiative fluxes are caused by radiative feedbacks (λi, j,99

which represents the influence of surface temperature in region j on the net TOA flux in region i),100

radiative forcing due to changes in a forcing agent such as an increase in CO2 (FCO2,i), and radiative101

forcing due to random atmospheric fluctuations that occur independently of surface temperature102

(FTOA,i):103

N′1 = λ1,1T ′1 +λ1,2T ′2 +FCO2,1 +FTOA,1 (4)

N′2 = λ2,1T ′1 +λ2,2T ′2 +FCO2,2 +FTOA,2 (5)

λ1,1 and λ2,2 are local radiative feedbacks, while λ1,2 and λ2,1 are nonlocal radiative feedbacks104

(where our sign convention ensures that a negative λ implies a negative, stabilizing feedback).105

Nonlocal radiative feedbacks (Rugenstein et al. 2016; Zhou et al. 2017; Po-Chedley et al. 2018;106

Dong et al. 2019) are changes in a region’s top-of-atmosphere flux that occur due to changes in107

surface temperature elsewhere, independent of local surface temperature changes. For example, in108

Figure 1, regions 1 and 2 represent the convecting and subsiding branches of an overturning cell109

respectively. Surface warming in region 1 propagates vertically, warming region 1’s free tropo-110

sphere, and then horizontally into the free troposphere of region 2, increasing H ′. Region 2 now111

has a warmer troposphere, which radiates more, decreasing N′2. The resulting horizontal advection112

may also increase the humidity of region 2’s free troposphere, increasing N′2. Assuming region 2113

has a subsidence-induced boundary layer inversion, its low cloud cover could also increase, caus-114

ing a further decrease in N′2. All of these changes in N′2 occur independently of any changes in T ′2,115

and conspire to make λ2,1 positive or negative.116

We note that an increase in H ′ will also increase T ′2 directly (Eq. 1; Feldl and Roe 2013b). While117

this latter effect is connected to nonlocal radiative feedbacks in that both occur due to horizontal118

fluxes of heat and moisture, the two effects are different, and can disagree in the sign of the119
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resulting surface warming, as demonstrated by the above example. While the influence of H ′ on120

surface temperature is important for understanding the evolution of the spatial pattern of warming,121

in this paper we are focused only on the influence of surface temperature on TOA radiative fluxes,122

and so we focus on nonlocal radiative feedbacks.123

Suppose that region 1 has a weak positive local feedback λ1,1 = 0.5 Wm−2K−1 (red solid line,124

Figure 2b), and a stronger negative nonlocal feedback, so that λ2,1 = −2 Wm−2K−1 (light blue125

solid line, Figure 2b). We also assume that the surface temperature of the subsiding region 2 has126

no net effect on TOA fluxes, so that λ1,2 = λ2,2 = 0 Wm−2K−1 (orange and gray solid lines in127

Figure 2b). We assume that region 2’s thermal inertia is much larger than region 1’s, representing128

more ocean heat uptake in this region (see Appendix for details).129

We define the global climate feedback λ to be the dependence of the globally averaged net TOA130

flux on the globally averaged surface temperature, that is131

λ (t) =
∂N
∂T

(t) = ∑

(
Λ

d~T
dt

(t)

)
/

dT
dt

(t) (6)

where ~T =
[

T1
T2

]
, Λ =

[
λ1,1 λ2,1
λ1,2 λ2,2

]
, and a bar over a vector indicates the global average of that vector.132

We do not have to use an anomaly for N because N is 0 in equilibrium. Note that even though133

the spatial feedbacks Λ are constant, the global feedback λ can change with time because of the134

evolving spatial pattern of warming d~T
dt (t).135

We perform two 5000-year experiments: a “control” experiment, where all variations in136

~T ′control(t) and ~N′control(t) are due to random forcing at the surface (~F ′sur f (t) =
[

F ′sur f ,1(t)
F ′sur f ,2(t)

]
) and TOA137

(~FTOA(t) =
[

F ′TOA,1(t)
F ′TOA,2(t)

]
), and an “abrupt4x” experiment in which the time series ~T ′abrupt4x(t) and138

~N′abrupt4x(t) also respond to an initial step forcing akin to a quadrupling of CO2 concentration139

(FCO2,1 = FCO2,2 = 8 Wm−2).140
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For the abrupt4x simulation, the climate feedback λ = ∂N
∂T ′

changes significantly around year141

20. We therefore define two forced feedbacks, λ4x,early and λ4x,late, which are the slopes of the142

linear regressions of Nabrupt4x(t) against T ′abrupt4x(t) taken over years 1 to 20 and years 21 to 5000143

respectively (Figure 2c). Before these regressions are taken, we average each annual time series144

(gray dots) over roughly exponentially increasing time periods (colored dots). ∆λ4x ≡ λ4x,late−145

λ4x,early is the change in feedback between the periods.146

We seek a method to predict λ4x,early, λ4x,late, and ∆λ4x given ~T ′control(t) and ~N′control(t) (internal147

variability), and ~T ′abrupt4x(t) (the spatial pattern of warming). The simplest method would be to148

regress annual averages of Ncontrol(t) against T control(t) to get the resulting regression slope λcontrol149

(the slope of the blue line in Figure 2a), and to assume that λ4x,early = λ4x,late = λcontrol (Forster150

and Gregory 2006; Murphy et al. 2009; Dessler 2010). We call this the “global” method because151

it uses information about changes in global surface temperature only.152

The radiative feedbacks associated with temperature change induced by random forcing (i.e.,153

~Fsur f and ~FTOA) differ from those induced by uniform greenhouse forcing (~FCO2) (Dessler 2012;154

Colman and Hanson 2017; Proistosescu et al. 2018). Our conceptual model illustrates how this can155

arise from spatial variation. Since the thermal inertia in region 2 is larger, most of the temperature156

variability occurs in region 1, so that λcontrol is weighted towards the feedbacks associated with157

this region (λcontrol ≈ λ1,1+λ2,1). The spatial pattern of warming in the forced response is initially158

dominated by region 1 as well, once more because it has the lowest thermal inertia. As a result, the159

global method predicts λ4x,early well (see Figure 2c and d). However, the global method always160

predicts ∆λ4x = 0, as it assumes a constant λ . Since warming moves to region 2 over time and161

λ1,2+λ2,2 > λ1,1+λ2,1, ∆λ4x is positive. As a result, the global method underpredicts the warming162

of the abrupt4x simulation by about 1.5 K (Figure 2c). To address this shortcoming, we need a163

method that accounts for the spatial variation of feedbacks.164
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The “local” method is a commonly used method (Boer and Yu (2003b), Crook et al. (2011), the165

“local” method in Feldl and Roe (2013a), Brown et al. (2015), and Trenberth et al. (2015)) for166

estimating spatial feedbacks. In this method, we construct~λlocal =
[

λ1,local
λ2,local

]
where λi,local is the167

result of regressing N′i,control(t) against T ′i,control(t). Taking the dot product of~λlocal with ~T ′abrupt4x(t)168

then provides an estimate of ~N′abrupt4x(t) which we can use to estimate λ4x,early, λ4x,late, and ∆λ4x.169

This method assumes all radiative feedbacks are local, while allowing for the nonlocal effects of170

heat transport (Feldl and Roe 2013b). However, if there are nonlocal radiative feedbacks, then the171

local method can miss or conflate their effects. In region 1, estimates of λ1,local tend toward λ1,1 =172

0.5 Wm−2K−1 (dotted red line, Figure 2b), missing the negative nonlocal feedback λ2,1. Since173

the early period is dominated by warming in region 1, the local method overestimates λ4x,early174

(where “overestimates” implies the estimate of λ4x,early is more positive than the true value, even175

if both are negative, resulting in an overestimate of the sensitivity). On the other hand, T ′2 tends176

to be positively correlated with T ′1, due to heat transport, while T ′1 tends to be anti-correlated with177

N′2 because λ2,1 is negative. As a result, the local method predicts that λ2,local is negative (dotted178

orange line, Figure 2b), even though T ′2 has no net influence on N. Since T ′2 contributes more179

to warming over time, the local method incorrectly predicts a more negative feedback (Figure 2c180

and d). Similar discrepancies can occur when local feedbacks are used to diagnose feedbacks181

in GCMs, which may explain instances when the local method fails to predict feedback changes182

properly (Rose et al. 2014). We need a method that includes nonlocal feedbacks while accounting183

for correlation between temperature in different regions.184

We propose a multiple regression (“MR”) method, which estimates the local and nonlocal feed-185

backs associated with N′i (that is, the influence of T ′1 and T ′2 on N′i ) by regressing N′i,control(t) against186
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both regions simultaneously:187

N′i,control(t) = λi,1,MRT ′1,control(t)+λi,2,MRT ′2,control(t)+FTOA,i (7)

In least squares multiple regression, λi, j,MR is the same as the slope of the regression of N′i,control(t)
∗

188

against T ′j,control(t)
∗, where the star indicates that each time series is the residual after regressing189

against the surface temperatures in all non- j regions (see Appendix). This removes the effect of190

correlations between surface temperature in different regions giving spurious feedbacks, as with191

λ2,local above. Multiple regression has been used to estimate other surface temperature-dependent192

feedbacks from internal variability, though not radiative feedbacks (Liu et al. 2008; Li et al. 2012;193

Li and Forest 2014; Liu et al. 2018). The dashed lines in Figure 2b show that, given sufficient194

time, the MR method predicts the local and nonlocal feedbacks in each region, so that when we195

multiply the full matrix of estimated spatial feedbacks ΛMR =
[

λ1,1,MR λ1,2,MR
λ2,1,MR λ2,2,MR

]
by ~T ′abrupt,4x(t) to196

estimate ~Nabrupt4x(t), the resulting estimates λ4x,early, λ4x,late, and ∆λ4x are accurate (Figure 2c197

and d). Therefore, for this example, the MR method is able to account for the difference in climate198

feedback between internal variability and the forced response.199

Random fluctuations in N influence T via planetary energy gain at the same time that T influ-200

ences N via radiative feedbacks. As a result, T will tend to lag N with a positive correlation, while201

N will lag T with a negative correlation, so that regressions taken without a lag will be biased to-202

wards 0 (Spencer and Braswell 2008, 2011; Choi et al. 2014; Proistosescu et al. 2018). This issue203

does not occur for random forcing at the surface, which only affects N indirectly through radiative204

feedbacks. Therefore, the more stochastic forcing that occurs at TOA (~FTOA) as opposed to the205

surface (~Fsur f ), the more the regression of N vs. T will overestimate the true radiative feedback.206

For the example in Figure 2, Fsur f ,1 and Fsur f ,2 are white noise with variance 20 W2m−4, while207

FTOA,1 and FTOA,2 are white noise with variance 5 W2m−4. Figure S1 shows a case where these208

11



variances are 10 and 15 W2m−4 respectively, with the result that all three regression methods over-209

estimate λ4x,early and λ4x,late, while underestimating ∆λ4x. In other words, given sufficient random210

TOA forcing, regression estimates of spatial feedbacks will be biased. We consider this bias in211

discussing our results in the next section.212

It should be mentioned that Proistosescu et al. (2018) model ENSO variability as a distinct213

additional mechanism by which N and T mutually influence each other, which similarly leads214

to overestimates of λ from regression-based methods. As part of their model, they assume that215

T influences N with a lag of about three months. Since this is beyond the time scale of most216

atmospheric processes, we assume that this feedback propagates in part through the ocean, so that217

the atmospheric component may still operate through the same spatial feedbacks that operate under218

other forms of variability and under the forced response (e.g., it could occur due to a “tropical219

atmospheric bridge” mechanism; Klein et al. 1999).220

3. Using the MR method on AOGCMs221

To test the methods discussed above on atmosphere-ocean general circulation models222

(AOGCMs), we use simulations from LongRunMIP, an archive of fully coupled millennial-length223

simulations of complex climate models (Rugenstein et al. 2019). We chose the six models with224

millennial-length control and abrupt4x simulations for which we have monthly output. Details of225

these models and simulations are given in Table S1.226

We alter the three methods from Section 2 to reflect the more complex nature of AOGCMs:227

• CO2 forcing can lead to atmospheric changes that are independent of surface warming. These228

“adjustments” to forcing occur mostly within the first year (e.g., Gregory and Webb 2008).229

We remove this year from our analysis, redefining our early period to be years 2 to 20.230

12



• For AOGCMs, there are more than two regions with distinct behaviors. Dividing our models231

into n regions, equation 7 becomes232

N′i (t) = λi,1,MRT ′1,control(t)+λi,2,MRT ′2,control(t)+ . . .+λi,n,MRT ′n,control(t)+FTOA,i, (8)

giving a system of n equations233

~N′(t) = Λ~T ′(t)+~FTOA (9)

where Λ is a matrix of feedbacks λi, j. Each equation in this system has n− 1 degrees of234

freedom, so n must be smaller than the length of the control simulation, and preferably much235

smaller given the significant spatial correlation of surface temperature. For simplicity, we236

divide the surface equally in latitude and longitude, although this may miss features of the237

climate system. Since our control simulations last at least 1000 years (Table S1), we use a238

15◦ by 15◦ grid, giving 288 regions (Figure 3).239

• Circulations, and therefore radiative feedbacks, change with season. Thus, we compute feed-240

backs for each season individually, first by averaging all monthly time series into seasonal241

time series (where the seasons are DJF, MAM, JJA, SON), and then performing a separate re-242

gression for each season (e.g. all DJF values of ~N′control(t) against all DFJ values of ~T ′control(t))243

creating a set of four feedbacks. We multiply each month of ~T ′4x(t) by the relevant seasonal244

feedback, and take the annual average to estimate ~N′4x(t). We compare seasonal averages to245

other approaches in Tables S2 and S3. While seasonal averaging tends to reduce the error in246

the MR method, the qualitative behavior of the different methods is not affected by the choice247

of time averaging.248

Figures 3 and 4 show N vs. T ′ of the control and abrupt4x simulations of the six models respec-249

tively. Figure 4 also shows N estimated using the three methods, assuming that each estimate starts250
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with the true value of N at year 2. The solid lines in Figure 4 are local regressions of N against T ′251

performed using LOESS (LOcally Estimated Scatterplot Smoothing; Cleveland and Devlin 1988,252

see Appendix for more detail). We can use the slopes of these lines mapped against the time series253

of T to estimate feedbacks as a function of time (lines in Figure 5).254

Though there is a range of feedback values between models, all six forced simulations have a255

feedback that gets less negative with time (black lines), consistent with past results for similar256

models (Andrews et al. 2015). The MR method (green lines) matches or overestimates the feed-257

back value, with this error tending to decrease with time. This error can range from∼1 Wm−2K−1
258

for the early years of CESM104 and GISSE2R (that is, at least half of the feedback strength itself)259

to roughly 0 for HadCM3L. The MR method correctly predicts that the feedback gets less negative260

with time, although for some of the models it underestimates the magnitude of the change.261

The global method (blue) overestimates the early feedback. Since the global method is agnostic262

about the pattern of surface warming, the predicted feedback is mostly constant except for small263

differences due to changes in the seasonal distribution of warming and in seasonal feedbacks (e.g,264

the early years of HadCM3L). As a result, as the true feedback increases with time, it becomes265

more positive than the global estimate for half the models. For some models, this allows the global266

method to more accurately forecast the equilibrium warming than the other methods, albeit due to267

compensating errors in the early and later periods (i.e., CESM104 and MPIESM12 in Figure 4).268

The local method (orange) predicts a positive feedback for all models except GISSE2R, implying269

a climate unstable to external forcing, and does not predict the increase in feedback with time seen270

in all models.271

The dots in Figure 5 represent estimates of λ4x,early and λ4x,late (feedbacks before and after year272

20; see Appendix for details). We visualize the estimates of these feedbacks and their difference273

using a scatter plot (black dots in Figure 6), as in Figure 2d. The global and MR methods perform274
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similarly for λ4x,early and λ4x,late, while the MR method gets closer to accurately predicting ∆λ4x,275

consistent with the discussion around Figure 4 and reflected by the root mean square errors in276

Table 1 (for feedback values for all models and components, see Tables S7 and S8).277

~N′ and λ can be expressed as the sum of shortwave (SW) and longwave (LW) terms, which can278

be separated in turn into clear-sky (fluxes recalculated as if no clouds were present) and cloud279

terms (the residual of total and clear-sky terms; cloud feedbacks defined this way may include280

changes in cloud masking rather than in clouds themselves (Soden et al. 2004)).281

Examining these component individually shows that the error in λ4x,early in the MR and global282

methods is due primarily to SW cloud feedbacks (red markers in Figures 6a and b). Both the283

MR and global methods have smaller errors in λ4x,late (Figures 6d and e), but for the MR method284

this is caused by a reduction in the error in SW cloud, while for the global method this is due285

to offsetting errors in the SW and LW cloud feedbacks (see also Table 1). Cloud feedbacks are286

similarly the cause of the local method’s large overestimation, while the local method outperforms287

the other methods at predicting the primarily local SW clear feedback (Table 1). Note that the288

global method has a relatively small error for the LW clear feedback, consistent with Lutsko and289

Takahashi (2018). The increase in feedback with time (∆λ4x) and the variation in this increase290

between models is driven by the SW cloud feedback (Figures 6g, h, and i). The MR method has291

the smallest error in estimating ∆λ4x, with this error tending to be an underestimate. Figures S2-5292

show feedback time series plots for all component fluxes.293

All methods examined contain some degree of error. We can find the geographic source of these294

errors by looking at the true and estimated normalized change in ~N′4x (multi-model mean in Fig-295

ure 7; errors in the multi-model mean and for individual models in Figures S6-S8), calculated by296

taking the finite difference in ~N′4x(t) between the first and last part of the indicated time period,297

where each part contains similar amounts of warming (see Appendix). The difference is normal-298
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ized by the global temperature change, allowing intermodel comparison. For the global method,299

we make this estimate by regressing ~N′control(t) against T ′control(t) (the “global” method in Feldl and300

Roe (2013a) and the “local contribution” in Boer and Yu (2003a,b); Crook et al. (2011); Zelinka301

et al. (2012); Andrews et al. (2015)) and using this as the predicted normalized change in ~N′4x.302

The MR method does quite well at recreating the multi-model spatial pattern of TOA flux303

change, both for net and component fluxes (Figures S9-S12), with the exception of regions south304

of 30◦S and the north Atlantic. The MR method also overestimates the change in these regions in305

individual models (Figures S6-S8). The error in these regions has contributions from all compo-306

nent fluxes, foremost the SW cloud feedback (for multi-model mean component flux errors, see307

Figures S13-17). For all periods, models, and fluxes except for SW clear-sky (which is primarily308

a local feedback), the MR method outperforms the other two methods when scored by the area-309

weighted root mean square error (Table 2; for comparison with annual or monthly approaches, see310

Table S3; for values for individual models, see Table S4; for details on the error metric, see Ap-311

pendix). Specifically, the global method has large compensating errors, especially in the tropics,312

and the local method overestimates the change almost everywhere (Figures S6-S8).313

There are several potential explanations for the MR method’s overestimate for TOA fluxes south314

of 30◦S and over the north Atlantic. These may be regions where there is significantly more315

stochastic forcing at TOA than at the surface, resulting in a similar overestimation to that discussed316

in Section 2 and shown in Figure S1. Alternatively, the spatial feedbacks that influence ~N′ in these317

regions may be nonlinear, either in that they change in value as the world warms (e.g., a reduction318

in the strength of the SW clear feedback once sea ice melts), or the effect of warming in different319

regions combines nonlinearly, as might occur in response to circulation changes such as a shift in320

the mid-latitude jet; or surface fluxes may influence ~N′ there independently of surface warming.321

Further research is needed to diagnose this error.322
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In spite of this overestimate, the MR method can be used to explain the multi-model forced323

TOA flux response for roughly three quarters of the Earth using feedbacks estimated from internal324

variability (see Table S5 and S6, which show the same error metrics as Tables 1 and 2, using only325

TOA fluxes north of 30◦S). We now discuss the spatial feedbacks estimated by the MR method, as326

well as some of their implications.327

4. Discussion328

We first test if the spatial feedbacks estimated using the MR method exhibit behavior broadly329

consistent with physically modelled feedbacks. The ith column of Λ represents the change in ~N′330

from warming in region i. Zhou et al. (2017) performed fixed-SST experiments with the CAM5331

model where the temperature in region i was perturbed. The top row of Figure 8 shows spatial332

cloud feedbacks for three representative regions calculated using this approach. The bottom row333

shows the multi-model and multi-season mean response for warming in similar regions estimated334

by the MR method. For both approaches, warming in the extratropics or in regions of tropical335

subsidence produces cloud feedbacks that are mostly local and positive, while warming in tropical336

convecting regions has significant nonlocal feedbacks which are mostly negative. Since the mod-337

els, region sizes, and degree of perturbation differ, the details and magnitudes of the feedbacks338

differ. Further, the fixed-SST method allows land temperatures to evolve freely, so that regions339

that have significant nonlocal effects, like tropical convecting regions, can cause large changes in340

TOA fluxes over land (Figure 8b). The MR method is able to estimate land feedbacks directly, so341

that TOA flux changes due to land warming are not included in these tropical convecting feedbacks342

(Figure 8e). See also Figure 4 in Dong et al. (2019).343

The top left panel of Figure 9 shows a map of the multi-model and multi-month mean spatial344

feedbacks estimated by the MR method: the change in N caused by warming in each region di-345
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vided by that region’s fractional area (so that smaller, polar regions do not have artificially smaller346

feedbacks). Spatial feedbacks are strongly negative in regions of tropical convection (e.g., Indone-347

sia and Central America) and are mostly positive over the tropical oceans in regions of atmospheric348

subsidence as well as much of the extratropical oceans, in keeping with the examples from Fig-349

ure 8. These strongly negative feedbacks are robust when feedbacks are recalculated using just350

the first or second half of the control simulations (Figures S18-22), although outside these regions351

there is some noise, with the sign of roughly a third of net feedback cells differing between the352

first and second halves. The variation in the spatial pattern is largely determined by the SW cloud353

feedback (bottom left panel, Figure 9; for all flux components, see Figures S19-S22).354

a. Local and nonlocal feedbacks355

The MR method allows us to split spatial feedbacks into local (the diagonal elements of Λ, giving356

the influence of warming on TOA fluxes directly overhead) and nonlocal components (the off-357

diagonal elements of Λ), and to calculate the local and nonlocal components of the map of spatial358

feedbacks (middle and right columns of Figure 9 respectively). We note that the devision between359

local and nonlocal feedbacks depends on grid resolution, with local feedbacks in coarser grids360

incorporating more nonlocal processes. For the grid considered in this paper, the local feedback361

is positive almost everywhere, due to cloud feedbacks (Figures S21 and S22): in the tropics and362

in subtropical subsiding regions, local warming reduces lower tropospheric stability, leading to363

a loss of low clouds and a positive SW cloud feedback (Klein and Hartmann 1993; Wood and364

Bretherton 2006; Zhou et al. 2017; Dong et al. 2019). This result holds for each AOGCM except365

for GISSE2R, which lacks a positive local SW cloud feedback (Figure S24, Table S8). For most366

models, there is a partially compensating negative local LW cloud feedback in tropical convecting367

regions, possibly due to an iris effect (Lindzen et al. 2001; Mauritsen and Stevens 2015). Outside368
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of the tropics, there is a positive local LW cloud feedback, possibly associated with an increase in369

middle and high cloudiness as convection increases (Zelinka et al. 2012).370

Positive local feedbacks provide an explanation for observational studies that use the local371

method to predict spatial feedbacks, finding that they are positive over much of the Earth and372

in the global mean (Brown et al. 2015; Trenberth et al. 2015). For example, the multi-model mean373

feedbacks estimated using the local method (top middle panel, Figure S23) resemble the feedbacks374

in the upper right panel of Figure 10 from Trenberth et al. (2015). While local method feedbacks375

can differ from the local component of MR method feedbacks due to correlation between temper-376

ature in different regions as discussed in Section 2, the observational studies provide evidence that377

real world local feedbacks are substantially positive. If we use the MR method to estimate the378

local components of λ4x,early and λ4x,late (Table S8), we get positive values for all models except379

GISSE2R. For these models, the mean estimated local feedback is 3.37 Wm−2K−1 for the early380

period and 3.13 Wm−2K−1 for the late period (Tables S8).381

The MR method implies that in the absence of negative nonlocal feedbacks, five out of six of382

these AOGCMs would be unstable to radiative forcing, even accounting for the dominant stabiliz-383

ing Planck feedback. The MR method predicts that there are strongly negative nonlocal feedbacks384

coming from regions of tropical convection (upper right panel, Figure 9), largely due to the SW385

cloud feedback (lower right panel). This is consistent with tropical convecting regions behaving386

similarly to region 1 of the conceptual model from Section 2: surface warming in the convecting387

tropics propagates throughout the tropical free troposphere, increasing the temperature aloft while388

leaving surface temperatures alone. This increases the lower tropospheric stability, and thus low389

cloud cover (a negative SW cloud feedback), as well as the troposphere’s outgoing longwave radi-390

ation (a negative LW clear feedback) (Rose and Rayborn 2016; Andrews and Webb 2017; Ceppi391

and Gregory 2017; Klein et al. 2017; Zhou et al. 2017; Dong et al. 2019). Note that incorporating392
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these nonlocal interactions changes both local and total values of the LW clear feedback, giving393

different values than studies that analyze this feedback purely locally (e.g., Koll and Cronin 2018).394

For the five models with positive local components, the average nonlocal component of the395

abrupt4x feedbacks is −4.21 Wm−2K−1 for the early period and −3.69 Wm−2K−1 for the late396

period (Table S8). so that the net forced climate feedback is a small residual between competing397

local and nonlocal feedbacks, with local and nonlocal feedbacks strongly anti-correlated between398

different models (Table S8; the correlation coefficient for early period non-GISSE2R local vs.399

nonlocal feedbacks is −0.96, and for late is −0.98). A modest shift in the relative strength of400

these feedbacks (for example, due to a shift in circulation) could lead to large changes in cli-401

mate sensitivity; an increase in the local feedback of only a third would be enough to make these402

AOGCMs unstable (local and nonlocal feedbacks differ by ∼1 Wm−2K−1, which is on average403

roughly a third of the magnitude of the local feedback for the non-GISSE2R models). Additional404

research is needed to understand what mechanisms cause the anti-correlation between local and405

nonlocal feedback strength, and whether we expect this cancellation to hold in different climate406

states. Given that the local/nonlocal cancellation does not hold in all contexts – for example, the407

nonlocal feedback’s seasonal cycle has a larger amplitude and is more latitudinally constrained408

than the local feedback’s seasonal cycle (Figure S25) – it is unlikely that this cancellation is purely409

a statistical artifact. Our findings have bearing for exoplanet research, as they suggest that it may410

be harder to have a cloudy atmosphere with a stable climate than previously thought (Leconte et al.411

2013), potentially reducing the chance of finding habitable worlds.412

b. The cause of the increase in climate feedback over time413

For all six models, the change in feedback with time (∆λ4x) is positive, primarily because of the414

SW cloud feedback, and secondarily the LW clear feedback (Figure 4 and Table S7). The MR415
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method gets the correct sign of ∆λ4x but underestimates this increase for each model, once more416

primarily due to the SW cloud feedback (Table S8).417

We can estimate how much the change in the spatial pattern of warming with time (Figure 10a)418

contributes to ∆λ4x by multiplying this change by the MR estimate of the spatial pattern of feed-419

backs for each flux component (Figure 9, Figures S18-S22). The resulting maps show the contri-420

bution of the change in warming pattern to the change in feedback (Figures 10b-f).421

The MR method identifies two main latitude bands that contribute to the increase in feedback422

with time: the tropics, whose convecting regions increase the SW cloud and LW clear feedbacks423

(less warming in these regions reduces the role of the strongly negative nonlocal feedbacks dis-424

cussed above, consistent with Andrews and Webb 2017; Ceppi and Gregory 2017; Dong et al.425

2019; Fueglistaler 2019); and the Southern Ocean, which increases the SW clear feedback (due to426

the delayed warming in this region leading to the delayed melting of sea ice). The MR method427

estimates that the LW clear sky and SW cloud feedback have offsetting negative contributions in428

the Southern Ocean. While the LW clear sky offset is consistent with the total change in the LW429

clear feedback being small, and with the LW clear TOA flux change getting more negative in the430

Southern Ocean due to a more strongly negative local feedback (zonal figures in the top row of431

Figure S19), the change in the SW cloud TOA flux is too negative in this region (lower left panel432

of Figure S17), suggesting that the SW cloud negative contribution is an error, and is likely the433

reason for the MR method’s underestimate of ∆λ4x.434

While the exact evolution of temperature patterns in the tropics in AOGCMs may be incorrect435

due to cold-tongue biases (Seager et al. 2019), our findings match with Dong et al. (2019), in that436

as long as the feedbacks in tropical convecting regions are far more negative than anywhere else,437

the delayed warming in regions of ocean heat uptake will ensure an increase in sensitivity over438

time. Observational evidence suggests that N depends on tropical midtropospheric temperatures439
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(Dessler et al. 2018; Ceppi and Gregory 2019; Fueglistaler 2019), supporting our argument that a440

reduction in the share of surface warming occurring in the tropical convecting regions which set441

these temperatures likely influences the Earth’s sensitivity.442

5. Conclusions443

The global climate feedback, one of the key parameters in determining future climate change,444

is inconstant in part because radiative feedbacks vary spatially. The MR method estimates these445

spatial feedbacks from records of its internal variability, and improves upon existing methods for446

doing so by incorporating both local and nonlocal radiative responses to surface warming. For447

the six atmosphere-ocean general circulation models studied, the spatial feedbacks estimated by448

the MR method applied to the pattern of surface warming recreate the spatial pattern of top-of-449

atmosphere flux response to forcing more accurately than existing methods, as well as providing450

better estimates of the change in feedback with time. The method consistently overestimates451

the change in TOA flux over the Southern Ocean and north Atlantic, and so overestimates the452

sensitivity. The method finds that that there are significant negative nonlocal feedbacks associated453

with regions of tropical convection, and that the reduction in the share of warming that occurs454

in these regions over time contributes to an increase in the global feedback with time in these455

models, consistent with recent studies (Andrews and Webb 2017; Ceppi and Gregory 2017; Dong456

et al. 2019; Fueglistaler 2019).457

The MR method finds that five of the six AOGCMs have strongly positive local cloud feedbacks458

countered by strongly negative nonlocal cloud feedbacks. These positive local feedbacks may459

explain why studies that use local regressions to estimate spatial feedbacks from observed internal460

variability find that they are on average positive (Brown et al. 2015; Trenberth et al. 2015). While461

the AOGCMs exhibit an anti-correlation between local and nonlocal feedbacks, a small relative462
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shift in the balance between these feedbacks could cause large changes in sensitivity, and such463

shifts may be relevant for paleoclimate or future warming. Given the large magnitudes associated464

with these local and nonlocal cloud feedbacks, it may be harder for cloudy exoplanets to have465

stable atmospheres, reducing the chances of finding habitable worlds.466

Spatial feedbacks estimated from observations could potentially improve warming forecasts and467

serve as emerging constraints on AOGCMs. The success of the MR method for most fluxes and468

regions of the Earth (with the important exception of Southern Ocean cloud feedbacks) suggests469

that many of the spatial feedbacks at work under global warming are observable under internal470

variability. Challenges remain to applying the MR method to observations. We would need to471

reduce the information necessary to fit our statistical model to be less than the length of the satellite472

record; to remove changes in forcing from records of top-of-atmosphere fluxes; and to account for473

systematic biases in the observations themselves. We would also need to account for regions of the474

Earth and states of the climate where the MR method is biased, such as for Southern Ocean cloud475

feedbacks. Furthermore, since spatial feedbacks are just one link in the coupled energy balance476

of the climate, we would need complementary theory to complete the forecast of future warming,477

particularly its spatial pattern. Still, our results suggest that the processes that will determine the478

sensitivity in both the near and far future may be observable today.479
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APPENDIX492

Data and methods493

a. Data/code access494

For LongRunMIP data access, visit http://www.longrunmip.org/. This paper’s code is495

available at https://github.com/jsbj/spatial.496

b. Matrix and vector notation497

Note that in the main body of the text, time is treated as continuous, so that time-series are498

written as functions (e.g., ~T (t) is the evolving spatial pattern of warming). Since the Appendix499

documents the calculations we have employed, it treats time as discrete, and so time is instead500

treated as an additional dimension (e.g., T is the evolving spatial pattern of warming). Therefore,501

a vector in the main body of the text refers to a spatial pattern, while a vector in the Appendix502

refers to a time-series of a scalar value (such as a global average).503
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c. Conceptual model504

The conceptual model is a system of stochastic differential equations:505

c1
dT ′1
dt

= N′1−H ′+Fsur f ,1

c2
dT ′2
dt

= N′2 +H ′+Fsur f ,2

where H ′ = γ(T ′1−T ′2) and506

N′1 = λ1,1T ′1 +λ1,2T ′2 +FCO2,1 +FTOA,1 (A1)

N′2 = λ2,1T ′1 +λ2,2T ′2 +FCO2,2 +FTOA,2 (A2)

The thermal inertia ci is defined as miρcp, where ρ and cp are the density and specific heat of507

ocean water respectively, and mi is an equivalent mixed layer depth; m1 is 50m, and m2 is 1000m.508

FCO2,1 = FCO2,2 are both 0 Wm−2 (8 Wm−2) for the control (abrupt4x) simulation. λ1,1 = 0.5509

Wm−2K−1, λ2,1 = −2 Wm−2K−1, λ1,2 = λ2,2 = 0Wm−2K−1, and γ = 2 Wm−2K−1. The terms510

~Fsur f and ~FTOA are white noise processes. In the example shown in Figure 2, the variance of Fsur f ,1511

and Fsur f ,2 is 40 Wm−2 and the variance of FTOA,1 and FTOA,2 is 5 Wm−2, while for the example512

in Figure S1, the variance of Fsur f ,1 and Fsur f ,2 is 10 Wm−2 and the variance of FTOA,1 and FTOA,2513

is 15 Wm−2.514

d. The multiple regression method515

Suppose that we have a time series of surface temperatures and TOA radiative fluxes of the516

Earth, real or simulated, where the surface of the Earth is regridded into ngrid (288) regions, and517

where we have ntime years of monthly observations. For each season s (1≤ s≤ 4), we can define an518

ntime×ngrid matrix Tm, where the element in row i and column j, Ti, j,s, is the surface temperature519
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in region j during season s of year i. We can also define a matrix of anomalies, T′s, where520

T′s =



T1,1,s T1,2,s . . . T1,ngrid ,s

T2,1,s T2,2,s . . . T2,ngrid ,s

...
... . . . ...

Tntime,1,s Tntime,2,s . . . Tntime,ngrid ,s



− 1
ntime



∑
ntime
i=1 Ti,1,s ∑

ntime
i=1 Ti,2,s . . . ∑

ntime
i=1 Ti,ngrid ,s

∑
ntime
i=1 Ti,1,s ∑

ntime
i=1 Ti,2,s . . . ∑

ntime
i=1 Ti,ngrid ,s

...
... . . . ...

∑
ntime
i=1 Ti,1,s ∑

ntime
i=1 Ti,2,s . . . ∑

ntime
i=1 Ti,ngrid ,s


To estimate the spatial feedbacks associated with a TOA radiative flux of type f (where f is521

either net, LW clear, SW clear, LW cloud, or SW cloud) and season s, we first define an ntime×522

ngrid matrix of anomalies R′f ,s, which is analogous to T′s above (N from the main body of the text523

is Rnet). We can fit the statistical model defined in Equation 9 using least squares to solve for524

seasonal spatial feedbacks (Λ f ,s):525

Λ f ,s =



λ f ,1,1 λ f ,1,2 . . . λ f ,1,ngrid

λ f ,2,1 λ f ,2,2 . . . λ f ,2,ngrid

...
... . . . ...

λ f ,ngrid ,1 λ f ,ngrid ,2 . . . λ f ,ngrid ,ngrid


= (T′Ts T′s)

−1T′Ts R′f ,s (A3)

526

Seasonal feedbacks are used in Section 3, but Section 2 uses an annual version, in which case527

instead of a set of four seasonal feedback matrices, only one feedback matrix estimated using the528

above Equation d, with the difference that the time series are annual averages. The “monthly”529

approach in Section 1.2.1 of the SI is the same as the seasonal approach in Equation d, except530
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instead of a four regressions, twelve are performed, with all time series being monthly averages531

sampled every twelve months. The “all months” approach instead performs only one regression,532

just like the annual approach, except that monthly average time series are used instead of annual533

averages (the logic being that even though months may have different properties, there may be an534

advantage in maximizing the data available to fit a regression).535

e. Estimating the forced response536

1) FORCED FEEDBACKS537

Suppose that we have a ntime,abrupt4x-year long abrupt4x simulation of a GCM for which we538

have spatial feedbacks estimated from a control run. We then define an early period (years 2 to 20)539

and a late period (years 21 to ntime,abrupt4x). The true feedbacks λ f ,p for the abrupt4x simulation540

during each period p (where p is early or late) are defined as the slope of the least squares fit of541

the linear regression of the time series of globally averaged TOA flux anomalies of type f from542

the abrupt4x simulation (~R′f ,abrupt4x), against the globally averaged surface temperature anomalies543

from the abrupt4x simulation ~T ′abrupt4x:544

λabrupt4x, f ,p =
{~T ′abrupt4x}p · {~R′f ,abrupt4x}p

‖{~T ′abrupt4x}p‖2
(A4)

where the curly brackets denote that the time series are averaged over exponentially longer peri-545

ods, with annual averages for the first decade increasing to centennial averages by the simulation’s546

end, and the p subscript denotes whether values from before or after year 20 are used. ~R′f ,abrupt4x547

and ~T ′abrupt4x are vectors with as many entries as years in the abrupt4x simulation (1000 years).548

We can make estimates of these feedbacks using the MR method by first estimating the abrupt4x549

simulation’s TOA radiative flux of type f for each month of the year m by multiplying the surface550
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temperature time series of that abrupt4x simulation for that month, T′m,abrupt4x (a ntime,abrupt4x×551

ngrid matrix) by the spatial feedbacks for that month’s season:552

R̂′f ,m,abrupt4x = T′m,abrupt4xΛ f ,s(m) (A5)

We use months instead of seasonal averages because our seasons do not start in January, and553

this approach allows us to have annual averages that start in January. These monthly time se-554

ries R̂′f ,m,abrupt4x can then be turned into annual averages R̂′f ,abrupt4x, and then global averages555

~̂R′f ,abrupt4x, allowing us to estimate the feedbacks for period p by performing the same least squares556

fit as above:557

λ̂abrupt4x, f ,p =
{~T ′abrupt4x,p} · {~̂R′f ,abrupt4x,p}

‖{~T ′abrupt4x,p}‖2
(A6)

2) SPATIAL PATTERNS OF TOA FLUX CHANGE558

We quantify the normalized spatial pattern of TOA radiative flux change of flux type f across559

a period p by taking a finite difference approach, taking the mean value of ~R′f ,abrupt4x during two560

parts of the period and subtracting the first part from the second (where the divisions for the early561

period are years 2-6 and 7-20, and the divisions for the late period are 21-170 and 171-ntime,abrupt4x,562

with both divisions chosen to allow for substantial warming in each period), and then dividing this563

by the average change in the globally averaged surface temperature between these two periods:564

∆~R′f ,abrupt4x,p =


∑

tend,p
i=tmid,p+1



R′f ,abrupt4x,i,1

R′f ,abrupt4x,i,2

...

R′f ,abrupt4x,ngrid


−∑

tmid,p
i=tstart,p



R′f ,abrupt4x,i,1

R′f ,abrupt4x,i,2

...

R′f ,abrupt4x,ngrid




(

∑
tend,p
i=tmid,p+1 Tabrupt4x,i−∑

tmid,p
i=tstart,p

Tabrupt4x,i

) (A7)
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where tstart,p and tend,p are the first and last years in period p, respectively, where tmid,p is 6 for565

the early period and 170 for late period, where R′f ,abrupt4x,i, j is the element in the ith row and jth566

column of R′f,abrupt4x, and where Tabrupt4x,i is the ith element in ~Tabrupt4x. Finite difference is used567

instead of regressing values against a global average because the presence of local and nonlocal568

feedbacks causes nonlinear relationships between N′i (t) and T ′i (t) (or T ′(t)), which would lead to569

biased estimates of change from a linear regression.570

f. Errors571

We calculate two types of errors: feedback errors (Tables 1 and S2), and spatial errors (Tables 2572

and S3). We add a subscript g to our feedbacks and spatial patterns of TOA flux change to signify573

that they belong to the GCM g, where g is one of CCSM3, CESM104, GISSE2R, HadCM3L,574

IPSLCM5A, and MPIESM12. The feedback error is given by the root mean square error:575

ε f eedback, f ,p =

√
1

nGCMs
∑

g∈GCMs
(λ̂ f ,abrupt4x,p,g−λ f ,abrupt4x,p,g)2 (A8)

where nGCMs is 6, the number of AOGCMs. The spatial error is measured by taking the area-576

weighted root mean square error of the spatial estimate577

εspatial, f ,p =

√√√√∑
ngrid
i=1 (∆~̂̃R′f ,abrupt4x,p,i−∆

~̃R′f ,abrupt4x,p,i)
2ai

∑
ngrid
i=1 ai

(A9)

where ai is the area of the ith grid cell. For the spatial errors in the main body of the paper, this is578

taken on multi-model mean values of ∆
~̂̃R′f ,abrupt4x,p,i and ∆

~̃R′f ,abrupt4x,p,i. For the same calculation579

for individual models (Table S4 and Figures S6-S8 in the supplementary materials), values for580

each model are used instead.581
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g. Other methods to calculate feedbacks582

We consider two other methods for deriving spatial feedbacks, estimating abrupt4x feedbacks,583

and estimating spatial patterns of TOA flux change:584

1) THE GLOBAL METHOD585

The seasonal version of the “global” method used in the main body of the paper is estimated586

using the least squares fit on this regression:587

λglobal, f ,s =
~T ′s ·~R′f ,s
‖~T ′s ‖2

(A10)

where ~Ts and ~R f ,s are globally and seasonally averaged time series of control simulation surface588

temperature and TOA flux f respectively, sampled every fourth seasonal value so that all elements589

of the time series are from season s. The four seasonal feedbacks are used to recreate estimates of590

the global averaged time series ~R f ,abrupt4x, which in turn is used, as above, to estimate abrupt4x591

feedbacks. Once more, different averaging of the control time series and groupings of regression592

equations can be used to make the annual, monthly, and all months versions of this method featured593

in Tables S3 and S4.594

The normalized spatial pattern of TOA flux change can be found by first estimating the “local595

contribution” (Boer and Yu 2003a,b; Crook et al. 2011; Zelinka et al. 2012; Andrews et al. 2015),596

using Equation 1, but replacing the time series vector ~R′f ,s with the spatial time series matrix597

R′f ,s from above, and replacing the single feedback λglobal, f ,s with the spatial vector of feedbacks,598

~λglobal, f .599

2) THE LOCAL METHOD600

The “local” method assumes the statistical model601

R′i(t) = λlocal,iT ′i (t)+ ε(t) for each region i (A11)
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Spatial feedbacks are estimated using least squares:602

~λlocal, f =



λlocal, f ,1

λlocal, f ,2

...

λlocal, f ,ngrid


=



~T ′1·~R′f ,1
‖~T ′1‖2

~T ′2·~R′f ,2
‖~T ′2‖2

...
~T ′ngrid

·~R′f ,ngrid

‖~T ′ngrid
‖2


(A12)

where ~T ′i and ~R′f ,i are the ith rows of T′ and R′f respectively. We can then generate estimates of603

R′f ,abrupt4x as above. We apply these estimates to Equations A6 and A7 to estimate forced global604

feedbacks and spatial patterns of TOA flux change.605

h. Local regression606

We use LOESS (LOcally Estimated Scatterplot Smoothing; Cleveland and Devlin 1988) to take607

local regression of scatterplots of N vs T ′. LOESS uses a weighted regression of a certain number608

of nearest neighbors, in our case 30. Full details can be found in the code for this paper listed609

above and in the LocallyWeightedRegression.jl Julia package (https://github.com/juliohm/610

LocallyWeightedRegression.jl).611
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832

833

834

net LW clear SW clear LW cloud SW cloud

MR global local MR global local MR global local MR global local MR global local

early 0.69 0.74 2.54 0.08 0.12 0.63 0.18 0.48 1.21 0.13 0.23 0.02 0.45 0.55 1.19

late 0.29 0.26 1.87 0.15 0.21 0.47 0.13 0.52 1.09 0.31 0.35 0.17 0.2 0.6 0.65

change 0.44 0.73 0.78 0.12 0.17 0.22 0.08 0.11 0.18 0.19 0.13 0.17 0.39 0.57 0.64
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TABLE 2. Spatial errors. The model-mean area-weighted root mean square error of estimates of the warming-

normalized change in TOA fluxes during the early and late periods of the abrupt4x simulations, and the change

in pattern between these period (see Appendix for details). All values have units of Wm−2K−1. For annual and

monthly versions in addition to seasonal, see Table S2, for individual models see Table S4, and for fluxes north
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net LW clear SW clear LW cloud SW cloud
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LIST OF FIGURES840

Fig. 1. A schematic representation of the conceptual model used in Section 2, consisting of an over-841

turning cell with a convecting (1) and a subsiding (2) region. Warming of the surface tem-842

perature T1 has nonlocal effects: it increases the horizontal heat transport H, and it changes843

properties of the atmosphere aloft in region 2 that affect its net top-of-atmosphere radiative844

flux, N2, for instance by warming its free troposphere, increasing its lower tropospheric sta-845

bility, and therefore increasing its low cloud cover. The dependence of N2 on T1 (holding T2846

fixed) is an example of a nonlocal radiative feedback. . . . . . . . . . . . . 47847

Fig. 2. Two experiments are performed with the conceptual model in Equation 1: an unforced “con-848

trol” simulation (panels a,b) and a forced “abrupt4x” simulation (panels c,d). Values of N vs.849

T ′ from each experiment are given by the black dots in panels a and c, representing annual850

averages for the control simulation and exponentially increasing averages for the abrupt4x851

simulation. The global method assumes that the slope of the regression in panel a (blue line)852

gives the slope of the black dots in the lower left panel, underestimating the increase in this853

slope over time (blue lines and markers, panels c,d). The local method regresses N′i against854

T ′i to estimate λi for both regions (dotted lines, panel b), which leads to an overestimate of855

the combined feedback associated with region 1 (λ1 = λ1,1 +λ2,1, dotted red line in panel856

b), and therefore an overestimate of the feedback early on (orange lines and markers, panels857

c,d). The MR method, given sufficient years to regress over, correctly estimates all spatial858

feedbacks (dashed lines, panel b), accurately predicting the feedbacks and its change with859

time (green lines and markers, panels c,d). . . . . . . . . . . . . . . . 48860

Fig. 3. Plots of N vs. T ′ for control simulations of six coupled atmosphere-ocean general circulation861

models (see Table S1 for details). We use the simulations to estimate spatial feedbacks using862

the global, local, and MR methods. We regrid simulations to 15◦ × 15◦ grids, giving 288863

regions. . . . . . . . . . . . . . . . . . . . . . . . . 49864

Fig. 4. N vs. T ′ for abrupt4x simulations of the same six GCMs from Figure 3 (black dots). Col-865

ored dots show estimates of Nabrupt4x(t) made using the spatial feedbacks inferred from each866

model’s control simulation and its spatial pattern of warming (~T ′abrupt4x(t)) using the three867

methods described in the text; year one is not included in any method. Larger dots repre-868

sent averages taken over exponentially increasing periods, except gray dots, which show all869

years. Solid lines show local regressions using LOESS. Global estimates for GISSE2R does870

not appear because it is nearly identical with MR estimates. . . . . . . . . . . 50871

Fig. 5. True and estimated abrupt4x feedbacks as a function of time calculated using slopes of872

the local regression from Figure 4 (solid lines). Vertical dotted lines show the division873

between the early (2-20 years) and late (21-end) periods. Dots show true and estimated874

values of λ4x,early and λ4x,late. Feedbacks get more positive over time for all models. The MR875

and global methods initially overestimate feedbacks. The MR estimate increases with time876

as well, while the global method predicts a roughly constant feedback. The local method877

greatly overestimates the true feedback for all models except GISSE2R. Figures S2-5 give878

the same plot for component fluxes. . . . . . . . . . . . . . . . . 51879

Fig. 6. True vs. estimated feedbacks for the early (panels a, b, and c) and late (panels d, e, and f)880

periods and the change between them (panels g, h, and i). Black dots give values for the net881

feedback, while colored markers give values of the component feedbacks, which sum to the882

net feedback. The MR and global methods overestimate the early feedback due to SW cloud883

(red) feedbacks. The MR estimate of the late period has a small error across all components884

(panel d), while the global estimate has a smaller net error due to offsetting errors between885

LW and SW cloud feedbacks (panel e). As in Figure 5, the MR method is able to capture886
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some of the change in feedback, while the global method does not. The local method greatly887

overestimates the net feedback, primarily due to cloud feedbacks. Numerical values of the888

feedbacks are given in Table S7 and S8. . . . . . . . . . . . . . . . 52889

Fig. 7. Multi-model mean spatial pattern of net TOA flux change associated with the early (top890

row) and late (middle row) periods and the change between them (bottom row), calculated891

by taking the finite difference across each period. Changes are normalized by the total892

warming in each period, giving units of Wm−2K−1. The MR method is close to the true893

pattern except for overestimates south of 30◦S and during the early period in the North894

Atlantic. This holds for individual flux components as well (Figures S9-S17). The global895

and local methods both have substantial errors over most of the globe. Figures S6-S8 show896

errors (estimates - true values) for the multi-model mean and individual models. . . . . . 53897

Fig. 8. Net cloud feedbacks associated with warming in regions circled in green estimated for898

CAM5 by Zhou et al. (2017) using fixed-SST experiments (panels a, b, and c) or as a multi-899

model and multi-season mean using the MR method (panels d, e, and f). For perturbations900

outside of tropical convecting regions (panels a, c, d, and f), the effects are mostly local and901

positive, while perturbations in tropical convecting regions have significant negative nonlo-902

cal effects in many regions of the Earth (panels b, e). Note that fixed-SST experiments allow903

some land warming in response to these perturbations (panel b), while the MR method is904

agnostic about whether the surface is land or ocean, and so does not include resulting land905

warming (panel e). . . . . . . . . . . . . . . . . . . . . . 54906

Fig. 9. Multi-model and multi-season mean spatial feedbacks estimated by the MR method. Panel907

a shows the estimated change in N caused by warming a degree in each cell as weighted by908

the cell’s area. This is the sum of local changes in ~N (panel b), which are almost uniformly909

positive, and nonlocal changes (panel c), which are usually negative, especially in regions910

of tropical convection. The competing positive local and negative nonlocal components are911

primarily due to the SW cloud feedback (panels d, e, and f). For maps of all flux components912

and assessments of uncertainty, see Figures S18-S22. For spatial feedbacks of all methods,913

see Figure S23. Compare with estimates of spatial feedbacks for CAM4 in Figure 5c of914

Dong et al. (2019). . . . . . . . . . . . . . . . . . . . . . 55915

Fig. 10. Panel a shows the multi-model mean change in the pattern of warming between the abrupt4x916

early and late period, showing a shift towards regions of deep ocean heat uptake. Multiply-917

ing this pattern by MR-estimated spatial feedbacks gives an estimate of each grid cell’s918

contribution to the change in feedback with time, ∆λ4x (panels b-f). Although the resulting919

patterns are patchy, there are positive contributions from tropical convecting regions via the920

SW cloud and LW clear feedbacks, and from regions of Southern Ocean sea ice in the SW921

clear feedback, as shown by the accompanying zonal averages. The LW clear feedback has a922

compensating negative term from the Southern Ocean, so that its total estimated contribution923

to ∆λ4x is smaller than the SW cloud feedback’s (e.g., Figure S2 vs. Figure S5). . . . . . 56924
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N1 N2

T2T1

H

Region 1 Region 2

FIG. 1. A schematic representation of the conceptual model used in Section 2, consisting of an overturning

cell with a convecting (1) and a subsiding (2) region. Warming of the surface temperature T1 has nonlocal effects:

it increases the horizontal heat transport H, and it changes properties of the atmosphere aloft in region 2 that

affect its net top-of-atmosphere radiative flux, N2, for instance by warming its free troposphere, increasing its

lower tropospheric stability, and therefore increasing its low cloud cover. The dependence of N2 on T1 (holding

T2 fixed) is an example of a nonlocal radiative feedback.
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FIG. 2. Two experiments are performed with the conceptual model in Equation 1: an unforced “control”

simulation (panels a,b) and a forced “abrupt4x” simulation (panels c,d). Values of N vs. T ′ from each experiment

are given by the black dots in panels a and c, representing annual averages for the control simulation and

exponentially increasing averages for the abrupt4x simulation. The global method assumes that the slope of

the regression in panel a (blue line) gives the slope of the black dots in the lower left panel, underestimating the

increase in this slope over time (blue lines and markers, panels c,d). The local method regresses N′i against T ′i

to estimate λi for both regions (dotted lines, panel b), which leads to an overestimate of the combined feedback

associated with region 1 (λ1 = λ1,1 + λ2,1, dotted red line in panel b), and therefore an overestimate of the

feedback early on (orange lines and markers, panels c,d). The MR method, given sufficient years to regress

over, correctly estimates all spatial feedbacks (dashed lines, panel b), accurately predicting the feedbacks and its

change with time (green lines and markers, panels c,d).
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⃗T ′�(0)
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W /m2

⃗N ′�(0)

FIG. 3. Plots of N vs. T ′ for control simulations of six coupled atmosphere-ocean general circulation models

(see Table S1 for details). We use the simulations to estimate spatial feedbacks using the global, local, and MR

methods. We regrid simulations to 15◦ × 15◦ grids, giving 288 regions.
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FIG. 4. N vs. T ′ for abrupt4x simulations of the same six GCMs from Figure 3 (black dots). Colored dots

show estimates of Nabrupt4x(t) made using the spatial feedbacks inferred from each model’s control simulation

and its spatial pattern of warming (~T ′abrupt4x(t)) using the three methods described in the text; year one is not

included in any method. Larger dots represent averages taken over exponentially increasing periods, except gray

dots, which show all years. Solid lines show local regressions using LOESS. Global estimates for GISSE2R

does not appear because it is nearly identical with MR estimates.
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FIG. 5. True and estimated abrupt4x feedbacks as a function of time calculated using slopes of the local

regression from Figure 4 (solid lines). Vertical dotted lines show the division between the early (2-20 years) and

late (21-end) periods. Dots show true and estimated values of λ4x,early and λ4x,late. Feedbacks get more positive

over time for all models. The MR and global methods initially overestimate feedbacks. The MR estimate

increases with time as well, while the global method predicts a roughly constant feedback. The local method

greatly overestimates the true feedback for all models except GISSE2R. Figures S2-5 give the same plot for

component fluxes.
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FIG. 6. True vs. estimated feedbacks for the early (panels a, b, and c) and late (panels d, e, and f) periods

and the change between them (panels g, h, and i). Black dots give values for the net feedback, while colored

markers give values of the component feedbacks, which sum to the net feedback. The MR and global methods

overestimate the early feedback due to SW cloud (red) feedbacks. The MR estimate of the late period has a

small error across all components (panel d), while the global estimate has a smaller net error due to offsetting

errors between LW and SW cloud feedbacks (panel e). As in Figure 5, the MR method is able to capture some

of the change in feedback, while the global method does not. The local method greatly overestimates the net

feedback, primarily due to cloud feedbacks. Numerical values of the feedbacks are given in Table S7 and S8.
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FIG. 7. Multi-model mean spatial pattern of net TOA flux change associated with the early (top row) and

late (middle row) periods and the change between them (bottom row), calculated by taking the finite difference

across each period. Changes are normalized by the total warming in each period, giving units of Wm−2K−1.

The MR method is close to the true pattern except for overestimates south of 30◦S and during the early period

in the North Atlantic. This holds for individual flux components as well (Figures S9-S17). The global and local

methods both have substantial errors over most of the globe. Figures S6-S8 show errors (estimates - true values)

for the multi-model mean and individual models.
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FIG. 8. Net cloud feedbacks associated with warming in regions circled in green estimated for CAM5 by

Zhou et al. (2017) using fixed-SST experiments (panels a, b, and c) or as a multi-model and multi-season mean

using the MR method (panels d, e, and f). For perturbations outside of tropical convecting regions (panels a,

c, d, and f), the effects are mostly local and positive, while perturbations in tropical convecting regions have

significant negative nonlocal effects in many regions of the Earth (panels b, e). Note that fixed-SST experiments

allow some land warming in response to these perturbations (panel b), while the MR method is agnostic about

whether the surface is land or ocean, and so does not include resulting land warming (panel e).
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FIG. 9. Multi-model and multi-season mean spatial feedbacks estimated by the MR method. Panel a shows

the estimated change in N caused by warming a degree in each cell as weighted by the cell’s area. This is the

sum of local changes in ~N (panel b), which are almost uniformly positive, and nonlocal changes (panel c), which

are usually negative, especially in regions of tropical convection. The competing positive local and negative

nonlocal components are primarily due to the SW cloud feedback (panels d, e, and f). For maps of all flux

components and assessments of uncertainty, see Figures S18-S22. For spatial feedbacks of all methods, see

Figure S23. Compare with estimates of spatial feedbacks for CAM4 in Figure 5c of Dong et al. (2019).
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FIG. 10. Panel a shows the multi-model mean change in the pattern of warming between the abrupt4x early

and late period, showing a shift towards regions of deep ocean heat uptake. Multiplying this pattern by MR-

estimated spatial feedbacks gives an estimate of each grid cell’s contribution to the change in feedback with

time, ∆λ4x (panels b-f). Although the resulting patterns are patchy, there are positive contributions from tropical

convecting regions via the SW cloud and LW clear feedbacks, and from regions of Southern Ocean sea ice in the

SW clear feedback, as shown by the accompanying zonal averages. The LW clear feedback has a compensating

negative term from the Southern Ocean, so that its total estimated contribution to ∆λ4x is smaller than the SW

cloud feedback’s (e.g., Figure S2 vs. Figure S5).
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