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1 Importance of Nitrogen Balance 

1.1 Environmental Issues.  

Disposal of animal manure has dramatically escalated to be one of the foremost research 

problems for dairy nutrition and management in the US (Meyer and Mullinax, 1999; Nelson, 

1999; Van Horn and Hall, 1997) and internationally (Kohn et al., 1997; Kuipers et al., 1999; 

Castillo et al., 2000; Castillo et al., 2001b). Major concerns include environmental consequences 

of nitrogen (N) and phosphorus (P) loading. The greatest environmental effect of N loss in 

manure is a result of rapid conversion of urea to ammonia and its subsequent volatilization 

(Nelson, 1999; James et al., 1999), which affects the acidity of precipitation (Van Horn and Hall, 

1997), formation of long-lasting aerosols (James et al., 1999), and reduction of the N:P ratio of 

the residual manure below plant requirements (Van Horn and Hall, 1997; Van Horn et al., 1996).  

We note that reduction of excreted P (see other chapters) influences this ratio favorably. 

Mechanical costs of reducing ammonia volatilization are up to $20/kg of N surplus reduced 



(Kuipers et al., 1999). Therefore, the most effective solution to reduce this problem entails more 

efficient nitrogen capture in the form of  body components, milk, and wool. This review will 

focus on improvement of whole body N balance (i.e., the retention of dietary N in body tissue or 

milk) but also specific components of N excretion with respect to dietary N inputs for beef and 

dairy cattle. 

1.2 Beef and dairy cattle production systems 

Beef Cattle. Much of the beef production in the US is concentrated in large feedlots. The 

majority (80 to 90%) of N fed to feedlot cattle is excreted, with 50 to 75% of that excretion in the 

form of urinary N (Satter et al., 2002). Therefore, relatively modest improvements in N 

efficiency can be magnified considerably, particularly if the amount of N lost as urinary urea can 

be reduced. Reduction of N loss in manure has important ramifications with regard to manure 

distribution as fertilizer relative to the cropland used to support grain production (Klopfenstein 

and Erickson, 2002), but this topic is beyond the scope of this review.  

In recent reviews, Klopfenstein and Erickson (2002) and Satter et al. (2002) discussed 

implementation of metabolizable protein systems to feedlot cattle according to their changing 

growth phases in order to improve the efficiency of dietary N utilization. ‘Metabolizable protein’ 

is defined as the protein reaching the small intestine and digested therein. Clearly, improvements 

in gain:feed ratio should reduce N excreted per animal because of fewer days on feed. Even if 

feed efficiency is not increased, however, feeding protein according to requirements should 

allow less N excretion because cattle protein requirements decrease proportionately with 

increasing maturity. In both scenarios, ‘N balance’ (N intake – N lost in feces and urine; also 

termed ‘tissue N retention’) was similar between treatments when calculated as g/d , but 

decreasing N inputs decreased N lost into the environment by 12 to 21%.  However, few studies 

have continued during the growth phase all the way to finishing. Compensatory growth could 

potentially make up for any short-term limitations in daily gain (i.e., metabolizable protein 

slightly below requirements) for cattle retained in the feedlot until finishing (Firkins and 

Fluharty, 2000), so the potential to reduce N loss might be even greater in such systems. 

In order for phase feeding to be adopted more widely, beef producers need to be 

confident in the supply and requirements of metabolizable protein for cattle under various 

circumstances (Klopfenstein and Erickson, 2002). Aside from various factors affecting protein 

requirements (NRC, 2000), the supply is influenced by the ruminal degradability and intestinal 

digestibility of protein sources. Concomitantly, feed libraries and analyses are improving in both 

precision and accuracy (Stern et al., 1997). In addition, systems are developing that will improve 

prediction of requirements of metabolizable amino acids for beef cattle (see Chapter 2). 

However, Klopfenstein and Erickson (2002) cited studies in which the ruminal degraded protein 

(RDP) requirements were estimated to be 6.3, 8.3, and 10.0% of dry matter for feedlot cattle fed 

dry rolled, steam-flaked, and high-moisture corn, respectively, due to increased ruminal 

availability of carbohydrate to support microbial protein production. If RDP limited growth of 

amylolytic microbes, digestion of starch in the small and large intestines could compensate 

(Firkins et al., 2001) and theoretically could increase efficiency of energy usage (Harmon and 

McLeod, 2001). Transfers of N among gut and blood urea pools could have a strong influence on 

N efficiency in beef feedlot cattle (see later section).   



Grazing Beef Cattle. Many beef cow/calf operations in the US rely heavily on grazing of 

poor quality grass. Nitrogen recycling between the blood and gut helps compensate for low 

protein intake (see later section), but protein supplementation to increase RDP has improved 

productivity in some studies (Firkins and Fluharty, 2000).  In this regard, studies with lactating 

beef cows have found that the benefit of RDP supplementation is not reduced when the 

frequency of RDP feeding is reduced to as low as once every 4 d (Coleman and Wyatt, 1982; 

Krehbiel et al., 1998).  This may reflect recycling of non-protein N (NPN) between the gut and 

body pools (Krehbiel et al., 1998) or the short-term deposition of amino acids in labile protein 

pools (Waterlow, 1999).  In addition, because of the low energy availability for microbial protein 

production, some researchers have reported responses to supplementation of rumen undegraded 

protein (RUP). Moreover, the requirement by the cow for metabolizable protein might be lower 

than the rumen microbes’ requirements for RDP. The low cost/low intensity management of 

these operations compared with the large area  of land usage probably lowers the potential 

benefit of improved protein usage from an environmental standpoint and will not receive further 

attention in this review. 

Dairy Heifers. Dairy calves are primarily raised intensively and must be evaluated 

differently from beef calves. Mammary development can have residual effects on lifetime milk 

production, promoting the concept of target weight gains (NRC, 2001). Because heifers need to 

be grown for about two years before milk production, needing more replacements to meet the 

demands for milk production would have a profoundly negative impact on N usage. With 

economic pressure to increase growth rate, having an adequate supply of metabolizable protein 

for heifers might be very important in reducing the negative effects of energy for rapid growth 

(Whitlock et al., 2002). Despite a lack of differences in average daily gain, feed efficiency 

improved with increasing concentration of crude protein (CP) in the diet, and structural growth 

measurements tended to improve (Gabler and Heinrichs, 2003). Even if CP requirements are 

targeted for weight gain, it seems likely that CP concentration in the field will not decrease, 

particularly with those producers adopting accelerated growth programs. Increasing CP intake 

above requirements for growth primarily increased the loss of N in urine (James et al., 1999). 

Future research is needed to better document the requirements of metabolizable protein and 

amino acids for dairy heifers so that N input can be decreased reliably without potentially 

impacting lifetime milk production.  

Dairy Cows. For lactating cows, the secretion of high amounts of protein into milk 

prioritizes the importance of the amount and profile of amino acids reaching the duodenum. 

Nitrogen balance can be influenced positively by improved ration balancing to capture more 

dietary N as milk protein. Considerable research has been done to increase milk protein 

concentration, particularly when dietary fat is fed (Wu and Huber, 1994). In fact, the NRC 

(2001) elaborated on the complexities involved with synchronizing ruminal fermentation with 

microbial protein synthesis for incorporation into a system to meet requirements for 

metabolizable amino acids (see later section). With gaining emphasis on formulating rations to 

meet requirements for specific amino acids and with improved advances in technology (e.g., 

reproductive aids and bovine somatotropin) and housing systems, there is a strong potential to 

multiply a modest gain in efficiency of N usage per cow to reduce environmental impact. Satter 

et al. (2002) noted that increased milk production will dilute maintenance N costs, so restricting 

protein supply below requirements to reduce manure N excretion should be avoided; yet still 

they emphasized that feeding more than about 17.5% CP (18.5% in certain circumstances) on a 



dry matter (DM) basis to high producing cows would only divert more dietary N into urine if the 

diets have corn silage to dilute the high RDP in legume silages and have protein balanced for 

degradability. In Europe, excess protein is often fed to lactating dairy cows because it is 

relatively inexpensive, provides a safety margin against drops in forage CP concentration, and 

generally increases milk yield through effects on intake of grass silage and other forages. 

Generally, changes in milk and milk protein yield with differences in dietary CP below 14 to 

15% of DM have been attributed to metabolic effects of metabolizable protein supply, whereas, 

above this threshold, changes in milk yield are typically accompanied by changes in dry matter 

intake (DMI) attributed to effects on rumen or total tract digestion (Clark and Davis, 1980; 

Oldham and Smith, 1980; Reynolds, 2000).  

Currently, various amino acid supplements are available on the market, but further 

research is needed to determine when to use them economically, with impending environmental 

regulations ostensibly increasing their economic feasibility. Balancing to meet metabolizable 

lysine requirements using conventional protein sources and then supplementing rumen-protected 

methionine could reduce the total CP fed, potentially reducing N excretion by 13 to 20% 

compared with current practice (Satter et al., 2002). Sloan (1997) further discussed this ‘ideal 

protein’ concept, noting that there is only a modest (2 to 5%) gain in efficiency of conversion of 

dietary CP into milk protein by meeting the requirement for a single limiting amino acid. For 

example, conversion of rumen-protected methionine into milk methionine might be only about 

10% efficient because it is used for other bodily functions. Therefore, any real gain in N balance 

relative to N input will primarily be accentuated via decreased N intake. Moreover, as discussed 

in Chapter 2, lysine and methionine supplies might not actually be limiting or might only be 

near- or co-limiting (Sloan, 1997; Hvelplund et al., 2001; Vanhatalo et al., 1999).  

Nitrogen balance probably changes the most during the period from late gestation into the 

first few weeks of lactation (the ‘transition period’). The splanchnic tissues [portal-drained 

viscera (PDV; the gastrointestinal tract, pancreas, spleen and associated adipose) plus liver], 

mammary gland, and foetus increase protein synthesis at a time when DMI might be insufficient 

to meet protein requirements (Bell et al., 2000). Labile protein reserves might be mobilized to 

balance shortfalls in supply of protein or limiting amino acids but also provide gluconeogenic 

precursors. In this regard, mRNA and activity for liver pyruvate carboxylase (Greenfield et al., 

2000) and alanine use for glucose synthesis by hepatocytes in vitro (Drackley et al., 2001) 

increase immediately after calving, supporting the concept of increased amino acid use for 

glucose synthesis.  However, body protein deficit is usually relatively modest except in the first 

days of lactation (Grummer, 1995; Table 1), and the glucogenic requirements for amino acids 

may be less of a metabolic priority than hypothesized (Reynolds et al., 2003). When dietary RUP 

was increased pre- and post-calving, body protein mobilization (assessed by deuterium oxide 

dilution) accounted for only about 7% of the energy lost or gained (Komaragiri and Erdman, 

1997).  In the most comprehensive slaughter balance study conducted in dairy cows of which we 

are aware (Gibb et al., 1992), the amount of body protein lost in the first 8 weeks postpartum 

was relatively small (5.6 kg), especially when compared to the amount of body fat loss (37.4 kg), 

in relatively low producing cows fed grass silage.  Much of this body protein loss occurred in the 

first 2 weeks postpartum (2.7 kg), which equated to a loss of 31 g of N per day. In transition 

dairy cows catheterized for measurements of splanchnic nutrient flux, the potential 

gluconeogenic contribution of alanine, as well as lactate and glycerol, was greatest 10 days after 

calving, but the required contribution of other amino acids was lowest at this time.  Indeed, 



increases in net liver removal of these glucose precursors and volatile fatty acids between 9 days 

before calving and 10 days after calving could account for all of the increase in the measured 

release of glucose by the liver (Reynolds et al., 2003).   

The NRC (2001) reviewed protein requirements for transition cows, suggesting increases 

in protein requirements for heifers, but not cows, in late gestation compared with previous 

requirements. In one study (Putnam and Varga, 1998), increasing dietary CP and RUP 

concentrations prepartum to multiparous cows did tend (P = 0.09) to increase N balance, but 

even the cows fed diets lower than the NRC (1989) requirements still had positive N balance on 

days –12 to –5 relative to expected calving, and no response in milk production postpartum was 

detected. In other studies, feeding supplemental protein before calving increased milk or milk 

protein yield after calving in heifers (Van Saun et al., 1993; Santos et al., 2001) but decreased 

DMI or milk yield in multiparous cows (Santos et al., 2001; Hartwell et al., 2000).  

To further account for body energy and protein retention during early lactation, Sutter 

and Beever (2002) performed a series of weekly total collections of faeces and urine, combined 

with respiration calorimetry to assess the energy status for multiparous cows. Although too 

variable for statistical significance, N balance was only negative for the first two weeks of 

lactation and primarily only in the first week (Table 1), supporting the conclusion that N balance 

should reach a nadir on about day 7 of lactation (Bell et al., 2000). Body tissue energy balance 

was negative throughout the study but increased linearly, apparently primarily because of a linear 

decrease in milk energy secretion (except for week 1). The authors concluded that N 

mobilization by labile reserves might be more important for relocation within body tissues (e.g., 

gut and liver) than for milk protein and the changes in body weight might not reflect primarily 

differences in water repletion of tissues or increases in the weight of the gut plus contents. 

Increases in the crude protein content of splanchnic tissues were relatively small (0.85 kg) 

compared to body protein loss in the first 8 weeks of lactation (Gibb et al., 1992), but a large 

portion (46%) of this change in splanchnic protein content occurred in the first 2 weeks 

postpartum.  Urinary energy was not affected by week in lactation, and the energy lost in urine 

accounted for about 4% of digestible energy (Table 1). Therefore, with proper balancing of RDP 

and RUP, some mobilization and repletion of body protein seems to help transition the cow to 

lactation, but the impact on tissue N balance must be relatively minor. 

Based on preceding results, gut metabolism and whole-body urea transfer probably have 

potentially large impact on efficiency of whole body N balance, so further attention will be given 

to these subjects in this review.  

2 Whole-Animal Nitrogen Fluxes and Nitrogen Balance 

2.1       Nitrogen Exchange Among Tissues 

 As discussed by Lapierre and Lobley (2001), ruminants have adapted their metabolism 

to rely on large fluxes of N exchanging between the blood and digestive tract. They calculated 

that 40 to 80% of the blood urea N (BUN) produced in the liver enters the digestive tract instead 

of being excreted into the urine. In the rumen, ureolysis, proteolysis, and deamination of amino 

acids is considerable, as would be expected based on the diversity of microbial enzymes 

responsible (Wallace et al., 1997).  Despite the ruminal pH being considerably lower than the 



pKa of ammonia/ammonium (Satter et al., 2002), causing a low proportion to be in the un-

ionized form for absorption (Leng and Nolan, 1984), absorption of NH3 N from the rumen and 

intestines is extensive (Parker et al., 1995). Consequently, considerable cycling of BUN back to 

the digestive tract might be needed for positive N balance for many species, including man 

(Waterlow, 1999), but particularly for ruminants (Lapierre and Lobley, 2001). 

 In the past decade, considerable research has been done with the double 15N-urea infusion 

technique, which has been well described by Lobley et al. (2000). Using this approach, Lapierre 

and Lobley (2001) generalized that approximately one-third of BUN actually gets excreted into 

the urine, with two-thirds (40 to 80%) being cycled back to the digestive tract. Of the NH3 N 

produced from urea that gets transferred to the gut, about 10% is excreted as faecal N, 40% is 

absorbed and converted back to BUN, and 50% is incorporated into microbial protein in the 

rumen, which is subsequently absorbed from the small intestine. The latter flux (50% of the two-

thirds) is high, in part, because of multiple entry rather than entry via a single pass. Microbial 

protein synthesized using N from BUN ranges from 8 to 38% (Lapierre and Lobley, 2001). 

Because of the eventual loss of urinary N from urea, though, these authors calculated that upper 

limits for N retention as body tissue or milk would, therefore, be 50 to 60% of dietary N or 70 to 

90% of apparently digested N. Based on a regression of literature from cattle with indwelling 

blood catheters for the measurement of splanchnic flux, they reported a prediction of urea N 

synthesis by the liver (g/d) = 0.80 (N intake, g/d) – 30 (r2 = 0.45).  In multicatheterized cattle, 

regression of net liver removal of NH3 N and release of BUN on digested N gave slopes of 0.68 

and 0.90, respectively (Reynolds, 1995), but in most cases these data came from cattle fed 

protein well in excess of their requirements.  In a more recent integration of these (Reynolds, 

1995) and more recent observations from the University of Reading (Figure 1; Reynolds, 2002;  

2003), the relationship between daily N intake and liver urea release for 304 individual 

measurements had a slope of 0.65 (R2 = 0.64).  In this case, the data set included observations 

from dairy cows fed varying levels of dietary protein, at various stages of lactation and levels of 

production, and receiving abomasal infusions of casein or amino acids.  For the same data set, 

the relationship between N intake and net PDV release of NH3 N had a slope of 0.42 (R2 = 0.84; 

Figure 2).  Although N intake is a major determinant of PDV absorption of NH3 N and liver 

BUN release, other factors are also important.  We note that both variables are likely correlated 

(increasing DMI should be related to N intake and also to overall net flux of all metabolites), so 

the relatively low R2 for the prediction of liver urea release (Figure 1) documents the 

considerable amount of variation remaining to be explained (Lapierre and Lobley, 2001).  As 

emphasized by Reynolds (2002), much of the remaining variation could be attributed to the 

amount of dietary N absorbed relative to requirements, which ultimately determines the extent of 

N excretion in urine (Waterlow, 1999).   

 In contrast to urine N, faecal N excretion is determined by amounts of indigestible N 

consumed and endogenous N losses, which to a large extent are determined by capture of urea N 

as microbial protein in the hindgut.  In lactating dairy cows, abomasal starch infusion increased 

faecal N excretion (Reynolds et al., 2001).  Concomitant decreases in faecal pH likely reflect 

increased starch fermentation in the hindgut, which would explain the increase in faecal N 

concentration and excretion observed.  On the other hand, changing steers from a high-

concentrate to a high-alfalfa diet, at similar ME intake, markedly increased the transfer of BUN 

to the mesenteric-drained viscera (Reynolds and Huntington, 1988; Huntington, 1989).  This 



increase in BUN transfer to the postruminal digestive tract was likely a consequence of increased 

fermentation of fiber in the hindgut.     

Increased absorption of glucose from starch digested in the small intestine may also 

increase the efficiency of ingested N that is retained as body protein (Reynolds et al., 2001; 

Obitsu et al., 2000) the latter of which is dependent on insulin (Bergen, 1978).  In lactating dairy 

cows, infusion of starch into the abomasum increased tissue energy balance, and over half of the 

increase in energy retention was attributable to greater protein deposition (Reynolds et al., 2001).  

Increasing the amount of starch digested in the rumen or hindgut decreases net absorption of 

ammonia by the PDV in dairy cows (Reynolds et al., 1998; Delgado-Elorduy et al., 2000a) and, 

in some studies, increased urea nitrogen transfer from blood to the rumen (Delgado-Elorduy et 

al., 2000b). Presumably, these changes in N cycling reflect increases in ammonia utilization for 

microbial protein synthesis in the rumen or hindgut.   

2.2 Energetic Cost of Urea.  

If each mole of urea produced in the liver requires 4 moles of ATP (McBride and Kelly, 

1990), then it would be logical that energetic cost of urea production could exert a strong 

regulatory constraint against BUN fluxes back and forth from the gut, especially for grazing 

cattle consuming large amounts of RDP (Stockdale and Roche, 2002; Kolver and Muller, 1998). 

Supplementation of grain should decrease ruminal NH3 N concentration, in part because of 

decreased N intake (Bargo et al., 2003), but grain supplementation is markedly recent in 

evolutionary terms. Waterlow (1999) commented that, although 4 moles of ATP are consumed, 6 

moles could be produced per mole of urea synthesis (2 moles of NADH produced from oxidative 

deamination of glutamate and regeneration of aspartate from fumarate). Therefore, urea synthesis 

might not be as critical as previously thought, especially because neither of these amino acids is 

essential. Ammonia infusion into the duodenum increased urinary N excretion but did not affect 

N balance or yield of any milk components (Moorby and Theobald, 1999). Similarly, feeding 

steers urea markedly increased net PDV absorption of ammonia and liver urea synthesis, without 

significant effects on net liver oxygen consumption, glucose release or amino acid metabolism 

(Maltby et al., 1993).  In a methodical series of studies in sheep, Lobley and colleagues have 

explored effects of increased ammonia absorption on liver metabolism and similarly found no 

significant deleterious effects on liver metabolism of oxygen, glucose or amino acids (see Lobley 

et al., 1995; 1996; Milano and Lobley, 2001; Milano et al, 2000; Reynolds, 2003). Despite 

ranging from 67 to 102 g/d of urinary N excretion (data not shown), N excretion in urine is a 

minor proportion of digestible energy intake (Table 1).  

The concept of a high ‘penalty’ for ammonia absorption and urea recycling needs to be 

evaluated within this context because it goes against the apparent adaptation toward urea cycling 

(previous section) and the discovery of urea transporters (Waterlow, 1999; Lapierre and Lobley, 

2001) in the mammalian gut and other peripheral tissues. Yet, despite their presence, their role in 

BUN recycling is not clear (Marini and Van Amburgh, 2003). These latter authors suggested that 

BUN could passively transfer through the epithelial cells, so the transporter’s role could also be 

to efflux urea back into the blood before bacterial hydrolysis in the rumen during times of high N 

availability.  Oba and Allen (2003b) reported that ammonium combined to make propionate 

more potent to depress feed intake, and such a situation of high NH3 N and propionate would 

seem to occur only when N intake was excessive. Although it has been proposed that there is a 



deamination cost involved with high urea fluxes (Parker et al., 1995), the energetic cost of 

ureagenesis appears now to be more a consequence of the metabolism of amino acids absorbed 

in excess of requirements rather than a cost of ammonia absorption and conversion to urea per se 

(Reynolds, 2003) or possibly only in extremely high availability of ruminal NH3 N (Milano et 

al., 2000).   

Importance of the Rumen for N Capture. Direct quantifiable relationships between 

ruminal N metabolism and urinary N excretion are limited, but available data support the concept 

that the rumen is a major mediator of N retention. Al-Dehneh et al. (1997) reported that the ratio 

of 15N enrichments in urinary N and BUN was constant by 40 h after the start of infusion of 15N-

urea into the jugular vein, implying inter-related N metabolism. Kennedy and Milligan (1980) 

reported that the transfer of BUN to ruminal NH3 N was inversely proportional to the ruminal 

NH3 N concentration and was increased with increasing grain or degradable carbohydrate 

inclusion in the diet. Although this could be a result of increased microbial growth and N capture 

(Delgado-Elorduy et al., 2000b), greater BUN recycling for higher grain diets also could reflect 

increased energy for body protein retention, which could reduce the catabolism of absorbed 

amino acids. Whitelaw et al. (1991) added a urease inhibitor to the rumen of maintenance-fed 

sheep. This decreased the irreversible loss rate of BUN by 33% without affecting N intake or 

urinary N excretion. This limited work is interpreted to suggest that the eventual trapping of 

BUN for metabolic usage and not as urinary N will depend largely on N capture as microbial N 

in the rumen as well as the metabolic requirements for metabolizable protein (Lapierre and 

Lobley, 2001).  

Intraruminal Nitrogen Recycling. Wallace et al. (1997) cited a model described by Nolan 

(1975) to conclude that “ammonia overflow leads to inefficient N retention”. The biological 

importance of such recycling is extensive and is the subject of Chapters 3 and 4, but modeling 

efforts will be discussed briefly herein within the context of their role in whole body N 

metabolism.  

Firkins (1996) reviewed quantitative studies that characterized flux among either 

chemical [i.e., nonammonia N (NAN)] or biological (bacterial, protozoal, or combined) pools in 

the rumen. Biological pools are more mechanistic but might be difficult to repeatably fractionate 

for subsequent determination of specific activity of a tracer. For instance, protozoa-enriched 

samples are typically based on sedimentation yet probably are significantly contaminated with 

bacteria (Sharp et al., 1998). Chemical pools are more systematically differentiated but require 

appropriate independent biological data collection such that the flux rates among those pools 

have important mechanistic interpretation. Faichney et al. (1997) derived a complicated model 

evaluating protozoa-mediated turnover based on the abundance of protozoal RNA, which was 

characterized as the difference of signals from eukaryotic minus fungal probes. More recently, 

Oldick et al. (2000) documented extensive recycling of microbial protein in the rumen, but 

chemical precipitation techniques could not differentiate the recycling of microbial protein from 

a slowly turning over compartment as opposed to the exchange of NAN from a rapidly turning 

over compartment. They suggested that rapidly exchanging NAN probably has a smaller impact 

on efficiency of microbial growth and N capture for metabolizable protein. Direct experimental 

approaches quantifying intra-ruminal N recycling typically involved the use of multiple (and 

often radioactive) tracers, used fractionation procedures that might be difficult to systematically 

repeat, and (or) incorporated by-difference calculations that compound variation (which was 



typically ignored). Therefore, more attention to over-parameterization needs to be given using 

considerations such as those of Oldick et al. (2000), so that models can be used in experimental 

designs with enough statistical power to explain interactions among treatments. Conversely, 

Dijkstra et al. (2002) recently discussed important modeling considerations with regard to 

mechanistic models. Given the large importance of microbial N capture (previous section), more 

quantitative work is needed in this area to decrease variability among feeding conditions in order 

to stimulate the adoption of lower protein diets in the field to decrease N excretion by cattle.  

 Meaurement of N Balance. Although objectives of individual researchers might be to 

compare treatment differences within a study, it is no longer sufficient to ignore known errors in 

measurement of N balance; the absolute measurements of multiple studies are being used to 

either derive or evaluate models with increasing frequency. Martin (1966) and Johnson (1986), 

among others, have clearly identified and quantified losses of N and sources of experimental 

error in measuring N balance in ruminants.  More recently, Spanghero and Kowalski (1997) 

described major routes of N loss that accumulate to overestimate the by-difference calculation of 

N balance. From 35 published trials that they surveyed, about 1/5 did not determine N in faeces 

on a wet basis, leading to underestimation of N excretion. Methods to capture urinary N were 

variable or not even reported. In some studies that they cited, equivalents of NH3 excreted might 

have exceeded the equivalents of acid added in the urine collection vessels.  Several studies did 

not account for non-protein N in milk. Despite corrections that they applied to literature data, 

tissue N balance still had a median of 10.2 g/d, which they estimated to correspond to about 255 

g/d of body weight gain. The median was significantly higher than the mean, indicating a skewed 

distribution of data. To account for differences among studies, they calculated deviations of 

individual treatment means compared with the mean from each experiment; from these data, they 

suggested that N balance was overestimated with increasing N availability for metabolism. 

Faecal N excretion can vary considerably from day to day, and we note that, although the 

appropriate number of days is likely variable (Schneider and Flatt, 1975), collection periods in 

the literature (we have noted some as low as 2 days) might be too short. Moreover, N balance 

data in Table 1 document variability among weeks, at least in early lactation. Readers are 

referred to Castillo et al. (2000) for a comprehensive review of dietary factors influencing 

efficiency of N capture in milk relative to excretion in urine and faeces. 

 Nitrogen balance can be used to evaluate amino acid requirements for growing cattle 

(Greenwood and Titgemeyer, 2000; Wessels and Titgemeyer, 1997), although the reader is 

referred to Chapter 2 for a more comprehensive review. Moreover, Iburg and Lebzien (2000) 

noted that amino acid requirements for dairy cattle really should be calculated at zero tissue N 

balance, which is an assumption that probably should be verified experimentally in more studies. 

As diets approach and then exceed the requirements for limiting amino acids, then N balance 

could be fluctuating from negative to positive. In short term experiments for which milk protein 

is the response criterion, the degree of response could be mediated in part by tissue protein 

mobilization. Such reasoning could help explain the variation in metabolizable lysine and 

methionine requirements determined by break-point analysis (NRC, 2001). 

 Manipulation of microbial populations can influence N retention. McGuffey et al. (2001) 

reported that ionophores increased N digestibility by about 3.5 percentage units and that several 

individual studies documented increasing N retention as a percentage of N intake. Besides 

increasing the efficiency of beef cattle growth, prepartum feeding of ionophores could increase N 



retention for dairy cattle (Plaizier et al., 2000), which might positively influence transition to 

lactation. Defaunation of the rumen had mixed effects on N retention (Jouany, 1996), but the 

practical importance of elimination or reduction of protozoa in the rumen in actual growing 

conditions is the subject of Chapter 4. 

Models to Balance Supply and Requirements of Protein 

Supply Models. Several systems have been developed by leading research institutions in 

the U.S. and Europe [see review (Dijkstra et al., 1998)]. Although much improved, the new 

Dairy NRC (2001) still empirically predicts microbial protein flow from the rumen based on 

intake of total digestible nutrients (TDN), with the TDN concentration being discounted 

progressively with increasing DMI and with increasing TDN concentration (excluding high-fat 

diets). In the NRC (2001) system and many others, requirements for RUP are calculated by 

difference (after accounting for intestinal digestibility) of the animal’s estimated protein 

requirements minus predicted duodenal flows of microbial and endogenous protein, therefore 

compounding variation associated with the prediction of microbial protein flow.  

 

Prediction of Microbial Protein Supply. Microbial protein is extremely well balanced 

with amino acids relative to meat or milk protein (NRC, 2001). RDP normally is much cheaper 

than RUP (St-Pierre and Glamocic, 2000), even if incomplete conversion of RDP to microbial 

protein (NRC, 2001) is accounted for. Although TDN includes fat and protein that provide 

relatively little energy to support microbial protein synthesis, this mechanistic problem (Kebreab 

et al., 2002) probably is of relatively minor importance for empirical prediction by the NRC 

(2001). Two separate equations were justified for the prediction of microbial protein flow to the 

duodenum based on net energy for lactation (NEL) intake for cattle fed diets with or without fat 

(Oldick et al., 1999), yet visual inspection of the fitted lines documents that the use of separate 

equations makes a relatively modest impact at intakes that would be seen in production 

situations. Fat should decrease protozoal numbers and increase efficiency of microbial protein 

synthesis (Doreau and Ferlay, 1995; Firkins, 1996). Also, RDP intake was relatively static in 

most experiments from which the empirical relationship was determined and for which it would 

be used.  

 

Although the NRC (2001) system ignores the sites of carbohydrate digestion, again this 

important mechanistic problem might have a statistically minor impact on prediction of 

microbial protein flow because microbial efficiency probably decreases with increasing ruminal 

availability of carbohydrate. Satter et al. (2002) logically concluded that “finely ground high 

moisture shelled corn, through its ability to support microbial growth and protein synthesis, may 

be the cheapest ‘protein source’ we have”. However, this generalization was not substantiated by 

experimental data (Firkins et al., 2001; Oba and Allen, 2003a). In fact, when other factors were 

equalized, cows fed high moisture corn, despite higher ruminal starch degradability, actually had 

numerically lower microbial protein flow to the duodenum than those fed corn grain processed in 

other ways and having lower ruminal starch digestibility (Firkins et al., 2001). In a recent study 

(Harvatine et al., 2002), replacing ground corn with steam-flaked corn increased microbial N 

flow to the duodenum by 15%; despite the 36% greater true ruminal starch digestibility, ruminal 

pH did not decrease, apparently because DMI decreased such that intake of truly digestible 

organic matter only increased by 7% with steam-flaking. However, in the same study, 

progressive replacement of forage with whole linted cottonseed linearly increased DMI and 



microbial N flow; however, ruminal pH and efficiency of microbial protein synthesis were 

depressed linearly. Clearly, the amount of ruminally available carbohydrate is impacted as much, 

or more, by changes in total DMI as by the fermentability of the carbohydrate in the diet fed. 

Increased carbohydrate degradation (g/d) can decrease microbial efficiency by factors directly 

related to low pH (Russell and Wilson, 1996) or because of increased energy spilling (metabolic 

wasting of high energy phosphate bonds), particularly if RDP becomes limiting (Wells and 

Russell, 1996). These results (Harvatine et al., 2002) demonstrate that an empirical prediction 

using a constant efficiency clearly leads to inaccuracies that contribute to variation. However, 

they also document the importance of DMI prediction or determination as well as the need to 

predict carbohydrate fermentation and ruminal pH and its effects on microbial efficiency. 

Prediction of ruminal pH is very difficult (Allen, 1997) and is interpreted to be a major 

roadblock for all modeling systems. 

 

Empirically (statistically) speaking, a bigger criticism of the current NRC (2001) 

procedure to estimate microbial protein flow could be that its evaluation method was biased, 

leading readers to have a false conclusion regarding its accuracy. When residuals (predicted 

minus measured) were regressed against measured microbial protein flows to the duodenum, a 

negative slope bias was detected. Similarly, a negative slope bias was detected for nonammonia 

nonmicrobial N (NANMN) flows. In both cases, this would mean that microbial N and NANMN 

are being underpredicted with increasing measured values. Yet, a much smaller response was 

noted for total NAN (the sum of microbial N and NANMN fractions, which should logically 

accumulate negative slope bias). St-Pierre (2003) explained this apparent discrepancy as being 

caused by a biased evaluation procedure; when residuals were properly plotted against predicted 

values, the actual equation was considerably less biased than presented by the NRC (2001). 

Therefore, even though the prediction ignored effects of experiment and did not weight treatment 

means for variation among experiment (St-Pierre, 2001), which both have highly significant 

effects on regressions and interpretation of microbial protein production (Oldick et al., 1999), the 

prediction actually appears to be relatively robust over a wide range of conditions, even if it 

lacks precision.  

 

Microbial protein production is predicted based on a more mechanistic approach than 

NRC (2001) using the Cornell Net Carbohydrate and Protein System (or its derivative models), 

which has been evaluated by Alderman et al. (2001a; 2001b). An early version of this model 

predicted average daily gain reasonably well over a wide range (0.7 to 1.5 kg/d) of predictions as 

assessed by an r2 of 0.70 for a linear regression of predictions vs. measured data (Ainslie et al., 

1993). O’Connor et al. (1993) similarly concluded that the model predicted supply of individual 

amino acids to the duodenum well based on a high r2 (0.81 to 0.90 for predicted vs. observed) 

over even larger ranges of approximately ten-fold. Yet, a range in the data approaching 100% of 

the mean prediction can typically be visualized in their graphs, and Alderman et al. (2001b) 

noted that their data set was actually composed of two clusters, which could bias the 

interpretation. Besides the limitation in using r2 (coefficient of determination) or R2 (multiple 

coefficient of determination, including effects of trial as in Figures 1 and 2) from a sample to 

extend toward accuracy of a prediction for a population, extending the range of X measurements 

will inflate coefficient of determination as a measure of goodness of model fit for clustered data 

(Neter et al., 1996). We note that the evaluation also would have been improved by appropriate 

residuals analysis for fit (see St-Pierre, 2003). 



 

Cotta and Russell (1997) elaborated on the importance of synchronous N and 

carbohydrate supplies for microbial cell synthesis. Mechanistic prediction of microbial protein 

flow to the duodenum has been well reviewed by Dijkstra et al. (1998). These models tend to 

emphasize the importance of synchronization of energy from carbohydrate fermentation with 

availability of RDP, however, which tend not to have been substantiated by direct in vivo 

experimentation (Dewhurst et al., 2000; Castillo et al., 2000; Bateman et al., 2001b) and tended 

to cause overprediction of microbial protein flow in one evaluation (Bateman et al., 2001a). With 

regard to stimulation of microbial protein production by increasing amino N, the yield of 

microbial growth was increased by 19 to 77%, depending on the model used (Dijkstra et al., 

2002). Such a large range emphasizes the predictive limitations for mechanistic models until 

further research is available. A sensitivity analysis (Bannink and De Visser, 1997) of the 

elaborate system described by Dijkstra (1994) indicated that more quantitative data are needed to 

improve the accuracy of parameters (coefficients) describing protozoal physiology and ecology 

for model robustness. We note that, although these systems might not be suspect to the errors 

associated with measuring microbial protein in vivo, they still are suspect to errors in 

measurement (and therefore prediction) of ruminal passage rate, which are also significant 

(Firkins et al., 1998). Comparative accuracy and precision of virtually all models that are more 

mechanistic than the NRC (2001) model are difficult to assess at the present time, although 

mechanistic models probably hold more promise in the future to explain interactions among 

various dietary factors.  

 

Methodological Issues Contributing to Variability in Estimation of Supply 

 

Microbial Markers. Markers to estimate microbial protein flow to the duodenum have 

been reviewed (Broderick and Merchen, 1992; Firkins et al., 1998; Shingfield, 2000), and this 

topic is beyond the scope of this review. However, we note two current potential errors that 

could promote excessive variation among studies, contributing to the high significance of 

experiment in regression-based empirical approaches to predict metabolizable amino acid 

supply. Purines, the most common microbial marker, might have incomplete recovery or contain 

inhibitors when hydrolyzed using the originally published conditions (Klopfenstein et al., 2001). 

However, comparisons with 15N (Broderick and Merchen, 1992; Shingfield, 2000) either do not 

support such large potential responses or indicate that recoveries are similar in both harvested 

bacteria and in duodenal samples, factoring out the error. Routine recovery checks in the first 

author’s laboratory have documented the concentration of perchloric acid to have minor, if any, 

impact on purine recovery or concentration. As a result of the large importance of microbial N 

for capturing BUN as well as its importance in supply/requirement models, we recommend that 

researchers carefully evaluate marker procedures in their own laboratory conditions prior to 

continuing further research. Shingfield (2000) documented other sources of error for estimation 

of microbial N flow using excretion of purine derivatives and also potential escape of purines to 

the duodenum. 

 

Protein Degradability. Forage protein degradability probably adds considerable variation 

to prediction of metabolizable amino acid supply. Despite advancements in knowledge gained 

(Broderick, 1995), protein degradability still is highly variable (Kohn and Allen, 1995). 

Klopfenstein et al. (2001) outlined an improved methodology to estimate RUP of forages. More 



kinetics studies evaluating rates of degradation of protein fractions using 15N-fertilized forages 

will help (Hristov et al., 2001), but questions still remain regarding which fractions pass rapidly 

with ruminal fluid (Hvelplund et al., 2001).  

 

A fundamental principle of all kinetics studies is that dosing the tracer does not perturb 

the steady state of the tracee. We note a disturbing trend in current research to simply provide a 

large, potentially unphysiological bolus dose of some nitrogenous compound(s) into an 

unadapted rumen. Some published escape values for nitrogenous compounds likely have been 

inflated using such procedures. Investigators need to remember that 1) a bolus dose must be 

shown not to affect the true metabolism/dilution of the tracee or else 2) a bolus dose of labeled 

tracer should replace an equal amount of unlabeled tracee that has been fed long enough to adapt 

rumen microbes. Interpretation of a log-linear elimination of tracer to document first-order 

kinetics is insufficient proof of the first assumption (as some authors have claimed). First-order 

kinetics can include multi-exponential dilutions or can aggregate a mix of heterogeneous rates. 

 

Balancing Supply to Reduce N Excretion 

 

Although more limited for beef cattle, there are several reports of supply models being 

used to reduce N excretion for lactating dairy cows. Wu et al. (1997) summarized five 

experiments with respect to the Cornell model’s ability to predict limiting amino acids and 

responses in milk production. The authors concluded that the model explained differences in 

milk yield, particularly for studies in which protein sources were manipulated compared with use 

of rumen-protected methionine and (or) lysine. Dietary protein could be reduced and milk N 

efficiency increased without a loss in milk production in one study (Kalscheur et al., 1999). 

However, a constructive example (Dinn et al., 1998) can demonstrate potential problems when 

this model is used to balance rations (rather than to evaluate them) to improve N efficiency. 

Diets were balanced to meet metabolizable lysine and methionine requirements estimated by the 

Cornell model while progressively decreasing dietary crude protein concentration and 

concomitantly increasing inputs of rumen-protected lysine and methionine. The partitioning of 

digestible protein toward milk N and away from urinary N increased progressively, as expected. 

The authors reported no change in milk N secretion, although it numerically decreased by 8.5%. 

Dry matter intake and milk production both decreased significantly. St-Pierre and Thraen (1999) 

used the data of Dinn et al. (1998) to estimate that balancing diets for metabolizable amino acids 

actually would have cost $4.40/kg reduction of N excretion. The Cornell model did not predict 

retained N well in another study (Haig et al., 2002) and was marginally less effective than a 

procedure in which diets were balanced to meet predicted requirements of 15 and 5% of essential 

amino acid flow to the duodenum for lysine and methionine, respectively (Piepenbrink et al., 

1998). We note that the researchers’ objective was to continue updating this model for field 

usage (Boston et al., 2000), and on-going efforts should increase its accuracy. 

 

At the University of Reading, a series of recent studies have statistically evaluated dietary 

factors influencing N excretion. Castillo et al. (2000) compiled a database from 580 individual 

cows fed 90 treatments. They noted that, as N intake exceeded 400 g/d (corresponding to about 

15% CP in the dietary DM), excretion of N in the urine increased exponentially. However, the 

authors noted that these data were from cows producing moderate amounts of milk (most < 35 

kg/d). For higher yielding cows under U.S. conditions, Satter et al. (2002) recommended upper 



limits of about 17.5% CP. Still, both reviews note that the major response in CP intake above 

those amounts would be to increase urinary N output substantially.  

 

The Reading group specifically investigated various managerial and dietary factors 

potentially influencing N excretion in urine. Kebreab et al. (2000) determined that cows fed 

early-cut grass silage had lower urinary N excretion but higher faecal N excretion when the grass 

was fertilized with a lower amount of N. Feeding a fibrous vs. starchy concentrate decreased 

faecal N loss but increased urinary N. Their data can be used to calculate that the starch-based 

concentrate increased the ratio of milk N:manure N excretion by 13% but only increased the 

ratio of (milk N plus retained N):manure N excretion by 5%. In another study (Castillo et al., 

2001a), cows that were fed highly degradable starch (mostly barley) had much higher N 

excretions in urine than those fed fibrous concentrate, low degradable starch (mostly ground 

corn), or soluble sugars (molasses). Numerically, the cows fed highly degradable starch had at 

least a 20% lower ratio of (milk N plus retained N):manure N excretion than the other groups. 

However, the group fed fibrous concentrates had an average of 48 g/d of N balance, which would 

equate to about 1.2 kg/d of body weight gain (Spanghero and Kowalski, 1997), which is 

probably high even for cows producing < 21 kg/d of milk. In this study, the effects of feeding 

ground corn on tissue N balance support observations in late lactation cows receiving abomasal 

starch infusions at this location (Reynolds et al., 2001), which we discussed previously.  In 

another study (Castillo et al., 2001b), concentrates with low or high percentages of crude protein 

were factorialized with high, medium, or low RDP (soyabean meal replaced by formaldehyde-

treated soyabean meal). Decreasing degradability greatly decreased urinary N while increasing 

tissue N balance. The RUP supply was always in excess of estimated requirements, but RDP 

became progressively limiting as degradability decreased, which likely would have progressively 

limited microbial N production.  

 

After constructing a whole-body model to explain the preceding data, Kebreab et al. 

(2002) concluded that the efficiency of conversion of rumen-degradable protein into microbial 

protein “had a major effect on N excretion especially by way of urine”. Similarly, the model 

predicted that increasing energy concentration (using the U.K. system) in the diet should 

decrease N losses, particularly in the urine. However, at an average N intake, N excretion in the 

urine still had a range of measured data about as large as the prediction. The authors stated that 

the model is a first step toward a mechanistic approach for nutrient modeling. This model, like 

others that have been reviewed, should be valuable for simulating N emissions from dairy 

systems, but predictive ability should improve with further development and adaptation to higher 

producing situations.  

 

In the next few years, more studies should be available to evaluate the NRC (2001). 

Recently, Noftsger and St-Pierre (2003) balanced diets using the CPM (Cornell-Penn-Miner) 

model for metabolizable lysine and methionine based on feed samples screened before the study 

to have either low or high predicted intestinal digestibilities of the RUP. Only the high CP, high 

digestible RUP treatment was predicted to have a positive metabolizable protein balance 

(requirement < supply; Table 2). Therefore, selection for highly digestible RUP sources 

increased milk production, as expected, during the 12-week study. Despite a predicted negative 

metabolizable protein balance for cows fed both low protein diets, milk production for cows fed 

the blend of rumen-protected and -unprotected methionine was similar to those fed the diet with 



high crude protein/high digestible RUP. The diet with methionine increased efficiency of dietary 

N conversion into milk N and decreased N excretion (calculated by assuming zero N balance; 

i.e., dietary N intake – N secretion in milk) relative to N intake.  Interestingly, during a 5-day 

digestibility experiment at the end of the production measurements, methionine addition did not 

increase N efficiency, perhaps because it might have ceased to be limiting by 16 weeks in 

lactation. Although demonstrating the difficulty of integrating N balance data with production 

data among published research, this report does highlight how emerging technology will likely 

be adapted in the future to improve efficiency of dietary conversion into milk protein. 

 

Models have been developed to integrate dairy production and agronomic practice 

(Klausner et al., 1998; Rotz et al., 1999). We refer readers to Chapter 6 for a more extensive 

review of whole-farm implications. However, we note here that most, if not all, models ignore 

variation among cows within groups, nutrients in feeds, and other factors that inflate ‘safety 

factors’ for protein intake on working farms. Table 3 estimates how uncertainty drives up crude 

protein percentage in dairy rations in practical situations (St-Pierre and Thraen, 1999). As can be 

seen, N efficiency was maximized at 14.9% crude protein, which agrees well with results from 

models based on individual cows in the U.K. (Castillo et al., 2000; Kebreab et al., 2002). Yet, 

such a strategy does not include effects of uncertainty, which considerably increased the optimal 

percentage of dietary protein (Table 3). St-Pierre and Thraen (1999) argued that a strategy to 

maximize N efficiency while decreasing CP concentration of the diet would decrease N 

excretion by 24% but would decrease milk production by 10.4%.  Thus, this strategy was 

estimated to cost $1.35 billion for a ‘national’ dairy herd, or up to $9.55/kg of reduction of N 

excretion. Despite this uncertainty, the authors’ simulations demonstrated that tighter grouping 

strategy would improve efficiency of N utilization. Yet, Jonker et al. (2002) noted that dairy 

farmers surveyed were not effectively grouping herds to reduce N loss. Clearly, confidence in 

ration balancing/modeling software needs to increase, including adaptability away from the 

‘average cow’ toward group-feeding dynamics, before efficiency of N usage will be optimized.  

 

Conclusions 

The exchange of blood urea N (BUN) with the gut is extensive and is probably an 

adaptive mechanism to enhance ruminal degradation of poor quality fiber even when N intake is 

low. When ruminal N increases, then BUN transfer to the urine becomes increasingly dominant 

and wasteful and potentially harmful to the environment. As much as 20% of the N lost into the 

environment, particularly from urine, is recoverable in cattle feeding operations. Methods are 

being refined to measure and predict the amount of microbial protein production in the rumen. 

Yet, despite the importance of the rumen, its metabolism interacts with the spanchnic and 

peripheral tissues. Research has documented how shifts in site of digestion and the metabolism 

by the splanchnic tissues influence whole-body N metabolism and excretion of urinary N. 

Improved integration of the rumen, gut, and splanchnic tissues will advance the development of 

various models. Stage and level of production clearly influence metabolism of energy and amino 

acids, thereby affecting tissue N retention. Combined with better protein supplementation to 

meet metabolizable amino acid requirements, these systems will allow reduced inputs of dietary 

N and greater capture of BUN. As the prediction error in models is reduced and environmental 

regulations toughened, nutritional advisors should be able to use this information to decrease the 

amount of protein overfed with less risk of significant losses in animal productivity or loss of 

clientele.  
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Table 1.  Nitrogen and metabolizable energy (ME) in dairy cows during the first eight weeks of 

lactationa. 

 Week  

 1 2 3 4 5 6 7 8 SE 

N intake, g/db 

Milk N, g/dL 

Urinary N, g/d 

N retained, g/d 

ME intake, MJ/db 

Milk energy, MJ/dL 

Energy retained, MJ/dL 

Urinary energy, MJ/d 

Urinary energy, % DE 

394 

183 

87 

-19 

164 

104 

-64 

8.1 

4.24 

440 

183 

102 

-1 

191 

104 

-36 

9.1 

4.22 

462 

186 

90 

15 

199 

106 

-36 

9.3 

4.13 

458 

182 

96 

4 

199 

103 

-33 

9.5 

4.16 

447 

172 

81 

23 

202 

97 

-24 

8.0 

3.49 

435 

168 

76 

17 

198 

95 

-22 

8.3 

3.64 

428 

165 

76 

10 

199 

94 

-21 

8.2 

3.60 

426 

164 

67 

20 

200 

93 

-21 

8.5 

3.68 

6.5 

2.1 

3.7 

5.0 

2.9 

1.2 

2.8 

0.28 

  NA 
 

aData from Sutter and Beever (2002).  Their data were used to calculate urinary energy as a 

percentage of digestible energy (DE), so a SE was not available.  
LLinear effect of week in lactation (P < 0.01). 
bWeek 1 < week 2 (P < 0.05). 

 



Table 2.  Least square means for performance measures for diets that vary in crude protein and 

digestibility of rumen-undegraded protein1. 

 High CP2  Low CP3  

 DRUP HDRUP  HDRUP HDRUP + Met SEM 

 Experiment 1 (n = 60; 12 wk) 

 

DMI, kg/d 

Milk yield, kg/d 

N intake, g/d 

MP balance, g/d4 

Milk N production, g/d 

Gross N efficiency5 

Environmental efficiency6 

 

21.7a 

40.8a 

641a 

-84 

188 

29.5a 

2.47a 

 

23.3b 

46.2b 

690b 

20 

214 

31.1b 

2.25b 

  

23.2b 

42.9a 

645a 

-58 

203 

31.7b 

2.19b 

 

23.6b 

46.6b 

651a 

-257 

228 

35.0c 

1.89c 

 

0.49 

0.72 

14.2 

    -- 

3.9 

0.60 

0.06 

  

Experiment 2 (n = 24; 5 d) 

N intake, g/d 

Fecal N, g/d 

Urine N, g/d 

Apparent N retention, g/d 

Productive N, % of N intake7 

Environmental efficiency8 

770a 

279 

268a 

-1 

29.1 

2.43a 

735a,b,c 

271 

259a,c 

-13 

28.0 

2.44a 

 682b,c 

257 

216b,d 

-16 

30.8 

2.09b 

679b 

263 

224c,d 

-23 

28.5 

2.24a,b 

27.9 

10.9 

19.3 

18.3 

1.9 

0.10 
 

1From Noftsger and St-Pierre (2003). 
2High CP diets contained 18.3% crude protein.  Diets had protein sources with low (LDRUP) or 

high (HDRUP) digestible rumen-undegraded protein.   
3Low CP diets had 16.9% (LDRUP) or 17.0% (HDRUP) crude protein.  The latter diet had extra 

supplemental methionine that was partially protected from ruminal degradation.   
4Metabolizable protein balance (requirement – supply) from actual data using the NRC (2001) 

model. 
5Calculated as milk N/N intake x 100. 
6Calculated as kg N excreted/kg N in milk; N excreted calculated as N intake – milk N, assuming 

zero N balance. 
7Productive N = milk N + retained N. 
8Calculated as kg N excreted/kg N in milk; actual N excretion data were used. 
a,b,cTreatment means in the same row with different superscripts are different (P < 0.05).  

 

 

Table 3.  Crude protein percentages required to optimize milk production, N efficiency, or 

income over feed costs (IOFC) with or without uncertainty of model parameters.a 

Scenario Milk N Efficiency IOFC 

 ------------------- Crude Protein % required ---------------------- 

No uncertainty 

With uncertainty 

 18.5 

18.6 

17.0 

14.9 

17.7 

18.0 

 
aAdapted from St-Pierre and Thraen (1999).  Simulations are for a herd with high milk 

production potential (11,350 kg/year). N efficiency = kg milk/kg N excreted. 
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Figure 1.  Relationship between N intake and net liver release of urea N in cattle (corrected for 

random effects of study as described by St-Pierre, 2001; n = 304; for sources of the original data, 

see Reynolds, 2003). 
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Figure 2.  Relationship between N intake and net PDV release of ammonia N in cattle (corrected 

for random effects of study as described by St-Pierre, 2001; n = 308; for sources of the original 

data, see Reynolds, 2003). 

 


