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Abstract 

Modern fruit production has successfully increased yields and fruit quality to meet market demands 

mainly through intensification and the use of Plant Protection Products (PPPs). Due to the associated 

environmental impacts and consumers increasingly demanding food produced more sustainably, the 

tree fruit sector is seeking to reduce its reliance on PPPs. Despite intensification, apple production is 

still highly dependent on ecosystem services, including pest regulation and pollination. The aim of this 

study was to investigate the response of natural enemies and pollinators in commercial apple orchards 

to the provision of a wildflower habitat. It was hypothesised that the abundance and diversity of 

beneficial invertebrate species would be enhanced leading to an increased control of apple pests and 



2 
 

enhanced pollination of apple blossom. We also investigated the effect of orchard pesticide toxicity on 

natural enemies and pest regulation services and how responses varied between apple cultivars (Jazz 

and Braeburn). The study was carried out in five orchards of each apple variety across Kent (UK), 

using a split-plot experimental design. At each site, a one-hectare orchard plot was established with 

wildflower strips in alleyways between rows of trees and compared with a one-hectare control plot 

where alleyways were managed conventionally with regular cutting. Responses of natural enemies and 

pollinators were recorded over a period of three and four years, respectively. The presence of 

wildflower strips did not contribute significantly towards the delivery of natural pest regulation or 

pollination services. However, hoverfly diversity and species richness were greater in orchards with 

wildflower strips, and whilst this was not associated with increased rates of pest regulation, such a 

response could potentially provide more resilient pest regulation and pollination services. Braeburn 

orchards had higher bee abundance, and pest predation rates, which were associated with a greater 

abundance of earwigs, compared to Jazz orchards. Of key significance for growers is that high values 

of cumulative pesticide toxicity negatively affected natural enemy populations, especially earwigs. If 

growers want to support natural enemies and wild pollinators in modern apple orchards following the 

principles of ecological intensification, they need to consider both the types and frequency of pesticide 

sprays used, in conjunction with interventions aimed at promoting beneficial invertebrates. 

 

1. Introduction 

Intensive modern fruit production has successfully increased yields and fruit quality to meet market 

demands. This has mainly been achieved through denser planting systems, the use of grafted M9 

rootstocks, precision farming technologies, and changes in the use of chemical inputs (van de Zande et 

al., 2008; Bloch et al., 2018). Apple production, however, still receives significant benefits from 

ecosystem service inputs, including pollination and natural pest regulation (Cross et al., 2015; 

Demestihas et al., 2017; Samnegard et al., 2019). Unfortunately, the use of Plant Protection Products 

(PPPs) has resulted in a number of negative impacts. Regular inputs have increased insecticide 

resistance reducing their efficacy (Dunley and Welter, 2000), and effects on non-target organisms are 

reported for bees (Stanley et al., 2015) and natural enemies (Marko et al., 2009; Fountain and Harris, 

2015). Consequently, many products now have restricted use or are being withdrawn, leading to the 
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increased application of other less effective PPPs (Hillocks, 2012). The drive to reduce the reliance of 

growers on PPPs coupled with consumers increasingly demanding high quality food that is produced 

with lower environmental impacts (Vermeir and Verbeke, 2006), has required the sector to seek 

sustainable approaches to production. This has included reduced inputs of agro-chemicals and more 

effective management of ecosystem services including pollination and natural pest control. 

 

For commercial apple production, Integrated Pest Management (IPM) can be a robust and sustainable 

method for the control of pests (Suckling et al., 1999). As part of IPM, many different approaches are 

used, including cultural techniques (Morrison et al., 2019), conservation biological control (Heimpel, 

2019), the direct release of natural enemies (Sigsgaard et al., 2017) and the deployment of semio-

chemicals for pest mating disruption (Sigsgaard et al., 2006). IPM aims to integrate these control 

methods in conjunction with the timely use of selective PPPs, enabling growers to keep pest 

populations below economically damaging thresholds, whilst reducing environmental impacts. During 

the 1990s, in western Europe, only 35% of pome fruit (apple, pears and quince) was grown using IPM 

techniques (Kogan and Bajwa, 1999), but since 2014, the European Sustainable Use Directive 

(2009/128/EC) has made it compulsory for all member states to adopt IPM methods (Birch et al., 2011). 

However, IPM may not be fully implemented by growers due to a lack of awareness, a greater risk to 

the crop, increased costs of adoption (including more intensive monitoring), combined with a lack of 

knowledge and training on how to effectively implement measures (Fitter et al., 2010; Damos et al., 

2015). 

 

For the effective control of orchard pests by natural enemies as part of IPM, it appears a wide range of 

predators are required (Nicholas et al., 2005; Dib et al., 2010). In addition to target pests, many natural 

enemies also require pollen, nectar, alternative prey, and shelter (van Emden, 2002). Ground 

vegetation in modern orchard systems usually consists of species-poor grassland communities, which 

is cut regularly, primarily to reduce competition with the crop (Granatstein and Sánchez, 2009). This 

regime prevents the development of suitable habitat (shelter) for natural enemies and associated floral 

resources (nectar and pollen). However, these resources can be provided by introducing appropriately 

managed wildflower strips directly into orchards (Bugg and Waddington, 1994). The presence of 
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wildflower habitat has the potential to contribute to natural pest regulation services as part of an IPM 

strategy (Landis et al., 2000; Duru et al., 2015). 

 

The intensification of food production systems has also been associated with declines in pollinators 

(Potts et al., 2016), such as wild bees and hoverflies (Biesmeijer et al., 2006; Goulson et al., 2008; 

Potts et al., 2010a; Carvalheiro et al., 2013), but also managed honeybees in some regions (Potts et 

al., 2010b). Key drivers linked to declines are habitat loss and fragmentation, increased use of 

agrochemicals, greater disease prevalence, and the effects of non-native species, all set within the 

context of climate change (Potts et al., 2016). Wild pollinators and honeybees are both vital for effective 

crop pollination (Garibaldi et al., 2013), but pollination services provided to crops are being disrupted 

(Deguines et al., 2014), resulting in sub-optimal pollination (Garratt et al., 2014b). To support crop 

pollination the presence of wildflower strips has been shown to enhance pollinator visitation and 

pollination to mango (Carvalheiro et al., 2012), blueberries (Blaauw and Isaacs, 2014), strawberries 

(Feltham et al., 2015), oilseed rape, and field beans (Pywell et al., 2015). Due to the increased 

provision of nectar, pollen and other forage resources, wildflower strips in modern apple orchards might 

therefore be expected to enhance local pollinator communities and the delivery of pollination services, 

helping address pollination deficits (Garratt et al., 2014a; Garratt et al., 2014b). Wildflower strips can be 

deployed at field boundaries (Blaauw and Isaacs, 2014), or within cropped areas (Marko et al., 2013). 

In modern orchards however, field boundaries are usually maintained for vehicle access (including 

turning at the end of rows) and the storage of apple bins prior to harvest. Establishing wildflower strips 

between rows of trees is therefore more acceptable to growers and this approach is more likely to 

increase spill-over of beneficial insects into the crop (Gomez-Marco et al., 2016). 

 

The aim of this study was to investigate natural enemies and pollinators in commercial apple orchards 

in response to the provision of an introduced wildflower habitat. We hypothesised that the increased 

availability of habitat resources would elevate abundance and diversity of beneficial species and 

concomitantly increase the regulation of apple pests and pollination services to apple blossom. 

Furthermore, due to the potential impact of PPPs, we tested the hypothesis that the abundance and 

diversity of natural enemies and the services they provide would be relatively lower in orchards with 
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high levels of PPPs or their cumulative toxicity (Thomson and Hoffmann, 2006). Given the potential for 

differences in responses based on apple cultivar (Minarro and Dapena, 2007), we also hypothesised 

that responses might be different in two commercially important apple varieties, Jazz and Braeburn. 

 

2. Method 

2.1. Experimental Design 

A split-plot experimental design was used to investigate responses of natural pest regulation and 

pollination services in ten apple orchard sites across Kent (UK). Five of the orchard sites contained the 

apple cultivar Jazz, and five Braeburn. At each of the sites, two, one-hectare orchard plots were 

identified, and one received the wildflower treatment in alleyways between rows of trees. This was 

compared with a one-hectare control plot managed conventionally with the regular cutting of alleyway 

vegetation throughout the season. The two plots at each site were separated by at least 150 m. 

Orchards were located within a typical agricultural matrix surrounded by other orchards, soft fruit 

production, and cereal crops. The Jazz orchards were on loam textured soils, whereas the Braeburn 

orchards were either on loam or clayey-loam soils. 

 

In March 2013, a native perennial seed mix (supplied by Emorsgate Seeds, Norfolk, UK) was used to 

establish the wildflower habitat in alleyways between rows of trees. Prior to sowing, alleyways were 

sprayed with glyphosate to remove competition from existing vegetation and cultivated after five days 

to provide a rough seed bed. Dead vegetation was left in situ. Perennial species only were sown to 

reduce variation in floral resource availability between years, which can result from using mixes 

containing annuals and biennials (Campbell et al., 2017a). The mix consisted of nine herbaceous 

species and one grass species (Table 1). The herbaceous species were selected for their different 

vegetative structure, flowering morphology and phenology, whilst Dactylis glomerata, a tussock forming 

grass species, was sown to provide vegetation structure for natural enemies. Seed was sown in spring 

2013 at a rate of 5 kg ha-1. After hand-sowing the seed mixed with sand (to attain a more even 

distribution), the wildflower strips were rolled to firm contact of the seed with the soil. Due to poor initial 

establishment at some sites, in August 2013 all the wildflower strips were lightly cultivated, and further 

seed was sown at the same rate as in spring 2013 (5 kg ha-1). The wildflower plots consisted of 16 
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sown inter-row strips (70 cm wide and 100 m long) established in alternate alleyways between rows of 

trees. Hence, in each 1 ha plot, 11.2% (1,120 m2) of the area was established with a sown wildflower 

resource. The abundance of flowering resource was determined by counting the number of floral units 

present in twenty 50 x 50 cm quadrats randomly placed in the alleyways. A floral unit was defined 

according to Carvalheiro et al. (2008). In year one, surveys took place in April and August, and monthly 

from April to August in years two and three (Table 2). 

 

Table 1. Plant species sown in the wildflower strips in alleyways between rows of apple trees. 

Scientific name Common name 
Sowing rate 
(seeds m-2) 

Sowing rate 
(kgha-1) 

Achillea millefolium Yarrow 25 0.04 
Centaurea nigra Black Knapweed 50 1.25 
Dactylis glomerata (wild type) Orchard grass 10 0.10 
Galium verum Lady's bedstraw 50 0.26 
Leontodon hispidus Rough hawkbit 50 0.56 
Leucanthemum vulgare Oxeye daisy 25 0.13 
Lotus corniculatus (wild type) Bird’s-foot-trefoil 50 1.00 
Prunella vulgaris Selfheal 50 0.50 
Silene dioica Red campion 50 0.50 
Trifolium pratense (wild type) Red Clover 50 0.67 

 
 

During the establishment year (year one, 2013), the strips were kept to a height of 8 cm with regular 

cutting. This helped promote plant establishment and enabled baseline data to be collected. During 

years two and three (2014 & 2015) the strips were managed with a single September cut to a height of 

8 cm. All cuttings were left in situ. 

 

For all sampling methods, the one-hectare plots at each site were sampled on the same day to reduce 

temporal and climatic variability. To reduce edge effects, no sampling was done within the first 20 m of 

plot edges. 
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Table 2. Average counts of floral units from sown wildflower species (number of flower units per 0.25 m2) 
(±SE) in alleyways between rows of apple trees according to apple cultivar, treatment and year, recorded 
from April to August. Values for the control treatment indicate natural occurrence of sown species. 

Apple 
Cultivar 

Site 
Number 

Year 1 Year 2 Year 3 

Control 
Wildflower 
Treatment 

Control 
Wildflower 
Treatment 

Control 
Wildflower 
Treatment 

Jazz 

1 0.03 0.00 0.00 0.45 0.00 12.10 

2 0.00 0.00 0.00 2.65 0.80 15.46 

3 0.00 0.17 0.20 25.33 0.00 3.35 

4 0.00 0.00 0.00 0.00 - - 

5 0.00 0.20 0.00 10.62 0.60 9.15 

Averages (±SE) 0.01 (±0.01) 0.07 (±0.05) 0.04 (±0.04) 7.81 (±4.78) 0.35 (±0.21) 10.02 (±2.57) 

Braeburn 

6 0.00 0.81 0.00 6.25 0.00 6.80 

7 0.17 0.17 0.30 4.65 0.00 26.61 

8 0.50 0.33 0.60 0.20 - - 

9 0.13 0.17 0.00 7.60 0.00 5.42 

10 0.00 0.33 0.15 6.25 0.00 22.42 

Averages (±SE) 0.16 (±0.09) 0.36 (±0.12) 0.21 (±0.11) 4.99 (±1.29) 0.00 (±0.00) 15.31 (±5.39) 

 

 
 

2.2. Cumulative toxicity 

To make a broad assessment of the level of exposure of natural enemies to pesticides at each site, 

average cumulative toxicity was used (Thomson and Hoffmann, 2006; Marliac et al., 2015). This was 

calculated for each site and for each year using spray records provided by the growers. There was no 

difference in the use of sprays between treatments at each site. Only insecticides and acaricides were 

included in the analysis as they tend to be the most toxic to invertebrates (Pekar, 1999). To provide 

indicative values of toxicity for each product, potential effects on a range of natural enemy groups were 

estimated, including Anthocoridae, Chrysopidae, Miridae, parasitoids and predatory mites. The 

potential impact of PPPs on pollinators was not considered in this study. This is because growers are 

restricted from applying products harmful to bees during the apple blossom period. 
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Potential effects on the natural enemies were determined by assigning a score according to a four-

point scale: 1 = low toxicity (harmless, <25% mortality), 2 = slightly harmful (25-50% mortality), 3 = 

moderately harmful (50-75%), and 4 = very harmful (> 75% mortality) for each of these groups. These 

categories were based on information from Koppert (2019) and Biobest (2019), which follow guidelines 

from the International Organisation for Biological Control (IOBC), combined with the published research 

(Giolo et al., 2009; Godoy et al., 2010; Amarasekare and Shearer, 2013a, b). IOBC guidelines are also 

used for registering products in the European Union (Council Directive 91/414/EEC). An average score 

across the five taxonomic groups for each active ingredient was calculated to provide an overall 

product toxicity value (Supplementary Table S1). 

 

A total of 12 active ingredients were used by growers, eight of which were insecticides, and four 

acaricides. The main insecticide products used were flonicamid, which accounted for 22% of all spray 

applications (both insecticides and acaricides), chlorantraniliprole (19%), chlorpyrifos (11%), thiacloprid 

(11%), and methoxyfenozide (9%). Cumulative toxicities in orchards ranged from 2.5 to 22.8 and 

averaged 9.72 (± 0.95) (Table 3). The total number of insecticide and acaricide sprays applied to an 

orchard varied between three and 16 sprays per year, with an average of 6.5 (± 0.6) sprays per year. 

 

Values of cumulative toxicity were determined by summing toxicity scores according to the products 

used and their frequency of use across the year for each site (Marliac et al., 2015). Based on these 

values, sites were assigned to two different categories of toxicity. Sites were deemed to have relatively 

low values of cumulative toxicity if values ranged from 2.5-7.8, and relatively high values of cumulative 

toxicity if values were 8.0-22.8. Low scoring sites tended to be associated with the use of less toxic 

products and fewer spray applications. 
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Table 3. Values of cumulative orchard toxicity and number of PPP spray applications according to apple 
cultivar, site and year. 

Apple 
Cultivar 

Site 
Number 

Year 1 Year 2 Year 3 

Cumulative 
Toxicity 

Number of 
Sprays 

Cumulative 
Toxicity 

Number of 
Sprays 

Cumulative 
Toxicity 

Number of 
Sprays 

Jazz 

1 22.8 16 16.5 9 13.5 10 

2 5.0 3 3.0 4 2.5 3 

3 8.0 5 14.2 8 5.5 5 

4 17.3 13 16.5 9 - - 

5 8.0 5 14.2 8 5.0 4 

Averages (±SE) 12.2 (±3.4) 8.4 (±2.6) 12.9 (±2.5) 7.6 (±0.9) 6.6 (±2.4) 5.5 (±1.6) 

Braeburn 

6 7.8 6 5.0 5 7.7 4 

7 9.5 8 5.7 5 6.7 5 

8 8.3 7 9.5 7 - - 

9 9.5 4 16.0 7 13.0 6 

10 9.2 7 5.7 5 6.7 5 

Averages (±SE) 8.9 (±0.3) 6.4 (±0.7) 8.4 (±2.1) 5.8 (±0.5) 8.5 (±1.5) 5.0 (±0.4) 

 

2.3. Natural enemy abundance 

To investigate the abundance and diversity of natural enemies in the tree canopy, tap sampling was 

used over three consecutive years (Knutson et al., 2008; Wearing et al., 2011). Orchard plots were 

sampled once a month from April/May to September, with at least a 20-day interval between individual 

samples. In years one and two, five rounds of tap sampling were completed, and six in year three. In 

year three the number of orchards sampled for natural enemies was reduced to eight (four Jazz and 

four Braeburn) following the very low occurrence of sown floral units in association with the wildflower 

treatment (Table 2). 

 

In each orchard plot, fifteen trees were randomly selected. Three branches on each tree were tapped 

three times above a white 36 cm x 46 cm plastic tray to collect the target arthropods (Schuber et al., 

2012). Sampling was done only when tree foliage was dry, and between 09:00 hrs and 18:00 hrs 
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(McCaffrey et al., 1983). The target arthropods were unable to fly (spiders, and hoverfly larvae, ladybird 

larvae and lacewing larvae), or reluctant to fly (earwigs, minute pirate bugs, capsid bugs, adult 

ladybirds). Adult lacewings were identified to family before flight. All target arthropods were recorded to 

family either in the field, or in the lab following storage in 70% ethanol. Spiders were identified to family 

(Roberts 1985a, b; 1987) from year two. 

 

2.4. Pest abundance and pest regulation 

In years one to three, the presence of Rosy Apple Aphids (RAA) (Dysaphis plantaginea) and Woolly 

Apple Aphids (WAA) (Eriosoma lanigerum) was investigated using direct searches for 30 seconds on 

fifteen apple trees randomly selected in each orchard plot. If a colony was identified, the whole tree 

was inspected with no time limit (but typically for ten minutes). During inspections RAA and WAA 

colonies were brushed individually onto a white tray using a paintbrush, enabling accurate counts of 

aphids and aphid mummies (parasitized aphids). This provided a total number of aphids and aphid 

mummies per tree. For statistical analysis, average numbers per tree per orchard plot were calculated, 

whilst percentage occurrence was based on the number of trees in each plot found to support 

RAA/WAA. 

 

In year three, natural pest regulation in orchards was investigated by recording the depletion of aphids 

from baited cards. Pea aphids (Acyrthosiphon pisum) were used as bait (Geiger et al., 2010) by gluing 

their back legs or side to white plastic labels with PVA glue. Ten aphids were attached to each card 

and cards were placed individually on six different trees in the centre of orchard plots, approximately 10 

m apart at a height of approximately 1.4 m above the ground. To prevent rain washing off the aphids, 

cards were bent at a 90° angle and attached perpendicular to the tree using a cable tie (Geiger et al., 

2010). Cards were only deployed on dry days between 09:00 hrs and 12:00 hrs. After 24 to 28 hours, 

the number of aphids depleted on each card was recorded. Aphids remaining on the cards were 

examined to ensure they were not covered in glue and therefore unpalatable to natural enemies 

(Geiger et al., 2010). Values of natural pest regulation were based on the number of aphids removed 

compared to the number of aphids remaining on the card. Monthly rounds were completed in June, 

July and August. 
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2.5. Pollinator and pollination surveys 

Pollinator surveys took place for a period of four consecutive years (2013-2016) in April/May when the 

percentage of apple buds in flower was between 10-90%. The proportion of blossoms in flower was 

determined by randomly selecting five trees within each orchard plot and calculating an average. The 

blossom period lasted between two and four weeks, which was reflected in the number of sampling 

rounds each year. At each site a minimum of two rounds were completed and at most, four rounds. 

Two different approaches were used to investigate the pollinators: transect surveys and crop flower 

visitation surveys; with the latter method being used as an indirect proxy of pollination services (Garratt 

et al., 2016). 

 

Timed transect surveys were used to simultaneously assess the number of pollinator species and their 

abundance along tree rows and alleyways. All bees and adult hoverflies observed along transects were 

collected by hand-netting and subsequently identified to species (Potts et al., 2005). Each transect 

consisted of ten minutes, moving at approximately ten metres per minute. Sampling effort was 

standardised by halting the clock during the handling and processing of specimens, and when moving 

between alleyways. For each sampling round, one transect was recorded for each orchard plot at each 

site. For statistical analysis, total numbers of bees and hoverflies per orchard plot were calculated for 

each year of study. These values were also used to determine values of Shannon diversity and the 

total number of species recorded. 

 

Crop flower visitation surveys were used to record the number of legitimate flower visits by bees and 

hoverflies to the apple blossom, which was based on stigma contact indicating a possible pollination 

event. Three trees were observed in each orchard plot for ten minutes for each round of sampling. 

Three rounds (30 mins of observations) were completed in each plot during all four years of study. In 

orchard plots with wildflower strips, trees adjacent to the strips were observed. In the orchard plots with 

wildflower strips, trees adjacent to the strips were observed. Trees were randomly selected, excluding 

those which were dead, newly planted replacements, or those neighbouring newly planted or dead 

trees. An unshaded, 1 m2 area (including the lower tree branches) of each tree was surveyed. 
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Pollinator surveys were only performed on dry days and when the apple blossom was also dry. All 

surveys were conducted between 09:30hrs and 16:30hrs (Westphal et al., 2008; Adamson et al., 

2012), and sampling rounds at each site were alternated between morning (09:30hrs - 13:00hrs) and 

afternoon (13:00hrs - 16:30hrs), to account for diurnal behaviour patterns. Surveys were only 

completed when winds were no more than three on the Beaufort scale (Adamson et al., 2012), 

combined with a threshold temperature of 12°C on clear days, and 15°C on overcast days (Carvell et 

al., 2007).  

 

2.6. Statistical Analysis 

All responses were analysed using mixed linear models in SAS Studio (Version 3.8, 2018).  

Orchard treatment (wildflower presence / absence), apple cultivar (Jazz / Braeburn), site cumulative 

toxicity (low / high), and year (where applicable), including their interactions were specified as fixed 

effects. Site, and month (where applicable) nested within site were specified as random effects. Year 

and month (where applicable) were specified as a repeated measure with an autoregressive 

covariance structure. Degrees of freedom were calculated using the iterative Satterthwaite’s method 

(Schabenberger and Pierce, 2002). Simplification of the global model was performed by sequentially 

deleting interactions and then factors that were not significant, unless part of significant interaction term 

(P <0.05) (Westbury et al. 2017). When a factor was significant and not part of a significant interaction, 

Tukey (P = 0.05) post-hoc pairwise comparisons were made. Prior to analyses, all count data (values 

were pooled for each sampling round in each orchard), including values of species/family richness 

(number of different species / families recorded) were natural log transformed (n+1), whilst values of 

percentage occurrence were arcsine square root transformed. 

 

3. Results 

3.1 Natural enemy abundance 

Spiders (Araneae) were the most frequently recorded order of natural enemy across all sites 

irrespective of treatment and constituted 70.3% of the potential natural enemies of apple pests 

observed during the three-year study. A total of 4,470 spiders were recorded. Of the 3,251 spiders 
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identified to family in years two and three, samples were dominated by Theridiidae (comb-footed 

spiders) (Table 4). 

 

There was no effect of orchard treatment on the total number of spiders (Araneae) or any of the spider 

families recorded (Table 5).  However, total spider numbers and Araneidae were significantly greater in 

year three compared to year two. Total numbers were also more frequent in Jazz orchards compared 

to Braeburn, which was reflected by the Theridiidae (Figure 1). High values of orchard pesticide toxicity 

negatively influenced the number of Araneidae and Philodromidae. However, a significant interaction 

between orchard pesticide toxicity and cultivar was found for Philodromidae, for which there was a 

tendency for numbers to be lower in Braeburn orchards, especially in those with higher values of 

cumulative toxicity. No significant effects on Anyphaenidae, Clubionidae, Linyphiidae, or Tetragnatha 

were found. 

 

Spider family richness and diversity were not affected by orchard treatment (Table 6). 

However, cultivar type and values of cumulative orchard pesticide toxicity strongly influenced values. 

Significant interactions were also found between orchard pesticide toxicity and cultivar, and toxicity and 

year. Spider family richness and diversity were higher in Jazz orchards, whilst spider diversity 

increased between years and was consistently higher in Jazz orchards. The significant interaction 

between year and orchard pesticide toxicity indicated that family richness and diversity were greater in 

year three in orchards associated with lower toxicity values. 
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Table 4. Spider (Araneae) occurrence in orchards during years two and three. 

Spider Family Number Recorded Percentage of Records Most abundant species 

Anyphaenidae 90 2.8% Anyphaena accentuata 

Araneidae 769 23.7% Araniella opistographa 

Clubionidae 59 1.8% Clubionia spp. 

Linyphiidae 512 15.7% Entelecara flavipes, Lepthyphentes tenuis, Tenuiphantes tenuis 

Philodromidae 386 11.9% Philodromus cespitum 

Tetragnathidae 76 2.3% Tetragnatha extensa 

Theridiidae 1,359 41.8% Anelosimus vittatus, Theridion mystaceum, Theridion varians 

All Araneae 3,251 100.0%  

 

Table 5. Response of spider (Araneae) abundance to orchard treatment (wildflower presence/absence), values of orchard pesticide toxicity 
(high/low), apple cultivar (Jazz/Braeburn), year and significant interactions between these factors when found. 
 

Response 
Variable 

Orchard 
Treatment 

Orchard Toxicity Cultivar Year  Cultivar x Year 
Cultivar x Orchard 

Toxicity 

All Araneae ns ns F1,6.93 = 18.87, P <0.01 F1,56.3 = 10.33, P <0.01 ns ns 

Anyphaenidae ns ns ns ns ns ns 

Araneidae ns ns ns F1,52.1= 13.41, P <0.001 F1,52.1= 7.78, P <0.01 F1,10.8= 7.36, P <0.05 

Clubionidae ns ns ns ns ns ns 

Linyphiidae ns ns ns ns ns ns 

Philodromidae ns F1,64.5 = 7.24, P <0.01 ns ns ns ns 

Tetragnathidae ns ns ns ns ns ns 

Theridiidae ns ns F1,109 = 12.63, P <0.001 ns ns ns 
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Table 6. Spider (Araneae) family richness and diversity responses to orchard treatment (wildflower presence/absence), values of orchard pesticide toxicity 
(high/low), apple cultivar (Jazz/Braeburn), year and significant interactions between these factors when found. 
 

Response 
Variable 

Orchard 
Treatment 

Orchard Toxicity Cultivar Year Cultivar x Year 
Cultivar x Orchard 

Toxicity 
Orchard Toxicity x 

Year 

Richness ns F1,107 = 12.27, P <0.001 F1,109 = 30.69, P <0.001 ns ns F1,108 = 11.58, P <0.001 F1,57.9 = 6.44, P <0.05 

Diversity ns F1,78.4 = 9.46, P <0.01 F1,80.7 = 9.24, P <0.01 ns F1,56.3 = 5.54, P <0.05 F1,78.5 = 14.13, P <0.001 F1,56.4 = 18.84, P <0.001 
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Figure 1. Spider abundance according to family group and their responses according to 

apple variety (±SE). Values with an asterisk indicate a significant difference between 

cultivars ** = P < 0.01 *** = P < 0.001. 

 

Specialist aphidophagous predators contributed 29.7% of the total 6,361 natural enemies recorded 

during the three-year study. Of the aphidophagous predators, Dermaptera were represented only by 

the European earwig (Forficula auricularia), whilst Coccinellidae were represented by larvae and no 

adults were recorded (Table 7). The total number of aphidophagous predators recorded was not 

influenced by orchard treatment. However, a significant effect of year and orchard pesticide toxicity was 

found (Table 8) (Figure 2). Both these factors also interacted significantly in a three-way interaction with 

apple cultivar. This was associated with higher numbers of aphidophagous predators in Braeburn 

orchards and lower numbers in year one. Responses to combinations of orchard pesticide toxicity, 

cultivar and year were highly variable.  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p

id
e

r 
a

b
u

n
d

a
n

c
e

 (
ln

 n
+

1
)

Spider Family 

Braeburn

Jazz
** 

*** 



17 
 

Table 7. Aphidophagous predator occurrence in orchards during the three-year study 
 

Predator Group Number Recorded Percentage of Records 

Anthocoridae 175 9.3% 
Coccinellidae larvae 229 12.1% 
Dermaptera 1,012 53.5% 
Miridae (predatory) 357 18.9% 
Neuroptera larvae 97 5.1 
Syrphidae larvae 21 1.1% 

All Predators 1,891 100.0% 

 
 
The number of Dermaptera (earwigs) recorded was influenced by orchard pesticide toxicity, with 

significantly fewer in orchards with higher toxicities (Table 8). Orchard pesticide toxicity also interacted 

significantly with cultivar, with more earwigs being associated with Braeburn orchards and fewer in 

orchards with higher toxicities. A significant interaction between orchard pesticide toxicity and year was 

also found. Numbers were greater in years two and three compared to year one, and in orchards with 

lower values or toxicity. There was no effect of orchard treatment on earwig numbers.  

 

Figure 2. Dermaptera (earwig) abundance according to apple cultivar 

(Braeburn and Jazz) and values of orchard pesticide toxicity (low / high) (±SE). 
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Responses of Anthocoridae were only significant for the interaction between cultivar and year (Table 

8). Numbers increased between years in Jazz orchards but decreased substantially in Braeburn 

orchards by the third year. Numbers of predatory Miridae and Coccinellidae larvae were influenced only 

by year. Miridae increased significantly between years (Tukey test, P <0.05), whilst for Coccinellidae 

larvae, numbers were significantly greater in year three, and no difference was found between years 

one and two (Tukey test, P <0.05). Significant interactions between cultivar and year, and orchard 

pesticide toxicity and year, were found for the number of Syrphidae larvae. Numbers increased 

between years and there was a tendency for greater values in orchards of higher toxicity and in Jazz 

orchards. A significant interaction between orchard pesticide toxicity, apple cultivar, and year was 

found for numbers of Neuroptera larvae.  Responses were highly variable between the different 

combinations, but values were greater in year three in Jazz orchards that were also associated with 

high values of orchard pesticide toxicity. The interaction between cultivar and year was also significant. 

Numbers of Neuroptera larvae increased between years in both cultivars, and whilst numbers were 

similar according to cultivar in year three, values increased to a greater extent in Jazz orchards from 

year two. 
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Table 8. Responses of aphidophagous predators (number) to orchard treatment (wildflower presence/absence), values of orchard pesticide toxicity (high/low), 
apple cultivar (Jazz/Braeburn), year and significant interactions between these factors when found. 
 

Response 
Variable 

Orchard 
Treatment 

Orchard Toxicity Cultivar Year Cultivar x Year 
Orchard Toxicity x 

Year 
Orchard Toxicity x 

Cultivar 
Cultivar x Orchard 

Toxicity x Year 

All Predators ns F1,95.6 = 5.34, P <0.05 ns F2,93.3 = 8.93, P <0.001 ns ns ns F7,93.5 = 2.73, P <0.05 

Anthocoridae ns ns ns ns F2,108 = 4.72, P <0.05 ns ns ns 

Coccinellidae 
larvae 

ns ns ns F2,94.2 = 13.37, P <0.001 ns ns ns ns 

Dermaptera ns F1,104 = 6.36, P <0.05 F1,216 = 4.77, P <0.05 ns ns F2,96.7 = 4.26, P <0.05 F1,104 = 7.13, P <0.01 F4,98 = 2.70, P <0.05 

Miridae 
(predatory) 

ns ns ns F2,120 = 13.06, P <0.001 ns ns ns ns 

Neuroptera 
larvae 

ns ns ns F2,109 = 3.71, P <0.05 F2,109 = 3.26, P <0.05 ns ns F5,48.9 = 2.86, P <0.05 

Syrphidae 
larvae 

ns ns F1,9.7 = 7.73, P <0.05 F2,114 = 3.20 P <0.05 F2,114 = 3.71, P <0.05 ns ns F5,58.4 = 2.77, P <0.05 
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3.3. Pest abundance and regulation 

3.3.1. Rosy apple aphids 

Orchard treatment had no effect on the percentage of trees supporting Rosy Apple Aphids (RAA). The 

factor most influencing occurrence was orchard pesticide toxicity. Significantly more trees supported 

RAA colonies in orchards with higher toxicities (F1,84.5 = 4.71, P < 0.05). However, significant 

interactions were also found between orchard pesticide toxicity and cultivar (F1,84.5 = 4.07, P < 0.05); 

toxicity and year (F2,97 = 5.21, P < 0.05), and toxicity, cultivar, and year (F4,99.2 = 3.94, P < 0.01). The 

average number of RAA recorded on trees was strongly influenced by toxicity, cultivar, and year, for 

which a significant interaction was found between these factors (F7,87.9 = 3.04, P < 0.01). There was a 

tendency for numbers to be greater in Jazz orchards and for values in years two and three to be lower 

in orchards of high toxicity. However, in year three, no RAA were recorded in the Braeburn orchards, 

and numbers in Jazz orchards were greater in association with high values of cumulative toxicity. 

 

3.3.2. Woolly apple aphids 

Orchard treatment had no significant effect on the percentage of apple trees supporting Woolly Apple 

Aphids (WAA), but the occurrence of WAA did differ significantly between years (F2,99.6 = 6.91, P < 

0.01). A higher percentage of trees with WAA was observed in year three compared to years one and 

two. A significant interaction between cultivar, orchard pesticide toxicity and year was also found (F3,48.8 

= 13.20, P < 0.001). A higher percentage of trees supported WAA in in Jazz orchards that were 

associated with higher levels of toxicity, especially in year three. The average number of WAA recorded 

on trees was also influenced by a significant three interaction between cultivar, toxicity and year was 

also found (F2,94.7 = 22.93, P < 0.001). Numbers were generally higher in orchards associated with low 

toxicities, and were greater in Braeburn orchards in year two, and in Jazz orchards in year three. 

 

3.3.3. Aphid parasitism 

No effects of orchard treatment, orchard pesticide toxicity, or cultivar were found to influence the 

occurrence of RAA and WAA mummies. Despite RAA and WAA being present across all three years of 

study, no RAA mummies (indicating parasitism) were recorded in years one and three, and no WAA 
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mummies were recorded in years one and two. In total, 149 RAA mummies and 816 WAA mummies 

were recorded. This is equivalent to 0.7% and 11.9% of aphids being parasitized, respectively. 

 

3.3.4. Aphid baited cards 

The depletion of aphids from the baited cards was not influenced by orchard treatment or orchard 

pesticide toxicity. However, month was shown to significantly influence depletion rates (F2,23.7 = 6.76, P 

< 0.01), with more aphids being depleted in July, compared to June and August. However, month also 

interacted significantly with cultivar (F2, 23.7 = 6.34, P < 0.01). There was a tendency for levels of 

predation to be greater in Braeburn orchards, particularly in August and July (Figure 3). 

 

Figure 3. Aphid depletion from baited cards based on the proportion removed 

according to apple cultivar (Braeburn and Jazz) and month (±SE). 
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3.4. Pollinators and Pollination Services 

3.4.1. Transect surveys 

Over the four-year study, 1,002 bees, comprised of 42 species, and 246 hoverflies comprised of 25 

species were recorded. Thirty-two of the bee species were polylectic, consisting of eight bumblebee 

species (primarily Bombus lapidarius and B. terrestris) (contributing 20.4% of all polylectic bees 

recorded), solitary bees (e.g. Andrena nitida) (56.6% of records), eusocial mining bees (e.g. 

Lasioglossom albipes) (2.8% of records), and honeybee (Apis mellifera) (20.2% of records). In addition, 

six parasitic species were recorded (e.g. Nomada goodeniana), and two were specialists of flower 

types other than apple blossom (e.g. the endangered Andrena ferox, which specialises on Quercus 

spp). The most frequently recorded hoverflies were in the Platycheirus genus, which contributed 49.6% 

of all records. 

 

Ten bee species were recorded only in plots with wildflower strips, including B. ruderatus and B. 

rupestris. Whilst, three species were recorded only in the control plots without wildflower strips, 

including A. ferox (although only one individual was observed). However, there was no overall effect of 

orchard treatment on the number of bee species, their abundance, or diversity. A greater abundance of 

bees was recorded in Braeburn orchards compared to Jazz, whilst the number of bee species, values 

of Shannon diversity, and bee abundance, all varied significantly with year (Table 9). Values were 

consistently greater in year two compared to all other years (Tukey P <0.05), and no significant 

differences were found between other years. 

 

Values of adult hoverfly species richness and diversity were significantly greater in orchards containing 

wildflower strips (Table 9). Species richness was also greater in Jazz orchards compared to Braeburn, 

but species richness and diversity also varied significantly with year. Species richness and diversity 

were greater in year three compared to years two and four (Tukey, P <0.05). The number of hoverfly 

individuals recorded also varied according to year and cultivar type (Table 9). A greater number were 

recorded in Jazz orchards. 

 



23 
 

Table 9. Transect surveys of pollinators and responses to orchard treatment (wildflower 
presence/absence), apple cultivar (Jazz/Braeburn), and year. 
 

Response Variable Orchard Treatment Cultivar Year 

All Bees (abundance) ns F1,73 = 5.57, P < 0.05 F3,73 = 29.93, P < 0.001 

Bee species richness ns ns F3.65.2 = 7.25, P < 0.001 

Bee diversity ns ns F3,65.1 = 5.96, P < 0.01 

Hoverfly abundance ns F1,7.8 = 6.63, P < 0.05 F3,65.4 = 3.37, P < 0.05 

Hoverfly species richness F1,63.9 = 5.53, P < 0.05 F1,7.9 = 6.86, P < 0.05 F3,64.4 = 3.67, P < 0.05 

Hoverfly diversity F1,64.1 = 6.04, P < 0.05 ns F3,64.4 = 8.21, P < 0.001 

 

3.4.2. Crop visitation surveys 

Out of 2,485 observations of apple blossom visitation by bees and hoverflies across all four-years of 

study, honeybees (Apis mellifera) made the greatest number of legitimate flower visits (48.4%), 

followed by solitary bees (mainly Andrena spp.) (28.5%), and Bombus spp. (21.1%). 

 

The total number of visits made to apple blossom was strongly influenced by year (Table 10). A 

significantly greater number of visits was observed in year two compared to all other years (Tukey P < 

0.05). This response was also reflected by the number of honeybee visits and bumblebee visits. 

Significantly more honeybee and bumblebee visits were recorded in year two compared to all other 

years (Tukey P < 0.05). A significant year effect was also found for all wild visits (bumblebees, solitary 

bees, and hoverflies) (Table 10), with significantly more visits in year two compared to years three and 

four (Tukey test, P <0.05). However, the number of solitary bee and hoverfly visits were not influenced 

by year. Visits by all pollinator groups were not influenced by orchard treatment or apple cultivar. 
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Table 10. Crop visitation surveys of pollinators and responses to orchard treatment (wildflower 
presence/absence), apple cultivar (Jazz/Braeburn), and year. 
 

Response Variable Orchard Treatment Cultivar Year 

Total number of visits ns ns F3,65.1 = 7.60, P < 0.001 

Honeybee visits ns ns F3,64.8 = 5.44, P < 0.01 

Total wild visits ns ns F3,65.6 = 10.78, P < 0.001 

Bumblebee visits ns ns F3,74 = 17.48, P < 0.001 

Hoverfly visits ns ns ns 

Solitary bee visits ns ns ns 

 

4. Discussion 

The deployment of wildflower strips in alleyways between rows of apple trees was used as a strategy to 

increase crop interactions with pollinators and natural enemies to enhance the delivery of pollination 

and pest regulation ecosystem services (Campbell et al., 2017b). Positive trends for some beneficial 

species in response to wildflower provision were observed, but it is evident that although the study was 

not specifically designed to also investigate the impacts of Plant Protection Products (PPPs), their 

continued use contributing to values of orchard cumulative toxicity was a key factor influencing 

responses. Responses were further confounded by the variability between apple cultivars and between 

years, demonstrating the complexity of delivering ecosystem services in modern apple orchards.  

4.1. Natural enemies and pest regulation 

The continued use of PPPs in the orchards is likely to have masked the overall benefits of wildflower 

provision for natural enemies (Albert et al., 2017; Lefebvre et al.,2017; Gagic et al., 2019), which 

culminated in similar levels of pest incidence (RAA and WAA) between orchard treatments. Greater 

differences in responses might have been observed in organic or other low input systems (Lefebvre et 

al.,2017). For example, in cider apple orchards fruit aesthetics are not an essential aspect of product 

quality and this allows growers to use fewer sprays compared to dessert apple orchards (Albert et al., 

2017). This regime can then lead to a greater abundance of aphidophagous predators in trees adjacent 

to wildflower strips and an increased control of RAA (Albert et al., 2017). Increased depletion rates from 
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baited cards in trees adjacent to wildflower strips have also been observed in cider orchards (Campbell 

et al., 2017b). A more lenient approach to the use of PPPs in cider orchards provides an indication of 

what might be achieved in dessert apple orchards if growers are willing to reduce not only the types of 

sprays used, but also the number of spray applications. 

 

The indiscriminate action of some PPPs can prevent populations of natural enemies obtaining the 

numbers required to control pests below threshold levels (Nicholas et al., 2005). Deploying wildflower 

habitat at orchard boundaries might therefore be a more suitable approach to reduce PPP impacts 

directly on the wildflower habitat. For example, the provision of wildflower habitat in the margins 

surrounding Mediterranean apple orchards can increase the abundance of parasitoids and 

consequently the rates of RAA parasitism (Rodriguez-Gasol et al., 2019). However, the spill-over of 

beneficial insects into the cropped area would be lower than from strips within orchards (Woodcock et 

al., 2016), and the continued use of PPPs would still reduce the benefits gained. 

  

Collectively, the spider and aphidophagous predators were negatively affected by high values of 

cumulative toxicity, with strong responses from the Araneidae (e.g. Araniella opistographa), 

Philodromidae (e.g. Philodromus cespitum) and Dermaptera (European earwig, Forficula auricularia). 

Earwigs were the most affected group of aphidophagous predators, which have excellent potential to 

control key pest species. In orchards they have been shown to significantly reduce the abundance of 

RAA (Dib et al., 2010) and WAA (Mueller et al., 1988). However, they are also highly susceptible to 

PPPs (Fountain and Harris, 2015). The most frequently used active PPP ingredient across all orchards 

was flonicamid, which is used for the control of sucking insects, including aphids. Although its toxicity is 

deemed relatively low (Table S1), its use has been associated with a reduced number of earwigs 

foraging in apple trees (Fountain and Harris, 2015). However, this response could also be due to the 

loss of prey (pests) following insecticide use. The pest regulation service provided by earwigs is readily 

disrupted by insecticide use (Mueller et al., 1988; Nicholas et al., 2005), even in orchards managed 

under IPM (Suchail et al., 2018).  
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Spiders were the most abundant group of natural enemies in the orchards, and they can also be 

effective natural enemies of RAA but only in insecticide-free orchards (Lefebvre et al., 2017). Ghost 

spiders (Anyphaenidae) and money spiders (Linyphiidae) have been shown to be important predators 

of aphids (Sunderland et al., 1986; Renouard et al., 2004; Marko et al., 2009), with a greater number of 

spiders in orchards receiving PPPs of lower toxicity (Marko et al., 2009). Overall, we observed a 

greater number of spiders in orchards with lower values of cumulative toxicity, particularly in 

association with Jazz orchards, but lower values of orchard pesticide toxicity were not associated with 

higher levels of predation. Apple cultivar was more influential, with higher levels of predation being 

recorded in Braeburn orchards which were also associated with a greater abundance of earwigs. Rates 

were also higher in July when earwigs are at their peak activity (Gobin et al., 2006).  In contrast, other 

aphidophagous predators including Anthocoridae, Syrphidae larvae and Neuroptera larvae were 

recorded in greater numbers in Jazz orchards, and for Syrphidae and Neuroptera, to a greater extent in 

orchards with higher values of toxicity. This positive response to high values of orchard pesticide 

toxicity coincided with an increased likelihood of finding RAA and WAA in these orchards, particularly in 

Jazz orchards, where fewer aphidophagous predators were recorded overall. High values of cumulative 

toxicity are most likely a result of orchards being more prone to pest incidence, which through the 

increased use of PPPs negatively impacts natural enemies leading to higher pest populations. The 

relationship between the highly mobile natural enemies and their prey species (RAA and WAA) could 

be a direct response to pest availability leading to oviposition by Syrphid and Neuroptera adults 

(Minarro et al., 2005; Rodriguez-Gasol et al., 2019). These mobile natural enemies have greater 

potential to avoid the impacts of insecticide sprays enabling them to recolonise rapidly after use 

(Rodriguez-Gasol et al., 2019). 

 

Although the number of Syrphidae larvae recorded in apple trees was not influenced by the presence 

of the wildflower strips, species richness and diversity of adult hoverflies was greater in association with 

the wildflower strips during the apple blossom period. Adults are more likely to lay eggs in close 

proximity to floral resources (Haenke et al., 2009), which can lead to the delivery of pest regulation 
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services in apple orchards (Rodriguez-Gasol et al., 2019). Although actual numbers of hoverflies did 

not differ significantly between treatments, the greater species richness and diversity is likely to 

improve pest regulation and pollination service (Dainese et al., 2019; Woodcock et al., 2019). The 

continued presence of wildflowers in alleyways throughout the summer period might also be expected 

to support adult hoverflies in the orchards (Campbell et al., 2017b), further increasing the potential for 

pest regulation. 

 

Wildflower strips can also support parasitoids in modern orchards and therefore pest regulation 

services (Hatt et al., 2018). Parasitoids are also highly mobile and can be important natural enemies of 

RAA in apple orchards (Rodriguez-Gasol et al., 2019). However, no treatment effect was found for 

rates of aphid parasitism, and the value of 0.7% of RAA parasitism is consistent with Albert et al. (2017) 

who recorded less than 0.2% in all years and orchards. In comparison 11.9% of WAA were parasitised, 

but values in excess of 40% have been recorded (Peñalver-Cruz et al., 2020). It appears that there is 

greater potential for parasitoids to control WAA than RAA.  

 

4.2. Pollinators and Pollination Services 

Our study investigated whether pollination services to apple blossom could be enhanced by introducing 

wildflower strips between rows of apple trees. During the apple blossom period, only one of the sown 

species was in flower (Silene dioica), albeit sparsely, coupled with a few unsown species (e.g. 

Taraxacum officinale agg.). The low abundance of floral resources in the wildflower plots during the 

blossom period was therefore unlikely to attract more pollinators into these plots, which was 

demonstrated by the lack of difference in bee abundance, richness, and diversity between treatments. 

Concerns that wildflowers might attract pollinators away from the crop were therefore not realised 

(Free, 1967; Nicholson et al., 2019). However, ten bee species were recorded only in plots containing 

wildflower strips, compared to three species unique to the control plots. This indicates to the potential 

for wildflower strips to support improved pollination service (Woodcock et al., 2019), especially when 

coupled with the greater richness and diversity of hoverflies. 
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As managed pollinators, honeybees were expected to provide an important contribution to apple 

pollination, contributing nearly half of all legitimate flower visits (stigma contacts), although pollination 

might not have been as effective as some wild pollinators (Garibaldi et al., 2013). It was not possible to 

separate the proportion of Bombus terrestris visits that were from managed B. terrestris colonies, but 

as Bombus spp. accounted for 21% of all visits recorded, they were clearly also an important group of 

pollinators (Garratt et al., 2016). The importance of solitary bees, especially Andrena spp. has also 

been demonstrated. Thirty-two of the bee species recorded were polylectic, and the larvae of such 

species have been shown to benefit from the availability of diverse floral resources (Eckhardt et al., 

2014). To support these groups of wild pollinators in orchards throughout the growing season, the 

composition of wildflower strips should therefore be tailored accordingly (Campbell et al., 2017a). 

However, it is also important to consider the extent of the resource area (Dicks et al., 2015). To have 

observed a significant response of wild bees to the wildflower strips, local populations would need to 

benefit from the additional resource provision, boosting abundance. During June to August, Campbell 

et al. (2017b) found a greater use of wildflower strips by insect pollinators in cider apple orchards 

compared to the control alleyways managed with regular cutting, indicating the value of strips outside 

of the blossom period. However, to increase the abundance of six common wild pollinator species it 

has been suggested that for every 100 ha of farmland, 2% should contain high quality wildflower areas, 

coupled with species-rich hedgerows (Dicks et al., 2015). Although 11.2% of the orchard area was 

established with wildflower strips, this was only in 1 ha blocks, equating to 0.11 ha. If the wildflower 

strips deployed in the orchards were the only high value floral resource available, it is unlikely that 

population responses would have been observed (Dicks et al., 2015). The extent of resource area is 

also an important consideration for natural enemies, coupled with the need for habitat heterogeneity 

(Bellone et al., 2020). 

 

In addition to the potential of wildflower strips to support pollinators and natural enemies, the presence 

of wildflower strips could also help improve soil quality through greater accumulation of soil organic 

matter and nitrogen (De Deyn et al., 2011). It is well documented that an increase in soil organic matter 

can increase soil microbial activity (Canali et al., 2009) and therefore nutrient cycling (De Deyn et al., 

2011), which ultimately can improve the quality of orchard soils (Canali et al., 2009). Some wildflower 
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species can also contribute towards the maintenance of mycelial networks of Arbuscular Mycorrhizal 

Fungi (AMF) (Turrini et al., 2017), improving the availability of nutrients to fruit trees and increasing the 

tolerance to biotic and abiotic stresses (Turrini et al., 2017). The wider benefits of introducing floral 

resources into agri-environments should also be considered. 

 

5. Conclusion 

Wildflower strips in modern apple orchards have the potential to contribute towards the delivery of 

natural pest regulation and pollination services as part of a more sustainable approach to apple 

production. However, of key relevance for growers is that benefits may be reduced under certain spray 

regimes (Gagic et al., 2019). If growers want to support natural enemies in modern apple orchards as 

part of a robust IPM strategy, not only do they need to consider the types of sprays being used, but 

also their frequency of use; several of the insecticides used in the study are now banned or have 

restricted use. Growers also had a high dependence on managed pollination services. To increase 

resilience, growers need to support wild pollinators by dedicating areas for wildflower habitats. 

Ultimately, further research is needed to identify ways to integrate wildflower habitat and a reduced use 

of PPPs to improve the contribution of beneficial invertebrates to crop production as part of an 

ecological intensification strategy. 
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Supplementary Material 

 

Table S1. Toxicity scores for each of the active ingredients (acaricides and insecticides) used in the study orchards calculated 

according to Koppert (2019) and Biobest (2019), following guidelines from the International Organisation for Biological Control 

(IOBC). Product scores for each natural enemy group were averaged to provide an overall average toxicity score for each active 

ingredient. Due to some differences in toxicity ratings for predatory mites according to Koppert (2019) and Biobest (2019), 

average values were calculated. 1 = low toxicity (harmless, <25% mortality), 2 = slightly harmful (25-50% mortality), 3 = 

moderately harmful (50-75%), and 4 = very harmful (> 75% mortality). 

Active ingredient Type 

Natural Enemy Group 
Average toxicity 

score Anthocoridae Chrysopidae Miridae Parasitoids 
Predatory 

mites 

Clofentezine Acaricide 1 1 1 1 1 1.00 
Fenpyroximate Acaricide 2 2 1 3 3.22 2.24 
Spirodiclofen Acaricide 4 1 3 1 1.75 2.15 
Tebufenpyrad Acaricide 4 3 3 4 2.27 3.25 
        
Chlorantraniliprole Insecticide 1 2 1 1 1 1.20 
Chlorpyrifos Insecticide 4 4 4 4 3 3.80 
Cypermethrin Insecticide 4 4 4 4 4 4.00 
Flonicamid Insecticide 1 1 1 2 1 1.20 
Indoxacarb Insecticide 3 1 3 3 1 2.20 
Methoxyfenozide Insecticide 4 1 4 1 1.17 2.23 
Pirimicarb Insecticide 2 2 3 4 2 2.60 
Thiacloprid Insecticide 4 4 4 3 3 3.60 

 

 


