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ABSTRACT 18 

 19 

Between the 1960s and the present day, the use of morphology in plant taxonomy 20 

suffered a major decline, in part driven by the apparent superiority of DNA-based 21 

approaches to data generation. However, in recent years computer image 22 

recognition has re-kindled the interest in morphological techniques. Linear or geometric 23 

morphometric approaches have been employed to distinguish and classify a wide 24 

variety of organisms; each has strengths and weaknesses. Here we review these 25 

approaches with a focus on plant classification and present a case for the 26 

combination of morphometrics with statistical/machine learning. There is a large 27 

collection of classification techniques available for biological analysis and selecting the 28 

most appropriate one is not trivial. Performance should be evaluated using 29 

standardised metrics such as accuracy, sensitivity, and specificity. The gathering and 30 

storage of high-resolution images, combined with the processing power of desktop 31 

computers, makes morphometric approaches practical as a time- and cost-efficient 32 

way of non-destructive identification of plant samples. 33 

 34 

Keywords: Plant taxonomy, geometric morphometrics, linear morphometrics, statistical 35 

learning, machine learning, identification, classification, neural networks. 36 

  37 
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In his keynote address during the 50th anniversary of botany MSc training at the 38 

University of Reading, Prof Vernon Heywood described a steady decline in the state of 39 

botany teaching in the UK with a resulting loss of skills in the next generation of scientists. 40 

With few institutions in the country offering training for young botanists, more and more 41 

researchers enter plant taxonomy through the field of molecular systematics, never 42 

learning the classic skills of a traditional botanist. Although great progress has been 43 

made in the development of molecular tools, increasing the insight gained from 44 

laboratory methods, what used to be the beating heart of botany - morphology - has 45 

lost some of its appeal. In our view this is because morphological data coding cannot 46 

readily be made into a clear data generation pipeline in the same way as much 47 

molecular data can. We believe this to be because morphology requires more in-48 

depth knowledge and understanding of the organism prior to data collection than is 49 

required for DNA sequencing and that morphological variation is open-ended rather 50 

than with a fixed range of states as in DNA data. Whilst morphological data have lost 51 

favour in the construction of plant classification systems they have gained popularity in 52 

the study of evolution from variation in gross morphology of the centropogonid clade 53 

(Lobelioideae: Campanulaceae) (Lagomarsino et al., 2017), speciation despite 54 

consistent floral morphology in Myrcia DC. (Vasconcelos et al., 2019) though to 55 

detailed morphometric analysis of traits related to environment in Vriesea Lindl. 56 

bromeliads (Neves et al., 2020). 57 

 58 

The power of some of the more modern developments in morphometrics and statistical 59 

learning however can provide botanists with an extra toolbox to help them describe 60 

and quantify the variation that surrounds them. In this review we aim to make a case 61 

for the value of morphometrics, especially in combination with more sophisticated 62 

statistical methods, in a botanist’s analytical toolbox - not to replace molecular 63 

techniques but to add to them. Morphology is often one of the most directly accessible 64 

and intuitive data sources for taxonomic research. In botanical taxonomy, 65 
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morphological characterization is the foundation of taxon description and 66 

identification, albeit often found in the formal and stylised format present in Floras and 67 

monographs. There is an opportunity for modern botanical taxonomy to explore the 68 

rapidly advancing field of morphometrics which already has some notable examples 69 

ranging from automatic leaf outline identification of Passiflora L. species (De Oliveira 70 

Plotze & Martinez Bruno, 2009), the tooth margin algorithm for Tilia L. leaf identification 71 

(Corney et al., 2012), and the use of leaf venation architecture for major angiosperm 72 

clade recognition (Wilf et al., 2016). Some computerised systems, starting with an 73 

existing classification of taxa, can use machine learning to handle the routine 74 

identification work, and then refer intransigent problems to a human expert (Clark, 75 

Corney, & Wilkin, 2017). 76 

 77 

One of the principal arguments presented against morphological data is the potential 78 

for high levels of ambiguity. This ambiguity can be caused by a variety of factors such 79 

as inaccurate character definition (Assis, 2009) and difficulty in establishing homology 80 

(Schneider, Smith, & Pryer, 2009). Morphological data collection can be further 81 

complicated by plasticity of features (Perkins, Martinsen, & Falk, 2011), homoplasy 82 

(Schneider et al., 2009), low numbers of characters (Giribet, 2010), and missing 83 

character states (Jenner, 2004). In some organisms such as parasites, reduced body 84 

plans can make characterisation of features even more difficult and lead to a very 85 

limited dataset (Perkins et al., 2011). These concerns are neither exaggerated nor trivial 86 

and many are thoroughly discussed in the morphological literature. They do not, 87 

however, necessarily imply a lower quality of data produced by morphological work in 88 

comparison with other data sources (Jenner, 2004).  89 

 90 

As most botanical researchers are question-driven rather than method-driven, we have 91 

structured our recommendations using general outlines on what kind of questions each 92 

combination of morphological and statistical tools can answer, with the aim of 93 
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promoting more thorough morphological investigation in botanical research. We have 94 

split this into two sections - Developmental hypotheses and Classification hypotheses. 95 

Under Developmental hypotheses we include all studies that may require the 96 

description of shape or size of a plant either to compare between treatments or to 97 

study how characters change along a particular gradient. For these we give an outline 98 

of morphometric tools available. Under Classification hypotheses we include all studies 99 

where the researcher is asking questions of taxon membership (e.g. are these two 100 

groups in the same taxon?) or questions of identification (e.g. what is the minimum set 101 

of diagnostics to accurately identify a sample?). These also require morphometric tools, 102 

such as those described under the developmental hypotheses, but can be taken 103 

further by combining them with machine learning techniques. There is a difference in 104 

terminology between the use of the word classification in biology and in computer 105 

science. Although the term is clearly defined in a taxonomic setting as the formal 106 

structure in which taxa are placed, in machine learning it means something much 107 

more general: it is the attribution of objects to a particular group. This is why 108 

identification in the machine learning context falls under classification, and therefore is 109 

included here under Classification hypotheses.    110 
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DEVELOPMENTAL HYPOTHESES 111 

Plant growth and development studies already rely heavily on morphological 112 

measurements - size for example is often included as a proxy to an organism’s 113 

developmental stage. These studies often focus on examining how the organism 114 

changes as it progresses through the various life stages. These could range from 115 

progression from seed to flower for an annual, or even development of fruit on a tree 116 

during the growing season.   117 

 118 

Even though it is very commonly used, size itself is a complex and often unappreciated 119 

concept. Often researchers fail to explore the separation between shape and size, 120 

confounding the two and losing some of the clarity that can be obtained through their 121 

investigation. For Developmental hypotheses, we argue that the crucial point for insight 122 

is not the separation of size and shape just for the sake of it - it is for the researcher to 123 

either knowingly combine them or distinguish between the two based on the 124 

hypothesis in question. We believe that by cautiously selecting measurements that do 125 

not distinguish shape from size, a researcher can gain insight on changes in either size 126 

or shape during a developmental process based on how they use them. For example, 127 

the length of apple fruit through the growing season, plotted against time from anthesis 128 

can give insight on how size develops as time progresses (Atay, Pirlak, & Atay, 2010). 129 

The ratio between length and width for the same fruit provides an indication of the 130 

development of shape (Bollard, 1970). Both length and width independently are size 131 

metrics, but in combination they describe shape.  132 

 133 

In the context of describing morphology, there are two mainstream methods: linear 134 

and geometric morphometrics. An essential distinction between them is that linear 135 

morphometrics do not actively separate size from shape, whereas geometric 136 

morphometrics do. We have structured the remainder of this section to describe these 137 

two techniques and have illustrated them using biological examples. 138 
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 139 

The traditional approach to morphometrics involves the measurement of distances 140 

between points deemed to be characteristic of shape and form. Measurements such 141 

as height, length, width, and diameter all fall under the general categorisation of linear 142 

morphometrics. These measurements are intuitive, easy to understand and to interpret, 143 

and have been in the biological toolbox for as long as the toolbox itself has existed. 144 

Linear morphometrics are quick to collect, low cost, easy to interpret, and often 145 

sufficient for biological description. Sanchez et al. (2011) compared the growth 146 

development of baobab seedlings of different origins using a variety of morphometric 147 

measurements ,such as length and diameter of roots, to establish that plants originating 148 

from drier environments grew to a smaller size even under optimal greenhouse 149 

conditions. Richardson et al. (2011) the studied fruit development patterns of kiwi from 150 

anthesis to ripening using amongst other character a collection of linear 151 

morphometrics, such as pericarp diameter. Zhang et al. (2015) performed a 152 

comparative study of the developmental patterns of Sweet cherry floral parts, using 153 

linear measurements such as pedicel length, establishing a correlation between floral 154 

morphology and environmental conditions during growth such as temperature. 155 

 156 

For morphometric studies that require the description of very subtle shape characters, 157 

linear morphometrics may not be the most appropriate tool. The reason for this is 158 

because distance measurements, although excellent for summarising shape and size 159 

descriptions, often lack context. To correct for this, more linear measurements can be 160 

collected, creating a more complete dataset for each object. When the shape of 161 

interest is of biological form, it becomes crucial to be able to establish and quantify 162 

even the subtlest of differences. To be able to achieve this through linear 163 

morphometrics would involve an extensive collection of measurements and a 164 

generous amount of luck, as one may simply fail to measure the precise point where 165 

differences between taxa occur. Furthermore, within an evolutionary framework it is 166 
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more appropriate to view form as a whole since organisms evolve as a whole. To 167 

counter these concerns, morphometric theory progressed to what is often described as 168 

modern morphometrics, more accurately known as geometric morphometrics.  169 

 170 

Geometric morphometrics allow the study of the shape of an organism as a whole, 171 

rather than as a collection of separate components. In contrast to linear 172 

morphometrics, by studying all the selected landmarks of a sample together, even 173 

subtle changes in geometry can be quantified and analysed using geometric 174 

morphometrics. Kendall’s shape definition forms the basis of geometric morphometrics 175 

(Zelditch et al., 2004). This clear separation of shape from position, orientation and size 176 

corresponds to an intuitive concept of shape. In practical terms, to achieve this 177 

separation there is a strong analytical reliance on multivariate techniques (Klingenberg 178 

& Monteiro, 2005). The way this is performed in geometric morphometrics is through the 179 

use of landmark coordinates (Van Bocxlaer & Schultheiß, 2010). A landmark is a 180 

recognizable point on the organism that, together with other landmarks, can be used 181 

to summarise the form of the organism (Zelditch et al., 2004). As opposed to focusing 182 

on distance measurements, as is done in linear morphometrics, shape is summarised 183 

through the Cartesian coordinates of selected landmarks (Walker, 2000). By always 184 

analysing these coordinates together in a multidimensional space, shapes can be 185 

scaled, moved and rotated without losing any information (Goodall, 1991). Although 186 

the selection of appropriate landmarks can be difficult, this multivariate approach 187 

provides great flexibility for manipulation and statistical analysis.  188 

 189 

After landmark selection, the recording of coordinates for all samples (a process 190 

referred to as “sample digitisation”) creates the initial dataset to be used for analysis. 191 

The samples in this dataset are not, however, comparable if their coordinates have not 192 

been standardised. This is because regardless of how carefully and methodically 193 

digitisation occurred the samples are bound to not be fully aligned. Furthermore, 194 
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differences in sizes between samples will affect the position of the landmarks on the 195 

Cartesian axes, confounding shape comparison. To correct for this, the samples can be 196 

standardised using a Procrustes superimposition (Rohlf & Slice, 1990). Named after the 197 

mythical ancient Greek bandit who trimmed or stretched his victims to fit an iron bed, 198 

the process superimposes the samples using the landmarks to correct for orientation 199 

and alignment (Stegmann & Gomez, 2002). It then proceeds to stretch or shrink some 200 

samples aiming for all samples to be perfectly superimposed (Zelditch et al., 2004). We 201 

have illustrated the steps of this process in Figure 1. 202 

 203 

Selecting appropriate landmarks to summarise a shape is perhaps the most crucial 204 

aspect of geometric morphometrics. The reason for this is that if the choice of 205 

landmarks is poor, then any subsequent analysis will reflect that. Through the process of 206 

landmark selection, the overall shape of the organism in question is summarised using a 207 

small number of representative landmarks. Selecting representative landmarks is a 208 

subjective exercise that relies on in-depth knowledge and understanding of anatomy 209 

and biology of the organism in question. This is because not all landmarks are created 210 

equal. A wisely chosen landmark can summarise shape appropriately and provide 211 

adequate information for biological inference. A poorly selected landmark will at best 212 

add high levels of noise to the dataset or, at worst, result in misleading patterns.  213 

 214 

Ideally, landmark selection requires four criteria that ensure quality: repeatability, 215 

consistency of position, adequacy and homology (Zelditch et al., 2004). Repeatability 216 

refers to the potential of locating the selected landmark accurately on a specimen 217 

multiple times (Zelditch et al., 2004). If a landmark is difficult to locate or its position is 218 

relatively vague, then samples that have no significant biological differences may be 219 

found to be different as an artefact of poor landmark choice. Consistency of position 220 

refers to the relative positions between landmarks (Zelditch et al., 2004). If two 221 

landmarks switch relative positions between different specimens then their comparison 222 
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can lead to statistical outliers that may affect the findings and analyses. Adequacy 223 

refers to the number and position of landmarks used to summarise a form (Zelditch et 224 

al., 2004). Although more is not always better in terms of landmark selection, including 225 

too few landmarks will not lead to a representative dataset. Even though repeatability 226 

can be quantified, and consistency of position detected, adequacy is a harder 227 

criterion to evaluate. This is because adequate coverage can be highly subjective. The 228 

concept relies on finding the golden mean between oversampling the specimen 229 

(where too many landmarks can lead to higher noise levels in the dataset) and 230 

undersampling (losing possible detectable variation between specimens).  231 

 232 

Homology in landmark selection has both geometric and biological aspects. Two 233 

landmarks are considered homologous in two specimens if there is a degree of 234 

correspondence between them. This correspondence can be purely a geometric 235 

attribute (e.g. the tips of the Giza pyramids are geometrically homologous) or a 236 

biological attribute (e.g. the forelimbs of bats and primates). Although all four criteria 237 

are important for landmark quality, establishing homology is crucial. It is only through 238 

the use of homologous landmarks that the shapes studied are truly comparable. If the 239 

landmarks used are not homologous between the organisms in the study then there is 240 

no logical support for their comparison and the results can be highly misleading 241 

(Klingenberg, 2008). Although homology is considered one of the most crucial aspects 242 

in landmark selection, exactly how it can affect a given study depends on the nature 243 

and scope of the study itself. In general, the ability to identify homology can severely 244 

limit the quantity of potential landmark candidates.  245 

 246 

These constraints imposed by homology increase the popularity of outline methods of 247 

analysis (Macleod, 1999). By replacing homologous landmarks with regularly spaced 248 

points along a curve, outline analysis sidesteps the issue of homology and can be used 249 

in cases where landmarks are sparse or hard to define (Macleod, 1999). Outline data 250 
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can then be analysed using Fourier harmonics (or possible variations such as Elliptical 251 

Fourier) or Eigenshape analysis (Macleod, 1999; Bonhomme & Claude, 2014). Although 252 

outline analysis is a popular and successful alternative to landmark analysis, the 253 

assumption that it bypasses homology issues may be misplaced. The reason for this is 254 

that outline methods are not completely independent of landmark correspondence 255 

assumptions (Klingenberg, 2008). That is because as with landmark methods, outline 256 

coordinates require a superimposition technique, such as Procrustes superimposition, 257 

prior to analysis (Bonhomme & Claude, 2014). This means that the outline points that 258 

are recorded are treated as actual homologous landmarks. This may appear minor, 259 

but as the superimposition process assumes a certain correspondence between points 260 

on the outline, it can result in increased levels of noise in the dataset. Furthermore, 261 

analytical approaches such as Elliptic Fourier Analysis also assume a certain degree of 262 

homology between outline points. It can therefore be argued that the principal 263 

difference between the two approaches is that in landmark analysis the homology 264 

criterion is explicit whereas in outline analysis it is implied and often ignored. 265 

 266 

The choice between linear and geometric morphometrics for an analysis is not trivial as 267 

one technique is not necessarily superior to the other. Linear morphometrics are quick, 268 

intuitive and cost effective and often robust enough to not introduce noise in the 269 

analysis. They fail when separation of shape and size becomes important and when 270 

subtle changes in morphology are crucial - this is where geometric morphometrics 271 

excel. Selecting the appropriate method for the question in hand is always a 272 

challenging aspect of scientific discovery, although familiarity with both methods, 273 

combined with understanding of the studied organism helps when deciding which 274 

technique may provide more insightful findings. As a final point, it is not always 275 

necessary to choose one over the other, for example, Christodoulou et al. (2018) 276 

combined linear and geometric morphometrics to describe shape differences 277 

between apple cultivars with greater accuracy. 278 
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CLASSIFICATION HYPOTHESES: 279 

Although classification in biology has a different meaning than in machine learning (a 280 

subset of statistical learning), this collection of hypotheses relies on grouping objects 281 

based on similarities between measured characters. These can include studies of 282 

morphological similarities between geographically distinct populations, segregation 283 

between species and hybrids, or revision of taxonomic limits.  284 

 285 

Both linear and geometric morphometrics have been used for such studies. Compton 286 

and Hedderson (1997), in their taxonomic revision of the limits of Cimicifuga foetida L. 287 

s.l. (now Actaea cimicifuga L.), included 17 length variables, resulting in the detection 288 

of four geographically distinct species. Blanco-Dios (2007) used multivariate analysis of 289 

17 linear morphometric characters to contrast the morphology of hybrid populations 290 

between Armeria beirana Franco and A. pubigera (Desf.) Boiss. with that of their 291 

progenitors, detecting clear differences between the groupings. Da Costa et al. (2009) 292 

used distance measurements for both vegetative and reproductive parts to study the 293 

variation within the Vriesea paraibica Wawra complex. After statistical analysis, they 294 

proceeded to recognise four species within the complex (V. paraibica, 295 

V. interrogatoria L.B.Smith, V. eltoniana E.Pereira & Ivo, and V. flava A.F. Costa, H. 296 

Luther & M.G.L. Wanderley), for which they provided a taxonomic treatment. Returning 297 

to the genus Actaea L., Gardner et al. (2012) used linear morphometrics to quantify the 298 

variation within Actaea racemosa L., establishing that between-population variation 299 

was similar to within-population variation. In a study of the Andropogon lateralis Nees 300 

complex, Nagahama et al. (2014) used 19 linear morphometric measurements to 301 

successfully distinguish both species and hybrids within the complex. Shipunov and 302 

Bateman (2005) used geometric morphometrics to explore the diversity of lip shapes of 303 

Dactylorhiza Neck. ex Nevski orchids, studying both hybridization patterns and 304 

taxonomy in Russian populations. Volkova and Shipunov (2007) used similar tools to 305 

investigate the variation between three Nymphaea L. species in Russia and Siberia, 306 



 13 

finding the species delimitation to be robust. Viscosi et al. (2009) successfully used 307 

geometric morphometrics on oak leaves to distinguish between four species. Savriama 308 

et al. (2012) presented a new methodology quantifying symmetry and asymmetry of 309 

corolla shape in Erysimum mediohispanicum Polatschek (now Erysimum grandiflorum 310 

subsp. mediohispanicum (Polatschek) Romo), establishing symmetry to be a 311 

fundamental character for floral variation within the taxon. Finally, Fernández-312 

Mazuecos et al. (2013) used geometric morphometrics to study the role of flower 313 

specialisation for speciation in Linaria Mill. subsect. Versicolores (Benth.) Wetst. finding 314 

corolla tube differences to correlate with divergent pollination strategies. In a 315 

comparison of leaf shape of Anacardium microcarpum Ducke with A. occidentale L. 316 

using geometric morphometric descriptors, Vieira et al. (2014) established that 317 

although the leaves do present statistically significant differences, overlap between 318 

taxa and populations prevent them from being used as unique identifiers.  319 

 320 

Analytically, methods from statistical/machine learning can offer great insight for this 321 

type of hypothesis. There are two broad sections in statistical/machine learning: 322 

supervised learning and unsupervised learning. We are excluding deep learning 323 

methods here, as the topic is too large for an adequate description within this review 324 

and the approaches are rather different. The review on the topic by Angermueller et 325 

al. (2016) offers a good overview of the major issues. Furthermore, deep learning is 326 

primarily aimed at processing huge amounts of multivariate data (so called ‘big data’), 327 

and here we are more concerned with the utilisation of relatively small datasets, often 328 

with only a few data records per taxon, which is more realistic for consideration by 329 

practising botanists. 330 

 331 

Supervised learning focuses on using combinations of characters to circumscribe 332 

known groups (classes) and then applying this knowledge to predict the class 333 

membership of an unknown sample  (Tarca et al., 2007). This is essentially ‘identification’ 334 
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in the biological sense, if the classes represent named taxa. The classic example of 335 

supervised learning is Anderson’s Iris dataset analysed by Fisher using Linear 336 

Discriminant Analysis (LDA) (Fisher, 1936). The original dataset contained measurements 337 

from 150 flowers belonging to three Iris species (50 flowers each of I. setosa Pall. ex Link, 338 

I. versicolor Thunb. and I. virginica L.), For each flower, length and width measurements 339 

of two tepals (one inner, and one outer tepal), as well as species, were recorded. 340 

When this dataset was analysed using LDA, discriminant functions were established for 341 

each species based on the lengths and widths of the tepals. These could then be used 342 

to establish the species of an unknown Iris sample using only length and width tepal 343 

measurements (provided it belonged to one of the three species). The factor that 344 

makes this example part of supervised learning is the prior knowledge of class 345 

membership, in this case Iris species, used for the design of the discriminant functions 346 

(Fogel, 2008).  347 

 348 

Unsupervised learning, by contrast, has no prior knowledge of class membership, and 349 

the analysis aims to explore patterns in the data and create natural groupings (Fogel, 350 

2008). Such groupings can then be used as justification for delimitation of traditional 351 

ranked taxa such as species. This is essentially ‘classification’ in the biological sense. 352 

Cluster analysis (clustering), for example, is a case of unsupervised learning. Table 1 353 

summarises a selection of both supervised and unsupervised techniques, more 354 

extensive descriptions of which can be found in Appendix A. 355 

 356 

Table 1 showcases botanical applications of machine learning. The combination of 357 

machine learning and morphometrics for classification has much more prominent 358 

examples outside of botany. We aim for this review to increase the uptake of these 359 

techniques in botany. In the meantime, we present some non-botanical examples here 360 

for illustration purposes. Santana et al. (2014) studied bee classification using the 361 

forewings of male members of five Euglossa species. This was performed by using 18 362 
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landmarks on the wing venation together with colour change variables, followed by 363 

comparisons between classification techniques including linear discriminant analysis 364 

and a modified neural network. The neural network outperformed the other classifiers, 365 

with an accuracy of 87.6%. da Silva et al. (2015) used more classes than Santana et al. 366 

(2014), studying 26 subspecies of Apis mellifera while still using the same 18 landmarks 367 

on wing venation. Their focus was on the performance of feature selection and their 368 

conclusion was that a Naïve Bayes classifier outperforms other classification techniques, 369 

with 65% mean accuracy on cross-validation (da Silva et al., 2015).  370 

 371 

Van Bocxlaer and Schultheiß’s (2010) gastropod study was one of the first in zoology to 372 

combine machine learning with morphometrics, their focus was primarily on comparing 373 

landmark analysis with outline analysis. For their gastropod dataset they found that 374 

outline analysis outperformed landmark analysis by 3%, reaching 78% accuracy when 375 

using a Support Vector Machine (SVM) classification (Van Bocxlaer & Schultheiß, 2010). 376 

The high success rate of the outline analysis is likely due to the presence of three-377 

dimensional ornamentation on the shell surface. Also, the theory of outline methods for 378 

biological shape analysis is not as robust as landmark analysis, as discussed briefly in 379 

earlier sections.  380 

 381 

Guisande et al. (2010) describe new software designed to identify fish species, using 382 

Classification and Regression Trees (CARTs) and linear morphometrics. The structure of 383 

the software is such that the user is required to make linear measurements on their 384 

sample, following a certain protocol, and the measurements are then used to classify 385 

the sample. This makes it similar to a multi-access key rather than a tool for automatic 386 

identification. For multi-access keys, success rates can be established by testing the key 387 

on the target audience and recording how successful was their navigation of the key. 388 

Guisande et al. (2010) did not perform this test and only tested accuracy using samples 389 

they had measured themselves.  390 
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 391 

In the field of anthropology, Velemínská et al. (2013) used semi-landmarks to study the 392 

greater sciatic notch (which is part of the pelvis bones) aiming to correctly classify the 393 

sex of the individual. Their best performing classifier was a Support Vector Machine that 394 

achieved a 92% accuracy. Instead of using a completely independent test set, the 395 

accuracy was quantified using a leave-one-out cross-validation approach on the 396 

learning set. The absence of a separate test set can lead to overestimating the 397 

accuracy of the classification as briefly discussed earlier.  398 

 399 

The orthodontics paper by Yu et al. (2014) is based on the unusual premise of 400 

predicting attractiveness on malocclusion patients (patients with misaligned teeth). By 401 

using 101 landmarks on patient images combined with a Support Vector Machine, they 402 

achieved an accuracy of attractiveness prediction of 72%. This work is interesting 403 

because it is the only example in the literature where geometric morphometrics have 404 

been combined with the regression approaches of statistical learning, rather than the 405 

classification ones. This is because the attractiveness measure used was based on a 406 

(subjective) score from 69 orthodontics experts, therefore the prediction was a 407 

continuous measurement rather than a class. 408 

 409 

Model evaluation 410 

There is a large collection of classification techniques available for biological analysis 411 

and selecting the most appropriate technique is not trivial. The reason for this is that 412 

there is no single classification technique that consistently outperforms all others 413 

regardless of the dataset studied. In machine learning this concept is referred to as the 414 

“No free lunch” Theorem. Stated formally by Wolpert and Macready (1997), the 415 

theorem suggests that the performance of all classifiers is equal when the totality of 416 

possible problems is considered. This means that for every classifier available there exists 417 

a possible problem where that classifier outperforms every other classifier. In practical 418 
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terms, this makes selecting a classifier for a study harder as the only way to establish the 419 

appropriateness of the technique is after the training of the classifier. Due to this, the 420 

most common approach to classification problems is to train a variety of different 421 

classifiers and then select the one that performs best (Fogel, 2008). This strategy makes 422 

performance evaluation the focus of the classification analysis. To this extent a series of 423 

metrics have been proposed in the literature, summarised in Table 2. 424 

 425 

All the metrics presented in Table 2 rely on describing classification success through the 426 

use of a set of samples, however selecting the set that is used is not straightforward. In 427 

most biological situations there is a limited amount of data available for study, making 428 

each individual sample valuable to the study. With a limited dataset, therefore, the 429 

decision on the appropriate “spending” of the data is not an easy one to make. This 430 

makes pilot studies that can inform power analyses (to estimate appropriate sample 431 

sizes) a crucial aspect of experimental design (McDonald, 2014). 432 

 433 

There are three stages in machine learning that require data: training, validating and 434 

testing (Olden, Lawler, & Poff, 2008). During the first stage the classifier is primarily 435 

trained to the problem in question. If the whole dataset is used at this stage then it will 436 

have to be re-used for both validating and testing, leading to potential overfitting and 437 

unrealistically high performance metrics (Olden et al., 2008). This is because the 438 

classifier would have knowledge of the full dataset at the training stage, therefore 439 

when validating occurs (which is the process that verifies that appropriate tuning 440 

parameters have been selected during training), overfitting is more likely as none of the 441 

validating samples will be new. When the classifier is then tested using known samples, 442 

the performance will appear improved due to this overfitting effect. The peril from this is 443 

that when the classifier is applied to truly unknown samples, the confidence in the 444 

resulting class could be misplaced. To avoid this, common practice involves partitioning 445 

the initial dataset to a training set (including a validation set) and a testing set. In this 446 
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case the testing set is used solely for establishing the final, unbiased, performance of 447 

the classifier (Olden et al., 2008). As this partition reduces the data available for training 448 

and validating, partitioning the training dataset further may not be realistic as an 449 

inappropriately small training set will create an inappropriate and untrustworthy 450 

classifier.  451 

 452 

In order to reduce overfitting during the validating process, cross-validation (CV) can 453 

be used instead. In cross-validation the training dataset is partitioned, creating a 454 

training set (in the strict sense) and a validation set (Olden et al., 2008). Training 455 

commences and is terminated when the performance with respect to the validation 456 

set begins to reduce. The validation set is thus used as a dummy ‘test’ set. After the 457 

classifier is trained and validated the two datasets are re-combined and re-partitioned 458 

creating a new training and validation dataset. The learning process is repeated again 459 

from the start until either a predefined number of data partitions, or all possible data 460 

partitions, have been used for training. In biological applications of machine learning, 461 

multifold (K-fold) cross-validation is commonly used to help avoid overfitting (Olden et 462 

al., 2008). During that process the training dataset is partitioned into K equal sets, with K-463 

1 of these recombined to create the training set and the last one used to validate. This 464 

process is repeated K times for all possible (or sensible) combinations of training and 465 

validation sets. More recently this technique has been slightly modified to include 466 

further repetitions; for example, in M repetitions of K-fold cross-validation the process of 467 

K-fold cross-validation already described is repeated M times. An example using two 468 

repetitions of 5-fold cross-validation is illustrated in Figure 2. 469 

 470 

Throughout this paper, we have explained and illustrated the many strengths of 471 

morphometric study including the ability to train and evaluate a system, to conduct 472 

power analysis on trial data sets to help decide on appropriate sample sizes and the 473 

crucial element of reproducible measurement. Morphometric approaches can offer to 474 
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build strong and reproducible systems of classification and these can be combined 475 

with DNA derived data to give a holistic synthesis that might improve the stability and 476 

decrease the subjectivity of plant classification, especially at the species level. In short, 477 

when botanists and horticulturalists catch up with other disciplines we expect to see 478 

use of morphological data in the construction of more robust botanical classification 479 

systems. 480 

  481 
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