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Abstract 30 

Myostatin inhibition is thought to improve whole body insulin sensitivity and mitigate 31 

the development of insulin resistance in models of obesity. However, although 32 

myostatin is known to be a major regulator of skeletal muscle mass, the direct effects 33 

of myostatin inhibition in muscle on glucose uptake and the mechanisms which may 34 

underlie this are still unclear. We investigated the effect of local myostatin inhibition 35 

by adeno-associated virus-mediated overexpression of the myostatin pro-peptide on 36 

insulin-stimulated skeletal muscle glucose disposal in chow-fed or high fat diet-fed 37 

mice and evaluated the molecular pathways that might mediate this. We found that 38 

myostatin inhibition improved glucose disposal in obese high fat diet-fed mice 39 

alongside the induction of muscle hypertrophy, but did not have an impact in chow-40 

fed mice. This improvement was not associated with greater glucose transporter or 41 

peroxisome proliferator-activated receptor gamma coactivator-1α expression or 5’ 42 

AMP-activated protein kinase activation as previously suggested. Instead, 43 

transcriptomic analysis suggested that the improvement in glucose disposal was 44 

associated with significant enrichment in genes involved in fatty acid metabolism and 45 

translation of mitochondrial genes. Thus, myostatin inhibition improves muscle 46 

insulin-stimulated glucose disposal in obese high fat diet-fed mice independent of 47 

muscle hypertrophy, potentially involving previously unidentified pathways. 48 

 49 
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Introduction 53 

The development of skeletal muscle insulin resistance is an important feature of type 54 

2 diabetes because skeletal muscle is a major site of post-prandial glucose uptake. 55 

In addition, the development of insulin resistance is thought to be a feature of the 56 

loss of muscle mass during aging, known as sarcopenia. Inhibition of myostatin, a 57 

negative regulator of muscle size, has received significant attention as a potential 58 

therapeutic strategy for the improvement of both muscle strength (32) and insulin 59 

sensitivity (5), and the mitigation of the pathological features of the metabolic 60 

syndrome. Myostatin is a member of the transforming growth factor-β family of 61 

proteins that is secreted and activates Smad2/3 signalling in cells in an 62 

autocrine/paracrine fashion by binding the activin type 2A and 2B receptors (20). It is 63 

expressed predominantly in muscle and (at the mRNA level) at much lower levels in 64 

adipose tissue (1). 65 

 66 

Knockout of the myostatin gene causes significant enlargement of skeletal muscles 67 

through both hyperplasia and hypertrophy (24), but this increase in muscle mass is 68 

not mirrored by an increase in muscle strength (2). In contrast, post-natal inhibition of 69 

myostatin causes muscle hypertrophy, but not hyperplasia, (3, 19), and results in a 70 

concomitant increase in muscle strength (12, 23). Much less is known about the 71 

effect of myostatin inhibition on muscle glucose uptake and insulin sensitivity. 72 

Myostatin gene knockout prevents fat mass gain during the lifespan of chow-fed 73 

mice (25) and most evidence indicates that the genetic loss of myostatin improves 74 

glucose tolerance and/or insulin sensitivity in mouse models of (extreme) obesity 75 

(13, 14, 40). Post-natal systemic myostatin antibody treatment increases skeletal 76 

muscle mass  (4, 5, 18, 34, 39) and increases whole body insulin sensitivity in aged 77 

chow-fed mice, but not young mice being fed either regular chow or a high fat diet 78 

(5). Thus, myostatin inhibition-induced muscle hypertrophy is not always 79 

accompanied by an increase in insulin sensitivity, suggesting that hypertrophy is not 80 

sufficient and another, muscle mass-independent effect is required or that a potential 81 

threshold in the increase in muscle mass exists for an effect on insulin sensitivity to 82 

occur.  83 

In addition, the mechanism through which myostatin acts to improve insulin 84 

sensitivity in skeletal muscle remains unclear. Systemic administration or 85 

overexpression of myostatin inhibitors affects the action of myostatin originating 86 



from, and acting on, other tissues important for controlling whole body insulin 87 

sensitivity, such as white and brown adipose tissue (33). Thus, it remains unclear 88 

whether myostatin inhibition improves muscle insulin sensitivity in models of insulin 89 

resistance through a local effect or whether this effect is mediated by alterations in 90 

systemic factors. Myostatin inhibition has been proposed to stimulate signalling 91 

through the Akt pathway (36) and to increase 5’ AMP-activated protein kinase 92 

(AMPK) activity (11, 43) in skeletal muscle. These pathways control the translocation 93 

of glucose transporters to the plasma membrane as part of insulin-dependent and 94 

insulin-independent signalling mechanisms, respectively (16, 17). In addition, we 95 

have previously shown greater expression of the GLUT1 and GLUT4 glucose 96 

transporters after local myostatin inhibition, which was associated with enhanced 97 

muscle glucose disposal in rat muscle (8). Finally, myostatin inhibition-dependent 98 

activation of an AMPK-peroxisome proliferator-activated receptor gamma coactivator 99 

(PGC)-1α pathway has been suggested to stimulate the formation of brown fat by 100 

increasing the secretion of the hormone irisin from skeletal muscle (30).  101 

 102 

Generation of active myostatin requires cleavage and subsequent dimerization of a 103 

precursor protein. The NH2-terminal latency-associated peptide (ProMyo) sequesters 104 

the myostatin dimer and prevents it from binding to the activin type 2A and 2B 105 

receptors (20). Here, we show that local skeletal muscle myostatin inhibition using 106 

an adeno-associated virus (AAV) expressing the ProMyo peptide increases insulin-107 

stimulated glucose uptake in high-fat diet-fed mice, but not in chow-fed mice despite 108 

the presence of significant muscle hypertrophy. In contrast to previous work, this was 109 

not associated with increased PGC-1α or glucose transporter expression.  110 

 111 

  112 



Methods 113 

Preparation of adeno-associated virus 114 

The adeno-associated virus (AAV) construct containing a modified myostatin 115 

propeptide sequence fused to a mouse immunoglobulin G2a (IgG2a) moiety under 116 

control of a CAGG promoter was as previously described (12, 41).  AAV2/8 ProMyo 117 

viral particles were produced and titered by Vector Core (Nantes, France). 118 

Animals 119 

Male C57BL/6 mice (Harlan Laboratories) and myostatin knockout mice on a 120 

C57BL/6 background (24) were housed in animal facilities at the Royal Veterinary 121 

College or the University of Reading under a 12:12 hour day-night cycle with 122 

standard chow or a high fat diet and water available ad libitum. The high fat diet was 123 

obtained from Research Diets (New Brunswick, USA; #D12451), and contained 45% 124 

of calories derived from fat (lard and soy bean oil), 35% from carbohydrates and 125 

20% from protein. All experimental procedures were carried out under a United 126 

Kingdom Home Office licence in compliance with the Animals (Scientific Procedures) 127 

Act 1986. 128 

 129 

For intramuscular administration of AAV8 ProMyo, mice were anaesthetized with 130 

isoflurane (4% induction, 2% maintenance) and the anterior aspect of the lower limbs 131 

was shaved. AAV ProMyo (5x1010 virus particles in 50 µl PBS-MK) was injected into 132 

the cranial compartment of the left lower leg with a 29-gauge insulin syringe, while 133 

the right leg was injected with 50 µl PBS-MK as a paired control. 134 

 135 

Intraperitoneal insulin and glucose tolerance tests 136 

For intraperitoneal insulin tolerance tests (IPITT), mice were fasted for 3–4 hours 137 

before administering insulin. Insulin was prepared at 100 iu/ml in normal saline and 138 

used to resuspend nitrogen-dried 2-[1,2-3H(N)]-deoxy-D-glucose (0.37 MBq). Basal 139 

blood glucose was measured in tail blood with an Accu-Check Advantage meter 140 

(Roche Diagnostics, Burgess Hill, West Sussex, UK). A further 10 µl of blood was 141 

collected in microfuge tube containing 1 iu heparin in saline, mixed and placed on 142 

ice. Immediately afterwards, insulin and deoxyglucose tracer was administered 143 

intraperitoneally at a dose of 0.75 iu/kg. At 15, 30, 60 and 90 minutes after insulin 144 



administration, blood glucose was measured as described above. After taking the 145 

final blood sample, the mice were euthanized by cervical dislocation and tibialis 146 

cranialis (TC), extensor digitorum longus, soleus muscles and epididymal fat pads 147 

were collected, weighed and frozen in liquid nitrogen-cooled isopentane. 148 

Intraperitoneal glucose tolerance test (IPGTT) was conducted and glucose clearance 149 

into TC muscle was determined as described previously (7). 150 

 151 

In vivo study design 152 

For the time course analysis of the effect of myostatin inhibition, 3-month-old 153 

C57BL/6 males were given an intramuscular injection of AAV ProMyo as described 154 

above, and were kept for 1, 2, 4 or 10 weeks before being subjected to an IPITT or 155 

an IPGTT, after which they were euthanized and their muscles harvested and snap-156 

frozen (n=10 per time point). 157 

 158 

To determine the effect of myostatin inhibition in HFD-fed mice, C57BL/6 males were 159 

switched from regular chow to high fat diet (HFD) at 8 weeks of age, while 160 

contemporaneous controls were kept on a normal chow diet. Four weeks later, mice 161 

were given intramuscular injections of AAV8 ProMyo into one TC muscle, while the 162 

contra-lateral limb was injected with saline. Mice were kept for 2 or 10 weeks post-163 

injection, after which mice (n=10 per group) underwent an IPITT, before euthanasia 164 

and muscle collection. The remaining mice were euthanized and their muscles were 165 

harvested without undergoing an IPITT (n=8 per group). 166 

 167 

RNA analysis 168 

TC muscles from mice harvested without IPITT 10 weeks after AAV or saline 169 

injection were homogenized in Tri-reagent (Sigma-Aldrich) and RNA was extracted 170 

according to the manufacturer’s instructions. One microgram of RNA was reverse 171 

transcribed using a qScript cDNA synthesis kit (Quanta Biosciences). Transcript 172 

levels were quantified in duplicate by real-time PCR using PerfeCta SYBR Green 173 

FastMix (Quanta Biosciences). A serial dilution of a mixture of cDNA from all 174 

samples was prepared and used to construct a standard curve for relative 175 

quantification of target transcripts, expression of which were normalized to that of 176 



CNSK2A2, a reference gene which was defined after geNorm analysis 177 

(https://genorm.cmgg.be/). The primer sequences used are listed in Table 1. 178 

For microarray analysis, independent pooled RNA samples were prepared by mixing 179 

500 ng total RNA from four independent samples to create two RNA pools from both 180 

ProMyo-overexpressing and saline-injected muscle samples. Total RNA integrity for 181 

each replicate was determined using by Bioanalyzer on a RNA Pico Chip (Agilent 182 

Technologies, as per manufacturer’s instructions). For microarray analysis, labelled 183 

extracts were prepared from total RNA samples using the Nugen Ovation V2 system 184 

followed by Nugen Encore Biotin Labelling Kit (Nugen Technologies Inc, as per 185 

manufacturer’s instructions). Subsequently, samples were hybridized to Affymetrix 186 

Mouse 430_2 GeneChips as per manufacturer’s guidelines (Nugen Technologies Inc 187 

and ThermoFisher Scientific)   188 

 189 

Raw intensity data were processed with the RMA algorithm with quantile 190 

normalisation using the Affymetrix Expression Console software. The resulting 191 

expression data were subjected to gene set enrichment analysis (GSEA) (26, 35) 192 

using GSEA software v_3.0. Input data were the bi-weight average signal (log2). 193 

Genes without a gene symbol were excluded and data were collapsed into single 194 

gene symbols before the analysis, using the median expression value for each gene 195 

symbol (20630 genes remained). All genes were ranked on the basis of differential 196 

expression between ProMyo and saline-injected muscles, defined as the real values 197 

of Diff_of_Classes. Three separate GSEA runs were performed; one with the gene 198 

sets KEGG_FATTY_ACID_METABOLISM, 199 

KEGG_OXIDATIVE_PHOSPHORYLATION and 200 

KEGG_INSULIN_SIGNALING_PATHWAY, one with ten gene sets related to 201 

inflammation (see table 2) and one with collection c5.all.v6.1, a collection of 5,917 202 

gene sets based on gene ontologies. All gene sets were obtained from Molecular 203 

Signature Database v6.1. GSEAs were run with permutation of gene sets (n=1,000), 204 

using the weighted enrichment statistic, and default parameters for gene set size 205 

(minimum size 15, maximum size 500). A false discovery rate of <0.05 was accepted 206 

as being significant. Subsequent Leading Edge Analysis was performed to determine 207 

overlap between significantly enriched gene sets in genes mostly responsible for the 208 

enrichment score. 209 



The microarray data have been uploaded to Gene Expression Omnibus (accession 210 

GSE130622). Output enrichment plots for gene sets listed in table 2 are available 211 

upon request.  212 

 213 

 214 

Western blotting 215 

Liquid nitrogen-powdered muscle was lysed in cold RIPA buffer (50 mM TRIS-HCl 216 

(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% v/v Nonidet P40 substitute, 0.25% sodium 217 

deoxycholate, plus freshly added protease inhibitor cocktail (Sigma), phosphatase 218 

inhibitor cocktail (Sigma) and 20 mM beta-glycerophosphate). Protein concentration 219 

was determined using the Bio-rad DC protein assay. Samples were adjusted to the 220 

same concentration with RIPA buffer and SDS-PAGE loading buffer containing beta-221 

mercaptoethanol (2% final concentration) was added. Samples containing 40 µg 222 

protein were separated on pre-cast 4–12% Bis-Tris gels (Life Technologies) and 223 

blotted onto PVDF membranes. Membranes were blocked in 5% non-fat dried milk in 224 

Tris-buffered saline with 0.5% tween-20 (TBS-T) and incubated overnight at 4°C with 225 

primary antibody diluted in TBS-T, 5% BSA. Membranes were subsequently 226 

incubated with horseradish-conjugated species-specific secondary antibodies 227 

(Millipore) in TBS-T containing 5% non-fat milk powder. Membranes were washed 3 228 

× 5 min in TBS-T after each step. Antibodies were then detected with ECL Plus (Bio-229 

rad) and an ImageQuant LAS4000 mini (GE Healthcare). The following primary 230 

antibodies were used:  anti-Akt #9272, anti-pSer473-Akt #9271, anti-AMPKα #2532, 231 

anti-pThr172-AMPKα, anti-ACC #3662, anti-pSer79-ACC #3661, anti-α-actinin 232 

#6487, anti-GAPDH #5174 and anti-Cblb #9498 from Cell Signaling Technology; 233 

anti-PGC-1α #54481 and OXPHOS antibody cocktail #110413 from Abcam; and 234 

anti-GLUT4 #sc-53566 from Santa Cruz Biotechnology. 235 

 236 

Statistical analysis 237 

Statistical analyses were carried out using SigmaPlot v12.3 or GraphPad Prism v6. 238 

Data from time course experiments, and experiments involving different diets and 239 

myostatin inhibition were analysed with Two-Way Repeated Measures ANOVA, with 240 

time or myostatin inhibition as the paired factor. The Sidak-Holm method was used 241 

for post-hoc testing. Two-group comparisons were performed using t-tests, after 242 

verifying equality of variance and normality. The threshold for statistical significance 243 



was set at p<0.05. Data are displayed as mean ± standard error of the mean 244 

(S.E.M), or as mean plus individual data points. 245 

  246 



Results 247 

 248 

Myostatin inhibition increases muscle size, but not insulin-stimulated glucose 249 

disposal in chow-fed mice 250 

Overexpression of ProMyo in TC muscles of chow-fed mice for 1, 2, 4 or 10 weeks 251 

resulted in significant muscle hypertrophy in wild-type mice (Figure 1A) but not in 252 

myostatin knockout mice (Figure 1B). As expected, muscle mass was substantially 253 

higher in the myostatin knockout mice compared to the wild type mice (Figure 1A 254 

&1B). However, inhibition of the activin type 2B receptor has been shown to lead to 255 

additional hypertrophy in myostatin knockout mice (21) and the absence of such an 256 

effect of AAV ProMyo on muscle mass in the knockout mice implies that the 257 

construct is myostatin-specific. Insulin-stimulated glucose disposal, as measured by 258 

IPITT, was not different between saline- and AAV ProMyo-injected muscles at any of 259 

the time points (Figure 1C). Total glucose uptake into muscle was higher after 4 and 260 

10 weeks ProMyo overexpression by virtue of the significant increases in muscle 261 

mass (Figure 1D). As we have previously demonstrated higher muscle glucose 262 

uptake per unit muscle mass in ProMyo overexpressing rat muscle during a glucose 263 

tolerance test (IPGTT) (8), we measured glucose uptake during an IPGTT in mice 264 

after two weeks of ProMyo overexpression. However, we found no difference in 265 

glucose uptake between saline and AAV-ProMyo-injected muscles (Figure 1E). 266 

These data suggest that although myostatin inhibition-induced muscle hypertrophy 267 

increases total glucose disposal into muscle under conditions of hyperinsulinaemia, 268 

muscle glucose uptake per unit muscle mass is not increased by myostatin inhibition 269 

in chow-fed mice. 270 

 271 

Myostatin inhibition increases insulin-stimulated glucose disposal in muscle of HFD-272 

fed mice 273 

We next investigated whether local myostatin inhibition would improve muscle 274 

glucose uptake in HFD-fed mice. Mice were given an intramuscular injection of AAV8 275 

ProMyo or saline after 4 weeks of HFD-feeding. One group of mice was analysed 276 

after 2 weeks of myostatin inhibition (6-week total duration of HFD). At this time 277 

point, total body mass was not significantly greater in the HFD-fed mice (Figure 2A), 278 

but epididymal fat pad mass was significantly increased (Figure 2B), indicating 279 

visceral fat accumulation. We did not detect a significant difference in fasting or 280 



IPITT blood glucose levels between diet groups (Figure 2C), but HFD-fed mice 281 

displayed a delayed reduction in blood glucose levels in response to insulin (Figure 282 

2D), which is indicative of whole body insulin resistance. AAV8 ProMyo-injected TC 283 

muscles from both chow- and HFD-fed mice showed significant hypertrophy (+9.7% 284 

and +8.8% vs. saline, respectively; Figure 2E). However, neither chow-fed nor HFD-285 

fed mice showed an increase in glucose uptake into ProMyo-overexpressing TC 286 

muscles (Figure 2F). These data suggest that 2 weeks of myostatin inhibition in 287 

muscle is not sufficient to significantly increase insulin-stimulated glucose disposal in 288 

muscles of HFD-fed mice. 289 

 290 

After 10 weeks of myostatin inhibition (14 weeks of HFD-feeding), we observed a 291 

more severe metabolic phenotype. A significant increase in total body mass was 292 

detected (Figure 3A) and fat pad mass had increased to a greater extent in HFD-fed 293 

mice (Figure 3B). In addition, HFD-fed mice showed significantly higher fasting 294 

glucose levels than chow-fed controls and had a clearly delayed response to insulin 295 

during the IPITT (Figure 3C and 3D). Muscle mass was substantially greater in 296 

ProMyo overexpressing muscles than in saline-treated controls in both chow 297 

(+22.8%) and HFD (+23.2%) groups (Figure 3E). At this time point the ProMyo 298 

overexpressing muscles of the insulin-resistant HFD-fed mice showed significantly 299 

higher glucose uptake per unit mass during the IPITT than saline-injected controls 300 

(by ~78%) (Figure 3F). On this basis, total muscle glucose disposal can be estimated 301 

to be increased by 115–121% of that of control muscles. Taken together, these data 302 

suggest that 10 weeks of myostatin inhibition in mouse muscle specifically increases 303 

insulin-stimulated muscle glucose disposal in HFD-fed, but not chow-fed mice, 304 

despite the presence of significant muscle hypertrophy in both groups of mice. 305 

 306 

Effect of myostatin inhibition on potential regulators of insulin sensitivity 307 

We next determined whether myostatin inhibition selectively induced changes in 308 

pathways controlling GLUT translocation and/or expression in HFD-fed mice. 309 

Muscles from mice not subjected to IPITT were used for the analysis. Measurement 310 

of pro-myostatin mRNA, which includes the sequence for the inhibitory ProMyo 311 

peptide, showed robust overexpression of the ProMyo construct in muscles of chow- 312 

and HFD-fed mice after 10 weeks of myostatin inhibition (87±16-fold & 57±9-fold, 313 

respectively, Figure 4A). Slc2a1/GLUT1 mRNA levels were lower in ProMyo-314 



overexpressing muscles (Figure 4B). Slc2a4/GLUT4 mRNA levels were significantly 315 

lower in ProMyo-overexpressing muscles of HFD-fed mice compared to ProMyo-316 

overexpressing muscles of chow-fed mice (Figure 4C). GLUT1 and GLUT4 protein 317 

levels did not differ among any of the groups (Figure 4D-4F). These data suggest 318 

that, unexpectedly, GLUT expression was unaltered or reduced at the transcript level 319 

by myostatin inhibition. Basal Ser473 phosphorylation of Akt and Thr172 320 

phosphorylation of AMPKα were similar between diet groups or in ProMyo-321 

overexpressing muscles (Figure 5A & 5C). However, Akt protein levels were 322 

increased in ProMyo-overexpressing muscles of chow-fed mice, but not of HFD-fed 323 

mice (Figure 5B). AMPKα protein levels did not differ among the groups (Figure 5D). 324 

Likewise, basal Ser79 phosphorylation of acetyl-CoA carboxylase (ACC), which is 325 

indicative of AMPK activity, was similar among the groups (Figure 5E). ACC 326 

expression was increased in ProMyo-overexpressing muscles, although there was 327 

no significant difference within individual diet groups (Figure 5F). PGC-1α protein 328 

levels were significantly higher in HFD-fed mice but there was no effect of ProMyo 329 

overexpression (Figure 5G). These data suggest that the basal activities of pathways 330 

controlling GLUT expression and translocation were not specifically upregulated in 331 

HFD-fed mice by ProMyo overexpression.  332 

 333 

We explored the possibility that myostatin inhibition affects the expression of two 334 

more recently identified regulators of both myogenesis and muscle insulin sensitivity.  335 

Mitsugumin 53 (MG53) and Casitas B-cell lymphoma-b (Cbl-b) are E3 ligases that 336 

target the insulin receptor substrate 1 (IRS-1) for proteasomal degradation and their 337 

expression is thought to inhibit myoblast differentiation (42) and induce muscle 338 

atrophy during muscle unloading (29). Furthermore, MG53 is thought to induce 339 

muscle insulin resistance in response to high fat diet-feeding (31). Unexpectedly, 340 

transcript levels of MG53 were unaffected by HFD-feeding and were higher in 341 

ProMyo overexpressing muscles (Figure 6A). Cbl-b mRNA expression was not 342 

affected by ProMyo overexpression (Figure 6B), but its protein level was lower in 343 

HFD-fed mice (Figure 6C & 6D). Together, these data suggest unexpected changes 344 

in the expression of MG53 and Cbl-b in response to both high fat-diet feeding and 345 

myostatin inhibition that are unlikely to explain the observed effects on insulin-346 

stimulated muscle glucose disposal.   347 

 348 



Mitochondrial ribosomal protein transcripts are enriched after myostatin inhibition 349 

To obtain insight into possible alternative mechanisms for the effect of myostatin 350 

inhibition on skeletal muscle glucose uptake, we performed GSEA on transcriptomic 351 

data obtained from muscles from HFD-fed mice subjected to 10 weeks of myostatin 352 

inhibition and their paired saline-injected controls. We detected a 600-fold increase 353 

in IgG2A expression, which was due to the presence of IgG2A sequence in the AAV 354 

ProMyo-Fc construct. Therefore, this transcript was removed from the GSEA. To 355 

explain the observed increase in glucose uptake, we hypothesized that genes 356 

related to insulin signaling, fatty acid metabolism and oxidative phosphorylation may 357 

be enriched in the ProMyo overexpressing muscles. We detected significant 358 

enrichment of the KEGG_FATTY_ACID_METABOLISM gene set, but not of the 359 

KEGG_INSULIN_SIGNALING_PATHWAY or 360 

KEGG_OXIDATIVE_PHOSPHORYLATION gene sets (Table 2 & Table 3). It has 361 

been suggested that the effect of myostatin inhibition on glucose uptake in HFD-fed 362 

mice can be explained by reduced muscle inflammation (11). Therefore, we 363 

determined the enrichment of gene sets related to inflammation in our muscle 364 

samples. However, none of these gene sets showed significant enrichment in either 365 

saline-treated or ProMyo-overexpressing muscles (Table 2). 366 

To explore possible novel pathways involved in mediating the effect of myostatin 367 

inhibition on muscle glucose uptake, we repeated the GSEA with a large collection of 368 

gene sets based on gene ontologies. We found four gene sets that were enriched in 369 

ProMyo overexpressing muscles at a FDR of <5% (Table 2). These gene sets show 370 

a significant amount of overlap in that all contain mitochondrial ribosomal proteins. 371 

Subsequent analysis of the overlap in the genes responsible for the significant 372 

enrichment scores indeed mostly identified genes encoding mitochondrial ribosomal 373 

proteins and other genes involved in mitochondrial translation (Table 4), suggesting 374 

that myostatin inhibition increases the expression of these genes in the muscle of 375 

HFD-fed mice. Because the transcriptomic data suggest that the translation of 376 

mitochondrial DNA-encoded genes might be specifically enhanced, we analysed the 377 

protein levels of the nuclear DNA-encoded ubiquinol-cytochrome c reductase core 378 

protein 2 (UQCRC2) and succinate dehydrogenase complex iron sulfur subunit B 379 

(SDHB), and the mitochondrial DNA-encoded cytochrome c oxidase I (MTCO1). 380 

However, we found no differences in either the nuclear or mitochondrially encoded 381 

oxidative phosphorylation complex subunits among the groups (Figure 7).  382 



  383 



Discussion 384 

 385 

Myostatin inhibition is thought to improve muscle glucose disposal but the 386 

mechanisms whereby this is achieved and their quantitative importance are unclear. 387 

We show here that myostatin inhibition increases insulin-stimulated glucose disposal 388 

in skeletal muscle of HFD-fed mice, but not chow-fed mice, at a time point at which 389 

substantial muscle hypertrophy had occurred. Unexpectedly, this was not associated 390 

with higher expression of GLUT1/GLUT4 or PGC-1α, or basal phosphorylation of Akt 391 

or AMPK, which have been proposed to be regulators of the positive effects of 392 

myostatin inhibition on insulin sensitivity. However, we observed significant 393 

enrichment of genes involved in fatty acid metabolism and mitochondrial translation 394 

following myostatin inhibition. 395 

 396 

The lack of an effect of local myostatin inhibition on muscle insulin-stimulated 397 

glucose disposal in chow-fed mice was unexpected. Beneficial effects on glucose 398 

uptake and insulin sensitivity have been observed in multiple models of genetically 399 

induced muscle hypertrophy (6, 9, 10), implying the possibility of a common 400 

mechanism that leads to greater muscle glucose uptake. Furthermore, our previous 401 

experiments in rats demonstrated greater glucose disposal during an IPGTT after 17 402 

days of overexpression of the same ProMyo-Fc construct, which was associated with 403 

increased expression of GLUT1 and GLUT4 (8). However, muscle glucose uptake 404 

per unit muscle mass during an IPITT was unchanged throughout the full time 405 

course of the development of muscle hypertrophy (Figure 1C). This demonstrates 406 

that increases in muscle glucose disposal rate are not the inevitable result of 407 

myostatin inhibition-induced muscle hypertrophy. 408 

We observed significantly higher insulin-stimulated glucose disposal in ProMyo 409 

overexpressing muscles after 10 weeks, but not 2 weeks, of local myostatin inhibition 410 

in mice on an HFD (Figure 2F & 3F). The mice from the 10 week time point showed 411 

a more severe metabolic phenotype as a result of a longer duration of HFD feeding, 412 

with further increases in visceral fat accumulation, high fasting blood glucose and 413 

clear insulin resistance compared to the chow-fed mice and the two week time point 414 

(Figure 2 & 3). Despite this, glucose uptake was not lower in the muscles of the 415 

HFD-fed mice compared to those of the chow-fed mice (Figure 2F & 3F). Other 416 



groups have shown that feeding C57Bl/6 mice a similar HFD (i.e. 45% of calories 417 

from fat) for a similar or shorter amount of time leads to insulin resistance in TC 418 

muscle (37). The IPITT method we used to measure muscle glucose uptake involves 419 

a significant amount of variation between animals which can make it difficult to detect 420 

between-animal effects such as those of the diet.  421 

Nevertheless, our data suggest that the beneficial effect of myostatin inhibition on 422 

muscle glucose disposal requires a muscle hypertrophy-independent factor, which 423 

may be associated with the development of a severe metabolic phenotype. We have 424 

previously shown that local myostatin inhibition increases muscle glucose disposal to 425 

a much greater extent than muscle size in chow-fed rats (8), suggesting this factor 426 

may not be exclusively related to metabolic disease. Myostatin antibody treatment 427 

resulted in muscle hypertrophy in chow- and HFD-fed young mice and chow-fed old 428 

mice, but only increased whole body insulin sensitivity in the old mice (5). The 429 

absence of improvements in insulin sensitivity in young mice in the experiments by 430 

Camporez et al. might be explained by a requirement for a minimum level of 431 

hypertrophy in combination with the presence of a significant metabolic phenotype, 432 

as the mice from the 2 week myostatin inhibition time point in our study displayed a 433 

similar degree of hypertrophy, had been fed a HFD for a similar duration, and 434 

displayed no increase in glucose disposal with myostatin inhibition (Figure 2). 435 

However, it is unclear why an improvement was observed in old mice despite the 436 

presence of a similar degree of muscle hypertrophy in young mice.      437 

 438 

Together these data suggest that an increase in insulin-stimulated glucose disposal 439 

into muscle by postnatal myostatin inhibition in young mice requires a significant 440 

metabolic phenotype combined with a long duration of inhibition, although rats 441 

appear to be more sensitive to the effects of myostatin inhibition (8). The reason for 442 

the difference in the effect of ProMyo overexpression in chow-fed mice and rats is 443 

unclear. Our chow-fed mouse data set (Figure 1) includes a time point that is similar 444 

to the time point used in our previous rat study, at which the degree of hypertrophy 445 

was similar and at which we assessed glucose uptake during both an IPITT and an 446 

IPGTT, which was the test performed in the rats. It is possible that the larger content 447 

of the more insulin-sensitive type 1/2A muscle fibres in the rat TC muscle compared 448 

to that of the mouse TC muscle (~5/25% vs ~0/5%, respectively) played a role in the 449 

different response to myostatin inhibition, and that local myostatin inhibition in a 450 



mouse muscle with a fibre type composition more similar to that of the rat TC would 451 

have shown a similar increase in glucose uptake.  452 

 453 

The data have potential implications for the clinical translation of myostatin inhibition 454 

for the treatment of insulin resistance, as it may be that more obese individuals are 455 

more likely to benefit from myostatin inhibitors. Obesity does not appear to affect the 456 

degree of muscle hypertrophy resulting from myostatin inhibition (Figure 3E), and 457 

indeed the magnitude of the increase in insulin-stimulated glucose disposal exceeds 458 

that of the increase in muscle mass (Figure 3F). Thus, myostatin inhibition leads to 459 

substantial improvements in total insulin-stimulated muscle glucose disposal, which 460 

implies a treatment strategy utilising this approach would have positive effects in 461 

obese insulin resistant patients. 462 

 463 

Among the potential mechanisms which have been suggested to explain the positive 464 

effects of myostatin inhibition on muscle or whole body glucose uptake are higher 465 

expression of glucose transporters GLUT1 and GLUT4 (8), activation of Akt (27, 36), 466 

and stimulation of brown fat formation by increasing the secretion of the hormone 467 

irisin from skeletal muscle through an AMPK-PGC-1α-dependent mechanism (30). 468 

We did not demonstrate higher expression of any of these molecules in the ProMyo-469 

overexpressing TC muscles from HFD-fed mice (Figure 4 & 5), and we found no 470 

evidence of increased basal AMPK activity (Figure 5). However, we cannot exclude 471 

the possibility that GLUT translocation from the cytosol to the plasma membrane was 472 

increased separately of any effect on GLUT expression. There was an increase in 473 

PGC-1α protein levels in HFD mice, which is consistent with the existing literature 474 

(15), but there was no effect of ProMyo overexpression (Figure 5G). This brings into 475 

question whether myostatin inhibition in muscle is sufficient to increase PGC-1α 476 

expression. In support of this, lower PGC-1α protein levels have been detected in 477 

myostatin knockout mice (22) and lower PGC-1α transcript levels were found in mice 478 

treated with AAV ProMyo (28). In addition, we detected no increase  in expression of 479 

the insulin receptor-targeting E3 ligases MG53 and Cbl-b in HFD-fed mice, while 480 

myostatin inhibition unexpectedly increased the expression of MG53, which has 481 

previously been suggested to be responsible for muscle insulin resistance in 482 

response to HFD feeding (31) (Figure 6). Together, these data suggest that whole 483 

body insulin resistance was not associated with higher expression of these IRS-1-484 



targeting E3 ligases in muscle and that the improvement of muscle glucose disposal 485 

resulting from myostatin inhibition was not associated with a decrease in their 486 

expression. 487 

 488 

The results of our experiments are contrasting with existing hypotheses regarding 489 

the mechanism through which myostatin might increase skeletal muscle glucose 490 

disposal, and therefore suggest that other mechanisms exist. In accordance with 491 

previous observations (11) we found enrichment of gene sets associated with fatty 492 

acid (FA) oxidation including acyl-CoA synthases and acyl-CoA dehydrogenases 493 

(Table 2 & 3), which catalyse the initial steps in the beta-oxidation of FAs. We 494 

speculate that higher expression of these sets of genes could lead to improved 495 

metabolism of fatty acids, and thus greater insulin sensitivity. For example, an 496 

increase in carnitine palmitoyl transferase 1 (CPT1) activity (one of the genes which 497 

showed increased expression in ProMyo-overexpressing muscles) in skeletal muscle 498 

improves insulin sensitivity in HFD-fed mice (38). In addition, we observed 499 

enrichment of genes involved in mitochondrial translation, including those expressing 500 

mitochondrial ribosomal proteins, following myostatin inhibition in muscles of HFD-501 

fed mice (Table 2 & 4). Reductions in OXPHOS gene expression in human muscle 502 

have been associated with type 2 diabetes (26), but we found no significant 503 

enrichment of a gene set related to oxidative phosphorylation with myostatin 504 

inhibition (Table 2).  In accordance with this, we found no difference in the protein 505 

levels of two nuclear-encoded subunits of oxidative phosphorylation complexes 506 

(Figure 7A & 7B). The protein levels of a mitochondrially encoded protein also did 507 

not differ between saline-treated and ProMyo-overexpressing muscles (Figure 7C), 508 

which argues against a general increase in translation of mitochondrial proteins. 509 

Although any causal relationship between myostatin inhibition, changes in 510 

mitochondrial gene expression and improvements in muscle glucose uptake requires 511 

further investigation, it is possible that an enhancement in mitochondrial translation 512 

could explain why myostatin inhibition potentiates the effects of exercise on whole-513 

body insulin sensitivity and running distance in aged mice (18). 514 

 515 

We conclude that local post-natal myostatin inhibition improves insulin-stimulated 516 

muscle glucose disposal in obese HFD-fed mice. This is not secondary to muscle 517 

hypertrophy and is not observed in young insulin-sensitive mice. This effect does not 518 



appear to rely on the upregulation of glucose transporter and PGC-1α expression but 519 

was associated with expression changes in previously unidentified pathways related 520 

to mitochondrial function. These findings point towards further areas for future 521 

investigations into the mechanism of the effects of myostatin inhibition, and suggest 522 

that therapeutic myostatin inhibition may be effective in improving muscle glucose 523 

uptake primarily in obese insulin-resistant individuals.  524 
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Figure 1: AAV8 ProMyo increases muscle mass but not insulin-stimulated 716 

glucose disposal in chow-fed mice 717 

A: Mass of saline- or AAV8 ProMyo-injected tibialis cranialis (TC) muscle at 1, 2, 4 & 718 

10 weeks post-injection (n=10 per group). B: TC muscle masses of 2-month-old 719 

myostatin null mice 4 weeks after a single intramuscular injection of AAV8 ProMyo 720 

(n=3 per group). C: Glucose uptake per unit muscle mass during an intraperitoneal 721 

(i/p) insulin tolerance test (IPITT) at the indicated times after saline or AAV8 ProMyo 722 

injection. D: Total muscle glucose uptake at the indicated times after saline or AAV8 723 

ProMyo injection. E: Glucose uptake per unit muscle mass during an i/p glucose 724 

tolerance test (IPGTT) 2 weeks after saline or AAV8 ProMyo injection. Data are 725 

shown as mean + S.E.M. ** p<0.01 vs. Saline at the same time point. *** p<0.001 vs. 726 

Saline at the same time point. Two-way Repeated Measures ANOVA with Sidak-727 

Holm posthoc test (A, C, D); Paired t-test (B, E).   728 

 729 

Figure 2: Muscle insulin-stimulated glucose disposal is not affected by 2 730 

weeks of myostatin inhibition in mice on a high fat diet 731 

Body mass (A) and epididymal fat pad mass (B) of chow-fed and high fat diet (HFD)-732 

fed mice after 2 weeks of intramuscular ProMyo overexpression (n=10 per group). C: 733 

Blood glucose concentration during IPITT. D: Normalized blood glucose 734 

concentration during IPITT. Data in A-D are shown as mean +/- S.E.M. E: Muscle 735 

mass in chow-fed and HFD-fed mice 2 weeks after saline or AAV8 ProMyo injection. 736 

F: Glucose uptake into TC muscle during the IPITT. Bars in E & F show mean values 737 

and data points connected by a line represent contralateral muscle pairs from the 738 

same animal. ** Indicates p<0.01 vs. control. *** Indicates p<0.001 vs. control. 739 

Unpaired t-test (A, B); Two-way Repeated Measures ANOVA with Sidak-Holm 740 

posthoc test (C, D, E, F)   741 



Figure 3: Higher skeletal muscle insulin-stimulated glucose disposal after 10 742 

weeks of myostatin inhibition in mice on a high fat diet 743 

Body mass (A) and epididymal fat pad mass (B) of chow-fed and high fat diet (HFD)-744 

fed mice after 10 weeks of intramuscular ProMyo overexpression (n=10 per group). 745 

C: Blood glucose concentration during IPITT. D: Normalized blood glucose 746 

concentration during IPITT. Data in A-D are shown as mean +/- S.E.M. E: Muscle 747 

mass in chow-fed and HFD-fed mice 10 weeks after saline or AAV8 ProMyo 748 

injection. F: Glucose uptake into TC muscle during the IPITT. Bars in E & F show 749 

mean values and data points connected by a line represent contralateral muscle 750 

pairs from the same animal. * Indicates p<0.05 vs. control. ** Indicates p<0.01 vs. 751 

control. *** Indicates p<0.001 vs. control. Unpaired t-test (A, B); Two-way Repeated 752 

Measures ANOVA with Sidak-Holm posthoc test (C, D, E, F). 753 

 754 

 755 

Figure 4: Effect of 10 weeks of myostatin inhibition in HFD-fed mice on 756 

glucose transporter expression 757 

A-C: Real-time PCR analysis of ProMyo (A), Slc2a1/GLUT1 (B) and Slc2a4/GLUT4 758 

(C) transcript levels in chow- and HFD-fed mice (n=8 per group). A significant 759 

ANOVA main effect of ProMyo on GLUT1 transcript levels (B) is indicated. D & E: 760 

Western blot quantification of protein levels of GLUT1 (D, n=8 per group) and GLUT4 761 

(E, n=7-8 per group). F: Example western blot images. Samples from intra-animal 762 

muscle pairs are indicated by lines underneath the blot images. ProMyo (+) or saline 763 

(-) treatment is indicated. Data are shown as mean + S.E.M. * p<0.05. ** p<0.01. *** 764 

p<0.001. Two-way Repeated Measures ANOVA with Sidak-Holm posthoc test (A-E).  765 

  766 



Figure 5: Effect of 10 weeks of myostatin inhibition in HFD-fed mice on 767 

signalling pathways controlling glucose transporters 768 

A-G: Western blot quantification of phospho- and total levels of Akt (A & B), AMPK 769 

(C & D), ACC (E & F), and PGC-1α protein (G) (n=6-8 per group). Significant 770 

ANOVA main effects of ProMyo on ACC levels (F) and of diet on PGC-1α levels (G) 771 

are indicated. H: Example western blot images. Samples from intra-animal muscle 772 

pairs are indicated by lines underneath the blot images. ProMyo (+) or saline (-) 773 

treatment is indicated. The vertical spaces between blot images indicate lanes that 774 

were on the same blot but from which other lanes have been cropped out. Data are 775 

shown as mean + S.E.M. * p<0.05. ** p<0.01. Two-way Repeated Measures ANOVA 776 

with Sidak-Holm posthoc test (A-G).  777 

 778 

 779 

Figure 6: Effect of 10 weeks of myostatin inhibition in HFD-fed mice on insulin 780 

signalling-controlling E3 ligases 781 

A-B: Real-time PCR analysis of MG53 (A) and Cblb (B) transcript levels in chow and 782 

HFD-fed mice (n=8 per group). C: Western blot quantification of Cbl-b protein levels 783 

(n=8 per group). Significant ANOVA main effects of ProMyo on MG53 transcript 784 

levels (A) and of diet on Cbl-b protein levels (C) are indicated. D: Example western 785 

blot images. Samples from intra-animal muscle pairs are indicated by lines 786 

underneath the blot images. ProMyo (+) or saline (-) treatment is indicated. Data are 787 

shown as mean + S.E.M. * p<0.05. Two-way Repeated Measures ANOVA with 788 

Sidak-Holm posthoc test (A, B, C). 789 
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Figure 7: Effect of 10 weeks of myostatin inhibition in HFD-fed mice on 792 

mitochondrial protein levels 793 

A-C: Western blot quantification of nuclear-encoded complex III subunit UQCRC2 794 

(A) and complex II subunit SDHB (B), and mitochondrially-encoded complex IV 795 

subunit MTCO1 (C) protein levels (n=8 per group). D: Example western blot images. 796 

Samples from intra-animal muscle pairs are indicated by lines underneath the blot 797 

images. ProMyo (+) or saline (-) treatment is indicated. Data are shown as mean + 798 

S.E.M. No significant differences were detected. Two-way Repeated Measures 799 

ANOVA with Sidak-Holm posthoc test (A, B, C). 800 
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Table 1: Sequences of primers used for real-time RT-PCR analysis 

 

Transcript  Primers Reference

ProMyo Fw: 5’-GGCACTGGTATTTGGCAGAG-3’ 

Rv: 5’-GTCCTGGGAAGGTTACAGCA-3’ 

 

Mstn exon 1 Fw: 5’-TGTTTATATTTACCTGTTCATGCTGAT-3’ 

Rv: 5’-GCCCCTCTTTTTCCACATTTTC-3’ 

 

Slc2a4/GLUT4 Fw: 5’-ACACTGGTCCTAGCTGTATTCT-3’ 

Rv: 5’-CCAGCCACGTTGCATTGTA-3’ 

 

Slc2a1/GLUT1 Fw: 5’-CGGGGTCTTAAGTGCGTCAG-3’ 

Rv: 5’-CTCCCACAGCCAACATGAGG-3’ 

 

MG53 Fw: 5’-TGTGTGCCTCGCTCGGTTC-3’ 

Rv: 5’-TCTGCTTCACGGTCCAGAGAA-3’ 

(31) 

Cblb Fw: 5’-GAGCCTCGCAGGACTATGAC-3’ 

Rv: 5’-CTGGCCACTTCCACGTTATT-3’ 

(29) 



 

Table 2: Gene set enrichment analysis of transcriptomics data from ProMyo 
overexpressing TA muscles of HFD-fed mice 
Size: Number of genes in gene set; ES: Enrichment score; NES: Normalized 

enrichment score; FDR: False discovery rate (Significance threshold: q<0.05). 

Positive ES indicates enrichment of gene set in ProMyo-overexpressing muscles, 

negative ES indicates enrichment in saline-treated muscles.  

 

Gene set Size ES NES FDR 
q value 

KEGG_FATTY_ACID_METABOLISM 34 0.57 1.93 0.003 

KEGG_OXIDATIVE_PHOSPHORYLATION 105 0.17 0.71 1.000 

KEGG_INSULIN_SIGNALING_PATHWAY 123 0.16 0.68 0.970 

     

GO_INFLAMMATORY_RESPONSE 454 -0.28 -1.39 0.145 

GO_MACROPHAGE_ACTIVATION 31 -0.44  -1.43 0.172 

GO_REGULATION_OF_MACROPHAGE_ACTIVATION 26 -0.35 -1.05 0.484 

GO_MACROPHAGE_DIFFERENTIATION 19 -0.54 -1.56 0.128 

GO_REGULATION_OF_MACROPHAGE_DIFFERENTIATION 20 -0.19 -0.57 0.986 

GO_LEUKOCYTE_ACTIVATION 414 -0.22 -1.13 0.357 

GO_T_CELL_MEDIATED_IMMUNITY 28 0.37 1.07 0.628 

GO_REGULATION_OF_T_CELL_PROLIFERATION 147 0.23 0.98 0.504 

GO_CYTOKINE_PRODUCTION 120 -0.22 -0.90 0.788 

GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY 452 -0.24 -1.18 0.359 

     

GO_TRANSLATIONAL_TERMINATION 86 0.53 2.14 0.024 

GO_ORGANELLAR_RIBOSOME 68 0.55 2.12 0.020 

GO_TRANSLATIONAL_ELONGATION 102 0.50 2.05 0.047 

GO_MITOCHONDRIAL_TRANSLATION 95 0.50 2.05 0.036 



Gene symbol Gene title Rank  

ACSL3 acyl-CoA synthetase long-chain family member 3 7

ACSL4 acyl-CoA synthetase long-chain family member 4 251

ALDH9A1 aldehyde dehydrogenase 9 family, member A1 913

ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial 1,412

ACSL6 acyl-CoA synthetase long-chain family member 6 1,568

CPT1A carnitine palmitoyltransferase 1A (liver) 1,781

ACADSB acyl-Coenzyme A dehydrogenase, short/branched chain 1,973

ACADS acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain 1,980

GCDH glutaryl-Coenzyme A dehydrogenase 2,575

ACSL1 acyl-CoA synthetase long-chain family member 1 2,974

ACAA2 acetyl-Coenzyme A acyltransferase 2 3,095

HADHA hydroxyacyl-Coenzyme A dehydrogenase, alpha subunit 3,181

ACADVL acyl-Coenzyme A dehydrogenase, very long chain 3,187

HADH hydroxyacyl-Coenzyme A dehydrogenase 3,398

ADH4 alcohol dehydrogenase 4 (class II), pi polypeptide 4,035

ACADL acyl-Coenzyme A dehydrogenase, long chain 4,169

 

Table 3: Leading edge genes of KEGG_FATTY_ACID_METABOLISM gene set 
enriched in ProMyo-overexpressing vs. saline-treated muscles 

Rank indicates the ranking of the gene in the list of all genes (total: 20,630) ranked 

on the basis of differential expression between ProMyo-overexpressing and saline-

treated muscles. 

 



Gene symbol Gene title Rank  

MTG1 mitochondrial GTPase 1 homolog (S. cerevisiae) 202

GFM2 G elongation factor, mitochondrial 2 257

MRPS22 mitochondrial ribosomal protein S22 381

MRPS33 mitochondrial ribosomal protein S33 476

MRPL22 mitochondrial ribosomal protein L22 609

MTERFD2 MTERF domain containing 2 738

MRPS35 mitochondrial ribosomal protein S35 752

MRPS12 mitochondrial ribosomal protein S12 874

MRPL21 mitochondrial ribosomal protein L21 964

MRPS5 mitochondrial ribosomal protein S5 1,159

MRPL19 mitochondrial ribosomal protein L19 1,230

ABTB1 ankyrin repeat and BTB (POZ) domain containing 1 1,280

MRPS31 mitochondrial ribosomal protein S31 1,539

MRPL44 mitochondrial ribosomal protein L44 1,556

EIF5A2 eukaryotic translation initiation factor 5A2 1,745

MRPL3 mitochondrial ribosomal protein L3 1,759

TUFM Tu translation elongation factor, mitochondrial 1,771

HARS histidyl-tRNA synthetase 1,963

MRP63 mitochondrial ribosomal protein 63 2,008

MRPL18 mitochondrial ribosomal protein L18 2,017

MTRF1L mitochondrial translational release factor 1-like 2,018

MRPS27 mitochondrial ribosomal protein S27 2,102

MRPL2 mitochondrial ribosomal protein L2 2,188

MRPL32 mitochondrial ribosomal protein L32 2,215

MRPL47 mitochondrial ribosomal protein L47 2,325

MRPS30 mitochondrial ribosomal protein S30 2,500

EEFSEC eukaryotic elongation factor, selenocysteine-tRNA-specific 2,759

MRPL55 mitochondrial ribosomal protein L55 2,762

MRPL24 mitochondrial ribosomal protein L24 2,865

MRPS18A mitochondrial ribosomal protein S18A 3,106

MRPL46 mitochondrial ribosomal protein L46 3,217



GFM1 G elongation factor, mitochondrial 1 3,349

MTIF2 mitochondrial translational initiation factor 2 3,428

EEF1D eukaryotic translation elongation factor 1 delta  3,519

MRPL40 mitochondrial ribosomal protein L40 3,558

MRPS18C mitochondrial ribosomal protein S18C 3,569

MRPS34 mitochondrial ribosomal protein S34 3,696

MRPS18B mitochondrial ribosomal protein S18B 3,709

MRPS28 mitochondrial ribosomal protein S28 3,786

MRPS25 mitochondrial ribosomal protein S25 3,787

GSPT1 G1 to S phase transition 1 3,828

MRPS2 mitochondrial ribosomal protein S2 3,956

MRPL14 mitochondrial ribosomal protein L14 3,988

MRPS6 mitochondrial ribosomal protein S6 4,178

MRPL51 mitochondrial ribosomal protein L51 4,218

MRPS16 mitochondrial ribosomal protein S16 4,225

MRRF mitochondrial ribosome recycling factor 4,419

MRPL54 mitochondrial ribosomal protein L54 4,603

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 4,640

NSUN4 NOL1/NOP2/Sun domain family, member 4 4,659

MRPL20 mitochondrial ribosomal protein L20 4,671

 

Table 4: Leading edge genes of gene ontology-based gene sets enriched in 

ProMyo-overexpressing vs. saline-treated muscles 

Rank indicates the ranking of the gene in the list of all genes (total: 20,630) ranked 

on the basis of differential expression between ProMyo-overexpressing and saline-

treated muscles. 
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