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The climate is a forced, dissipative, nonlinear, complex, and heterogeneous system that is out of
thermodynamic equilibrium. The system exhibits natural variability on many scales of motion, in time
as well as space, and it is subject to various external forcings, natural as well as anthropogenic. This
review covers the observational evidence on climate phenomena and the governing equations of
planetary-scale flow and presents the key concept of a hierarchy of models for use in the climate
sciences. Recent advances in the application of dynamical systems theory, on the one hand, and
nonequilibrium statistical physics, on the other hand, are brought together for the first time and shown
to complement each other in helping understand and predict the system’s behavior. These
complementary points of view permit a self-consistent handling of subgrid-scale phenomena as
stochastic processes, as well as a unified handling of natural climate variability and forced climate
change, along with a treatment of the crucial issues of climate sensitivity, response, and predictability.
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I. INTRODUCTION AND MOTIVATION

A. Basic facts of the climate sciences

The climate system is forced, dissipative, chaotic, and out
of equilibrium; its complex natural variability arises from the
interplay of positive and negative feedbacks, instabilities, and
saturation mechanisms. These processes span a broad range of
spatial and temporal scales and include many chemical species
and all of the most common physical phases. The system’s
heterogeneous phenomenology includes the mycrophysics of
clouds, cloud-radiation interactions, atmospheric and oceanic
boundary layers, and several scales of turbulence (Ghil, 2019);
it evolves, furthermore, under the action of large-scale agents
that drive and modulate its evolution, mainly differential solar
heating and the Earth’s rotation and gravitation.
As is often the case, the complexity of the physics is

interwoven with the chaotic character of the dynamics.
Moreover, the climate system’s large natural variability on
different timescales is strongly affected by relatively small
changes in the forcing, anthropogenic as well as natural (Ghil
and Childress, 1987; Peixoto and Oort, 1992; Lucarini,
Blender et al., 2014).
On the macroscopic level, climate is driven by differences

in the absorption of solar radiation throughout the depth of the
atmosphere, as well as in a narrow surface layer of the ocean
and of the soil; the system’s actual governing equations are
given in Sec. II.C. The prevalence of absorption at the surface
and in the atmosphere’s lower levels leads through several
processes to compensating vertical energy fluxes, most
notably, fluxes of infrared radiation throughout the atmos-
phere and convective motions in the troposphere; see Fig. 1.
More solar radiation is absorbed in the low latitudes,

leading to horizontal energy fluxes as well. The atmosphere’s
large-scale circulation is to first order a result of these
horizontal and vertical fluxes arising from the gradients in
solar radiation absorption, in which the hydrological cycle
plays a key role as well. The ocean circulation, in turn, is set
into motion by surface or near-surface exchanges of mass,

momentum, and energy with the atmosphere: the so-called
wind-driven component of the circulation is due mainly to the
wind stress and the thermohaline one is due mainly to
buoyancy fluxes (Dijkstra, 2005; Dijkstra and Ghil, 2005;
Kuhlbrodt et al., 2007). The coupled atmospheric and oceanic
circulation reduces the temperature differences between the
tropics and polar regions with respect to that on an otherwise
similar planet with no horizontal energy transfers (Lorenz,
1967; Peixoto and Oort, 1992; Held, 2001; Lucarini and
Ragone, 2011). At steady state, the convergence of enthalpy
transported by the atmosphere and the ocean compensates
for the radiative imbalance at the top of the atmosphere;
see Fig. 2.
The classical theory of the general circulation of the

atmosphere (Lorenz, 1967) describes in further detail how
the mechanisms of energy generation, conversion, and dis-
sipation produce the observed circulation, which deviates
substantially from the highly idealized, zonally symmetric
picture sketched so far. According to Lorenz (1955), atmos-
pheric large-scale flows result from the conversion of available
potential energy, which is produced by the atmosphere’s
differential heating, into kinetic energy, and the Lorenz
(1967) energy cycle is completed by energy cascading to
smaller scales to eventually be dissipated. McWilliams (2019)
provided an up-to-date criticism of and further perspective on
this theory.
Overall, the climate system can be seen as a thermal engine

capable of transforming radiative heat into mechanical energy
with a given, highly suboptimal efficiency given the many
irreversible processes that make it less than ideal (Pauluis and
Held, 2002; Kleidon and Lorenz, 2005; Lucarini, 2009b;
Lucarini, Blender et al., 2014). This conversion occurs
through genuinely three-dimensional (3D) baroclinic insta-
bilities (Charney, 1947; Eady, 1949) that are triggered by large
temperature gradients and would break zonal symmetry even
on a so-called aqua planet, with no topographic or thermal
asymmetries at its surface. These instabilities give rise to a
negative feedback, as they tend to reduce the temperature

FIG. 1. Globally averaged energy fluxes in the Earth system
(Wm−2). The fluxes on the left represent solar radiation in the
visible and the ultraviolet, those on the right represent terrestrial
radiation in the infrared, and those in the middle represent
nonradiative fluxes. From Trenberth, Fasullo, and Kiehl, 2009.
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gradients they feed upon by favoring the mixing between
masses of fluids at different temperatures.
Note that while these baroclinic and other large-scale

instabilities do act as negative feedbacks they cannot be
treated as diffusive, Onsager-like [Onsager (1931)] processes.
Faced with the Earth system’s complexity discussed herein
and illustrated in Fig. 3, the closure of the coupled thermo-
dynamical equations governing the general circulation of the
atmosphere and ocean would provide a self-consistent theory
of climate. Such a theory should able to connect instabilities
and large-scale stabilizing processes on longer spatial and
temporal scales, and to predict its response to a variety of
forcings, both natural and anthropogenic (Ghil and Childress,
1987; Lucarini, 2009b; Lucarini, Blender et al., 2014; Ghil,
2015). This goal is being actively pursued but is still out of
reach at this time; see, e.g., Ghil (2019) and the references
therein, and also Secs. IV and V. The observed persistence of
spatial gradients in chemical concentrations and temperatures,
as well as the associated mass and energy fluxes, is a basic
signature of the climate system’s intrinsic disequilibrium.
Figure 3 emphasizes, moreover, that the fluid and the

solid parts of the Earth system are coupled on even longer

timescales, on which geochemical processes become of
paramount importance (Rothman, Hayes, and Summons,
2003; Kleidon, 2009). In contrast, closed, isolated systems
cannot maintain disequilibrium and have to evolve toward
homogeneous thermodynamical equilibrium as a result of the
second law of thermodynamics (Prigogine, 1961).
Studying the climate system’s entropy budget provides a

good global perspective on this system. Earth as a whole
absorbs shortwave radiation carried by low-entropy solar
photons at TSun ≃ 6000 K and emits infrared radiation to space
via high-entropy thermal photons at TEarth ≃ 255 K (Peixoto
and Oort, 1992; Lucarini, Blender et al., 2014). Besides the
viscous dissipation of kinetic energy, many other irreversible
processes, such as turbulent diffusion of heat and chemical
species, irreversible phase transitions associated with various
hydrological processes, and chemical reactions involved in the
biogeochemistry of the planet, contribute to the total material
entropy production (Goody, 2000; Kleidon, 2009).
These and other important processes appear in the sche-

matic diagram of Fig. 3. In general, in a forced dissipative
system, entropy is continuously produced by irreversible
processes, and at steady state this production is balanced
by a net outgoing flux of entropy at the system’s boundaries
(Prigogine, 1961; de Groot and Mazur, 1984); in the case at
hand, this flux leaves mainly through the top of the atmos-
phere (Goody, 2000; Lucarini, 2009b). Thus, on average,
the climate system’s entropy budget is balanced, just like its
energy budget.
The phenomenology of the climate system is commonly

approached by focusing on distinct and complementary
aspects that include the following:

• Wavelike features such as Rossby waves or equatorially
trapped waves [see, e.g., Gill (1982)], which play a key

FIG. 3. Schematic diagram representing forcings, dissipative
and mixing processes, gradients of temperature and chemical
species, and coupling mechanisms across the Earth system. Blue
(red) areas refer to the fluid (solid) Earth. From Kleidon, 2010.

FIG. 2. Meridional distribution of net radiative fluxes and of
horizontal enthalpy fluxes. (a) Observed zonally averaged radi-
ative imbalance at the top of the atmosphere from the ERBE
experiment (1985–1989). (b) Inferred meridional enthalpy trans-
port from ERBE observations (solid line) and estimate of the
atmospheric enthalpy transport from two reanalysis datasets
(ECMWF and NCEP). From Trenberth and Caron, 2001.
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role in the transport of energy, momentum, and water
vapor, as well as in the study of atmospheric, oceanic,
and coupled-system predictability.

• Particlelike features such as hurricanes, extratropical
cyclones, and oceanic vortices [see, e.g., Salmon (1998)
and McWilliams (2019)], which strongly affect the local
properties of the climate system and its subsystems and
subdomains.

• Turbulent cascades, which are of crucial importance in
the development of large eddies through the mechanism
of geostrophic turbulence (Charney, 1971), as well as in
mixing and dissipation within the planetary boundary
layer (Zilitinkevich, 1975).

Each of these points of view is useful, and they do overlap
and complement each other (Ghil and Robertson, 2002;
Lucarini, Blender et al., 2014), but neither by itself provides
a comprehensive understanding of the properties of the
climate system. It is a key objective of this review to provide
the interested reader with the tools for achieving such a
comprehensive understanding with predictive potential.
While much progress has been achieved (Ghil, 2019),

understanding and predicting the dynamics of the climate
system faces, on top of all the difficulties that are intrinsic to
any nonlinear, complex system out of equilibrium, the
following additional obstacles that make it especially hard
to grasp fully:

• The presence of well-defined subsystems, the atmos-
phere, the ocean, the cryosphere, characterized by
distinct physical and chemical properties and widely
differing timescales and space scales.

• The complex processes coupling these subsystems.
• The continuously varying set of forcings that result
from fluctuations in the incoming solar radiation and
in the processes, both natural and anthropogenic,
that alter the atmospheric composition.

• The lack of scale separation between different
processes, which requires a profound revision of
the standard methods for model reduction and calls
for unavoidably complex parametrization of sub-
grid-scale processes in numerical models.

• The lack of detailed, homogeneous, high-resolution,
and long-lasting observations of climatic fields that
leads to the need for combining direct and indirect
measurements when trying to reconstruct past cli-
mate states preceding the industrial era.

• The fact that we only have one realization of
the processes that give rise to climate evolution
in time.

For all of these reasons, it is far from trivial to separate the
climate system’s response to various forcings from its natural
variability in the absence of time-dependent forcings. More
simply, and as noted already by Lorenz (1979), it is hard to
separate forced and free climatic fluctuations (Lucarini and
Sarno, 2011; Lucarini, Blender et al., 2014; Lucarini, Ragone,
and Lunkeit, 2017). This difficulty is a major stumbling block
on the road to a unified theory of climate evolution (Ghil,
2015, 2017), but some promising ideas for overcoming it are
emerging and are addressed in Secs. IV and V; see also
Ghil (2019).

B. More than “just” science

1. The Intergovernmental Panel on Climate Change

Besides the strictly scientific aspects of climate research,
much of the recent interest in it has been driven by the
accumulated observational and modeling evidence on the
ways humans influence the climate system. To review and
coordinate the research activities carried out by the
scientific community in this respect, the United Nations
Environment Programme (UNEP) and the World
Meteorological Organization (WMO) established in 1988
the Intergovernmental Panel on Climate Change (IPCC); its
assessment reports (ARs) are issued every 4–6 yr. By
compiling systematic reviews of the scientific literature
relevant to climate change, the ARs summarize the scientific
progress, the open questions, and the bottlenecks regarding
our ability to observe, model, understand, and predict the
climate system’s evolution.
More specifically, it is the IPCC Working Group I that

focuses on the physical basis of climate change; see IPCC
(2001, 2007, 2014a) for the three latest reports in this area:
AR3, AR4, and AR5. Working Groups II and III are
responsible for the reports that cover the advances in the
interdisciplinary areas of adapting to climate change and of
mitigating its impacts; see IPCC (2014b, 2014c) for the
contributions of Working Groups II and III, respectively, to
AR5. AR6 is currently in preparation.1

Moreover, the IPCC supports the preparation of special
reports on themes that are of interest across two of the
working groups, e.g., climatic extremes (IPCC, 2012), or
across all three of them. The IPCC experience and working
group structure is being replicated for addressing climate
change at the regional level, as in the case for the Hindu
Kush Himalayan region, sometimes called the “third pole”
(Wester et al., 2019).
The IPCC reports are based on the best science available

and are policy relevant but not policy prescriptive. Their
multistage review is supposed to guarantee neutrality but the
reports are still inherently official, UN-sanctioned documents
and have to bear the imprimatur of the IPCC’s 195 member
countries. Their release thus leads to considerable and often
adversarial debates involving a variety of stakeholders from
science, politics, civil society, and business; they also affect
media production, cinema, video games, and art at large and
are more and more reflective of them.
Climate change has thus become an increasingly central

topic of discussion in the public arena, involving all levels of
decision-making, from local through regional and on to
global. In recent years, climate services have emerged as a
new area at the intersection of science, technology, policy
making, and business. They emphasize tools to enable climate
change adaptation and mitigation strategies, and they have
benefited from large public investments like the European
Union’s Copernicus Programme.2

The lack of substantial progress made by national govern-
ments and international bodies tackling climate change has

1See https://www.ipcc.ch/assessment-report/ar6/.
2See https://climate.copernicus.eu.
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recently led to the rapid growth of global, young-people-
driven grassroots movements like Extinction Rebellion3 and
FridaysForFuture.4 Some countries, like the United Kingdom,
have declared a state of climate emergency,5 and some
influential media outlets have started to use the expression
climate crisis instead of climate change.6 While such socio-
economic and political issues are of great consequence, this
review does not dwell on them.

2. Hockey stick controversy and climate blogs

Mann, Bradley, and Hughes (1999) produced in Fig. 3(a)
of their paper a temperature reconstruction from proxy data
(see Sec. II.A) for the last 1000 years, shown as part of the
blue (dark gray) curve in Fig. 4. This curve was arguably the
most striking, and hence controversial, scientific result
contained in the AR3 report (IPCC, 2001), and it was dubbed
for obvious reasons the hockey stick. The AR3 report
combined into one figure, Fig. 1(b) of the Summary for
Policy Makers (SPM), the blue curve and the red curve shown
in Fig. 4, which was based on instrumental data over the last
century and a half; see Fig. 1(a) of the SPM. This super-
position purported to demonstrate that the recent temperature
increase was unprecedented over the last two millennia, in
both values attained and rate of change.
Figure 1(b) of the AR3’s SPM received an enormous deal of

attention from the social and political forces wishing to
underscore the urgency of tackling anthropogenic climate
change. For opposite reasons, the paper and its authors were
the subject of intense political and judicial scrutiny and attack

by other actors in the controversy, claiming that the paper was
both politically motivated and scientifically unsound.
McIntyre and McKitrick (2005), among others, strongly

criticized the results of Mann, Bradley, and Hughes (1999),
claiming that the statistical procedures used for smoothly
combining the diverse proxy records used, including tree
rings, coral records, ice cores, and long historical records,
with their diverse sources and ranges of uncertainty, into a
single multiproxy record, and the latter with instrumental
records, were marred by bias and underestimation of the
actual statistical uncertainty. Later papers criticized in turn
the statistical methods of McIntyre and McKitrick (2005)
and confirmed the overall correctness of the hockey stick
reconstruction; see, e.g., Huybers (2005), Mann et al. (2008),
Taricco et al. (2009), and PAGES (2013). NRC (2006)
provided a review of the state of our knowledge concerning
the last two millennia of climate change and variability.
This controversy included the notorious “Climategate”

incident, in which data hacked from the computer of a
well-known UK scientist were used to support the thesis that
scientific misconduct and data falsification had been routinely
used to support the hockey stick reconstruction. These claims
were later dismissed but they did lead to an important change
in the relationship between the climate sciences, society, and
politics, and in the way climate scientists interact among
themselves and with the public. In certain countries, e.g., the
UK and the United States, stringent rules have been imposed
to ascertain that scientists working in governmental institu-
tions have to publicly reveal the data they use in the
preparation of scientific work if formally requested to do so.
Faced with the confusion generated by the polemics, several

leading scientists started blogs7 in which scientific literature
and key ideas are presented for a broader audience and
debated outside the traditional media of peer-reviewed jour-
nals or public events, such as conferences and workshops.
Most contributions are of high quality, but sometimes argu-
ments appear to sink to the level of bitter strife between those
in favor and those against the reality of climate change and of
the anthropogenic contribution to its causes.

C. This review

The main purpose of this review is to bring together a
substantial body of literature published over the last few
decades in the geosciences, as well as in mathematical and
physical journals, and provide a comprehensive picture of
climate dynamics. Moreover, this picture should appeal to a
readership of physicists and help stimulate interdisciplinary
research activities.
For decades meteorology and oceanography, on the one

side, and physics, on the other side, have had a relatively low
level of interaction, with by-and-large separate scientific
gatherings and scholarly journals. Recent developments in
dynamical systems theory, both finite and infinite dimen-
sional, as well as in random processes and statistical mechan-
ics, have created a common language that makes it possible at

FIG. 4. Surface air temperature record for the last two millennia.
Green dots show the 30-yr average of the latest PAGES 2k
reconstruction (PAGES, 2013), while the red curve shows the
global mean temperature, according to HadCRUT4 data from
1850 onward; the original “hockey stick” of Mann, Bradley, and
Hughes (1999) is plotted in blue and its uncertainty range in light
blue. Graph by Klaus Bitterman.

3See https://rebellion.earth/.
4See https://www.fridaysforfuture.org.
5See https://www.bbc.co.uk/news/uk-politics-48126677.
6See https://tinyurl.com/y2v2jwzy.

7See, e.g., http://www.realclimate.org, http://www.ClimateAudit.org,
http://www.climate-lab-book.ac.uk, and http://judithcurry.com.
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this time to achieve a higher level of communication and
mutual stimulation.
The key aspects of the field that we tackle here are the

natural variability of the climate system, the deterministic and
random processes that contribute to this variability, its
response to perturbations, and the relations between internal
and external causes of observed changes in the system.
Moreover, we present tools for the study of critical transitions
in the climate system, which could help us to understand and
possibly predict the potential for catastrophic climate change.
In Sec. II, we provide an overview for nonspecialists of the

way climate researchers collect and process information on
the state of the atmosphere, the land surface, and the ocean.
Next the conservation laws and the equations that govern
climatic processes are introduced.
An important characteristic of the climate system is the

already mentioned coexistence and nonlinear interaction of
multiple subsystems, processes, and scales of motion. This
state of affairs entails two important consequences that are
also addressed in Sec. II. First is the need for scale-dependent
filtering: on the positive side, this filtering leads to simplified
equations; on the negative one, it calls for so-called para-
metrization of unresolved processes, i.e., for the representa-
tion of subgrid-scale processes in terms of the resolved,
larger-scale ones. Second is the fact that no single model can
encompass all subsystems, processes, and scales; hence the
need for resorting to a hierarchy of models. Section II ends
with a discussion of present-day standard protocols for
climate modeling and the associated problem of evaluating
the models’ performance in a coherent way.
Section III treats climate variability in greater depth. We

describe the most important modes of climate variability and
provide an overview of the coexistence of several equilibria in
the climate system, and of their dependence on parameter
values. While the study of bifurcations and exchange of
stability in the climate system goes back to the work of E. N.
Lorenz, H. M. Stommel, and G. Veronis in the 1960s [see,
e.g., Ghil and Childress (1987), Dijkstra (2013), and Ghil
(2019)], a broadened interest in these matters has been
stimulated by the borrowing from the social sciences of the
term tipping points (Gladwell, 2000; Lenton et al., 2008).
Proceeding beyond multiple equilibria, we show next how

complex processes give rise to the system’s internal variability
by successive instabilities setting in, competing, and even-
tually leading to the quintessentially chaotic nature of the
evolution of climate. Section III concludes by addressing the
need to use random processes to model the faster and smaller
scales of motion in multiscale systems, and by discussing
Markovian and non-Markovian approximations for the rep-
resentation of the neglected degrees of freedom. We also
discuss top-down versus data-driven approaches.
Section IV delves into the analysis of climate response.

The response to the external forcing of a physicochemical
system out of equilibrium is the overarching concept we
use in clarifying the mathematical and physical bases of
climate change. We critically appraise climate models as
numerical laboratories and review ways to test their skill at
simulating past and present changes, as well as at predicting
future ones. The classical concept of equilibrium climate

sensitivity is critically presented first, and we discuss its
merits and limitations.
We present next the key concepts and methods of

nonautonomous and random dynamical systems, as a frame-
work for the unified understanding of intrinsic climate
variability and forced climate change, and emphasize the
key role of pullback attractors in this framework. These
concepts have been introduced only quite recently into the
climate sciences, and we show how pullback attractors and
the associated dynamical systems machinery provide a setting
for studying the statistical mechanics of the climate system as
an open system.
This system is subject to variations in the forcing and in

its boundary conditions on all timescales. Such variations
include, on different timescales, the incoming solar radiation,
the position of the continents, and the sources of aerosols
and greenhouse gases. We further introduce time-dependent
invariant measures on a parameter-dependent pullback attrac-
tor, and the Wasserstein distance between such measures, as
the main ingredients for a more geometrical treatment of
climate sensitivity in the presence of large and sudden changes
in the forcings.
We then outline, in the context of nonequilibrium statistical

mechanics, Ruelle’s response theory as an efficient and
flexible tool for calculating climate response to small and
moderate natural and anthropogenic forcings, and we recon-
struct the properties of the pullback attractor from a suitably
defined reference background state. The response of a system
near a tipping point is studied, and we emphasize the link
between properties of the autocorrelation of the unperturbed
system and its vicinity to the critical transition, along with
their implications in terms of telltale properties of associated
time series.
Section V is devoted to discussing multistability in the

climate system and the critical transitions that occur in the
vicinity of tipping points in systems possessing multiple
steady states. The corresponding methodology is then applied
to the transitions between a fully frozen so-called snowball
state of our planet and its warmer states. These transitions
have played a crucial role in modulating the appearance of
complex life forms. We introduce the concept of an edge state,
a dynamical object that has helped explain bistability in fluid
mechanical systems, and argue that such states will also yield
a more complete picture of tipping points in the climatic
context. Finally, we present an example of a more exotic
chaos-to-chaos critical transition that occurs in a delay-
differential-equation model for the tropical Pacific Ocean.
In Sec. VI, we briefly summarize this review’s main ideas

and introduce complementary research lines that are not
discussed herein, as well as a couple of the many still open
questions. The List of Symbols and Abbreviations contains a
list of scientific and institutional acronyms that are used
throughout the review.
We started this section by characterizing the climate system

and giving a broad-brush description of its behavior. But we
have not defined the concept of climate as such since we do
not have as yet a consensual definition of what the climate, as
opposed to weather, really is. An old adage states that “climate
is what you expect, weather is what you get.”
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This implies that stochastic and ergodic approaches must
play a role in disentangling the proper types of averaging on
the multiple timescales and space scales involved. A fuller
understanding of the climate system’s behavior should even-
tually lead to a proper definition of climate. Mathematically
rigorous work aimed at such a definition is being undertaken
but is far from complete.8

II. INTRODUCTION TO CLIMATE DYNAMICS

A. Climate observations: Direct and indirect

A fundamental difficulty in the climate sciences arises from
humanity’s insufficient ability to collect data of standardized
quality, with sufficient spatial detail, and of sufficient temporal
coverage. Instrumental datasets have substantial issues of both
synchronic and diachronic coherence. Moreover, such data-
sets extend, at best, only about one to two centuries into the
past. In this section, we first cover instrumental datasets and
then so-called historical and proxy datasets, which use indirect
evidence on the value of meteorological observables before
the industrial era.

1. Instrumental data and reanalyses

Since the establishment of the first meteorological
stations in Europe and North America in the 19th century,
the extent and quality of the network of observations and the
technology supporting the collection and storage of data have
rapidly evolved. Still, at any given time, the spatial density
of data changes dramatically across the globe, with much
sparser observations over the ocean and over land areas
characterized by low population density or a low degree of
technological development; see, e.g., Ghil and Malanotte-
Rizzoli (1991), Fig. 1.
Starting in the late 1960s, polar-orbiting and geostationary

satellites have led to a revolution in collecting weather, land
surface, and ocean surface data. Spaceborne instruments are
now remotely sensing many climatic variables from the most
remote areas of the globe; for instance, they measure the
overall intensity and spectral features of emitted infrared and
reflected visible and ultraviolet radiation, and complex algo-
rithms relate their raw measurements to the actual properties
of the atmosphere, such as temperature and cloud cover.
Figure 5 represents schematically the evolution of the

observational network for climatic data, while Fig. 6 portrays
the instruments that today compose the Global Observing
System of the WMO, the United Nations agency that
coordinates the collection and quality check of weather and
climate data over the entire globe.
Since the early 20th century, the daily measurements have

grown in number by many orders of magnitude and now more
regularly cover the entire globe, even though large swaths of
Earth still feature relatively sparse observations. Figures 7
and 8 illustrate the coverage and variety of the observing
systems available at present to individual researchers and

practitioners, as well as to environmental and civil-protection
agencies. Note that the so-called conventional network of
ground-based weather stations and related observations has
evolved since the Global Weather Experiment in the late
1970s [see Fig. 1 in Bengtsson, Ghil, and Källén (1981)], but
only marginally so: it is the remote-sensing observations that
have increased tremendously in number, variety, and quality.
The number and quality of oceanographic observations was

several orders of magnitude smaller than that of meteorologi-
cal ones in the 1980s (Munk and Wunsch, 1982; Ghil and
Malanotte-Rizzoli, 1991). Here the advent of spaceborne
altimetry for sea-surface heights, scatterometry for surface
winds, and other remote-sensing methods has revolutionized

FIG. 5. Schematic diagram representing the evolution of the
observing network for weather and climate data. The dotted
vertical line corresponds to the International Geophysical Year
(IGY). Courtesy of Dick Dee.

FIG. 6. An illustration of the instruments and platforms that
compose the World Meteorological Organization’s (WMO’s)
Global Observing System (GOS). From the COMET website9

of the University Corporation for Atmospheric Research
(UCAR), sponsored in part through a cooperative agreement
with the National Oceanic and Atmospheric Administration
(NOAA), U.S. Department of Commerce (DOC).

9See http://meted.ucar.edu/.

8See, e.g., F. Flandoli, Lectures at the Institut Henri Poincaré, Paris,
October 2019, http://users.dma.unipi.it/flandoli/IHP_contribution_
Flandoli_Tonello_v3.pdf.
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the field; see, e.g., Robinson (2010). This number, however, is
still smaller by at least 1 order of magnitude than that of
atmospheric observations since, as pointed out by Munk and

Wunsch (1982), the ocean’s interior is not permeable to
exploration by electromagnetic waves. This is a fundamental
barrier hindering our ability to directly observe the deep ocean.
Observational data for the atmosphere and ocean are at any

rate sparse, irregular, and of different degrees of accuracy,
while in many applications one has to obtain the best estimate,

FIG. 7. Maps of point observations from theWMO’s GOS on 10 April 2009: (a) synoptic weather station and ship reports, (b) upper-air
station reports, (c) buoy observations, (d) aircraft wind and temperature, (e) wind profiler reports, (f) temperature and humidity profiles
from Global Positioning System (GPS) radio occultation, and (g) observations from citizen weather observers. The tropics are the bright
areas bordered by �30° latitude. From the COMETwebsite10 of the UCAR, sponsored in part through cooperative agreements with the
NOAA, U.S. DOC.

10See http://meted.ucar.edu/.
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with known error bars, of the state of the atmosphere or ocean
at a given time and with a given, uniform spatial resolution.
More often than not, this estimate also needs to include
meteorological, oceanographic, or coupled-system variables,
such as vertical wind velocity and surface heat fluxes, that can
be observed only either poorly or not at all.
The active field of data assimilation has been developed

to bridge the gap between the observations that are,
typically, discrete in both time and space and the continuum
of the atmospheric and oceanic fields. Data assimilation, as
distinct from polynomial interpolation, statistical regression,
or the inverse methods used in solid-earth geophysics, first
arose in the late 1960s from the needs of numerical weather
prediction (NWP), on the one hand, and the appearance
of time-continuous data streams from satellites, on the other
hand (Charney, Halem, and Jastrow, 1969; Ghil, Halem,
and Atlas, 1979). NWP is essentially an initial-value
problem for the partial differential equations (PDEs) gov-
erning large-scale atmospheric flows (Richardson, 1922)
that needed a complete and accurate initial state every 12 or
24 hours.

Data assimilation combines partial and inaccurate obser-
vational data with a dynamic model, based on physical laws,
that governs the evolution of the continuous medium under
study to provide the best estimates of the state of the medium.
This model is also subject to errors, due to incomplete
knowledge of the smaller-scale processes, numerical discre-
tization errors, and other factors. Given these two sources of
information, observational and physicomathematical, there
are three types of problems that can be formulated and solved
given measurements over a time interval ft0 ≤ t ≤ t1g: filter-
ing, smoothing, and prediction; see Fig. 9.
Filtering involves obtaining a best-possible estimate of the

state XðtÞ at t ¼ t1, smoothing at all times t0 ≤ t ≤ t1, and
prediction at times t > t1. Filtering and prediction are typi-
cally used in NWP and can be considered the generation of
short “video loops,” while smoothing is typically used in
climate studies and resembles the generation of long “feature
movies” (Ghil and Malanotte-Rizzoli, 1991).
Figure 10 illustrates a so-called forecast-assimilation cycle,

as used originally in NWP: at evenly spaced, preselected
times ftk∶k ¼ 1; 2;…; Kg, one obtains an analysis of the state

FIG. 8. Geographic distribution of observing systems: (a) geostationary satellite observations, (b),(c) polar-orbiting satellite soundings,
(d) ocean surface scatterometer-derived winds, and (e),(f) Tropical Rainfall Measuring Mission (TRMM) Microwave Imager orbits.
Each color represents the coverage of a single satellite. Observations in (b) and (c) represent vertical layers and area-averaged values.
The tropics are marked by the lighter areas bordered by �30° latitude. From the same source as Fig. 7.
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XðtkÞ by combining the observations over some interval
preceding the time tk with the forecast from the previous
state Xðtk−1Þ (Bengtsson, Ghil, and Källén, 1981; Kalnay,
2003). Many variations on this relatively simple scheme have
been introduced in adapting it to oceanographic data [see Ghil
and Malanotte-Rizzoli (1991) and references therein] and
space plasmas [see, e.g., Merkin et al. (2016)] or to using
the time-continuous stream of remote-sensing data (Ghil,
Halem, and Atlas, 1979). Carrassi et al. (2018) provided a
comprehensive review of data assimilation methodology and
applications.
Analyses are routinely used for numerical weather forecasts

and take advantage of the continuous improvements of models
and observations. But climate studies require data of con-
sistent spatial resolution and accuracy over long time intervals,
over which an operational NWP center might have changed its
numerical model or its data assimilation scheme, as well as its
raw data sources. To satisfy this need, several NWP centers
have started in the 1990s to produce so-called reanalyses that
use the archived data over multidecadal time intervals,
typically since World War II, as well as the best model and
data assimilation method available at the time of the reanalysis
project. For obvious reasons of computational cost, reanalyses
are often run at a lower spatial resolution than the latest
version in operational use at the time.

Some leading examples of such diachronically coherent
reanalyses for the atmosphere are those produced by the
European Centre for Medium-Range Weather Forecasts
(ECMWF) (Dee et al., 2011), the NCEP-NCAR reanalysis
produced as a collaboration of the U.S. National Centers for
Environmental Prediction (NCEP) and the National Center for
Atmospheric Research (NCAR) (Kistler et al., 2001), and the
JRA-25 reanalysis produced by the Japan Meteorological
Agency (Onogi et al., 2007). While these reanalyses agree
fairly well for fields that are relatively well observed, such as
the geopotential field (see Sec. II.C) over the continents of the
Northern Hemisphere, substantial differences persist in their
fields over the Southern Hemisphere or those that are observed
either poorly or not at all (Dell’Aquila et al., 2005, 2007;
Kharin, Zwiers, and Zhang, 2005; Marques et al., 2009;
Marques, Rocha, and Corte-Real, 2010; Kim and Kim, 2013).
Compo et al. (2011) produced a centennial reanalysis from

1871 to the present by assimilating only surface pressure
reports and using observed monthly sea-surface temperature
and sea-ice distributions as boundary conditions, while Poli
et al. (2016) provided a similar product for the time interval
1899–2010, where the surface pressure and the surface winds
were assimilated. These enterprises are motivated by the need
to provide a benchmark for testing the performance of climate
models for the late 19th and the 20th century.
A similar need has arisen for the ocean: on the one hand,

several much more sizable data sources have become available
through remote sensing and have led to detailed ocean
modeling; on the other hand, the study of the coupled climate
system requires a more uniform dataset, albeit one less
accurate than for the atmosphere alone. Thus, the equivalent
of a reanalysis for the ocean had to be produced, in spite of the
fact that the equivalent of NWP for the ocean did not exist. A
good example of a diachronically coherent dataset for the
global ocean is the Simple Ocean Data Assimilation (Carton
and Giese, 2008). More recently the community of ocean
modelers and observationalists delivered several ocean rean-
alyses able to provide a robust estimate of the state of the
ocean (Lee et al., 2009; Balmaseda et al., 2015).
Finally, by relying on recent advances in numerical meth-

ods and in the increased availability of observational data, as
well as of increased performance of computing and storage
capabilities, coupled atmosphere-ocean data assimilation sys-
tems have been constructed; see, e.g., Penny and Hamill
(2017). Vannitsem and Lucarini (2016) provided a theoretical
rationale for the need of coupled data assimilation schemes to
be able to deal effectively with the climate system’s multiscale
instabilities. These coupled systems play a key role in efforts
to produce seamless weather, subseasonal-to-seasonal (S2S),
seasonal, and interannual climate predictions (Palmer et al.,
2008; Robertson and Vitart, 2018); they have already been
used for constructing climate reanalyses; see, e.g., Karspeck
et al. (2018) and Laloyaux et al. (2018).

2. Proxy data

As already mentioned repeatedly and discussed in greater
detail in Sec. II.B, climate variability covers a vast range of
timescales, and the information we can garner from the
instrumental record is limited to the last century or two.

FIG. 10. Schematic diagram of a forecast-assimilation cycle
that is used for constructing the best estimates of the state of
the atmosphere, ocean, or both through the procedure of data
assimilation. Observational data are dynamically interpolated
using the a meteorological, oceanographic, or coupled model to
yield the analysis products. The red arrow corresponds to a longer
forecast, made only from time to time. Greater detail for the case
of operational weather prediction appears in Ghil (1989), Fig. 1.

FIG. 9. Schematic diagram of filtering F, smoothing S,
and prediction P; green solid circles are observations. From
Wiener, 1949.

Michael Ghil and Valerio Lucarini: The physics of climate variability and climate …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035002-10



Even so-called historical records extend only to the few
millennia of a literate humanity (Lamb, 1972). To extend
our reach beyond this eyeblink of the planet’s life, it is
necessary to resort to indirect measures of past climatic
conditions able to inform us about its state thousands or even
millions of years ago.
Climate proxies are physical, chemical, or biological

characteristics of the past that have been preserved in various
natural repositories and that can be correlated with the local or
global state of the atmosphere, ocean, or cryosphere at that
time. Paleoclimatologists and geochemists currently take into
consideration multiple proxy records, including coral records
(Boiseau, Ghil, and Juillet-Leclerc, 1999; Karamperidou et al.,
2015) and tree rings (Esper, Cook, and Schweingruber, 2002)
for the last few millennia, as well as marine-sediment
(Duplessy and Shackleton, 1985; Taricco et al., 2009) and
ice-core (Jouzel et al., 1993; Andersen et al., 2004) records for
the last 2 × 106 yr of Earth’s history, the Quaternary.
Glaciation cycles, i.e., an alternation of warmer and colder
climatic episodes, dominated the latter era. The chemical and
physical characteristics, along with the accumulation rate of
the samples, require suitable calibration and dating and are
used thereafter to infer some of the properties of the climate
of the past; see, e.g., Ghil (1994) and Cronin (2010) and
references therein.
Proxies differ enormously in terms of precision, uncertain-

ties in the values and dating, and spatiotemporal extent, and
they do not homogeneously cover Earth. It is common practice
to combine and cross-check many different sources of data to
have a more precise picture of the past (Imbrie and Imbrie,
1986; Cronin, 2010). Recently data assimilation methods have
started to be applied to this problem as well, using simple
models and addressing the dating uncertainties in particular;
see, e.g., Roques et al. (2014). Combining the instrumental
and proxy data with their extremely different characteristics of
resolution and accuracy is a complex and sometimes con-
troversial exercise in applied statistics. An important example
is that of estimating the globally averaged surface air temper-
ature record well before the industrial era; see Fig. 4 and the
previous discussion of the hockey stick controversy in
Sec. I.B.2.

B. Climate variability on multiple Timescales

The presence of multiple scales of motions in space and
time in the climate system can be summarized through so-
called Stommel diagrams. Figure 11(a) presents the original
Stommel (1963) diagram, in which a somewhat idealized
spectral density associated with the ocean’s variability was
plotted in logarithmic spatial and temporal scales while
characteristic oceanic phenomena whose variance exceeds
the background level were identified. Stommel diagrams
describe the spatial-temporal variability in a climatic sub-
domain by associating different, phenomenologically well-
defined dynamical features, such as cyclones and long waves
in the atmosphere or meanders and eddies in the ocean, with
specific ranges of scales; they emphasize relationships
between spatial and temporal scales of motion. Usually,
specific dynamical features are associated with specific

FIG. 11. Idealized wavelength-and-frequency power spectra for
the climate system. (a) The original Stommel diagram representing
the spectral density (vertical coordinate) of the ocean’s variability
as a function of the spatial and temporal scale. From Stommel,
1963(b) Diagram qualitatively representing the main features of
ocean variability. Courtesy of D. Chelton. (c) The same as (b),
describing here the variability of the atmosphere.
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approximate balances governing the properties of the evolu-
tion equations of the geophysical fluids; see Sec. II.C.2.
In Figs. 11(b) and 11(c), a qualitative Stommel diagram

portrays today’s estimates of the main range of spatial and
temporal scales in which variability is observed for the ocean
and the atmosphere, respectively. One immediately notices
that larger spatial scales are typically associated with longer
temporal scales, in both the atmosphere and the ocean. The
two plots show that for both geophysical fluids a “diagonal” of
high spectral density in the wavelength-frequency plane
predominates. As the diagonal reaches the size of the planet
in space, the variability can no longer maintain this propor-
tionality of scales and keeps increasing in timescales, which
are not bounded, while the spatial ones are.
Both extratropical cyclones in the atmosphere and eddies

in the ocean are due to baroclinic instability, but their
characteristic spatial extent in the ocean is 10 times smaller
and their characteristic duration is 100 times longer than
in the atmosphere. In Fig. 11(c), three important meteoro-
logical scales are explicitly mentioned: the microscale
(small-scale turbulence), the mesoscale (e.g., thunderstorms
and frontal structures), and the synoptic scale (e.g., extra-
tropical cyclones).
Given the different dynamical variability ranges in space

and time, different classes of numerical models based on
different dynamical balances can simulate explicitly only
one or a few such dynamical ranges. The standard way of
modeling processes associated with a particular range of
scales is to “freeze” processes on slower timescales or to
prescribe their slow quasiadiabatic effect on the variability
being modeled to handle the processes that are too large or too
slow in scale to be included in the model.
As for the faster processes, these are “parametrized”; i.e.,

one attempts to model their net effect on the variability of
interest. Such parametrizations have been, until recently,
purely deterministic but have started over the last decade or
so to be increasingly stochastic; see Palmer and Williams
(2009) and references therein. We discuss the mathematics
behind parametrizations and provide a few examples in
Sec. III.G.
To summarize, there are about 15 orders of magnitude in

space and in time that are active in the climate system, from
continental drift at millions of years to cloud processes at
hours and shorter increments. The presence of such a wide
range of scales in the system provides a formidable challenge
for its direct numerical simulation. There is no numerical
model that can include all the processes that are active on the
various spatial and temporal scales and can run for 107

simulated years. Occam’s razor and its successors, including
Poincaré’s parsimony principle (Poincaré, 1902), suggest that
if we had one, it would not necessarily be such a good tool for
developing scientific insight. It would instead just be a
gigantic simulator not helping scientists to distinguish the
forest from the trees.
Still, there are increasing efforts for achieving “seemless

prediction” across timescales and space scales; see, e.g.,
Palmer et al. (2008) and Robertson and Vitart (2018).
Merryfield et al. (2020) provided a comprehensive review
of the most recent efforts for bridging the gap between S2S
and seasonal-to-decadal predictions.

1. A survey of climatic timescales

Combining proxy and instrumental data allows one to
gather information not only on the mean state of the climate
system but also on its variability on many different scales. An
artist’s rendering of climate variability in all timescales is
provided in Fig. 12(a). The first version of this figure was
produced by Mitchell (1976), and many versions thereof have
circulated since. The figure is meant to provide semiquanti-
tative information on the spectral power S ¼ SðωÞ, where the
angular frequency ω is 2π times the inverse of the oscillation
period; SðωÞ is supposed to give the amount of variability in a
given frequency band for a generic climatic variable, although
one typically has in mind the globally averaged surface air

FIG. 12. Power spectra of climate variability across timescales.
(a) An artist’s rendering of the composite power spectrum of
climate variability for a generic climatic variable, from hours to
millions of years; it shows the amount of variance in each
frequency range. (b) Spectrum of the Central England temper-
ature time series from 1650 to the present. Each peak in the
spectrum is tentatively attributed to a physical mechanism; see
Plaut, Ghil, and Vautard (1995) for details. From Ghil, 2002.
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temperature. Unlike in the Stommel diagrams of Fig. 11, there
is no information on the spatial scales of interest.
This power spectrum is not computed directly by spectral

analysis from a time series of a given climatic quantity, such as
local or global temperature; indeed, there is no single time series
that is 107 yr long and has a sampling interval of hours, as the
figure would suggest. Figure 12(a) instead includes information
obtained by analyzing the spectral content of many different
time series, for example, the spectrum of the 335-yr-long
record of Central England temperatures in Fig. 12(b). This time
series is the longest instrumentally measured record of temper-
atures; see Kondrashov, Feliks, and Ghil (2005) for Nile River
water levels. Given the lack of earlier instrumental records, one
can imagine but not easily confirm that the higher-frequency
spectral featuresmight have changed in amplitude, frequency, or
both over the course of climatic history.
With all due caution in its interpretation, Fig. 12(a) reflects

three types of variability: (i) sharp lines that correspond to
periodically forced variations, at 1 day and 1 yr, (ii) broader
peaks that arise from internal modes of variability, and (iii) a
continuous portion of the spectrum that reflects stochastically
forced variations, as well as deterministic chaos (Ghil, 2002).
We provide a mathematical framework to support this inter-
pretation in Sec. IV.E.
Between the two sharp lines at 1 day and 1 yr lies the

synoptic variability of midlatitude weather systems, concen-
trated at 3–7 days, as well as intraseasonal variability, i.e.,
variability that occurs on the timescale of one to three months.
The latter is also called low-frequency atmospheric variability,
a name that refers to the fact that this variability has lower
frequency or longer periods than the life cycle of weather
systems. Intraseasonal variability comprises phenomena such
as the Madden-Julian oscillation of winds and cloudiness in
the tropics or the alternation between episodes of zonal and
blocked flow in midlatitudes (Ghil and Childress, 1987; Ghil,
Kimoto, and Neelin, 1991; Ghil and Mo, 1991; Haines, 1994;
Molteni, 2002).
Immediately to the left of the seasonal cycle in Fig. 12(a)

lies interannual, i.e., year-to-year, variability. An important
component of this variability is the El Niño phenomenon in
the tropical Pacific Ocean: once about every 2–7 yr, the sea-
surface temperatures (SSTs) in the eastern tropical Pacific
increase by one or more degrees over a time interval of about
1 yr. This SST variation is associated with changes in the
trade winds over the tropical Pacific and in sea level pressures
(Bjerknes, 1969; Philander, 1990); an east-west seesaw in the
latter is called the Southern Oscillation. The combined El
Niño–Southern Oscillation (ENSO) phenomenon arises
through large-scale interaction between the equatorial
Pacific and the atmosphere above. Equatorial wave dynamics
in the ocean plays a key role in setting ENSO’s timescale
(Cane and Zebiak, 1985; Neelin, Latif, and Jin, 1994; Neelin
et al., 1998; Dijkstra and Burgers, 2002).
The greatest excitement among climate scientists, as well as

the public, has more recently been generated by interdecadal
variability, i.e., climate variability on the timescale of a few
decades, the timescale of an individual human’s life cycle
(Martinson et al., 1995). Figure 12(b) represents an enlarge-
ment of the interannual-to-interdecadal portion of Fig. 12(a).
The broad peaks are due to the climate system’s internal

processes: each spectral component can be associated, at least
tentatively, with a mode of interannual or interdecadal
variability (Plaut, Ghil, and Vautard, 1995). Thus, the right-
most peak, with a period of 5.5 yr, can be attributed to the
remote effect of ENSO’s low-frequency mode (Ghil and
Robertson, 2000; Ghil et al., 2002), while the 7.7-yr peak
captures a North Atlantic mode of variability that arises
from the Gulf Stream’s interannual cycle of meandering
and intensification; see Dijkstra and Ghil (2005) and refer-
ences therein. The two interdecadal peaks, near 14 and 25 yr,
are also present in global records, instrumental as well as
paleoclimatic (Kushnir, 1994; Mann, Bradley, and Hughes,
1998; Moron, Vautard, and Ghil, 1998; Delworth and Mann,
2000; Ghil et al., 2002).
Finally, the leftmost part of Fig. 12(a) represents paleo-

climatic variability. The information summarized here comes
exclusively from proxy indicators of climate; see Sec. II.A.2.
The presence of near cyclicity is manifest in this range in

the broad peaks present in Fig. 12(a) between roughly 103 and
106 yr. The two peaks at about 2 × 104 and 4 × 104 yr reflect
variations in Earth’s orbit, while the dominant peak at 105 yr
remains to be convincingly explained (Imbrie and Imbrie,
1986; Ghil, 1994; Gildor and Tziperman, 2001). Quaternary
glaciation cycles provide a fertile testing ground for theories
of climate variability for two reasons: (i) they represent a wide
range of climatic conditions, and (ii) they are much better
documented than earlier parts of paleoclimatic history.
Within these glaciation cycles, there is higher-frequency

variability prominent in North Atlantic paleoclimatic records.
These are the Heinrich events (Heinrich, 1988), marked
by a sediment layer that is rich in ice-rafted debris whose
near periodicity is of ð6 − 7Þ × 103 yr, and the Dansgaard-
Oeschger cycles (Dansgaard et al., 1993) that provide the peak
at around ð1 − 2.5 Þ × 103 yr in Fig. 12(a). Rapid changes in
temperature of up to half of the amplitude of a typical glacial-
interglacial temperature difference occurred during Heinrich
events and somewhat smaller ones over a Dansgaard-Oeschger
cycle. Progressive cooling through several of the latter cycles,
followed by an abrupt warming, defines a Bond cycle (Bond
et al., 1997). None of these higher-frequency phenomena can
be directly connected to orbital or other cyclic forcings.
In summary, climate variations range from the large-

amplitude climate excursions of past millennia to smaller-
amplitude fluctuations on shorter timescales. Several spectral
peaks of variability can be clearly related to forcing mech-
anisms; others cannot. In fact, even if the external forcing
were constant in time, i.e., if no systematic changes in
insolation or atmospheric composition, such as trace gas or
aerosol concentrations, would occur, the climate system
would still display variability on many timescales. This
statement is clearly true for interannual ENSO variability in
the equatorial Pacific, as discussed earlier. We seek to
understand multiscale climate variability better in Secs. III
and IV, where we look in greater detail at natural climate
variability and climate response to forcings, respectively.

2. Atmospheric variability in mid-latitudes

Midlatitude atmospheric variability during boreal winter,
when the winds are stronger and the variability is larger in the
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Northern Hemisphere, has long been a major focus of
dynamic meteorology. The intent of this section is to motivate
the reader to appreciate the complexity of large-scale atmos-
pheric dynamics by focusing on a relatively well understood
aspect thereof. We see that fairly diverse processes contribute
to the spectral features discussed in connection with Fig. 12.
The synoptic disturbances that are most closely associated

with midlatitude weather have characteristic timescales of
the order of 3–10 days, with a corresponding spatial scale of
the order of 1000–2000 km (Holton and Hakim, 2013). They
roughly correspond to the familiar eastward-propagating
cyclones and anticyclones and emerge as a result of the
process of baroclinic instability, which converts available
potential energy of the zonal flow into eddy kinetic energy.
This conversion is a crucial part of the Lorenz energy cycle

(Lorenz, 1955, 1967), and it occurs through the lowering of
the center of mass of the atmospheric system undergoing an
unstable development. Baroclinic instability (Charney, 1947;
Vallis, 2006; Holton and Hakim, 2013) is active when the
meridional temperature gradient or, equivalently, the vertical
wind shear is strong enough. These conditions are more
readily verified in the winter season, which features a large
equator-to-pole temperature difference and a strong midlati-
tude jet (Speranza, 1983; Holton and Hakim, 2013).
The space-time spectral analysis introduced by Hayashi

(1971) and refined by Pratt (1976) and Fraedrich and Bottger
(1978) builds upon the idea of the Stommel diagrams in Fig. 11.
In addition, it provides information about the direction and
speed at which the atmospheric eddies move and associates
with each range of spatial and temporal scales a corresponding
weight in terms of spectral power. This information may be
obtained in the first instance by Fourier analysis of a one-
dimensional spatial field, and it allows one to reconstruct the
propagation of atmospheric waves. This analysis is usually
carried out in the so-called zonal, i.e., west-to-east, direction;
see Sec. II.C.
Next one can compute the power spectrum in the frequency

domain for each spatial Fourier component and then average
the results across consecutive winters to derive a climatology
of winter atmospheric waves. The difficulty here lies in the
fact that straightforward space-time decomposition does not
distinguish between standing and traveling waves: a standing
wave gives two spectral peaks corresponding to waves that
travel eastward and westward at the same speed and with the
same phase. This problem can be circumvented only by
making assumptions regarding a given wave’s nature. For
instance, we may assume complete coherence between the
eastward and westward components of standing waves and
attribute the incoherent part of the spectrum to actual
traveling waves.
Figure 13 shows the spectral properties of the winter

500-hPa geopotential height field meridionally averaged
across the midlatitudes of the northern hemisphere (specifi-
cally, between 30° and 75° N) for the time interval 1957–2002.
The properties of all waves, as well as the standing, eastward-
traveling, and westward-traveling waves, appear in panels
Figs. 13(a)–13(d), respectively. As discussed later, the 500-hPa
height field provides a synthetic yet comprehensive picture of
the atmosphere’s synoptic to large-scale dynamics.

Figure 13(c) shows that the eastward-propagating waves
are dominated by synoptic variability, concentrated over
3–12-day periods and zonal wave numbers 5–8; note that a
single cyclone or anticyclone counts for half a wavelength.
In addition, the slanting high-variability ridge in H̄E indicates
the existence of a statistically defined dispersion relation that
relates frequency and wave number, which is in agreement
with the basic tenets of baroclinic instability theory (Holton
and Hakim, 2013).
When looking at the westward-propagating variance in

Fig. 13(d), one finds that the dominant portion of the
variability is associated with low-frequency, planetary-scale
Rossby waves. Finally, Fig. 13(b) shows the contribution to
the variance given by standing waves, which correspond to
large-scale, geographically locked, and persistent phenomena
like blocking events. Note that westward-propagating and
stationary waves provide the lion’s share of the overall
variability of the atmospheric field; see also Kimoto and
Ghil (1993a), Fig. 7.
The dynamics and energetics of planetary waves are still

under intensive scrutiny. Descriptions and explanations of
several highly nonlinear aspects thereof are closely inter-
woven with those of blocking events, identified as persistent,
large-scale deviations from the zonally symmetric general
circulation (Charney and DeVore, 1979; Legras and Ghil,
1985; Benzi et al., 1986; Ghil and Childress, 1987; Benzi and
Speranza, 1989; Kimoto and Ghil, 1993a). Weeks et al.
(1997) provided a fine example of contrast between a blocking
event and the climatologically more prevalent zonal flow.
Persistent blocking events strongly affect the weather for

up to a month over continental-size areas. Such persistence
offers some hope for extended predictability of large-scale
flows, and of the associated synoptic-scale weather, beyond
the usual predictability of the latter, which is believed not
to exceed 10–15 days; see Lorenz (1996) and references
therein.
Today, the most highly resolved and physically detailed

NWPmodels are reasonably good at predicting the persistence
of a blocking event once the model’s initial state is within that
event, but not at predicting the onset of such an event or its
collapse (Ferranti, Corti, and Janousek, 2015). Likewise, the
capability of necessarily lower-resolution climate models to
simulate the spatiotemporal statistics of such events is far from
perfect; in fact, relatively limited improvement has been
realized in the last two decades (Davini and D’Andrea,
2016). Weeks et al. (1997) reproduced successfully in the
laboratory key features of the dynamics and statistics of
blocking events.
Ghil and Robertson (2002) reviewed several schematic

descriptions of the midlatitude atmosphere’s low-frequency
variability (LFV) as jumping between a zonal regime and a
blocked one or, more generally, a small number of such
regimes. This coarse graining of the LFV’s phase space and
Markov chain representation of the dynamics continues to
inform current efforts at understanding what atmospheric
phenomena can be predicted beyond 10–15 days and how.
Recently analyses based on dynamical-systems theory have
associated blocked flow configurations with higher instability
of the atmosphere as a whole (Schubert and Lucarini, 2016;
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Faranda, Messori, and Yiou, 2017; Lucarini and Gritsun,
2020), as predicted by Legras and Ghil (1985).
The effect of global warming on the statistics of blocking

events has recently become a matter of considerable con-
troversy. The sharper increase of near-surface temperatures in
the Arctic than near the Equator is fairly well understood [see,
e.g., Ghil (1976), Fig. 7] and has been abundantly documented
in recent observations; see, e.g., Walsh (2014), Fig. 8. This
decrease in pole-to-equator temperature difference ΔT is
referred to as polar amplification of global warming.
Francis and Vavrus (2012) and Liu et al. (2012) suggested

that reduced ΔT slows down the prevailing westerlies and
increases the north-south meandering of the subtropical jet
stream, resulting in more frequent blocking events. This
suggestion seems to agree with fairly straightforward argu-
ments of several other authors on the nature of blocking
(Charney and DeVore, 1979; Legras and Ghil, 1985; Ghil and
Childress, 1987), as illustrated, for instance, by Ghil and
Robertson (2002) in their Fig. 2): The strength ψ�

A of the

driving jet in the figure is proportional to ΔT, in accordance
with standard quasigeostrophic flow theory,11 and lower
jet speeds ψA favor blocking. Ruti et al. (2006) also
presented observational evidence for a nonlinear relation
between the strength of the subtropical jet and the probability
of occurrence of blocking events, in agreement with the
bent-resonance theory of midlatitude LFV proposed by
Benzi et al. (1986).
Considerable evidence against the apparently straightfor-

ward argument for global warming as the cause of an increase
in midlatitude blocking has accumulated too from both
observational and modeling studies; see Hassanzadeh,
Kuang, and Farrell (2014), Barnes and Screen (2015), and
references therein. The issue is far from settled, as are many
questions about other regional effects of global warming.

FIG. 13. Variance H̄ of the winter (December–February) atmospheric fields in the midlatitudes of the Northern Hemisphere. (a) Total
variance H̄T . (b) Variance associated with standing waves H̄S. (c) Variance associated with eastward-propagating waves H̄E.
(d) Variance associated with westward-propagating waves H̄W . Based on NCEP-NCAR reanalysis data (Kistler et al., 2001). See the
text for details. From Dell’Aquila et al., 2005.

11See Secs. II.C.2 and II.C.3 for geostrophic balance, quasigeos-
trophy, and their consequences.
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C. Basic properties and fundamental equations

1. Governing equations

The evolution of the atmosphere, the ocean, the soil, and the
ice masses can be described by using the continuum approxi-
mation, in which these subsystems are represented by field
variables that depend on three spatial dimensions and time.
For each of the climatic subdomains, we consider the
following field variables: the density ρ and the heat capacity
at constant volume C, with the specific expression for ρ and C
defining the thermodynamics of the medium; the concen-
tration of the chemical species fξk∶1 ≤ k ≤ Kg contained in
the medium and present in different phases, e.g., the salt
dissolved in the ocean or the water vapor in the atmosphere;
the three components fvi∶1 ≤ i ≤ 3g of the velocity vector;
the temperature T; the pressure p; the heating rate J; and the
gravitational potential Φ.
Note that by making the thin-shell approximation

H=R ≪ 1, where H is the vertical extent of the geophysical
fluid and R is the radius of Earth, we can assume that the
gravitational potential at the local sea level is zero and can thus
safely use the approximation Φ ¼ gz, where Φ is then called
the geopotential, g is the gravity at the surface of Earth, and z
is the geometric height above sea level. Moreover, one has to
take into account the fact that the climate system is embedded
in a noninertial frame of reference that rotates with an angular
velocity Ω with components fΩi∶1 ≤ i ≤ 3g.
The PDEs that govern the evolution of the field variables

are based on the budget of mass, momentum, and energy.
When the fluid contains several chemical species, their
separate budgets also have to be accounted for (Vallis,
2006). To have a complete picture of the Earth system,
one should in principle also consider the evolution of
biological species. Doing so, however, is well beyond our
scope here, even though present Earth system models do
attempt to represent biological processes, albeit in a sim-
plified way; see the discussion in Sec. II.D.
The mass budget equations for the constituent species can

be written as follows:

∂tðρξkÞ ¼ −∂iðρξkviÞ þDξk þ Lξk þ Sξk : ð1Þ

Here ∂t is the partial derivative in time and ∂i is the partial
derivative in the xi direction;Dξk , Lξk , and Sξk are the diffusion
operator, phase changes, and local mass budget due to other
chemical reactions that are associated with k.
The momentum budget’s ith component is written as

∂tðρviÞ ¼ −∂jðρvjviÞ − ∂ipþ ρ∂iΦ

− 2ρϵijkΩjvk þ Ti þ Fi: ð2Þ

Here the Levi-Civita antisymmetric tensor ϵijk is used to write
the Coriolis force; Ti indicates direct mechanical forcings,
e.g., those resulting from lunisolar tidal effects; Fi ¼ −∂jτij
corresponds to friction, with fτijg the stress tensor; and
summation over equal indices is used. Equation (2) is just
a forced version of the momentum equation in the Navier-
Stokes equations (NSEs), written in a rotating frame of
reference.

A general state equation valid for both fluid envelopes of
Earth, i.e., the atmosphere and the ocean, is

ρ ¼ gðT; p; ξ1;…; ξKÞ: ð3Þ

As a first approximation, one can take K ¼ 1, where ξ1 ¼ ξ is,
respectively, moisture in the atmosphere and salinity of the
ocean. For brevity, we restrict ourselves here to the atmosphere.
In general, one can write the specific energy of the climate

system as the sum of the specific internal, potential, and
kinetic energies, also taking into account the contributions
coming from chemical species in different phases. To get
manageable formulas, some approximations are necessary;
see, e.g., Peixoto and Oort (1992).
Neglecting reactions other than the phase changes between

the liquid and gas phases of water, the expression of the
specific energy in the atmosphere is

e ¼ cvT þΦþ vjvj=2þ Lq;

where cv is the specific heat at constant volume for the
gaseous atmospheric mixture, L is the latent heat of evapo-
ration, and q ¼ ρξ is the specific humidity. In this formula, we
neglect the heat content of the liquid and solid water and the
heat associated with the phase transition between solid and
liquid water. Instead, the approximate expression for the
specific energy in the ocean is

e ¼ cWT þΦþ vjvj=2;

where cW is the specific heat at constant volume of
water, while neglecting the effects of salinity and of pressure.
Finally, for the specific energy of soil or ice, we can take
e ¼ cfS;IgT þΦ, respectively.
After some nontrivial calculations, one derives the follow-

ing general equation for the local energy budget:

∂tðρeÞ ¼ −∂jðρεvjÞ − ∂jQSW
j − ∂jQLW

j

− ∂jJSHj − ∂jJLHj − ∂jðviτijÞ þ viTi; ð4Þ

where e is the energy per unit mass and ε ¼ eþ p=ρ is the
enthalpy per unit mass. The energy source and sink terms can
be written as the sum of the work done by the mechanical
forcing viTi and of the respective divergences of the short-
wave (solar) and longwave (terrestrial) components of the
Poynting vector QSW

j and QLW
j , of the turbulent sensible and

latent heat fluxes JSHj and JLHj , and of the scalar product of the
velocity field with the stress tensor viτij.
Equation (4) is written in a conservative form, with the

right-hand side containing only the sum of flux divergences,
except for the last term, which is negligible. By taking suitable
volume integrals of Eq. (4) and assuming steady-state con-
ditions, one derives meridional enthalpy transports from the
zonal budgets of energy fluxes (Ghil and Childress, 1987;
Peixoto and Oort, 1992; Lucarini and Ragone, 2011; Lucarini,
Blender et al., 2014); recall Figs. 2(a) and 2(b). The presence
of inhomogeneous absorption of shortwave radiation due to
the geometry of the Sun-Earth system and of the physico-
chemical properties of the climatic subdomains determines the
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presence of nonequilibrium conditions for the climate system,
as already discussed in Sec. I.A.
Various versions of Eqs. (1)–(4) have been studied for over

a century, and well-established thermodynamical and chemi-
cal laws accurately describe the phase transitions and reactions
of the climate system’s constituents. Finally, quantum
mechanics allows one to calculate in detail the interaction
between matter and radiation.
Still, despite the fact that climate dynamics is governed

by well-known evolution equations, it is way beyond our
scientific ability to gain a complete picture of the mathemati-
cal properties of the solutions. In fact, many fundamental
questions are still open regarding the basic NSEs in a
homogeneous fluid without phase transitions and rotation
(Temam, 1984, 1997). In particular, even for the basic NSEs,
providing analytical, closed-form solutions is possible only in
some highly simplified cases that are either linear or otherwise
separable (Batchelor, 1974).
As discussed, Eqs. (1)–(4) can simulate a range of phe-

nomena that spans many orders of magnitude in spatial and
temporal scales. Hence, it is virtually impossible to construct
numerical codes able to explicitly represent all ongoing
processes at the needed resolution in space and time. It is
thus necessary to parametrize the processes that occur at
subgrid scales and cannot, therewith, be directly represented.
Among the most important processes of this type are cloud-
radiation interactions and turbulent diffusion. We discuss the
theoretical framework behind the formulation of parametriza-
tions in Sec. III.G.

2. Approximate balances and filtering

Equations (1)–(4) are too general and contain too many
wave propagation speeds and instabilities to properly focus on
certain classes of phenomena of interest. For instance, the
fluid’s compressibility plays a role only in the propagation of
extremely fast acoustic waves, whose energy is negligible,
compared to that of the winds and currents we are interested
in here.
Therefore, starting with Charney (1947), more-or-less-

systematic approximations have been introduced to filter
out undesirable waves from the equations of motion and to
study particular classes of phenomena and processes.
Depending on the climate subsystem and the range of scales
of interest, different approximations can be adopted. For
example, if one considers ice sheets and bedrock on the
timescale of millennia, it is reasonable to assume that vj ≃ 0,
i.e., to remove the flow field from the evolution equation;
see Ghil (1994), Saltzman (2001), and references therein.
This approximation is not valid if one wants to describe
explicitly the motion of the ice sheets on shorter timescales
(Paterson, 1981).
More precisely, the filtering process consists of applying a

set of mathematical approximations to the fundamental
governing equations, usually considered to be a suitable
generalization of the classical NSEs like Eqs. (1)–(4). The
purpose of this filtering is to exclude from the filtered system
certain physical processes that are heuristically assumed
to play only a minor role in its dynamics at the timescale
and space scale under investigation. The magnitudes of all

terms in the governing equations for a particular type of
motion are estimated by dimensional analysis (Barenblatt,
1987), and various classes of simplified equations have been
derived by considering distinct asymptotic regimes in the
associated scales (Ghil and Childress, 1987; Pedlosky, 1987;
McWilliams, 2006; Klein, 2010).
The approximations adopted rely on assuming that the

continuous medium, whether fluid or solid, obeys suitably
defined time-independent relations or undergoes only small
departures from such relations, and that these relations result
from the balance of two or more dominating forces.
Imposing such balances leads to reducing the number of
independent field variables of the system that obey a set of
evolution equations. Additionally, the imposition of dynami-
cal balances leads to removing specific wave motions from
the range of allowed dynamical processes.
In meteorological terminology, a prognostic variable whose

tendency, i.e., time derivative, appears in the full equations
may thus become a diagnostic variable, which appears in a
nondifferentiated form only in the filtered equations. Next we
see two of the most important examples of filtering, which,
among other things, are essential for the practical implemen-
tation of numerical models of the atmosphere and ocean
(Vallis, 2006; Cushman-Roisin and Beckers, 2011; Holton
and Hakim, 2013).

a. Hydrostatic balance

A classical example of filtering is the hydrostatic approxi-
mation. In a local Cartesian coordinate system ðx; y; zÞ, we
define by ẑ ¼ ∇Φ=j∇Φj the direction perpendicular to a
geopotential isosurface Φ≡ const. An obvious stationary
solution of the NSEs is given in these coordinates by the
time-independent hydrostatic balance equation

ρhg ¼ −∂zph; ð5Þ

where the subscript h denotes this solution.
On sufficiently large spatial and temporal scales, many

geophysical flows, e.g., atmospheric and oceanic, as well as
continental surface and ground water, are near hydrostatic
equilibrium. In general, stable hydrostatic equilibrium is
achieved when fluid with lower specific entropy lies below
fluid with higher specific entropy; in this case, Eq. (5) is
obeyed for all ðx; y; zÞ within the domain occupied by
the fluid.
When this condition is broken because of external forcing

or internal heating, say, the stratification is not stable and the
fluid readjusts so as to reestablish the hydrostatic equilibrium.
This readjustment is achieved by vertical convective motions,
in which available potential energy is transformed into kinetic
energy responsible for vertical motions that can locally be
much faster than the large-scale flow. Violations of hydrostatic
balance thus exist only on short timescales and space scales.
A large class of models used in studying, simulating, and

attempting to predict climate variability and climate change
is based on a particular simplification of the full set of
Eqs. (1)–(4). This simplification leads to the so-called
primitive equations, which filter out nonhydrostatic motions.
As a result, sound waves are excluded from the solutions, a
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fact that facilitates the numerical implementation of such
models (Washington and Parkinson, 2005; Cushman-Roisin
and Beckers, 2011).
The primitive equations are derived by assuming that

the time-independent hydrostatic balance given in Eq. (5)
does apply at all times, even when the flow is time dependent.
One thus assumes that the vertical acceleration of the fluid is
everywhere much smaller than gravity. Neglecting the vertical
acceleration altogether leads to a monotonic relationship
between the vertical coordinate z and pressure p.12

One can hence replace z with p as a vertical coordinate and
rewrite the modified Eqs. (1)–(4) using a new coordinate
system in which one also replaces, typically, the horizontal
coordinates ðx; yÞ by the longitude λ and the latitude ϕ,
respectively. In such a coordinate system, v3 ≡ ω≡ ∂tp is the
change of pressure with time, the 3D velocity field is non-
divergent ∂jvj ¼ 0, and the density is automatically constant
and set to 1 (Vallis, 2006; Holton and Hakim, 2013).
Despite the use of primitive equations, climate models aim

at simulating a system that nonetheless features nonhydro-
static motions. Additionally, geophysical flows obeying
primitive equations can lead to unstable vertical configura-
tions of the fluids. Typical climate models are formulated to
quickly eliminate local nonhydrostatic conditions and to
parametrize the balanced condition that is thus recovered in
terms of variables that are explicitly represented in the model,
following the idea of convective adjustment originally pro-
posed by Manabe and Strickler (1964). Finding optimal
ways to parametrize the effect of convection on hydrostatic
climate models has become a key research area in climate
dynamics; see Emanuel (1994) for a classical treatise on the
problem of atmospheric convection and Plant and Yano
(2016) for a recent overview.
The primitive equations were at the core of both climate

models and weather prediction models for three decades, from
about the 1970s through the 1990s. Nonhydrostatic models,
constructed through discretization of the full NSEs with
forcing and rotation, have become increasingly available over
the last decade, first as limited-area models and more recently
even as global ones; see, e.g., Marshall et al. (1997).
These models require extremely high resolution in space

and time and are computationally quite expensive; as they start
to enter operational use, they require state-of-the-art hardware
and software, in terms of both computing and storage, as well
as sophisticated postprocessing of the output. Moreover, for
all practical purposes sufficiently detailed initial and boundary
data are not available, and methodological problems reappear
in connection with formulating such data. Still, the use of
nonhydrostatic models allows, in principle, for bypassing the
key problem of parametrizing convection.

b. Geostrophic balance

Another important example of filtering is the one associated
with time-independent purely horizontal balanced flows, in

which the horizontal components of the pressure gradient
force and the Coriolis force cancel out in the NSEs. Such
flows are termed geostrophic; etymologically, this means
Earth turning. The nondimensional parameter that determines
the validity of this approximation is the Rossby number
Ro ¼ U=f0L, where U is a characteristic horizontal velocity,
L is a characteristic horizontal extent, and f0 ¼ 2Ω sinϕ0;
here Ω is the modulus of Earth’s angular frequency of rotation
around its axis and ϕ0 is a reference latitude.
The geostrophic approximation provides a good diagnostic

description of the flow when Ro ≪ 1. Such small Ro values
prevail for the atmosphere on synoptic and planetary scales,
such as those of extratropical weather systems, say poleward
of 30°, where f0 is large enough, and in the free atmosphere,
i.e., above the planetary boundary layer, where frictional
forces can be comparable to the Coriolis force. In the ocean,
this approximation is extremely accurate everywhere except
close to the equator. The smallness of the Rossby number in
the ocean arises from oceanic currents being orders of
magnitude slower than atmospheric winds, so Ro nears unity
only where f0 is extremely small.
Purely geostrophic flow fields are obtained via a zeroth-

order expansion in Ro of the NSEs. Fluid motion is introduced
by considering small perturbations ρg and pg that break the
translation symmetry of the basic, purely hydrostatic density
and pressure fields ρh and ph but preserve the geostrophic
balance, i.e., one sets ρ ¼ ρh þ ρg and p ¼ ph þ pg,
respectively.
Letting x̂ be locally the zonal direction and ŷ be locally the

meridional direction, one can write (Holton and Hakim, 2013)
the geostrophic balance at each height z as

ρhuf0 ¼ −∂ypg; ð6aÞ

ρhvf0 ¼ ∂xpg; ð6bÞ

where the derivatives are taken at constant z, ðu; vÞ ¼ ðv1; v2Þ
and, furthermore, the geostrophic perturbation itself is in
hydrostatic equilibrium, i.e., gρg ¼ −∂zpg. The combined
hydrostatic and geostrophic balance constrains atmospheric
and oceanic motions so that the velocity field is uniquely
determined by the pressure field. In such doubly balanced
flows, the winds or currents are parallel to the isobars at a
given geopotential height z, as shown in Fig. 14(a) rather
than perpendicular to the isobars, as in nonrotating fluids.
Moreover, the vertical component of the velocity field
vanishes w ¼ v3 ≡ 0.
Using the pressure coordinate system ðx; y; pÞ described

previously, where p plays the role of the vertical coordinate,
it is possible to express the geostrophic balance as follows
(Holton and Hakim, 2013):

f0ug ¼ −∂yΦ; ð7aÞ

f0vg ¼ ∂xΦ; ð7bÞ

where this time derivatives are taken at constant p. The
vertical derivative ∂pΦ can, furthermore, be expressed in
terms of ρg. For the atmosphere, one can make the simplifying

12The validity of this approximation, even locally in space and at
most times, explains Pascal’s experimental observation during the
famed 1648 Puy-de-Dôme ascension that a barometer’s reading
decreases monotonically with altitude.

Michael Ghil and Valerio Lucarini: The physics of climate variability and climate …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035002-18



assumption of dry conditions, for which the equation of state
is described by the gas constant R and the heat capacity at
constant pressure Cp.
Assuming, moreover, a horizontally homogeneous back-

ground state with Th ¼ ThðpÞ, introducing the potential
temperature Θh ¼ Thðp=psÞR=Cp , with ps ¼ const the refer-
ence surface pressure, and letting σ ≔ −RThd lnΘh=dp, which
defines the stratification of the background state, one obtains

∂pΦ ¼ −
Rp
σ

Tg: ð8Þ

Thus, in the geostrophic approximation the scalar field Φ
provides complete diagnostic information on the state of the
fluid: its horizontal derivatives give us the velocity field, while
the vertical derivative gives us the geopotential, or mass field,
via perturbations with respect to the background temperature
field (Holton and Hakim, 2013).
Essentially, geophysical fluid dynamics (GFD) is the study

of large-scale flows dominated by the combined hydrostatic
and geostrophic balances. The former is a consequence of the
shallowness of the planetary flows, the latter is a consequence
of their rotation (Ghil and Childress, 1987; Pedlosky, 1987;
McWilliams, 2006; Cushman-Roisin and Beckers, 2011).
Section II.C.3 introduces the more complex situation of
finite-but-small perturbations from this combined balance.
Although modern computers allow a fully ageostrophic

(beyond geostrophic approximation) description of most geo-
physical fluids, geostrophic balance remains a fundamental tool
of theoretical research, and it is also used for practical applica-
tions in everyday weather prediction. Figure 14(b) illustrates
a typical midlatitude synoptic situation: at a given pressure
level, the winds blow, to a good approximation, parallel to the
isolines of geopotential height, and the speed of the wind is
higher where the gradient of geopotential height is stronger. An
appendix in Ghil, Halem, and Atlas (1979) describes the extent
to which diagnostic relations based on the geostrophic approxi-
mation are still used in the analysis and prediction of midlatitude
weather, as simulated by advanced numerical models. Indeed,
geostrophic approximation is implicit in the day-to-day reading
of weather maps on synoptic-to-planetary scales.

3. Quasigeostrophy and weather forecasting

The diagnostic, i.e., time-independent nature of the geo-
strophic balance, implies that the ageostrophic terms, although
relatively small, are important for the time evolution of the
flow. A planetary flow that evolves slowly in time compared
to 1=f0 can be described using quasigeostrophic theory,
namely, a perturbative theory that expands the NSEs in Ro
and truncates at first order.
The use of the quasigeostrophic approximation effectively

filters out solutions that correspond to higher-speed atmos-
pheric or oceanic inertia-gravity waves; the latter, also called
Poincaré waves, are gravity waves modified by the presence
of rotation (Ghil and Childress, 1987; Pedlosky, 1987;
McWilliams, 2006; Vallis, 2006; Cushman-Roisin and
Beckers, 2011; Holton and Hakim, 2013). This approximation
breaks down, though, near frontal discontinuities and in other
situations in which the ageostrophic component of the velocity
field plays an important advective role, and it has to be
improved upon by retaining higher-order terms.
In quasigeostrophic theory, a fundamental role is played by

the quasigeostrophic potential vorticity14

q ¼ 1

f0
Δ2Φþ f þ ∂p

�
f0
σ
∂pΦ

�
: ð9Þ

FIG. 14. Geostrophic balance. (a) Schematics of geostrophically
balanced flow in the Northern Hemisphere. At a given z level, the
pressure gradient force (upward-pointing arrow) and Coriolis force
(downward-pointing arrow) cancel out and the flow (horizontal
arrow) is parallel to the isobars. (b) Synoptic conditions for the
500-hPa level over the United States at 0000 Greenwich Mean
Time (GMT) on 12 July 2019. The dark gray lines indicate the
isolines of geopotential height z ¼ Φ=g (in units of 10 m), and the
barbed blue arrows indicate the direction of the wind; the barbs
indicate the wind speed, with each short (long) barb corresponding
to a speed of 5 knots (10 knots), with 2 knots ¼ 1.03 ms−1. From
the NOAA-National Weather Service.13

13See https://www.spc.noaa.gov/obswx/maps/.

14More general formulations of potential vorticity are also quite
important in GFD; see, e.g., Hoskins, McIntyre, and Robertson
(1985).
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Here Δ2 is the horizontal Laplacian in p coordinates, the first
term ζg ¼ Δ2Ψ=f0 is the relative vorticity of the geostrophic
flow, f is the planetary vorticity, and the last term is the
stretching vorticity; the static stability σ, which measures the
stratification of the fluid, was introduced in Eq. (8).
The potential vorticity q thus combines dynamical and

thermodynamical information on the fluid flow. In more
abstract terms, one can write

q − f ¼ LΦ; ð10Þ

where L is a modified three-dimensional Laplacian operator.
Using suitable boundary conditions, one can invert Eq. (10)
and derive the geopotential field from the vorticity field

Φ ¼ L−1ðq − fÞ: ð11Þ

In the absence of forcing and dissipation, q is conserved by
geostrophic motions so that

∂tqþ J

�
Φ
f0

; q

�
¼ 0; ð12Þ

where JðA; BÞ ¼ ∂xA∂yB − ∂yA∂xB is the Jacobian operator,
so JðΦ=f0; qÞ ¼ ð1=f0Þð∂xΦ=∂yq − ∂yΦ∂xqÞ describes vor-
ticity advection by the geostrophic velocity field ðug; vgÞ; see
Eq. (6). Note that in the limit σ → ∞, i.e., if one assumes
infinitely stable stratification, the third term on the right-
hand side of Eq. (9) drops out and Eq. (12) describes the
conservation of the absolute vorticity in a barotropic two-
dimensional flow.
Quasigeostrophic theory, as introduced by Charney (1947),

arguably provided a crucial advance for the understanding of
the dynamics of planetary flows and provided the foundation
for the successful start of NWP (Charney, Fjørtoft, and von
Neumann, 1950). The filtering associated with this theory
was, in particular, instrumental in eliminating the numerical
instability that marred the pioneering weather forecast experi-
ment of Richardson (1922).
In fact, L. F. Richardson used a more accurate set of

equations of motion for the atmosphere than the set of
Eqs. (9)–(12). Somewhat counterintuitively, the quasigeo-
strophic model eventually provided a more accurate prediction
tool because it represented more robustly the dynamical
processes at the scales of interest. The inconclusive result of
Richardson’s one-step, 6-h numerical experiment was received
by the meteorological community at the time as proof that
NWP, as proposed by Bjerknes (1904), was not possible.
We outline herewith how the quasigeostrophic potential-

vorticity equations can be used to perform stable numerical
weather forecasts. Assume that at time t ¼ t0 we have
information on the geopotential height field Φ0 ¼ Φðt0Þ.

• Step 0: Using Eq. (10), one computes the corre-
sponding potential vorticity field q0 ¼ qðt0Þ.

• Step A: Equation (12) is used next to predict the
potential vorticity field at time t1 as follows: q1¼
qðt1Þ¼qðt0ÞþJðΦ0=f0;q0ÞΔt, where Δt ¼ t1 − t0.

• Step B: Equation (11) is used now to infer Φ1.
• Step C: Go to step A and predict q2, etc.

Three decades after Richardson (1922), Charney, Fjørtoft,
and von Neumann (1950) performed the first successful
numerical weather forecasts on the ENIAC computer in
Princeton by using essentially the same procedure detailed
previously for the simpler case of barotropic two-dimensional
flow. In this case, the standard absolute vorticity is given by
the sum of relative and planetary vorticity, and it plays a role
analogous to potential vorticity in quasigeostrophic three-
dimensional flow. The procedure was adapted to describe
the evolution of the 500-hPa field, which deviates the least
from the behavior of an idealized atmosphere of homogeneous
density with no vertical velocities. The simulation was
performed on a limited domain that covered North America
and the adjacent ocean areas.
Charney, Fjørtoft, and von Neumann investigated the issues

associated with horizontal boundary conditions, as well as
with the numerical stability of the integration. Their success
(Charney, Fjørtoft, and von Neumann, 1950) paved the way
for the theory’s successive applications to physical oceanog-
raphy and climate dynamics as a whole (Ghil and Childress,
1987; Pedlosky, 1987; Dijkstra, 2005). The saga of this
scientific and technological breakthrough was told many
times; see Lynch (2008) for a good recent account.

D. Climate prediction and climate model performance

A key area of interest in the climate sciences is the
development and testing of numerical models used for
simulating the past, present, and future of the climate system.
As discussed later in the review, climate models differ
enormously in terms of scientific scope, computational cost,
and flexibility, so one has to consider systematically a
hierarchy of climate models rather than one model that
could incorporate all subsystems, processes, and scales of
motion (Ghil and Robertson, 2000; Ghil, 2001; Lucarini,
2002; Held, 2005).
Figure 15(a) shows the so-called Bretherton horrendogram

(NAC, 1986), which displays the full range of subsystems one
needs to deal with when addressing the Earth system as a
whole, along with some of the many interactions among these
subsystems. The climate modeling community has slowly
caught up with the complexities illustrated by F. Bretherton
and his colleagues in this diagram three decades ago.
Models of different levels of complexity and detail are

suited for addressing different kinds of questions, according,
in particular, to the main spatial and temporal scales of
interest. At the top of the hierarchy, one finds global climate
models, known in the 1970s and 1980s as general circulation
models. The two phrases share the acronym GCM, with the
change in name reflecting a change in emphasis from under-
standing the planetary-scale circulation, first of the atmos-
phere, then of the ocean, to simulating and predicting the
global climate. GCMs aim to represent, at the highest
computationally achievable resolution, the largest number
of physical, chemical, and biological processes of the Earth
system; see Randall (2000) for an early overview.
The atmosphere and ocean, whose modeling relies on

the equations discussed in Sec. II.C.1, are still at the core of
the Earth system models being developed today. Following
improvements in basic scientific knowledge, as well as in
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FIG. 15. The Earth system, its components, and its modeling. (a) The NAC (1986) horrendogram that illustrates the main components
of the Earth system and the interactions among them. (b) Evolution of climate models across the first four IPCC assessment reports,
ranging from the early 1990s to the mid-2000s (IPCC, 2007).
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computing and data storage capabilities, the latter models
include an increasing number of physical, chemical, and
biological processes. They also rely on a much higher spatial
and temporal resolution of the fields of interest.
Figure 15(b) illustrates the process of model development

schematically across the last three decades, from the first to
the fourth assessment report: FAR, SAR, TAR, and AR4. The
graph does not cover the developments of the last 5–10 yr,
which has largely been spent dealing with the inclusion of
ecobiological modules and the previously mentioned non-
hydrostatic effects. Currently available state-of-the-art models
resulted from the cumulative efforts of generations of climate
scientists and coding experts, with hundreds of individual
researchers contributing to different parts of the code. As in
the early stages of post-WWII NWP, climate modeling
exercises now are some of the heaviest users of civilian high
performance computing.

1. Predicting the state of the system

In spite of its remarkable progress, climate modeling and
prediction face several kinds of uncertainties: first, uncertain-
ties in predicting the state of the system at a certain lead time
given the uncertain knowledge of its state at the present time.
Geophysical flows are typically chaotic, as are other processes
in the system. Hence, as discussed in Secs. III and IV, the
climate system depends sensitively on its initial data, as
suggested by Poincaré (1908) and recognized more fully
by Lorenz (1963). Following up on terminology introduced by
Lorenz (1976), these are uncertainties of the first kind,
namely, small errors in the initial data that can lead at later
times to large errors in the flow pattern.
Assume that two model runs start from nearby initial states.

In a nearly linear regime, in which the phase space distance
between the system’s orbits is small, their divergence rate can
be studied by considering the spectrum of Lyapunov expo-
nents and, in particular, the algebraically largest ones. A
chaotic system has at least one positive Lyapunov exponent,
and physical instabilities that act on distinct spatial and
temporal scales are related to distinct positive exponents
(Eckmann and Ruelle, 1985). These instabilities can be
described by using the formalism of covariant Lyapunov
vectors (Ginelli et al., 2007).
Addressing the uncertainties of the first kind and providing

good estimates for the future state of the system is the classical
goal of NWP. After the initially exponential increase of errors,
nonlinear effects kick in and the orbits in the ensemble
populate the attractor of the system so that any predictive
skill is lost. In such an ensemble, several simulations using the
same model are started with slightly perturbed initial states,
and the ensemble of orbits produced is used to provide a
probabilistic estimate of how the system will actually evolve
(Palmer, 2017).
Figure 16(a) illustrates the main phases of error growth

from an ensemble of initial states in the Lorenz (1963) model,
and Fig. 16(b) outlines how an ensemble forecast system
actually works. Obvious limitations are related to the compu-
tational difficulties of running a sufficient number of ensemble
members to obtain an accurate estimate, as well as with the
fact that an initial ellipsoid of states tends to become flattened

out in time, making the error estimate more laborious. Thus,
care has to be exercised in the choice of the initial states,
which is done in practice by taking advantage of the
reanalyses described in Sec. II.A.1.
Recently similar methods have been used on longer time-

scales to perform experimental climate predictions, seen as an
initial-value problem (Eade et al., 2014). These predictions
were performed on seasonal (Doblas-Reyes et al., 2013) to
decadal (Meehl et al., 2014) timescales; they aimed not only

FIG. 16. Schematic diagram of the evolution of an ensemble of
initial states in a chaotic system. (a) A small ball of initial states in
the Lorenz (1963) model evolves initially in phase space
according to the stretching and contracting directions associated
with positive and negative Lyapunov exponents, until nonlinear
effects become important and the set of initial states propagated
by the system’s vector field populates its attractor. From Slingo
and Palmer, 2011. (b) Evolution in time of such an initial ball in a
generic chaotic system. Determistic forecast refers to the pre-
diction obtained using one reference model run, forecast un-
certaintydescribes the propagation of an ensemble of initial
conditions, and climatology refers to the whole attractor of the
system. From Swinbank, Friederichs, and Wahl, 2016.
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to reach a better understanding of the multiscale dynamics of
the climate system but also to help achieve the many potential
benefits of skillful medium-term to long-term predictions. One
interesting example of such an application is the wind energy
market (Torralba et al., 2017).
The World Climate Research Programme (WCRP) has

created an encompassing project focusing on the chal-
lenges of S2S predictions.15 We delve more specifically into
extended-range forecasting in Sec. III.E.1 and see how its
performance depends on a model’s ability to capture the
natural modes of variability of the climate system on different
timescales.

2. Predicting the system’s statistical properties

A key goal of climate modeling is to capture the system’s
statistical properties, i.e., its mean state and its variability, and
its response to forcings of a different nature. These problems
are treated thoroughly in the next two sections but are
rendered quite difficult by a second set of uncertainties.
Uncertainties in model formulation, as well as an unavoidably
limited knowledge of the external forcings are referred to as
uncertainties of the second kind (Lorenz, 1967, 1976; Peixoto
and Oort, 1992) and intrinsically limit the possibility of
providing realistic simulations of the statistical properties
of the climate system; in particular, they affect severely the
modeling of abrupt climate changes and of the processes that
may lead to such changes.
These deficiencies are related to uncertainties in many key

parameters of the climate system, as well as to the fact that
each model may represent incorrectly certain processes that
are relevant on the temporal and spatial scales of interest or
that it may miss them altogether. These types of uncertainty
are termed parametric and structural uncertainties, respec-
tively (Lucarini, 2013).
A growing number of comprehensive climate models are

available to the international scientific community for study-
ing the properties of the climate system and predicting climate
change; currently there are about 50 such models (IPCC,
2014a). Still, many of these models have in common a
substantial part of their numerical code, as they originate
from a relatively small number of models, atmospheric and
oceanic, that were originally developed in the 1960s and
1970s. Figure 17 illustrates this family tree for the case of
atmospheric GCMs. Hence, there is the widely noted fact that
the climate simulations produced by this large number of
models often fall into classes that bear marked similarities and
do not necessarily resemble to a desired extent the observed
climate evolution over the last century or so.
IPCC’s evolution over three decades has led to a co-

ordination and restructuring of modeling activities around
the world. To improve comparisons among distinct models
and the replicability of investigations aimed at climate
change, the Program for Climate Model Diagnostics and
Intercomparison (PCMDI), through its climate model
intercomparison projects (CMIPs), defines standards for the
modeling exercises to be performed by research groups that

wish to participate in a given AR and provide projections of
future climate change.16

The PCMDI’s CMIPs have also supported a single website
that gathers climate model outputs contributing to the IPCC-
initiated activities, thereby providing a unique opportunity to
evaluate the state-of-the-art capabilities of climate models in
simulating the climate system’s past, present, and future
behavior. A typical IPCC-style package of experiments
includes simulating the climate system under various con-
ditions, such as the following:

• A reference state, e.g., a statistically stationary
preindustrial state with fixed parameters.

• Industrial era and present-day conditions, including
known natural and anthropogenic forcings.

• Future climate projections, performed by using a set
of future scenarios of greenhouse gas and aerosol
emissions and land-use change with some degree of
realism, as well as idealized ones (e.g., instantaneous
doubling of CO2 concentration).

The latter changes of greenhouse gas, aerosol concentra-
tions, and land use follow a prescribed evolution over a given
time window, and they are then fixed at a certain value to
observe the relaxation of the system to a new stationary state.
Each such evolution of the forcing is defined as a “scenario” in

FIG. 17. Family tree of the main atmospheric general circulation
models. The tree clearly shows that many of today’s state-of-the-
art models share a smaller or larger portion of their genes, i.e., of
the basic ideas and parameter values that went into the coding.
From Edwards, 2010.

15See https://www.wcrp-climate.org/s2s-overview and Robertson
and Vitart (2018).

16See http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html for CMIP5
and https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 for
CMIP6.
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ARs 1–4 (IPCC, 2001; IPCC, 2007), and as a representative
concentration pathway (RCP) in AR5 (IPCC, 2014a). Note
that each succeeding AR involved an increasing number of
models, people (reaching many hundreds by the latest AR),
and hence acronyms.
Each scenario or RCP is a representation of the expected

greenhouse gas and aerosol concentrations resulting from a
specific path of industrialization and change in land use, as
provided by Working Groups II and III to Working Group I;
see Fig. 18 for AR5’s simulations of the 20th and 21st century
with two extreme RCPs. At the same time, the attribution of
unusual climatic conditions to specific climate forcing is far
from a trivial matter (Allen, 2003; Hannart, Pearl et al., 2016).
In the most recent CMIP exercise CMIP6, the scope of

model intercomparisons has grown beyond just testing future
climate response to specific forcing scenarios or RCPs. To
more comprehensively test the performance of climate mod-
els, various standardized intercomparison projects focus on
the analysis of specific subsystems, processes, or timescales.17

Eyring, Bony et al. (2016) provide a useful summary of the
strategy for PCMDI’s CMIP6 project and the scientific
questions it addresses.

3. Metrics for model validation

The standardization of climate model outputs promoted by
the CMIPs has also helped address a third major uncertainty in
climate modeling: what are the best metrics for analyzing a
model’s outputs and evaluating its skill? Note that in this
context the term metric does not have its usual mathematical
meaning of a distance in function space but refers instead to a
statistical estimator of model performance, whether quadratic
or not.
The validation, or auditing, i.e., the overall evaluation of the

faithfulness, of a set of climate models is a delicate operation

that can be decomposed into two distinct but related proce-
dures. The first one is model intercomparison, which aims to
assess the consistency of different models in the simulation
of certain physical phenomena in a certain time frame. The
second procedure is model verification, whose goal is to
compare a model’s outputs with corresponding observed or
reconstructed scalar quantities or fields (Lucarini, 2008b).
In principle, there are numerous ways to construct a metric

by taking any reasonable function of a climate model’s
variables. Nevertheless, even if several observables are math-
ematically well defined, their physical relevance and robust-
ness can differ widely. There is no a priori valid criterion for
selecting a good climatic observable, even though taking basic
physical properties of the climate system into account can
provide useful guidance.
There is thus no unique recipe for testing climate models, a

situation that is in stark contrast with more traditional areas of
physics. For instance, in high-energy physics, the variables
mass, transition probability, or cross section are suggested by the
very equations that one tries to solve or to study experimentally.
In the absence of dissipation and of sources and sinks,

certain scalars, such as the atmosphere’s or the ocean’s total
mass, energy, and momentum, are also conserved by the
fundamental equations of Sec. II.C.1. Local quantities, like
the total rain over India during the summer monsoon or the
intensity of the subtropical jet over North America during a
given winter month, often matter in evaluating a climate
model’s skill: current models still have substantial difficulties
in simulating the statistics of major regional processes, such as
ENSO in the tropical Pacific (Bellenger et al., 2014; Lu et al.,
2018), the Indian monsoon (Turner and Annamalai, 2012;
Boos and Hurley, 2013; Hasson, Lucarini, and Pascale, 2013),
and midlatitude LFV associated with blocking (Davini and
D’Andrea, 2016; Woollings et al., 2018).
From the end user’s point of view, it is important to check

how realistic the modeled fields of practical interest are. But if
the aim is to define strategies for the radical improvement of

FIG. 18. State-of-the-art climate model outputs for various climate change scenarios. (Left panel) Change in the globally averaged
surface temperature as simulated by climate models included in IPCC (2014a). Vertical bands indicate the range of model outputs, and
the colors correspond to different representative concentration pathways (RCPs). (Right panel) Spatial patterns of temperature change,
i.e., a 2081–2100 average with respect to the present, for the two most extreme RCPs. From IPCC, 2014a.

17See https://search.es-doc.org.
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model performance, beyond incremental advances often
obtained at the price of large increases in computer power,
it is crucial to fully understand the differences among models
in their representation of the climate system, and to decide
whether specific physical processes are correctly simulated by
a given model.
Additional issues, practical as well as epistemological,

emerge when we consider the actual process of comparing
theoretical and numerical investigations with observational or
reanalysis data. Model results and approximate theories can
often be tested only against observational data from a
sufficiently long history, which may pose problems for both
accuracy and coverage, as mentioned in Sec. II.A.1.
To summarize, difficulties emerge in evaluating climate

model performance because (i) we always have to deal with
three different kinds of attractors: the attractor of the real
climate system, its reconstruction from observations, and the
attractors of the climate models, and (ii) because of the high
dimensionality of both the phase space and the parameter
space of these attractors.
To address these issues, multivariable metrics are currently

used to try to assess the skill of available climate models.
Figure 19 shows a diagram describing the performance of the
42 models participating in PCMDI’s CMIP5. Even superficial
analysis of the diagram indicates that nomodel is the best for all
variables under consideration. An improved assessment pack-
age is given by PCMDI’s metrics package (Gleckler et al.,
2016) and the ESMValTool package (Eyring et al., 2016).
Recently Lembo, Lunkeit, and Lucarini (2019) released
TheDiato, a flexible diagnostic tool able to evaluate compre-
hensively the energy, entropy, and water budgets and their
transports for climatemodels. This packagewill become part of

the second generation of the ESMValTool package (Eyring
et al., 2019).
Finally, to describe the outputs of a growing number of

climate models synthetically and comprehensively, it has
become common to consider multimodel ensembles and focus
attention on the ensemble mean and the ensemble spread.
Mean and spread have been taken as the possibly weighted
first two moments of the model’s outputs for the metric under
study (Tebaldi and Knutti, 2007); see Fig. 18.
This approach merges information from different attractors,

and the resulting statistical estimators cannot be interpreted in
the standard way, with the mean approximating the true field
and the standard deviation describing its uncertainty. Such a
naive interpretation relies on an implicit assumption that the
set is a probabilistic ensemble formed by equivalent realiza-
tions of a given process, and that the underlying probability
distribution is unimodal; see Parker (2010) for a broader
epistemological discussion of the issues.
While the models in such an “ensemble of opportunity”

may be related to each other, as shown in Fig. 17, they are by
no means drawn from the same distribution. A number of
alternative approaches for uncertainty quantification in cli-
mate modeling have been proposed, but they go beyond the
scope of this review.

III. CLIMATE VARIABILITY AND THE MODELING
HIERARCHY

A. Radiation balance and energy balance models

The concepts and methods of the theory of deterministic
dynamical systems (Andronov and Pontryagin, 1937; Arnold,

FIG. 19. Example of model performance evaluation. This diagram shows how 42 models participating in the Fifth Climate Model
Intercomparison Project (CMIP5) fared in terms of representation of the seasonal cycle during the time interval 1980–2005 for 13 climate
variables. Values are normalized, and perfect agreement with the observations is given by 0. See the text for details. From IPCC, 2014.
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1983; Guckenheimer and Holmes, 1983) were first applied to
simple models of atmospheric and oceanic flows, starting
about half a century ago (Stommel, 1961; Lorenz, 1963;
Veronis, 1963). More powerful computers now allow their
application to fairly realistic and detailed models of the
atmosphere, the ocean, and the coupled atmosphere-ocean
system. We start by presenting such a hierarchy of models.
This presentation is interwoven with that of the successive

bifurcations that lead from simple to more complex solution
behavior for each climate model. Useful tools for comparing
model behavior across the hierarchy and with observations
are provided by ergodic theory (Eckmann and Ruelle, 1985;
Ghil, Chekroun, and Simonnet, 2008). Among these tools,
advanced methods for the analysis and prediction of univariate
and multivariate time series play an important role; see Ghil
et al. (2002) and references therein.
The concept of a modeling hierarchy in climate dynamics

was introduced by Schneider and Dickinson (1974). Several
other authors have discussed in greater detail the role of such a
hierarchy in the understanding and prediction of climate
variability (Ghil and Robertson, 2000; Saltzman, 2001;
Lucarini, 2002; Dijkstra and Ghil, 2005; Held, 2005). At
present, the best-developed hierarchy is for atmospheric
models. These models were originally developed for weather
simulation and prediction on a timescale of hours to days.
Currently they serve, in a stand-alone mode or coupled to
oceanic and other models, to address climate variability on all
timescales.
The first rung of the modeling hierarchy for the atmosphere

is formed by zero-dimensional (0D) models, where the
number of dimensions, from 0 to 3, refers to the number of
independent space variables used to describe the model
domain, i.e., to physical-space dimensions. Such 0D models
essentially attempt to follow the evolution of the globally
averaged air temperature at surface as a result of changes in
global radiative balance:

c
dT̄
dt

¼ Ri − Ro; ð13aÞ

Ri ¼ μQ0f1 − αðT̄Þg; ð13bÞ

Ro ¼ σmðT̄ÞðT̄Þ4: ð13cÞ

Here Ri and Ro are incoming solar radiation and outgoing
terrestrial radiation. The heat capacity c is that of the global
atmosphere plus that of the global ocean or some fraction
thereof, depending on the timescale of interest: one might only
include in c the ocean mixed layer when interested in
subannual timescales, but the entire ocean when studying
paleoclimate; see, e.g., Saltzman (2001).
The rate of change of T̄ with time t is given by dT̄=dt, while

Q0 is the solar radiation received at the top of the atmosphere,
also called the solar constant, σ is the Stefan-Boltzmann
constant, and μ is an insolation parameter equal to unity for
present-day conditions. To have a closed, self-consistent
model, the planetary reflectivity or albedo α and grayness
factor m have to be expressed as functions of T̄; m ¼ 1 for a

perfectly black body and 0 < m < 1 for a gray body
like Earth.
There are two kinds of one-dimensional (1D) atmospheric

models, for which the single spatial variable is latitude or
height, respectively. The former are so-called energy balance
models (EBMs), which consider the generalization of
model (13a) for the evolution of surface air temperature
T ¼ Tðx; tÞ, say,

cðxÞ ∂T∂t ¼ Ri − Ro þD: ð14Þ

The terms Ri and Ro are similar to those given in Eqs. (13b)
and (13c) for the 0D case but can now be functions of the
meridional coordinate x, latitude, colatitude, or sine of
latitude, as well as of time t and temperature T. The horizontal
heat-flux term D describes the convergence of the heat
transport across latitude belts; it typically contains first and
second partial derivatives of T with respect to x, while cðxÞ
represents the system’s space-dependent heat capacity.
Thus, Eq. (14) corresponds physically to a nonlinear heat or

reaction-diffusion equation, and mathematically to a nonlinear
parabolic PDE. Hence, the rate of change of local temperature
T with respect to time also becomes a partial derivative
∂Tðx; tÞ=∂t. Two such models were introduced independently
by Budyko (1969) in the then Soviet Union and by Sellers
(1969) in the United States.
The first striking results of theoretical climate dynamics

were obtained in showing that Eq. (14) could have two
stable steady-state solutions, depending on the value of the
insolation parameter μ; see Eq. (13b).18

This multiplicity of stable steady states, or physically
possible stationary climates of our planet, can be explained
in its simplest form by the 0D model of Eq. (13). Note
that the time derivative of the global temperature T̄ in
Eq. (13a) can be written as minus the derivative of a potential
VðT̄Þ ¼ −

RfRiðT̄Þ − RoðT̄ÞgdT̄, viz., dT̄=dt¼−dVðT̄Þ=dT̄.
In the case of bistability, the two local minima of V correspond
to the stable solutions, or fixed points, and the local maximum
of V corresponds to the unstable solution; see Fig. 20.
The physical explanation lies in the fact that for a fairly

broad range of μ values around μ ¼ 1.0 the curves for Ri and
Ro as a function of T̄ intersect at three points. One of these
points corresponds to the present climate (highest T̄ value),
and another one corresponds to an ice-covered planet (lowest
T̄ value); both are stable, while the third one, i.e., the
intermediate T̄ value, is unstable.
To obtain this result, it suffices to make two assumptions:

(i) that α ¼ αðT̄Þ in Eq. (13b) is a piecewise-linear function of

18After the publication of the Budyko (1969) and Sellers (1969)
models, it became apparent that massive nuclear explosions could
induce a nuclear winter: namely, reducing the incoming solar
radiation by a dramatic increase in atmospheric particulate matter
could potentially trigger an even greater disaster for life on Earth than
nuclear war itself; see, e.g., Turco et al. (1983). Studies to this effect
were influential in reducing the size of nuclear arsenals at the end
of the Cold War. Strikingly, the two contributions came almost
simultaneously from scientists belonging to the Cold War’s two
opposing geopolitical blocks.
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T̄, or, more generally, a monotonically increasing one with a
single inflection point, with high albedo at low temperature
due to the presence of snow and ice, and low albedo at high T̄
due to their absence; and (ii) that m ¼ mðT̄Þ in Eq. (13c) is a
smooth, increasing function of T̄ that captures in its simplest
form the “greenhouse effect” of trace gases and water vapor.
The EBM modelers (Held and Suarez, 1974; North, 1975;

Ghil, 1976) called the ice-covered state a deep freeze. The
possibility of such a state in Earth’s history was met with
considerable incredulity by much of the climate community
for being incompatible with existing paleoclimatic evidence at
the time. Geochemical evidence led in the early 1990s to the
discovery of a snowball or, at least, slush-ball Earth prior to
the emergence of multicellular life, 6 × 108 yr ago (Hoffman
et al., 1998; Hoffman and Schrag, 2002). This discovery did
not lead, however, to more enthusiasm for the theoretical
prediction of such a state almost two decades earlier.
The bifurcation diagram of a 1D EBM, like the one of

Eq. (14), is shown in Fig. 21. It displays the model’s mean
temperature T̄ as a function of the fractional change μ in
the insolation Q0 ¼ Q0ðxÞ at the top of the atmosphere. The
S-shaped curve in the figure arises from two back-to-back
saddle-node bifurcations. Bensid and Diaz (2019) recently
provided a mathematically rigorous treatment of the bifurca-
tion diagram of a Budyko-type 1D EBM.
The normal form of the first saddle-node bifurcation is

_X ¼ μ − X2: ð15Þ

Here X stands for a suitably normalized form of T̄ and _X is the
rate of change of X, while μ is a parameter that measures the
stress on the system, in particular, a normalized form of
the insolation parameter in Eq. (13b).
The uppermost branch corresponds to the steady-state

solution X ¼ þμ1=2 of Eq. (15), and it is stable. This branch
matches Earth’s present-day climate well for μ ¼ 1.0; more
precisely the steady-state solution T ¼ Tðx; μÞ of the full 1D
EBM (not shown) closely matches the annual mean temper-
ature profile from instrumental data over the last century
(Ghil, 1976).
The intermediate branch starts out at the left as the second

solution X ¼ −μ1=2 of Eq. (15), and it is unstable. It blends
smoothly into the upper branch of a coordinate-shifted and
mirror-reflected version of Eq. (15), say,

_X ¼ ðμ − μ0Þ þ ðX − X0Þ2: ð16Þ

This branch X ¼ X0 þ ðμ0 − μÞ1=2 is also unstable. Finally,
the lowermost branch in Fig. 21 is the second steady-state
solution of Eq. (16) X ¼ X0 − ðμ0 − μÞ1=2, and it is stable like
the uppermost branch. The lowermost branch corresponds
to an ice-covered planet at the same distance from the Sun
as Earth.
The fact that the upper-left bifurcation point ðμc; TcÞ in

Fig. 21 is so close to present-day insolation values created
great concern in the climate dynamics community in the mid
1970s, when these results were obtained. Indeed, much more
detailed computations (discussed later) confirmed that a
reduction of about 2%–5% of insolation values would suffice
to precipitate Earth into a deep freeze. The great distance of
the lower-right bifurcation point ðμd; TdÞ from present-day
insolation values, on the other hand, suggests that one would
have to nearly double atmospheric opacity, say, for Earth’s
climate to jump back to more comfortable temperatures.
These results follow Ghil (1976). Held and Suarez (1974)

and North (1975) obtained similar results, and a detailed
comparison between EBMs appears in Chapter 10 of Ghil and
Childress (1987). Ghil (1976) rigorously, then North et al.

snowball warm

V(T)

unstable

T

FIG. 20. Scalar double-well potential function VðTÞ. The warm
and “deep-freeze” or snowball states correspond to the system’s
two stable fixed points, separated by an unstable one.

FIG. 21. Bifurcation diagram for the solutions of an energy
balance model (EBM), showing the global mean temperature T̄ vs
the fractional change μ of insolation at the top of the atmosphere.
The arrows pointing up and down at about μ ¼ 1.4 indicate the
stability of the branches: toward a given branch if it is stable and
away from it if it is unstable. The other arrows show the hysteresis
cycle that global temperatures would have to undergo for
transition from the upper stable branch to the lower one and
back. The angle γ gives the measure of the present climate’s
sensitivity to changes in insolation. From Ghil and Childress,
1987.
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(1979) numerically, pointed out that a double-well potential,
like the one sketched in Fig. 20, does exist for higher-
dimensional (North et al., 1979) and even infinite-dimensional
(Ghil, 1976) versions of an EBM. In higher-dimensional
cases, the maximum of the potential shown in Fig. 20 is
replaced by a saddle, or “mountain pass”; see, e.g., Ghil and
Childress (1987), Sec. 10.4. In this case, dimensionality refers
to phase space rather than physical space; see Sec. V for a
more detailed discussion.

B. Other atmospheric processes and models

The 1D atmospheric models in which the details of radiative
equilibrium are investigated with respect to a height coor-
dinate z (geometric height, pressure, etc.) are often called
radiative-convective models (Ramanathan and Coakley,
1978). This name emphasizes the key role that convection
plays in vertical heat transfer. While these models historically
preceded EBMs as rungs on the modeling hierarchy, it was
only recently shown that they too could exhibit multiple
equilibria (Li et al., 1997). The word equilibrium, here and in
the rest of this review, refers simply to a stationary state of the
model rather than a true thermodynamic equilibrium.
Two-dimensional (2D) atmospheric models are also of two

kinds, according to the third space coordinate that is not
explicitly included. Models that explicitly resolve two hori-
zontal coordinates, on the sphere or on a plane tangent to it,
tend to emphasize the study of the dynamics of large-scale
atmospheric motions. They often have a single layer or two.
Those that explicitly resolve a meridional coordinate and
height are essentially combinations of EBMs and radiative-
convective models and emphasize therewith the thermody-
namic state of the system rather than its dynamics.
Yet another class of “horizontal” 2Dmodels is the extension

of EBMs to resolve zonal aswell asmeridional surface features,
in particular, land-sea contrasts. We see in Sec. III.C.2 how
such a 2D EBM is used when coupled to an oceanic model.
Schneider and Dickinson (1974) and Ghil and Robertson

(2000) discussed additional types of 1D and 2D atmospheric
models, along with some of their main applications. Finally,
to encompass and resolve the main atmospheric phenomena
with respect to all three spatial coordinates, as discussed in
Sec. II.D, GCMs occupy the pinnacle of the modeling
hierarchy; see, e.g., Randall (2000).
The mean zonal temperature’s dependence on the insolation

parameter μ, as obtained for 1D EBMs and shown in Fig. 21,
was confirmed to the extent possible by using a simplified
GCM coupled to a “swamp” ocean model (Wetherald and
Manabe, 1975). More precisely, forward integrations with a
GCM cannot confirm the presence of the intermediate,
unstable branch. Nor was it possible in the mid 1970s, when
this numerical experiment was carried out, to reach the deep-
freeze stable branch, as it was called at the time, because of the
GCM’s computational limitations.
Still, the normal form of the saddle-node bifurcation, given

by Eq. (15), suggests a parabolic shape of the upper, present-
day-like branch near the upper-left bifurcation point in our
figure, namely, ðμc; TcÞ. This parabolic shape is characteristic
of the dependence of a variable that represents the model
solution on a parameter that represents the intensity of the

forcing in several types of bifurcations; moreover, this shape is
not limited to the bifurcation’s normal form, like Eqs. (15)
and (16), but instead is much more general. The GCM
simulations support quite well a similar shape for the globally
averaged temperature profiles of the GCM’s five vertical
layers; see Wetherald and Manabe (1975), Fig. 5. See the
discussion in Secs. IV.E.5 and V.
Ghil and Robertson (2000) also described the separate

hierarchies that have grown over the last quarter century in
modeling the ocean and the coupled ocean-atmosphere
system. More recently an overarching hierarchy of Earth
system models that encompass all subsystems of interest
(atmosphere, biosphere, cryosphere, hydrosphere, and litho-
sphere) has been developing. Eventually, the partial results
about each subsystem’s variability, outlined in this section and
Sec. 4, will have to be verified from one rung to the next of the
full Earth system modeling hierarchy.

C. Oscillations in the ocean’s thermohaline circulation

1. Theory and simple models

Historically, the thermohaline circulation (THC) [see, e.g.,
Dijkstra and Ghil (2005) and Kuhlbrodt et al. (2007)] was first
among the climate system’s major processes to be studied
using a simple mathematical model. Stommel (1961) formu-
lated a two-box model and showed that it possesses multiple
equilibria.
A sketch of the Atlantic Ocean’s THC and its interactions

with the atmosphere and cryosphere on long timescales is
shown in Fig. 22. These interactions can lead to climate
oscillations with multimillennial periods, such as the Heinrich
events [see, e.g., Ghil (1994) and references therein], and are
summarized in the figure’s caption. An equally schematic
view of the global THC is provided by the widely known
“conveyor-belt” (Broecker, 1991) diagram. The latter diagram
captures greater horizontal, 2D detail, but it does not com-
monly include the THC’s interactions with water in both its
gaseous and solid phases, which Fig. 22 does include.
Basically, the THC is due to denser water sinking, lighter

water rising, and water mass continuity closing the circuit
through near-horizontal flow between the areas of rising and
sinking effects of temperature T and salinity S on the ocean
water’s density ρ ¼ ρðT; SÞ oppose each other: the density ρ
decreases as T increases, and it increases as S increases. It is
these two effects that give the thermohaline circulation its
name, from the Greek words for T and S. In high latitudes, ρ
increases as the water loses heat to the air above and, if sea ice
is formed, as the water underneath is enriched in brine. At low
latitudes, ρ increases due to evaporation but decreases due to
sensible heat flux into the ocean.
For the present climate, the temperature effect is stronger

than the salinity effect, and ocean water is observed to sink in
certain areas of the high-latitude North Atlantic and Southern
Ocean, with limited areas of deep-water formation elsewhere,
and to rise everywhere else. Thus, in a thermohaline regime T
is more important than S and hence comes before it.
During certain remote geological times, deep water may

have formed in the global ocean near the equator; such an
overturning circulation of opposite sign to that prevailing
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today was named halothermal, S before T. The quantification
of the relative effects of T and S on the oceanic water mass’s
buoyancy at high and low latitudes is far from complete,
especially for paleocirculations; the association of the latter
with salinity effects that exceed the thermal ones [e.g., during
the Palaeocene, ≃5.7 × 107 yr ago; see Kennett and Stott
(1991)] is thus rather tentative.
To study the reversal of the abyssal circulation due to the

opposite effects of T and S, Stommel (1961) considered a
model with two pipes connecting two boxes. He showed that
the system of two nonlinear, coupled ordinary differential
equations that govern the temperature and salinity differences
between the two well-mixed boxes has two stable steady-state
solutions; these two steady states are distinguished by the
direction of flow in the upper and the lower pipe.
Stommel was primarily concerned with distinct local con-

vection regimes, and hence vertical stratifications, in the North
Atlantic and the Mediterranean or the Red Sea, say. Today we
mainly think of one box as representing the low latitudes and
the other one the high latitudes in the global THC; seeMarotzke
(2000) and references therein. Subsequently, many other THC
models that used more complex box-and-pipe geometries have
been proposed and studied; see, e.g., Rooth (1982), Scott,
Marotzke, and Stone (1999), Titz et al. (2002), and Lucarini
and Stone (2005).
The next step in the hierarchical modeling of the THC is

that of 2D meridional-plane models, in which the temperature
and salinity fields are governed by coupled nonlinear PDEs
with two independent space variables, say, latitude and depth;
see, e.g., Cessi and Young (1992), Quon and Ghil (1992), and

Lucarini, Calmanti, and Artale (2005, 2007). Given boundary
conditions for such a model that are symmetric about the
Equator, like the equations themselves, one expects a sym-
metric solution, in which water either sinks near the poles and
rises everywhere else (thermohaline) or sinks near the Equator
and rises everywhere else (halothermal). These two symmetric
solutions correspond to the two equilibria of the Stommel
(1961) two-box model; see Thual and McWilliams (1992) for
a discussion of the relationship between 2D and box models.
In fact, symmetry breaking can occur, leading gradually

from a symmetric two-cell circulation to an antisymmetric
one-cell circulation. In between, all degrees of dominance of
one cell over the other are possible. A situation lying some-
where between the two seems to resemble most closely the
meridional overturning diagram of the Atlantic Ocean
in Fig. 22.
The gradual transition is illustrated by Fig. 23, and it can

be described by a pitchfork bifurcation; see Dijkstra and
Ghil (2005):

_X ¼ fðX; μÞ ¼ μX − X3: ð17Þ
Here X measures how asymmetric the solution is, so X ¼ 0 is
the symmetric branch, and μ measures the stress on the
system, in particular, a normalized form of the buoyancy flux
at the surface. For μ < 0 the symmetric branch is stable, while
for μ > 0 the two branches X ¼ �μ1=2 inherit its stability.
In the 2D THC problem, the left cell dominates on one of

the two branches, while the right cell dominates on the other:
for a given value of μ, the two stable steady-state solutions,
on the fX ¼ þμ1=2g branch and the fX ¼ −μ1=2g branch,
respectively, are mirror images of each other. The idealized
THC in Fig. 22, with the North Atlantic deep water extending
to the Southern Ocean’s polar front, corresponds to one of
these two branches. In theory, therefore, a mirror-image
circulation, with the Antarctic bottom water extending to
the North Atlantic’s polar front, is equally possible.
A complementary point of view to the one taken thus far

suggests that surface winds and tides play a major role in the
driving and maintenance of the large-scale ocean circulation
(Wunsch, 2002, 2013). In particular, Cessi (2019) argued that
the meridional overturning is actually powered by momentum
fluxes and not buoyancy fluxes. Because of the ongoing
arguments on this topic, the THC is increasingly termed the
meridional overturning circulation (MOC).

2. Bifurcation diagrams for GCMs

Bryan (1986) was the first to document transition from a
two-cell to a one-cell circulation in a simplified ocean GCM
with idealized, symmetric forcing. In Sec. III.B, atmospheric
GCMs essentially confirmed the EBM results. Results of
coupled ocean-atmosphere GCMs, however, have led to
questions about whether the presence of more than one stable
THC equilibrium is actually realistic. The situation with
respect to the THC’s pitchfork bifurcation (17) is thus subtler
than it was with respect to Fig. 21 for radiative equilibria.
Dijkstra (2007) showed, however, by comparing observa-

tional and reanalysis data with high-end ocean GCMs that the
Atlantic Ocean’s current THC is actually in its multiple-
equilibria regime. Climate models of intermediate complexity

FIG. 22. Schematic diagram of an Atlantic meridional cross
section from North Pole (NP) to South Pole (SP) showing
mechanisms likely to affect the thermohaline circulation
(THC) on various timescales. Changes in the radiation balance
Rin − Rout are due, at least in part, to changes in extent of
Northern Hemisphere (NH) snow and ice cover V, and to how
these changes affect the global temperature T; the extent of
Southern Hemisphere ice is assumed to be constant to a first
approximation. The change in hydrologic cycle expressed in the
terms Prain − Pevap for the ocean and Psnow − Pabl for the snow
and ice is due to changes in ocean temperature. Deep-water
formation in the North Atlantic subpolar sea (North Atlantic deep
water, NADW) is affected by changes in ice volume and extent
and regulates the intensity C of the THC; changes in Antarctic
bottom water (AABW) formation are neglected in this approxi-
mation. The THC intensity C in turn affects the system’s
temperature and is also affected by it. From Ghil, Mulhaupt,
and Pestiaux, 1987.
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did indeed find the Atlantic Ocean to be multistable [see, e.g.,
Rahmstorf et al. (2005)], while several of the GCMs used in
recent IPCC ARs did not show such a behavior, with an
exception coming in the study by Hawkins et al. (2011); see
Fig. 24. Thus, a failure of high-end models in the hierarchy to
confirm results obtained on the hierarchy’s lower rungs does
not necessarily imply that it is the simpler models that are
wrong. To the contrary, such a failure might well indicate that
the high-end models, no matter how detailed, may still be
rather imperfect; see Ghil (2015) for a summary.
Internal variability of the THC, with smaller and more

regular excursions than the large and totally irregular jumps
associated with bistability, was studied intensively in the late
1980s and the 1990s. These studies placed themselves on
various rungs of the modeling hierarchy, from box models

through 2D models and all the way to ocean GCMs. A
summary of the different kinds of oscillatory variability found
in the latter appears in Table I. Such oscillatory behavior
seems to more closely match the instrumentally recorded THC
variability, as well as the paleoclimatic records for the recent
geological past, than bistability.
The (multi)millennial oscillations interact with variability

in the surface features and processes shown in Fig. 22. Chen
and Ghil (1996), in particular, studied some of the interactions
between atmospheric processes and the THC. They used a so-
called hybrid coupled model, namely, a 2D EBM, coupled to a
rectangular-box version of the North Atlantic rendered by a
low-resolution ocean GCM. This hybrid model’s regime
diagram is shown in Fig. 25(a). A steady state is stable for
higher values of the coupling parameter λao or of the EBM’s

FIG. 24. Multistability of the THC for (a) Earth models of
intermediate complexity, and (b) an IPCC-class climate model.
Parameter controlling the freshwater input in the North Atlantic
basin on the abscissa and the THC’s intensity on the ordinate.
(a) From Rahmstorf et al., 2005. (b) From Hawkins et al. (2011).

FIG. 23. Transition from a symmetric to an increasingly
asymmetric meridional ocean circulation. The stream function
plots represent results from an idealized 2D model of thermo-
solutal convection in a rectangular domain for a prescribed value
of the Rayleigh number and increasing values of the nondimen-
sional intensity γ of the salinity flux at the surface. (a) γ ¼ 0.40.
(b) γ ¼ 0.50. (c) γ ¼ 0.55. From Quon and Ghil, 1992.
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diffusion parameter d. Interdecadal oscillations with a period
of 40–50 yr are self-sustained and stable for lower values of
these parameters.
The self-sustained THC oscillations in question are

characterized by a pair of vortices of opposite sign that
grow and decay in quadrature with each other in the
ocean’s upper layers. Their centers follow each other
counterclockwise through the northwestern quadrant of
the model’s rectangular domain. Both the period and the
spatiotemporal characteristics of the oscillation are thus
rather similar to those seen in a fully coupled GCM with
realistic geometry (Delworth, Manabe, and Stouffer, 1993).
The transition from a stable equilibrium to a stable limit
cycle via Hopf bifurcation in this hybrid coupled model
is shown in Fig. 25(b), and we elaborate upon it in
Sec. III.D.2.

D. Bistability, oscillations, and bifurcations

In Secs. III.A, III.B, and III.C.1 we introduced bistability of
steady-state solutions via saddle-node and pitchfork bifurca-
tions, while in Sec. III.C.2 we mentioned oscillatory solutions

and Hopf bifurcation as the typical way the latter are reached
as a model parameter changes. We start here by summarizing
the bifurcations of steady-state solutions, often referred to as
equilibria, and then introduce and discuss the normal forms of
Hopf bifurcation, both supercritical and subcritical.

1. Bistability and steady-state bifurcations

Section III.B introduced EBMs and explained how the
present climate and a totally ice-covered Earth could result as
coexisting stable steady states over a certain parameter range.
The normal forms of a supercritical and a subcritical saddle-
node bifurcation were given as Eqs. (15) and (16), respec-
tively. Here the criticality is defined as the existence of the two
equilibria, stable and unstable, to the right or the left of the
critical or bifurcation point.
An S-shaped bifurcation curve, such as the one that appears

in Fig. 21 for the 1D EBM of Eq. (14), can be obtained easily
by soldering smoothly together the back-to-back saddle-node
bifurcations of Eqs. (15) and (16). While there is no generic
normal form for such a curve, the following is a simple
example:

TABLE I. Oscillations in the ocean’s thermohaline circulation. Anomalies are defined as the difference between the monthly mean value of a
variable and its climatological mean. See also Ghil (1994).

Timescale Phenomena Mechanism

Decadal Local migration of surface anomalies in the northwest
corner of the ocean basin

Localized surface density anomalies due to
surface coupling

Gyre advection in midlatitudes Gyre advection
Centennial Loop-type, meridional circulation Conveyor-belt advection of density anomalies

Millennial Relaxation oscillation, with “flushes” and
superimposed decadal fluctuations

Bottom water warming due to the strong
braking effect of salinity forcing

FIG. 25. Dependence of THC solutions on two parameters in a hybrid coupled model; the two parameters are the atmosphere-ocean
coupling coefficient λao and the atmospheric thermal diffusion coefficient d. (a) Schematic regime diagram. The solid circles stand for
the model’s stable steady states, the open circles stand for stable limit cycles, and the solid curve is the estimated neutral stability curve
between the former and the latter. (b) Hopf bifurcation curve at fixed d ¼ 1.0 and varying λao; this curve is obtained by fitting a parabola
to the model’s numerical-simulation results, shown as filled and open circles. From Chen and Ghil, 1996.

Michael Ghil and Valerio Lucarini: The physics of climate variability and climate …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035002-31



_X ¼ μ − X2; ð18aÞ

_X ¼ ðμ − μ0Þ þ ðX − X0Þ2; ð18bÞ

with μ0 ¼ 1 and X0 ¼ −1=2.
Note that both the subcritical and supercritical saddle-

node bifurcations are structurally stable, i.e., they persist as
the system of evolution equations, whether a system of
ordinary or partial differential equations, is smoothly per-
turbed (Andronov and Pontryagin, 1937; Guckenheimer and
Holmes, 1983; Temam, 1997; Arnold, 2003) by a small
amount. This robustness is the reason why saddle-node
bifurcations, and other elementary bifurcations referred to
as codimension 1, i.e., depending on a single parameter, like
the Hopf bifurcation, are so important and can, in practice, be
a guide through the hierarchy of models, in the climate
sciences and elsewhere. A striking example was provided
in Sec. III.B for the supercritical saddle-node bifurcation
that can be found in the 3D GCM of Wetherald and Manabe
(1975) (Fig. 5 therein), as well as the 1D EBM reproduced
in Fig. 21.
The next kind of bifurcation that leads to bistability of

stationary states is the pitchfork bifurcation introduced in
Sec. III.C.1 in connection with the THC, and whose normal
form is given by Eq. (17). This bifurcation, however, arises
only in the presence of a mirror symmetry in the model under
study, as seen in Fig. (23a). One suspects, therefore, that it is
not structurally stable with respect to perturbations of the
dynamics that do not preserve this symmetry.
A simple example is given by the following perturbed

pitchfork bifurcation:

_X ¼ fðX; μ; ϵÞ ¼ Xðμ − X2Þ þ ϵ; ð19Þ
where ϵ is a small parameter. The bifurcation diagrams for
ϵ ¼ 0 and þ0.1 are given in Figs. 26(a) and 26(b), respec-
tively. A nonzero value of ϵ breaks the X → −X symmetry of
Eq. (17) since it is no longer the case that fðXÞ ¼ fð−XÞ.
Hence, the pitchfork breaks up into a continuous uppermost
branch that is stable for all X values, and a supercritical
saddle-node bifurcation whose lower branch is stable. If
ϵ < 0, it will be the lowermost branch that is stable for all
X values (not shown), and the upper branch of the saddle-node
bifurcation above it that is stable. In both cases, above a
critical value associated with the saddle-node bifurcation three
solution branches exist, with the middle one that is unstable
and the other two that are stable.
One way that the symmetric pitchfork bifurcation present in

2D models of the THC can be broken, as illustrated in Fig. 26,
is simply by considering 3D models with zonally asymmetric
basin boundaries. Perturbed pitchfork bifurcations were also
found in shallow-water models of the wind-driven ocean
circulation; see, e.g., Jiang, Jin, and Ghil (1995), Speich,
Dijkstra, and Ghil (1995b), and Ghil (2017).

2. Oscillatory instabilities and Hopf bifurcations

In spite of the considerable detail and 3D character of
the ocean GCM involved in the hybrid coupled model of
Chen and Ghil (1996), it is clear that the numerically
obtained bifurcation diagram in Fig. 25(b) is of a simple,

fundamental type. The normal form of such a Hopf bifurcation
is given by

_z ¼ ðμþ iωÞzþ cðzz̄Þz; ð20Þ

where z ¼ xþ iy is a complex variable, while c and ω are
non-negative and μ is a real parameter. For small z, Eq. (20)
describes a rotation in the complex plane with an increasing
radius jzj when μ > 0, i.e., it contains the possibility of an
oscillatory instability, while the cubic term corresponds to
an increasing modification of this simple rotation away from
the origin.
The previous parsimonious complex notation follows

Arnold (1983) and Ghil and Childress (1987) and is more

FIG. 26. Bifurcation diagram of the pitchfork bifurcation in
Eq. (19) (a) for ϵ ¼ 0, and (b) for ϵ ¼ 0.1. Solid lines indicate
stable solutions, and dashed lines indicate unstable ones. From
Dijkstra and Ghil, 2005.
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suggestive and transparent than the more common one that
separately uses the two real variables x and y; see, e.g.,
Guckenheimer and Holmes (1983). The advantages of the
former are apparent when introducing polar variables via
z ¼ ρ1=2eiθ, with ρ ¼ zz̄ ≥ 0. One can then separate the flow
induced by Eq. (20) into a constant rotation with angular
velocity ω and a radius r ¼ ρ1=2 that either increases or
decreases as _ρ≷0 according to

_ρ ¼ 2ρðμþ cρÞ; ð21aÞ

_θ ¼ ω: ð21bÞ

Equation (21a) is quadratic in ρ and has the two roots
ρ ¼ 0 and −μ=c. The former corresponds to a fixed point at
the origin z ¼ 0 in Eq. (20), while the latter exists only
when cμ < 0.
We thus anticipate a solution that is a circle with radius

r ¼ ð−μ=cÞ1=2 when cμ ≠ 0 and the two parameters have
opposite signs. The simpler case is that of the nonzero radii
given by Eq. (21a) for positive stability parameter μ and
negative saturation parameter c: it corresponds to the super-
critical Hopf bifurcation sketched in Fig. 27(a). In this case,
the stable fixed point at the origin loses its stability as μ
changes sign and transmits it to a limit cycle of parabolically
increasing radius.
The opposite case of c > 0 is plotted in Fig. 27(b): it

corresponds to subcritical Hopf bifurcation. Here, in fact, the
stability of the fixed point is also lost at μ ¼ 0 but there is no
oscillatory solution for μ > 0 at all since the higher-order
terms in either Eq. (20) or Eq. (21a) cannot stabilize the
linearly unstable oscillatory solution, which spirals out to
infinity. It is not just that the parabolas in Figs. 27(a) and 27(b)
point in opposite directions, as for the saddle-node bifurca-
tions in Eqs. (18a) and (18b) or Eqs. (15) and (16), but the two
figures are topologically distinct.

E. Main modes of variability

The atmosphere, ocean, and the coupled ocean-atmosphere
climate system have many modes of variability, as initially
discussed in Secs. II.A–II.C. We review here some of the most
important ones and comment on the general features of
such modes.

1. Modes of variability and extended-range prediction

Several large-scale spatial patterns of atmospheric covari-
ability have been studied, starting in the second half of the
19th century. Lorenz (1967) and Wallace and Gutzler (1981)
provided good reviews of the earlier studies. The earliest
work tended to emphasize “centers of action,” where the
variability is strongest (Teisserenc de Bort, 1881), while
more recently, it is so-called teleconnections between such
centers of action that have been emphasized. J. Namias
(1910–1997) played a key role in developing the interest in
such teleconnections by applying systematically the use
of their spatiotemporal properties to the development of
operational extended-range weather forecasting; see, e.g.,
Namias (1968).
Returning to the discussion of prediction in Sec. II.D, it is

important to recall John Von Neumann’s (1903–1957) impor-
tant distinction (Von Neumann, 1960) between weather and
climate prediction. To wit, short-term NWP is the easiest,
i.e., it is a pure initial-value problem. Long-term climate
prediction is next easiest, it corresponds to studying the
system’s asymptotic behavior, while intermediate-term pre-
diction is hardest: both initial and boundary values are
important. Von Neumann’s role in solving the NWP problem
by integrating the discretized equations that govern large-scale
atmospheric motions (Bjerknes, 1904; Richardson, 1922;
Charney, Fjørtoft, and Von Neumann, 1950) is well known.
In fact, he also played a key role in convening the conference
on the Dynamics of Climate that was held at Princeton’s

FIG. 27. Bifurcation diagram of the Hopf bifurcation in Eq. (20). (a) Supercritical Hopf bifurcation for c ¼ −1. (b) Subcritical Hopf
bifurcation for c ¼ þ1. Solid lines indicate stable solutions (s), and dashed lines indicate unstable ones (u); it is common to plot
jzj ¼ −μ1=2 along with jzj ¼ μ1=2 to emphasize that one is actually projecting onto the ðjzj; μÞ plane a paraboloid-shaped, one-parameter
family of limit cycles with given r ¼ jzj ¼ μ1=2 and 0 ≤ θ < 2π. From Ghil and Childress, 1987.

Michael Ghil and Valerio Lucarini: The physics of climate variability and climate …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035002-33



Institute for Advanced Studies in October 1955, and whose
proceedings (Pfeffer, 1960) were finally published three years
after Von Neumann’s death.
Today routine NWP is quite skillful for several days, but we

also know that detailed prediction of the weather is limited in
theory by the exponential growth of small errors (Lorenz,
1963), and by their turbulent cascading from small to large
scales (Thompson, 1957; Lorenz, 1969a, 1969b; Leith and
Kraichnan, 1972). The theoretical limit of detailed prediction,
in the sense of predicting future values of temperature, wind,
and precipitation at a certain point, or within a small volume,
in time and space, is of the order of 10–15 days (Tribbia and
Anthes, 1987; Epstein, 1988).
In the sense of Von Neumann (1960), short-term predictions

are being improved by meteorologists and oceanographers
through more-and-more-accurate discretizations of the gov-
erning equations, increased horizontal and vertical resolution
of the numerical models, improved observations and data
assimilation methodologies, and improved parametrization of
subgrid-scale processes.
Important strides in solving the theoretical problems of the

climate system’s asymptotic behavior are being taken by the
use of idealized models, either by simplifying the governing
equations in terms of the number of subsystems and of active
physical processes, e.g., by eliminating phase transitions or
chemical processes in the atmosphere, or by systematic model
reduction to small or intermediate-size sets of ordinary
differential or stochastic differential equations; see, e.g.,
Palmer and Williams (2009) and Chang et al. (2015). We
return to the latter in Secs. IV and V.
What then, if anything, how, and how accurately can

climate-related scalars or fields be predicted beyond the limits
of NWP? In other words, what can be done about the gap
between short-term and asymptotic prediction of climate?
These issues have been actively pursued for the last three
decades; see, e.g., Tribbia and Anthes (1987), Epstein (1988),
and Ghil and Robertson (2002)). Atmospheric, oceanic, and
coupled modes of variability play an important role in
extended- and long-range forecasting.
The key idea is that a mode that is stationary or oscillatory

can, by its persistence or periodicity, contribute a fraction of
variance that is predictable for the mode’s characteristic time
or, at least, for a substantial fraction thereof. We start,
therefore, with a review of some of the most promising modes
of variability.

2. Coupled atmosphere-ocean modes of variability

The best known of all of these modes is the ENSO [see
Philander (1990), Dijkstra (2005), and references therein],
mentioned in Sec. II.B. The ENSO phenomenon is particu-
larly strong over the tropical Pacific, but it affects temper-
atures and precipitations far away and over a large area of the
globe. Some of the best documented and statistically most
significant ones of these teleconnections are illustrated in
Fig. 28. As an example, destructive droughts over northeast
Brazil and southeast Africa and cold spells over Florida
are often associated with particularly strong warm ENSO
episodes.

Such strong episodes recurred every 2–7 yr during the
instrumental record of roughly 150 yr, and the ENSO
phenomenon, with it alternation of warm episodes (El
Niños) and cold ones (La Niñas), is quite irregular. Still,
there is a marked tendency for year-to-year alternation of not
necessarily strong El Niños and La Niñas; this alternation is
associated with a well-known quasibiennial near periodicity;
see, e.g., Rasmusson, Wang, and Ropelewski (1990) and
Ghil et al. (2002).
An even larger variance, accompanied by lesser regularity,

is associated with a quasiquadrennial mode (Jiang, Neelin,
and Ghil, 1995; Ghil et al., 2002), sometimes just called the
low-frequency ENSO mode. The positive interference of these
two modes generates large ENSO events that visually coincide
with the instrumentally recorded ones; see Jiang, Neelin, and
Ghil (1995), Fig. 9.
These ENSO features have been used since 1992 for real-

time forecasting that essentially relies on predicting the
oscillatory modes of two scalar indices that capture much
of the ENSO variability, namely, the Southern Oscillation
Index and the so-called Niño-3 index, obtained by averaging
mean-monthly SSTs over an area of the eastern tropical
Pacific. For the time being, such a data-driven forecast appears
to still be quite competitive with those made by high-end,
detailed GCMs (Barnston et al., 2012).

3. Atmospheric low-frequency variability

As discussed in Sec. II.A, datasets for the atmosphere are
both longer and more plentiful than for the ocean. Thus, there
are quite a few modes of variability that have been detected
and described, especially for the Northern Hemisphere, where
both the human population and the datasets are denser.
As discussed in Sec. II.B in connection with Fig. 12,

atmospheric phenomena are designated as having low, or
intraseasonal, frequency if their characteristic time is longer
than the life cycle of a midlatitude weather system but still

FIG. 28. Teleconnection pattern for a warm ENSO episode,
during the boreal winter months December–February. We in-
dicate warm-vs-cold and wet-vs-dry anomalies, with an anomaly
being defined as the difference between a monthly mean value of
a variable and its climatological mean.19

19From https://www.meted.ucar.edu/ams/wim_2014/9b.html.
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shorter than a season. We are thus discussing here intrinsic
variability, as opposed to the externally forced seasonal cycle,
with the latter being easier to understand. More recently one
is also referring to this variability as subseasonal; see, e.g.,
Robertson and Vitart (2018).
There are essentially two approaches for describing this

intrinsic subseasonal variability: (i) episodic or intermittent,
and (ii) oscillatory. The two approaches are complementary,
as we shall see, and they have been named the particle and
wave descriptions by a crude analogy with quantum mechan-
ics (Ghil and Robertson, 2002); see also Sec. I.A
The key ingredient of the particle approach is provided by

so-called persistent anomalies or regimes. The best known
among these are blocking and zonal flows, which were
mentioned in Sec. II.B. Other well-known persistent features,
especially during boreal winter, are the positive and negative
phases of the North Atlantic Oscillation (NAO) and the Pacific
North American (PNA) pattern. A rich literature exists on the
reliable identification, description, and modeling of these
patterns; see Ghil et al. (2019) and references therein. In
the Southern Hemisphere, there has also been some interest in
an approximate counterpart of the PNA called the Pacific
South American (PSA) pattern (Mo and Ghil, 1987).
The key ingredient of the wave approach is provided by

oscillatory modes that do not necessarily possess exact
periodicities, but instead the broad spectral peaks that were
illustrated in Fig. 12 and discussed to some extent in Sec. II.B.
Probably the best known example of this type in the
subseasonal band is the Madden-Julian oscillation (MJO)
(Madden and Julian, 1971). It has a near periodicity of roughly
50 days and affects winds and precipitation in the Tropics,
being strongest in the Indo-Pacific sector. Like the much
lower-frequency ENSO phenomenon, important extratropical
effects have been documented; see, e.g., Maloney and
Hartmann (2000).
In spite of the considerable amount of observational,

theoretical, and modeling work dedicated to the MJO, it is
still incompletely understood and not well simulated or
predicted. Some of the reasons for these difficulties include
the key role played in its mechanism by transitions among
liquid and gaseous phases of water in tropical clouds, its
multiscale character, and the pronounced interactions with the
ocean (Zhang, 2005).
Two extratropical modes in the subseasonal band are the

Branstator-Kushnir wave (Branstator, 1987; Kushnir, 1987)
and the 40-day mode associated with the topographic insta-
bility first described by Charney and DeVore (1979) in a low-
order model. The Branstator-Kushnir wave is, like the MJO,
an eastward-traveling wave, while the 40-day mode is a
standing wave anchored by the topography.
Charney and DeVore (1979) emphasized the bimodality of

the solutions of a model version with only three Fourier
modes, with one stable steady state being zonal and the other
being blocked, and did not pursue further the fact that in a
more highly resolved version of the model oscillatory solu-
tions did appear. Legras and Ghil (1985), Ghil and Childress
(1987), and Jin and Ghil (1990) did clarify the role of the
higher meridional modes in the Hopf bifurcation that gives
rise to the oscillatory solutions. The potential role of these
results in the controversy surrounding the effect of

anthropogenic polar amplification on blocking frequency
was mentioned in Sec. II.B.2.
While midlatitude weather systems, like tropical ones,

involve precipitation, their large-scale properties seem to be
much less affected by wet processes; the former arise
essentially from purely dynamical as opposed to largely
thermodynamical mechanisms. For simplicity, we thus try
to illustrate in further detail the complementarity of the wave
and particle approaches for the extratropical topographic
oscillation.
Given the recent interest in the physical literature for

synchronization in continuous media [see Duane et al.
(2017) and references therein], it might be a challenging
notion for this readership that one can accommodate in a fairly
narrow frequency band, between roughly 0.1 and 0.01 day−1,
three distinct oscillatory modes that do not seem to synchron-
ize: in the Tropics the MJO, with a period of ≃50 days, and in
midlatitudes the Branstator-Kushnir wave, with a period of
≃30 days, along with the topographic oscillatory mode, with a
period of ≃40 days; see, for instance, Dickey, Ghil, and
Marcus (1991), Fig. 11. Not only are these three frequencies
fairly close, i.e., the detuning is fairly small, but the character-
istic wavelengths of all three of these oscillatory modes are
quite large with respect to the radius of Earth, and several
teleconnections mentioned so far extend across continents and
oceans; see Fig. 28.
Let us now concentrate on the topographic wave mode

and its relationship with the blocking and zonal particles.
Ghil et al. (2019) reviewed the evidence provided by a
hierarchy of models for the presence of a Hopf bifurcation
that arises from the interaction of the large-scale westerly
flow in midlatitudes with the topography of the Northern
Hemisphere.
Certain spatial features of the phases of this mode do

present striking similarities to the blocked and zonal flows that
appear not just as the two stable equilibria in the highly
idealized model of Charney and DeVore (1979) but also as
unstable, though long-lived, patterns in much more realistic
models, like the three-level quasigeostrophic (QG3) model
originally formulated by Marshall and Molteni (1993). The
latter model is still widely used to study the nonlinear
dynamics of large-scale, midlatitude atmospheric flows;
see, e.g., Kondrashov, Ide, and Ghil (2004) and Lucarini
and Gritsun (2020).
We summarize here the relevant conclusions of the Ghil

et al. (2019) review on the observational, theoretical, and
modeling literature of multiple regimes and oscillatory modes
of subseasonal variability. Four complementary approaches to
explaining this variability are illustrated in Fig. 29.
One approach to persistent anomalies in midlatitude atmos-

pheric flows on subseasonal timescales is to consider them
simply as due to a slowing down of Rossby waves or their
linear interference (Lindzen, 1986). This approach is illus-
trated in Fig. 29(c): zonal flow Z and blocked flow B are
simply slow phases of an harmonic oscillation, like the
neighborhood of t ¼ π=2 or 3π=2 for a sine wave sinðtÞ;
otherwise, they are due to an interference of two or more linear
waves, like the one occurring for a sum A sinðtÞ þ B sinð3tÞ
near t ¼ ð2kþ 1Þπ=2. A more ambitious, quasilinear version
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of this approach is to study long-lived resonant wave triads
between a topographic Rossby wave and two free Rossby
waves (Egger, 1978; Trevisan and Buzzi, 1980; Ghil and
Childress, 1987). Neither version of this line of thought,
though, explains the organization of the persistent anomalies
into distinct flow regimes.
Rossby (1939) initiated a different, genuinely nonlinear

approach by suggesting that multiple equilibria may explain
preferred atmospheric flow patterns. They drew an analogy
between such equilibria and hydraulic jumps, and formulated
simple models in which similar transitions between faster
and slower atmospheric flows could occur. This multiple-
equilibria approach was then pursued vigorously in the 1980s
(Charney and DeVore, 1979; Charney, Shukla, and Mo, 1981;
Legras and Ghil, 1985; Ghil and Childress, 1987), and it is
illustrated in Fig. 29(a): one version of the sketch illustrates
models that concentrated on the B-Z dichotomy (Charney and
DeVore, 1979; Charney, Shukla, and Mo, 1981; Benzi et al.,
1986), the other on models [see, e.g., Legras and Ghil (1985)]
that allowed for the presence of additional clusters, found by
Kimoto and Ghil (1993a) and Smyth, Ide, and Ghil (1999)
among others in observations. The latter include opposite
phases of the NAO and PNA anomalies [PNA, RNA, and
BNAO in Fig. 29(a)]. The LFV dynamics in this approach is
given by the preferred transition paths between the two or
more regimes; see Table 1 in Ghil et al. (2019) and references
therein.
A third approach is associated with the idea of oscillatory

instabilities of one or more of the multiple fixed points that
can play the role of regime centroids. Thus, Legras and Ghil
(1985) found a 40-day oscillation arising by Hopf bifurcation
off their blocked regime B, as illustrated in Fig. 29(b).
An ambiguity arises, though, between this point of view

and the complementary possibility that the regimes are just
slow phases of such an oscillation, caused itself by the
interaction of the midlatitude jet with topography that gives
rise to a supercritical Hopf bifurcation. Thus, Kimoto and Ghil
(1993a, 1993b) found in their observational data closed paths
within a Markov chain whose states resembled well-known
phases of an intraseasonal oscillation. Such a possibility was
confirmed in the QG3 model by Kondrashov, Ide, and Ghil
(2004). Furthermore, multiple regimes and intraseasonal

oscillations can coexist in a two-layer model on the sphere
within the scenario of “chaotic itinerancy” (Itoh and Kimoto,
1996, 1997).
Lucarini and Gritsun (2020) observed that blockings occur

when the system’s trajectory is in the neighborhood of a
specific class of unstable periodic orbits (UPOs). UPOs in
general are natural modes of variability that cover a chaotic
system’s attractor (Cvitanović, 1988; Cvitanovíc and
Eckhardt, 1991). Here the UPOs that correspond to blockings
have a higher degree of instability than UPOs associated with
zonal flow; thus, blockings are associated with anomalously
unstable atmospheric states, as suggested theoretically by
Legras and Ghil (1985) and confirmed experimentally by
Weeks et al. (1997). Different regimes may be associated with
different bundles of UPOs, a conjecture that could also explain
the efficacy of Markov chains in describing the transitions
between qualitatively different regimes.
Figure 29(d) refers to the role of stochastic processes in S2S

variability and prediction, whether it be noise that is white in
time, as in Hasselmann (1976) or in linear inverse models
(Penland, 1989, 1996; Penland and Ghil, 1993; Penland and
Sardeshmukh, 1995), or red in time, as in certain nonlinear
data-driven models (Kravtsov, Kondrashov, and Ghil, 2005,
2009; Kondrashov, Kravtsov, and Ghil, 2006; Kondrashov
et al., 2013; Kondrashov, Chekroun, and Ghil, 2015) or even
non-Gaussian ones (Sardeshmukh and Penland, 2015).
Stochastic processes may enter into models situated on various
rungs of the modeling hierarchy, from the simplest conceptual
models to high-resolution GCMs. In the former, they may
enter via stochastic forcing, whether additive or multiplicative,
Gaussian or not [see, e.g., Kondrashov, Chekroun, and Ghil
(2015)], while in the latter they may enter via stochastic
parametrizations of subgrid-scale processes; see, e.g., Palmer
and Williams (2009) and references therein.
Figure 29 summarizes some of the key dynamical mech-

anisms of midlatitude subseasonal variability, as discussed in
this section and in Ghil et al. (2019), without attempting to
provide a definitive answer as to which approach to modeling
and prediction of this variability will be the most productive in
the near future.

F. Internal variability and routes to chaos

In this section, we illustrate the wind-driven ocean circu-
lation a sequence of successive bifurcations that lead from a
highly symmetric, steady-state circulation to much more
finely structured, irregular, possibly chaotic oscillations.
Various issues arise in pursuing such a bifurcation sequence
across a hierarchy of models and on to the observational data.
Midlatitude oceanic gyres appear clearly in Fig. 30 in the

four major extratropical ocean basins, namely, the North and
South Atlantic and the North and South Pacific. The large
subtropical ocean gyres are formed by a poleward-flowing
western boundary current, an equatorward-flowing eastern
boundary current, and the roughly zonally flowing currents
that connect these two coastal currents off the equator and on
the poleward basin side, respectively. These gyres are char-
acterized by so-called anticyclonic rotation, clockwise in the
Northern Hemisphere and counterclockwise in the Southern
Hemisphere. In the North Pacific and the North Atlantic, they

(d)  Red noise

(a)

(b) (c)

FIG. 29. Schematic overview of atmospheric low-frequency
variability (LFV) mechanisms; see the text for details. From
Ghil et al., 2019.
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are accompanied by smaller, cyclonically rotating gyres, while
in the Southern Hemisphere such subpolar gyres are missing
and replaced by the Antarctic Circumpolar Current (ACC).
The basic phenomenology of these gyres and the detailed

physical mechanisms that give rise to it were described in
several books [see, e.g., Sverdrup, Johnson, and Fleming
(1946), Gill (1982), Ghil and Childress (1987), Pedlosky
(1996), Vallis (2006), and Cushman-Roisin and Beckers
(2011)] and review papers (Dijkstra and Ghil, 2005; Ghil,
2017). The sharp western boundary currents, like the Gulf
Stream in the North Atlantic, the Kuroshio and its cross-basin
extension in the North Pacific, and the Brazil Current in the
South Atlantic, as well as the more diffuse eastern boundary
currents, like the Canaries Current in the North Atlantic and
the California and Peru currents in the North and South
Pacific, respectively, play a major role in carrying heat
poleward and colder waters equatorward. Hence, these gyres’
interannual and interdecadal variability is a major contributor
to climate variability.
To illustrate the bifurcation sequence that might lead to this

oceanic LFV, we use a highly idealized model of the wind-
driven double-gyre circulation in a rectangular geometry. Note
that the counterparts of synoptic weather systems in the ocean
are eddies and meanders that have much shorter spatial scales
than in the atmosphere, but considerably longer timescales:
Oð100Þ km in the ocean versus Oð1000Þ km in the atmos-
phere, but of the order of several months in time versus of the
order of merely several days. Thus, the definition we used for
LFV in the atmosphere (see Sec. III.E.3) corresponds in the
ocean to a timescale of years to decades.

1. A simple model of the double-gyre circulation

The simplest model that includes several of the most
pertinent mechanisms described in Sec. II.B is governed by
the barotropic quasigeostrophic equations. We consider an
idealized, rectangular basin geometry and simplified forcing

that mimics the distribution of vorticity due to the wind stress
sketched by Simonnet, Ghil, and Dijkstra (2005) in their
Fig. 2. In this idealized model, the amounts of subpolar and
subtropical vorticity injected into the basin are equal and the
rectangular domain Ω ¼ ð0; LxÞ × ð0; LyÞ is symmetric about
the axis of zero wind-stress curl y ¼ Ly=2.
The barotropic 2D quasigeostrophic equations in this

idealized setting are

∂tqþ Jðψ ; qÞ − νΔ2ψ þ μΔψ ¼ −τ sin
�
2πy
Ly

�
; ð22aÞ

q ¼ Δψ − λ−2R ψ þ βy: ð22bÞ

Here x points east and y points north, while q and ψ
are the potential vorticity and the stream function, respec-
tively, and the Jacobian J gives the advection of potential
vorticity by the flow, as discussed in Sec. II.C.3, so Jðψ ; qÞ ¼
ψxqy − ψyqx ¼ u · ∇q.
The physical parameters are the strength of the planetary

vorticity gradient β ¼ ∂f=∂y, the Rossby radius of deforma-
tion λ−2R , the eddy-viscosity coefficient ν, the bottom friction
coefficient μ, and the wind-stress intensity τ. One considers
here free-slip boundary conditions ψ ¼ Δ2ψ ¼ 0; the quali-
tative results described later do not depend on the choice of
homogeneous boundary condition (Jiang, Jin, and Ghil, 1995;
Dijkstra and Ghil, 2005).
The nonlinear system of PDEs (22) is an infinite-

dimensional dynamical system, and one can thus study its
bifurcations as the parameters change. Two key parameters are
the wind-stress intensity τ and the eddy viscosity ν: as τ
increases, the solutions become rougher, while an increase in ν
renders them smoother.
An important property of Eq. (22) is its mirror symmetry

along the y ¼ Ly=2 axis. This symmetry can be expressed as
invariance with respect to the discrete Z2 group S,

FIG. 30. A map of the main oceanic currents: warm currents in red and cold ones in blue. From Ghil, Chekroun, and Simonnet, 2008.
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S½ψðx; yÞ� ¼ −ψðx; Ly − yÞ.

Any solution of Eq. (22) is thus accompanied by its mirror-
conjugated solution. Hence, the prevailing bifurcations are of
either the symmetry-breaking or the Hopf type.

2. Bifurcations in the double-gyre problem

The development of a comprehensive nonlinear theory of
the double-gyre circulation over the last two decades has gone
through four main steps. These four steps can be followed
through the bifurcation tree in Fig. 31.

a. Symmetry-breaking bifurcation

The “trunk” of the bifurcation tree is plotted as the solid
blue line in the lower part of Fig. 31. When the forcing τ is
weak or the dissipation ν is large, there is only one steady
solution, which is antisymmetric with respect to the midaxis of
the basin. This solution exhibits two large gyres, along with
their β-induced western boundary currents. Away from the
western boundary, such a near-linear solution (not shown) is
dominated by so-called Sverdrup balance between wind-stress

curl and the meridional mass transport (Sverdrup, 1947;
Gill, 1982).
The first generic bifurcation of this quasigeostrophic model

was found to be a genuine pitchfork bifurcation that breaks the
system’s symmetry as the nonlinearity becomes large enough
with increasing wind-stress intensity τ (Cessi and Ierley, 1995;
Jiang, Jin, and Ghil, 1995). As τ increases, the near-linear
Sverdrup solution that lies along the solid blue line in the
figure develops an eastward jet along the midaxis, which
penetrates farther into the domain and also forms two intense
recirculation vortices, on either side of the jet and near the
western boundary of the domain.
The resulting more intense and hence more nonlinear

solution is still antisymmetric about the midaxis, but it loses
its stability for some critical value of the wind-stress intensity
τ ¼ τp. This value is indicated by the solid square on the
symmetry axis of Fig. 31 and is labeled “Pitchfork” in the
figure.
A pair of mirror-symmetric solutions emerges and it is

plotted as the two red solid lines in the figure’s middle part.
The stream function fields associated with the two stable
steady-state branches have a rather different vorticity dis-
tribution, and they are plotted in the two small panels in the
upper left and upper right of Fig. 31. In particular, the jet in
such a solution exhibits a large, stationary meander, rem-
iniscent of the semipermanent one that occurs in the Gulf
Stream, just downstream of Cape Hatteras. These asym-
metric flows are characterized by one recirculation vortex
being stronger in intensity than the other; accordingly, the
eastward jet is deflected either to the southeast, as is
the case in the observations for the North Atlantic, or to
the northeast.

b. Gyre modes

The next step in the theoretical treatment of the problem
was taken in part concurrently with the first one htat we
mentioned (Jiang, Jin, and Ghil, 1995) and in part shortly
thereafter (Speich, Dijkstra, and Ghil, 1995a; Dijkstra and
Katsman, 1997; Sheremet, Ierley, and Kamenkovich,
1997). It involved the study of time-periodic instabilities
that arise through Hopf bifurcation from either an anti-
symmetric or an asymmetric steady flow. Some of these
studies treated wind-driven circulation models limited to a
stand-alone, single gyre (Pedlosky, 1996; Sheremet, Ierley,
and Kamenkovich, 1997); such a model concentrates on
the larger subtropical gyre while neglecting the smaller
subpolar one.
The overall idea was to develop a full generic picture of the

time-dependent behavior of the solutions in more turbulent
regimes by classifying the various instabilities in a compre-
hensive way. However, it quickly appeared that a particular
kind of instability leads to so-called gyre modes (Jiang, Jin,
and Ghil, 1995; Speich, Dijkstra, and Ghil, 1995a) and was
prevalent across the full hierarchy of models of the double-
gyre circulation; furthermore, this instability triggers the
lowest nonzero frequency present in all such models
(Dijkstra, 2005; Dijkstra and Ghil, 2005).
These gyre modes always appear after the first pitchfork

bifurcation, and it took several years to understand their

FIG. 31. Generic bifurcation diagram for the barotropic quasi-
geostrophic model of the double-gyre problem: the asymmetry of
the solution is plotted versus the intensity of the wind stress τ.
The stream function field is plotted for a steady-state solution
associated with each of the three branches; positive values are in
red and negative ones are in blue. From Simonnet, Ghil, and
Dijkstra, 2005.
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genesis: gyre modes arise as two eigenvalues merge: one of
the two is associated with a symmetric eigenfunction and
responsible for the pitchfork bifurcation, and the other one is
associated with an antisymmetric eigenfunction (Simonnet
and Dijkstra, 2002). This merging is marked by a solid circle
on the left branch of antisymmetric stationary solutions and is
labeled as M in Fig. 31.
Such a merging phenomenon is not a bifurcation in the

term’s usual meaning: Although it corresponds to a topologi-
cal change in phase space, the oscillatory behavior at and near
M is damped. Nevertheless, this oscillatory eigenmode is
eventually destabilized through a Hopf bifurcation, which is
indicated in Fig. 31 by a heavy dot marked “Hopf,” from
which a stylized limit cycle emerges. A mirror-symmetric M
and Hopf bifurcation also occur on the right branch of
stationary solutions, but they have been omitted for visual
clarity. This merging is as generic as the pitchfork bifurcation
in the figure and arises in much more complex situations
and models; see, e.g., Simonnet et al. (2003b) and
Simonnet (2005).
In fact, such a merging is quite common in small-

dimensional dynamical systems with symmetry, as exempli-
fied by the unfolding of codimension-2 bifurcations of the
Bogdanov-Takens type (Guckenheimer and Holmes, 1983). In
particular, the fact that gyre modes trigger the longest multi-
annual periodicity of the model is due to the frequency of this
mode growing quadratically with the control parameter from
zero, i.e., from the infinite period, until nonlinear saturation
sets in; see, e.g., Simonnet and Dijkstra (2002) and Simonnet,
Dijkstra, and Ghil (2009).
More generally, Hopf bifurcations give rise to features that

recur more or less periodically in fully turbulent planetary-
scale flows, atmospheric, oceanic, and coupled (Ghil and
Childress, 1987; Dijkstra, 2005; Dijkstra and Ghil, 2005; Ghil,
2015, 2017). It is precisely this kind of near-periodic recur-
rence that is identified in the climate sciences as LFV.

c. Global bifurcations

The bifurcations studied thus far, in this section as well as
the preceding ones, are collectively known as local bifurca-
tions: they result from an instability of a specific solution that
arises at a particular value of a control parameter. This term is
meant to distinguish them from the global bifurcations to be
studied in this subsection.
The importance of the gyre modes was further confirmed

through an even more puzzling discovery. Several other
authors realized, independently of one other, that the low-
frequency dynamics of their respective double-gyre models
was driven by intense relaxation oscillations of the jet
(Simonnet et al., 1998, 2003a,2003b; Meacham, 2000;
Chang et al., 2001; Nadiga and Luce, 2001; Simonnet,
Ghil, and Dijkstra, 2005). These relaxation oscillations,
previously described by Jiang, Jin, and Ghil (1995) and
Speich, Dijkstra, and Ghil (1995b), were now attributed to
a homoclinic bifurcation, which is no longer due to a linear
instability of an existing solution but to a so-called homoclinic
reconnection, whose character is global in phase space
(Guckenheimer and Holmes, 1983; Ghil and Childress,
1987). In effect, the quasigeostrophic model reviewed here

undergoes a genuine homoclinic bifurcation that is generic
across the full hierarchy of double-gyre models.
This bifurcation is due to the growth and eventual

merging of the two limit cycles, each of which arises from
either one of the two mutually symmetric Hopf bifurcations.
The corresponding bifurcation is marked in Fig. 31 by a
solid circle and labeled “Homoclinic”; the reconnecting
orbit itself is illustrated in the figure by a stylized lemniscate
and plotted accurately by Simonnet, Ghil, and Dijkstra
(2005) in their Fig. 2. This global bifurcation is associated
with chaotic behavior of the flow due to the Shilnikov
phenomenon (Nadiga and Luce, 2001; Simonnet, Ghil, and
Dijkstra, 2005), which induces Smale horseshoes in
phase space.
The connection between such homoclinic bifurcations and

gyre modes was not immediately obvious, but Simonnet, Ghil,
and Dijkstra (2005) emphasized that the two were part of a
single global dynamical phenomenon. The homoclinic bifur-
cation indeed results from the unfolding of the gyre modes’
limit cycles. This familiar dynamical scenario is again well
illustrated by the unfolding of a codimension-2 Bogdanov-
Takens bifurcation, where the homoclinic orbits emerge
naturally.
Since homoclinic orbits have an infinite period, it was

natural to hypothesize that the gyre-mode mechanism in this
broader, global-bifurcation context gave rise to the observed
7- and 14-yr North Atlantic oscillations. Although this
hypothesis may appear a little farfetched given the simplicity
of the double-gyre models analyzed so far, it is reinforced
by results with much more detailed models in the hierarchy;
see, e.g., Dijkstra (2005), Dijkstra and Ghil (2005), and
Vannitsem et al. (2015).
The successive-bifurcation theory there appears to be fairly

complete for barotropic, single-layer models of the double-
gyre circulation. This theory also provides a self-consistent,
plausible explanation for the climatically important 7- and
14-yr oscillations of the oceanic circulation and the related
atmospheric phenomena in and around the North Atlantic
basin (Plaut, Ghil, and Vautard, 1995; Moron, Vautard, and
Ghil, 1998; Wunsch, 1999; Da Costa and Colin de Verdiére,
2002; Simonnet et al., 2003b; Feliks, Ghil, and Simonnet,
2004, 2007; Dijkstra, 2005; Dijkstra and Ghil, 2005;
Kondrashov, Feliks, and Ghil, 2005; Simonnet, Ghil, and
Dijkstra, 2005; Feliks, Ghil, and Robertson, 2010, 2011).
Moreover, the dominant 7- and 14-yr modes of this theory
survive perturbation by seasonal-cycle changes in the intensity
and meridional position of the westerly winds (Sushama, Ghil,
and Ide, 2007).
In baroclinic models with two or more active layers of

different density, baroclinic instabilities (Gill, 1982; Ghil and
Childress, 1987; Pedlosky, 1987; Dijkstra and Ghil, 2005;
Berloff, Hogg, and Dewar, 2007; Feliks, Ghil, and Simonnet,
2007; Kravtsov et al., 2006) surely play a fundamental role, as
they do in the observed dynamics of the ocean. However, it is
not known to what extent baroclinic instabilities can destroy
gyre-mode dynamics. The difficulty lies in a deeper under-
standing of the so-called rectification process (Katsman,
Dijkstra, and Drijfhout, 1998), which arises from the nonzero
mean effect of the baroclinic eddying and meandering of the
flow on its barotropic component.
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Roughly speaking, rectification drives the dynamics further
away from any stationary solutions. In this situation, dynami-
cal-systems theory by itself cannot be used as a full explan-
ation of complex observed behavior resulting from successive
bifurcations that are rooted in simple stationary or periodic
solutions.
Therefore, other tools from statistical mechanics and non-

equilibrium thermodynamics have to be considered (Robert
and Sommeria, 1991; Chavanis and Sommeria, 1996; Farrell
and Ioannou, 1996; Bouchet and Sommeria, 2002; Majda and
Wang, 2006; Lucarini and Sarno, 2011; Lucarini, Blender
et al., 2014), and they are discussed in Secs. IV and V.
Combining these tools with those of the successive-
bifurcation approach could lead to a more complete physical
characterization of gyre modes in realistic models. Preparing
the ground for combining dynamical-systems tools and stat-
istical-physics tools in this way is one of the main purposes of
our review.

G. Multiple scales: Stochastic and memory effects

In Sec. II.B, we illustrated in Fig. 12 the multiplicity of
timescales that are present in the climate spectrum. We also
pointed out that this multiplicity of scales gives rise to the need
for a hierarchy of models that enable the study of separate
scales of motion and of the phenomena associated with each,
as well as of the interactions between two or more scales; see
Fig. 11. Here we discuss several ways in which one can
address these issues, using the theory of stochastic processes
and taking into account non-Markovian effects.

1. Fast scales and their deterministic parametrization

Let us concentrate, for the sake of definiteness, on vari-
ability within a particular range of frequencies f in the
climatic power spectrum of Fig. 12(a), say, seasonal to
centennial, i.e., 10−2 yr−1 ¼ f1 ≤ f ≤ f2 ¼ 100 yr−1, and
write a model of this variability as

_z ¼ Hðz; μÞ: ð23Þ

Here z is the vector of the system's variables and μ is the vector
of the system's parameters. We saw that oscillatory modes of
both the THC (see Sec. III.D) and the wind-driven circulation
(see Sec. III.F) lie in this range. How should one then take into
account the slower timescales to the left of this range
f0 < f < f1, and the faster ones to the right f2 < f < f3,
where 0 ≤ f0 < 10−2 yr−1 and 1 < f3 < ∞?
A time-honored approach in physical modeling is to

describe variability to the left as a prescribed slow evolution
of parameters

μ ¼ μðϵtÞ; 0 < ϵ ≪ 1; ð24Þ

where ϵ is small and ϵt is, therefore, a slow time. One might,
for instance, consider a particular μ ¼ μðϵtÞ in Eq. (24) to
represent a slow change in the solar constant or in the height of
the topography.
To the right, one might approximate the more rapid

fluctuations as being extremely fast with respect to those of

main interest or even infinitely fast. There are two distinct
approaches based on these ideas: the first one is purely
deterministic, and the second one introduces a noise process
and thus stochastic considerations.
The standard slow-fast formulation of a system of differ-

ential equations when assuming a large but finite separation of
timescales is given, for ϵ ≠ 0, by

x0 ¼ ϵFðx; y; ϵÞ; ð25aÞ

y0 ¼ Gðx; y; ϵÞ: ð25bÞ

Here z ¼ ðx; yÞT , with x the slow variable and y the fast
variable andH ¼ ðF;GÞT , while ð·ÞT designates the transpose
and ð·Þ0 ¼ dð·Þ=dt stands for differentiation with respect to
the fast time t.
As long as ϵ ≠ 0, the system (25) is equivalent to the

so-called slow system,

_x ¼ Fðx; y; ϵÞ; ð26aÞ

ϵ_y ¼ Gðx; y; ϵÞ; ð26bÞ

in which the dot stands for differentiation dð·Þ=dτ with respect
to the slow time τ ¼ ϵt.
The classical way of dealing with such problems has been

using matched asymptotic expansions; see, e.g., Grasman
(1987) and Lagerstrom (1988). This methodology arose
originally from dealing with boundary layers in fluid dynam-
ics, with the inner problem referring to the fast variations in
the boundary layer, while the outer problem refers to the more
slowly varying free flow outside this layer.
More recently a point of view inspired by dynamical-

systems theory (Fenichel, 1979) led to geometric singular
perturbation theory; see, e.g., Jones (1995). In this approach,
one considers the invariant manifolds that arise in the two
complementary limits obtained by letting ϵ → 0 in the fast and
slow systems, respectively.
In the fast system (25), the limit is given by

x0 ¼ 0; ð27aÞ

y0 ¼ Gðx; y; 0Þ; ð27bÞ

while in the slow one it makes sense only if the right-hand side
of Eq. (26b) is identically zero; if so, the latter limit is given by

_x ¼ Fðx; y; 0Þ; ð28aÞ

0 ¼ Gðx; y; 0Þ: ð28bÞ

The algebraic equation Gðx; y; 0Þ ¼ 0 defines the critical
manifold Mc on which the solutions of the reduced problem
_x ¼ Fðx; y; 0Þ evolve; here y ¼ YGðxÞ are the explicit sol-
utions of the implicit equation (28a).
The splitting of the full, slow-fast system given by either

Eq. (25) or Eq. (26) into the two systems (27) and (28) has
proven to be helpful in the study of relaxation oscillations;
see, e.g., Grasman (1987). We saw such sawtooth-shaped,
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slow-fast oscillations arise in both the THC (Sec. III.C.2) and
the wind-driven circulation of the ocean (Sec. III.F.2).
Another important application of this methodology is in the

reduction of large multiscale problems to much smaller ones.
In the systems (25) and (26), we considered both x and y to be
scalar variables. We saw in Fig. 11, though, that the character-
istic spatial and temporal scales of atmospheric, oceanic, and
coupled climate phenomena are highly correlated with each
other; large-scale motions tend to be slow and smaller-scale
ones faster. Thus, it is much more judicious to consider
z ¼ ðXT;YTÞT , with X ∈ Rm, Y ∈ Rn, and n ≫ m; i.e., the
number of small and fast degrees of freedom is much larger
than that of the large and slow ones.
This setup corresponds conceptually to the parametriza-

tion problem, which we defined in Sec. II.B as finding a
representation of the unresolved subgrid-scale processes
described by Y ∈ Rn in terms of the resolved, larger-scale
ones described by X ∈ Rm. A paradigmatic example is that
of parametrizing cloud processes, with spatial scales of 1 km
and smaller and with temporal scales of 1 h and less, given
the large-scale fields characterized by lengths of tens and
hundreds of kilometers and by durations of substantial
fractions of a day and longer. In this case, the critical
manifold appears to be S shaped, as for the periodically
forced Van der Pol oscillator [see, e.g., Guckenheimer,
Hoffman, and Weckesser (2003), Fig. 2.1], with jumps that
occur between the branch on which convection, and hence
rain, is prevalent, and the one on which the mean vertical
stratification is stable, and thus no rain is possible. Next we
discuss specifically the parametrization of convective proc-
esses and of clouds in this perspective.

2. An example: Convective parametrization

Clouds have a dramatic role in climate modeling and in
determining the climate’s sensitivity to natural and anthropo-
genic perturbations; see, e.g., IPCC (2001, 2014a). A sub-
stantial literature exists, therefore, on cloud observations,
modeling, and simulation; see, e.g., Emanuel (1994) and
references therein. See our earlier discussion in Secs. II.C.2
and III.G.1. One of the oldest, best known, and most widely
used cumulus parametrizations is the Arakawa and Schubert
(1974) one. Cumulus convection occurs due to moist con-
vective instability, which converts the potential energy of the
large-scale mean state into the kinetic energy of the cumulus
clouds. A fundamental parameter in this process is the
fractional entrainment rate λ of a cumulus updraft. In the
Arakawa-Schubert (AS) parametrization of moist atmospheric
convection, the key idea is that an ensemble of cumulus clouds
is in quasiequilibrium with the large-scale environment.
The cloud work function AðλÞ changes in time according to

_AðλÞ ¼ J ⊗ MBðλÞ þ FðλÞ. ð29Þ

Here MBðλÞ is the non-negative mass flux through the cloud
base and J ⊗ MB is a weighted average over cloud types, with
J standing for the weights in the averaging integral, while F is
the large-scale forcing.
The dot stands for differentiation with respect to the slow

time τ ¼ ϵt as in Eq. (26a). The quasiequilibrium assumption

in the AS parametrization corresponds simply to the critical
manifold equation (28a), which becomes

0 ¼ J ⊗ MBðλÞ þ FðλÞ: ð30Þ

In this case, the small parameter that corresponds to the ϵ of
the general slow-fast formulation is the reciprocal of the
adjustment time τadj of a cloud ensemble to the mean
state ϵ ∼ 1=τadj.
Pan and Randall (1998) proposed an equation that corre-

sponds to the behavior of a cumulus ensemble off the critical
manifold given by Eq. (30), which they termed a prognostic
closure. In their formulation, one computes a cumulus kinetic
energy K from

_K ¼ Bþ S −D. ð31Þ

Here B is the buoyancy production term, S is the shear
production term, and D is the vertically integrated dissipation
rate. The main parameters on which the behavior of the slow-
fast system given by Eqs. (30) and (31) depends are

α ¼ M2
B=K; τD ¼ K=D: ð32Þ

While Pan and Randall (1998) did not determine α, τD, or τadj
explicitly, they provided qualitative arguments based on the
physics of cumulus convection that make the quasiequilibrium
limit plausible.

3. Stochastic parametrizations

It is of broader interest, though, to consider now the slow-fast
formulation of a system of differential equations in the limit
case of infinite separation of timescales, i.e., when the fast
motions have zero decorrelation time. In this case, one has to
introduce a white-noise process and the associated stochastic
considerations.
The basic idea relies on the Einstein (1905) explanation of

Brownian motion, in which a large particle is immersed in a
fluid formed of many small ones. Let the large particle move
along a straight line with velocity u ¼ uðtÞ, subject to a
random force ηðtÞ and to linear friction −λu, with coefficient
λ. The equation of motion is

du ¼ −λudtþ ηðtÞ: ð33Þ

The random force ηðtÞ is assumed to be “white noise,” i.e.,
it has mean zero E½ηðt;ωÞ� ¼ 0 and autocorrelation
E½ηðt;ωÞηðtþ s;ωÞ� ¼ σ2δðsÞ, where δðsÞ is a Dirac function,
σ2 is the variance of the white-noise process, ω labels the
realization of the random process, and E is the expectation
operator, which averages over the realizations ω. Alternative
notations for the latter are an overbar in climate sciences and
angle brackets in quantum mechanics, E½F� ≔ F̄ ≔ hFi.
Equation (33), with η ¼ σdW, is a linear stochastic differ-

ential equation (SDE) of a form that is now referred to as a
Langevin equation, where WðtÞ is a normalized Wiener
process, also called Brownian motion. It was introduced into
climate dynamics by Hasselmann (1976), who identified slow
“climate” variations with the motion of the large particle and
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fast “weather” fluctuations with the motions of the small fluid
particles. He also thought of weather as associated with the
atmosphere and climate as associated with the ocean, cryo-
sphere, and land vegetation.
Specifically, Hasselmann (1976) assumed that in a system

like Eq. (23) and without formally introducing the timescale
separation parameter ϵ one would have τx ≪ τy, where τx and
τy are the characteristic times of the fast x and slow y
variables, respectively. From this assumption and relying also
upon the results of Taylor (1921), he then derived a linear SDE
for the deviations y0j of the slow variables Y from a reference
state Y0 and the properties of the corresponding covariance
matrix and spectral densities. In particular, the red-noise
character of the spectrum S ¼ SðfÞ, with S ∼ f−2 for many
oceanic observed time series, lent considerable credence to the
thermal-flywheel role that Hasselmann (1976) attributed to the
ocean in the climate system.
In light of recent mathematical results on extremely large

timescale separation in slow-fast deterministic systems, let us
consider a relatively simple, but still sufficiently relevant and
instructive, case in which the reduction to a SDE can be
rigorously derived; see Pavliotis and Stuart (2008), Melbourne
and Stuart (2011), and Gottwald and Melbourne (2013).
Their deterministic system of ordinary differential equations
(ODEs) is a small modification of Eq. (26), namely,

_x ¼ ϵ−1f0ðyðϵÞÞ þ f1ðxðϵÞ; yðϵÞÞ; xðϵÞð0Þ ¼ x0; ð34aÞ
_yðϵÞ ¼ ϵ−2gðyðϵÞÞ; yðϵÞð0Þ ¼ y0; ð34bÞ
where xðϵÞ ∈ Rd and yðϵÞ ∈ Rd0 .
The formal difference with respect to the situation studied

in Sec. III.G.1 is that Fðx; y; ϵÞ of Eq. (26a) has been expanded
in ϵ as Fðx; y; ϵÞ ¼ f0ðyðϵÞÞ þ ϵf1ðxðϵÞ; yðϵÞÞ, while Gðx; y; ϵÞ
of Eq. (26b) has been both simplified, in becoming x
independent, and “accelerated,” to read Gðx; y; ϵÞ ¼
ϵ−2gðyðϵÞÞ. The basic idea is that the chaotic and fast yðϵÞ

induces, as ϵ → 0, a white-noise driving of the slow x. Note
that one needs d0 ≥ 3 for the autonomous Eq. (34b) to have
chaotic solutions.
Melbourne and Stuart (2011) assumed merely that the fast

equation (34b) has a compact attractor Λ ∈ Rd0 that supports
an invariant measure μ, and that Eμ½f0ðxÞ� ¼ 0, along with
certain boundedness and regularity conditions on fðx; yÞ.
They then rigorously showed that

xðϵÞðtÞ→
p
XðtÞ as ϵ → 0;

where the convergence is with respect to the appropriate
probability measure p and XðtÞ is the solution of the SDE

XðtÞ ¼ x0 þ
Z

t

0

F̄½XðsÞ�dsþ σWðtÞ: ð35Þ

HereW is the Brownian motion with variance σ2, such that the
white noise in Eq. (33) is given by η ¼ σdW. Moreover,
F̄ðXÞ ¼ Eμ½Fðx; ·Þ� with respect to μ.
Fundamental mathematical issues associated with the

previous diffusive limit of slow-fast systems were explored
by Papanicolaou and Kohler (1974), and early results in the

physical literature include Beck (1990) and Just et al. (2001).
Many aspects of the applications to climate modeling were
covered by Palmer and Williams (2009). More specifically,
Berner et al. (2017) and Franzke et al. (2015) discussed issues
of stochastic parametrization of subgrid-scale processes.
To conclude this section, it is of interest to consider in a

broader perspective the potential for a unified theory of
nonautonomous dynamical systems in which the fast proc-
esses may be modeled as either deterministic or stochastic.
The theory of purely deterministic, skew-product flows was
laid on a solid basis by Sell (1967, 1971) and, more recently,
by Kloeden and Rasmussen (2011). Random dynamical
systems were extensively covered by Arnold (1998), with
many recent results in an active field.
Berger and Siegmund (2003) pointed out, “Quite often,

results for random dynamical systems and continuous skew-
product flows are structurally similar,” and thus open the way
to a unified theory. They outline both commonalities and
distinctions between the two broad classes of nonautonomous
dynamical systems, to shed further light on existing results, as
well as to stimulate the development of common concepts and
methods.
Caraballo and Han (2017) provided a solid and accessible

introduction to random dynamical systems, as well as to
deterministically nonautonomous ones, along with several
interesting applications. They also considered the two distinct
types of formulation of the deterministic ones, the so-called
process formulation and the skew-product flow one.
System (34), for instance, is a particular case of a master-
slave system

_x ¼ fðx; yÞ; _y ¼ gðyÞ; with x ∈ Rd; y ∈ Rd0 ; ð36Þ
that induces a skew-product flow, where yðtÞ is the driving
force for xðtÞ.
These developments bear following since the climate

sciences offer a rich source of relevant problems and could
thus lead to novel and powerful applications of the unified
theory. Caraballo and Han (2017) already studied the
Lorenz (1984) model, in which seasonal forcing acting on
deterministic subseasonal variability can induce interannual
variability. Other applications are discussed later, especially in
Sec. IV.E.

4. Modeling memory effects

While the study of differential equations goes back to Isaac
Newton, the interest for explicitly including delays in evolu-
tion equations that govern physical and biological processes is
relatively recent. A mid-20th-century reference is Bellman
and Cooke (1963), followed by Driver (1977) and Hale
(1977). Delay-differential equations (DDEs) were introduced
into the climate sciences by Bhattacharya, Ghil, and Vulis
(1982) and have been used widely in studying ENSO; see, for
instance, Tziperman et al. (1994a), and Ghil, Chekroun, and
Stepan (2015) and references therein.
As we shall see, memory effects can play a key role when

there is little separation between scales, in contrast to the
assumptions of Hasselmann (1976) and of other authors
mentioned in Secs. III.G.2 and III.G.3. Moreover, when
properly incorporated in the mathematical formulation of
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the climate problem at hand, relying on such effects can lead
to highly efficient and accurate model reduction methods.

a. The Mori-Zwanzig formalism

In statistical physics, the Mori-Zwanzig (MZ) (Zwanzig,
1961; Mori, 1965) formalism arose from describing the
interaction of a Hamiltonian many-particle system with a
heat bath. Today, though, it is being used in a large number of
applications that include dissipative systems.
The fundamental idea is illustrated by the following simple

linear system of two ODEs (E and Lu, 2011):

_x ¼ a11xþ a12y; ð37aÞ

_y ¼ a21xþ a22y: ð37bÞ

The sole assumption is that we are interested in the details of
the behavior of xðtÞ, but only in the statistics of y; one thinks
of y as fluctuating faster than x, but this is not actually required
for the formalism outlined later to work. One considers x as a
slowly varying parameter in solving Eq. (37b) for y by using
the variation-of-constants formula

yðtÞ ¼ ea22tyð0Þ þ
Z

t

0

ea22ðt−sÞa21xðsÞds

and plugs this result back into Eq. (37) to yield

_x ¼ a11xþ
Z

t

0

Kðt − sÞxðsÞdsþ fðtÞ: ð38Þ

Equation (38) is a generalized Langevin equation (GLE) in
which KðtÞ ¼ a12 expða22tÞa21 is the memory kernel and
fðtÞ ¼ a12 expða22tÞyð0Þ is the noise term since one thinks of
yð0Þ as randomly drawn from the rapidly fluctuating yðtÞ. The
essential difference with respect to Eq. (33) is the convolution
integral in Eq. (38), which expresses the delayed action of the
slow variable x on the fast variable y.
The MZ formalism consists, in a general, nonlinear set of

Markovian evolution equations with a large or even infinite
number of degrees of freedom, in selecting the variables one is
interested in via a projection operator and deriving the
generalized form of the GLE in Eq. (38). Examples of
Markovian evolution equations are systems of ODEs or
PDEs for which an instantaneous initial state carries all of
the information from the past.
In this general case, the memory term involves repeated

convolutions between decaying memory kernels and the
resolved modes, and the GLE there is a non-Markovian,
stochastic integrodifferential system that is difficult to solve
without further simplifications. Among the latter, the short-
term memory approximation [see, e.g., Chorin and Stinis
(2007)] posits rapidly decaying memory and is equivalent
to assuming a relatively large separation of scales, as in
Secs. III.G.1 and III.G.3.
Kondrashov, Chekroun, and Ghil (2015) showed that there

is a way to approximate the GLE in a broad setting, efficiently
and accurately, using a set of Markovian SDEs without the
need for pronounced scale separation and in the presence of
so-called intermediate-range memory. This way relies on a
methodology that was developed at first quite independently

of the MZ formalism, namely, empirical model reduction
(EMR) (Kondrashov et al., 2005; Kravtsov, Kondrashov, and
Ghil, 2005, 2009).

b. EMR methodology

The purpose of EMR development was to derive relatively
simple nonlinear, stochastic-dynamic models from time series
of observations or of long simulations with high-end models
such as GCMs. An EMR model can be compactly written as

_x¼−AxþBðx;xÞþLðx;rlt;ξt;tÞ; 0≤ l≤L−1: ð39Þ

Here x typically represents the resolved and most energetic
modes. Most often, these are chosen by first selecting a suitable
basis of empirical orthogonal functions (Preisendorfer, 1988) or
other data-adaptive basis [see, e.g., Kravtsov, Kondrashov, and
Ghil (2009) and references therein], and retaining a set of
principal components that capture a satisfactory fraction of the
total variance in the dataset.
The terms −Ax and Bðx; xÞ represent, respectively, the

linear dissipation and the quadratic self-interactions of these
modes, while L is a time-dependent operator that is bilinear
in the resolved variables x and the unresolved ones rlt.
These interactions take a prescribed form in the EMR
formulation of Eq. (39) and arise by integrating recursively,
from the lowest level L to the top level l ¼ 0, the “matrioshka”
of linear SDEs

drlt ¼ Mlðx; r0t ;…; rltÞdþ rlþ1
t dt:

At each level l, the coupling between the variable rlt and the
previous-level variables ðx; r0t ;…; rl−1t Þ is modeled by L − 1
rectangular matrices Ml of increasing order.
In practice, the matrices A, Ml, and the quadratic terms B

are estimated by a recursive least-square procedure, which is
stopped when the Lth-level residual noise rL−1 ¼ ξt has a
vanishing lag 1 autocorrelation. The stochastic residuals rlt
obtained in this recursive minimization procedure are ordered
in decreasing order of decorrelation time, from r0t to ξt.
Note that the integral terms arising in the L operator are

convolution integrals between the macrostate variables x and
memory kernels that decay according to the dissipative
properties of the matrices Ml. These decay times are not
necessarily short, and one can thus treat the case of inter-
mediate-range memory in the MZ terminology. Furthermore,
Kondrashov et al. (2005) noted that any external forcing, such
as the seasonal cycle, can typically be introduced as a time
dependence in the linear part A of the main level of Eq. (39).

c. Role of memory effects in EMR

We propose here a simple analytic example that should help
one understand the general description of EMR in the previous
paragraphs, as well as the connection to the MZ formalism.
The model is given by

dx ¼ ½fðxÞ þ r�dt; ð40aÞ

dr ¼ ðγx − αrÞdtþ dWt; ð40bÞ
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where f is a nonlinear function, Wt ¼ WtðωÞ is a standard
Wiener process as in Eq. (33), α > 0, and γ is real. We are
interested in x, which is slow, and want to parametrize r,
which is fast.
Proceeding with Eq. (40) as we did with the system (37),

but now for a fixed realization ω ∈ Ω, we get

rðt;ωÞ ¼ e−αtr0 þ γ

Z
t

0

e−αðt−sÞxðsÞdsþWtðωÞ;

where rðt0;ωÞ ¼ r0. Substituting this back into Eq. (40a)
yields the following randomly forced integrodifferential
equation:

_x ¼ fðxÞ þ e−αtr0 þ γ

Z
t

0

e−αðt−sÞxðsÞdsþWtðωÞ; ð41Þ

which is the analog of Eq. (38) in the stochastic-dynamic
context of Eq. (40).
Kondrashov, Chekroun, and Ghil (2015) rigorously proved

that the EMR (39) is equivalent to a suitable generalization of
the GLE (41). Pavliotis (2014) defines as quasi-Markovian
a stochastic process where the noise in the GLE can be
described by adding a finite number of auxiliary variables, as
in the case of the EMR approach. Thus, the EMR method-
ology can be seen as an efficient implementation of the MZ
formalism, i.e., an efficient solution of the associated GLE,
even in the absence of large-scale separation. This result
explains the remarkable success of EMR in producing reduced
models that capture the multimodality as well as the nontrivial
power spectrum of phenomena merely known from time series
of observations or of high-end model simulations.
In the remainder of this section, we give two examples of

this success and further references to many more. Alternative
approaches to efficient solutions of the GLE can be found, for
instance, in Chorin, Hald, and Kupferman (2002).

d. EMR applications

We choose here an EMR model to simulate Northern
Hemisphere midlatitude flow (Kravtsov, Kondrashov, and
Ghil, 2005) and a real-time ENSO prediction model
(Kondrashov et al., 2005). Further examples of successful
application of the methodology appear in Kravtsov,
Kondrashov, and Ghil (2009) and Kravtsov et al. (2011)
and elsewhere.
Kravtsov, Kondrashov, and Ghil (2005) introduced the

EMR methodology and illustrated it at first with quadratically
nonlinear models of the general form given here in Eq. (39).
The applications were to the Lorenz (1963) convection model,
the classical double-well potential in one space dimension,
and a triple-well potential in two dimensions with an expo-
nential shape for the wells. More challenging was a real-data
application to geopotential height data for 44 boreal winters
(1 December 1949–31 March 1993). The dataset consisted of
44 × 90 ¼ 3960 daily maps of winter data, defined as 90-day
sequences starting on 1 December of each year. The best EMR
fit for the data required the use of nine principal components
and of L ¼ 3 levels.

The probability density functions (PDFs) for the observed
and the EMR model-generated datasets are plotted in Fig. 32.
The EMR captures the three modes obtained with a Gaussian
mixture model; see Smyth, Ide, and Ghil (1999) and Ghil and
Robertson (2002). These three modes correspond to three
clusters found by Cheng and Wallace (1993) using extremely
different methods on a somewhat different dataset. The maps
of the corresponding centroids appear as Fig. 1 in Ghil and
Robertson (2002) and are discussed therein; they agree quite
well with those of Cheng and Wallace (1993); see Smyth, Ide,
and Ghil (1999), Fig. 9.
Kondrashov et al. (2005) fitted the global SST field

between 30°S and 60°N over the time interval January
1950–September 2003 by using linear and quadratic EMR
models with one and two noise levels L ¼ 1, 2, based on
monthly SST anomaly maps and allowing a seasonal depend-
ence of the dissipative terms in Eq. (39). Their results when
using L ¼ 2 were much better for both linear and quadratic
models, which shows the role of memory effects in EMR
modeling and the connection with the MZ formalism that was
already explained.
The use of the EMR models in prediction was tested by so-

called hindcasting, or retrospective forecasting, i.e., a proto-
col, also called “no look-ahead”, in which the data available
past a certain time instant are eliminated when constructing
the model to be used in the forecast to be evaluated. The
results of these tests are plotted in Fig. 33 for L ¼ 2 and a
linear versus a quadratic model. The light-black rectangle
in the eastern tropical Pacific corresponds to the region
(5°S–5°N, 150°–90°W) over which SST anomalies are aver-
aged to obtain the Niño-3 index mentioned in Sec. III.E.2.
Climate forecast skill is measured mainly via root-mean-

square errors and anomaly correlations. The former skill
scores were given by Kondrashov et al. (2005) in their
Fig. 2(d) and clearly indicate the superiority of the quadratic
model. The latter appear in Fig. 33 too.
Anomaly correlations of roughly 0.5–0.6 (red in Fig. 33)

are considered quite useful in climate prediction, and the red
area is substantially larger in Fig. 33(b), covering most of
the tropical Pacific and Indian oceans. Concerning actual
real-time forecasts, Barnston et al. (2012) found that, over
the 2002–2011 interval of their evaluation, the EMR-based

FIG. 32. Multimodal probability density function (PDF) for
the Northern Hemisphere’s geopotential height anomalies of 44
boreal winters; see Smyth, Ide, and Ghil (1999) for details of the
dataset and of the mixture model methodology for computing
the PDFs. PDF (a) of the observed height anomalies and (b) of the
anomalies given by the EMR model. Adapted from Kravtsov,
Kondrashov, and Ghil, 2005.
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forecasts of University of California–Los Angeles’s
Theoretical Climate Dynamics group were at the top of the
eight statistical models being evaluated and exceeded in skill
by only a few of the 12 dynamical, high-end models in the
group that participated in the ENSO forecast plume of the
International Research Institute for Climate and Society.20

e. Explicit derivation of the parametrized equations

The EMR methodology is data driven, so it allows one to
construct bottom up an effective dynamics able to account for
the observed data. Wouters and Lucarini (2012, 2013) showed
that the MZ formalism can also be used to derive the
parametrizations in a top-down manner in a general way.
Assume that the system of interest is described by the
following evolution equations:

_X ¼ fXðXÞ þ ϵΨXðX;YÞ; ð42aÞ

_Y ¼ fYðYÞ þ ϵΨYðX;YÞ. ð42bÞ

Here again X ∈ Rm, Y ∈ Rn, X is the set of large-scale,
energetic variables of interest, and, typically, n ≫ m.
We assume, furthermore, that ϵ is a small parameter

describing the strength of the coupling between the two sets
of variables, and that if ϵ ¼ 0 the dynamics is chaotic for both

the X and Y variables. By expanding the MZ projection
operator, it is possible to derive the following expression for
the projected dynamics on the X variables, which is valid up
to order Oðϵ3Þ:

_X¼fXðXÞþϵMðXÞþϵSðXÞþϵ2
Z

KðX;t−sÞds: ð43Þ

This equation provides the explicit expression of the mean-
field, deterministic term M, the time-correlation properties of
the stochastic term S, which is, in general, multiplicative, and
the integration kernel K, which defines the non-Markovian
contribution.
Figure 34 provides a schematic diagram of the three terms

of the parametrization: the M term comes from a time
averaging of the effects of the Y variables on the X variables,
the S term results from the fluctuations of the forcing of the Y
variables on the X variables, and the non-Markovian con-
tribution represents the self-interaction of the X variables on
themselves at a later time, mediated by the Y variables.
These terms are derived using the statistical properties of

the uncoupled dynamics of the Y variables at ϵ ¼ 0. In the
limit of infinite timescale separation between the X and Y
variables, the non-Markovian term drops out and the stochas-
tic term becomes a white-noise contribution, where one needs
to use the Stratonovich definition of the stochastic integral
(Pavliotis and Stuart, 2008). If instead ΨY ¼ 0 in the master-
slave skew-product system (42), the non-Markovian term is
identically zero, as expected.
A surprising property of the surrogate dynamics given by

Eq. (43) is that the expectation value of any observable ϕðXÞ
is the same as for the full dynamics governed by Eq. (42) up to
third order in ϵ (Wouters and Lucarini, 2013). This property is
due to the fact that one can derive Eq. (43) by treating the
weak coupling using Ruelle response theory (Ruelle, 1998,
1999, 2009); see Sec. IV.E.3. As a result, the average model
error due to the use of parametrized dynamics is under control;
see the discussion by Hu, Bódai, and Lucarini (2019).
Moreover, Vissio and Lucarini (2018a, 2018b) showed by
explicit examples that this top-down approach can, in some
cases, help derive scale-adaptive parametrizations, while

FIG. 33. Validation of forecast skill of the EMR-based ENSO
model of Kondrashov et al. (2005) via anomaly correlation maps
of SSTs at 9-month lead time. (a) Using a quadratic EMR model
with L ¼ 1. (b) Using a quadratic model with L ¼ 2. Adapted
from Kondrashov et al., 2005.

FIG. 34. Schematic representation of the three terms contrib-
uting to the parametrization of the fast variables X in Eq. (43).
(a) Mean-field term M. (b) Stochastic term S. (c) Memory term
with kernel K. The symbols ðτ; τ1; τ2Þ denote the delays involved
in these effects. From Wouters and Lucarini, 2013.

20See https://iri.columbia.edu/our-expertise/climate/forecasts/enso/
current/?enso_tab=enso-sst_table.
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Demaeyer and Vannitsem (2017) demonstrated its effective-
ness in an intermediate-complexity climate model.
Finally, note that there is an alternative route to construct

parametrizations in slow-fast systems where the timescale
separation is finite. Wouters and Gottwald (2019a, 2019b)
recently proposed the idea of avoiding the need to add
memory terms in the surrogate dynamics by using the
formalism of Edgeworth expansions. This approach allows
one to describe corrections to the Gaussian limiting behavior
of slow-fast systems and is able to capture the feedbacks
between the slow and fast variables.

IV. CLIMATE SENSITIVITY AND RESPONSE

A central goal of the climate sciences is to predict the
impact of changes in the system’s internal or external
parameters, such as the greenhouse gas (GHG) concentration
or the solar constant, on its statistical properties. A key
concept in doing so is climate sensitivity, which aims to
measure the response of the climate system to external
perturbations of Earth’s radiative balance. As we see later,
this measure is being used for projecting, for instance, mean
temperature changes over the coming century as a response
to increasing concentrations of atmospheric GHGs. While a
good start, accurate and flexible predictions of climate
changes require more sophisticated concepts and methods.

A. A simple framework for climate sensitivity

To illustrate the main ideas, let us consider the simple EBM
introduced in Eq. (13) of Sec. III.A, where the net radiation
R ¼ Ri − Ro at the top of the atmosphere is related to the
corresponding average temperatureT near the Earth’s surface by
R ¼ RðTÞ. This simple, 0D EBM includes both longwave and
shortwave processes so that cdT=dt ¼ RðTÞ, as in Eq. (13a).
Following Peixoto and Oort (1992) and Zaliapin and Ghil

(2010), we assume, furthermore, that there are N climatic
variables fαk ¼ αkðTÞ; k ¼ 1;…; Ng that are to a first approxi-
mation directly affected by the temperature change only and
that can, in turn, affect the radiative balance. Hence, one can
write R ¼ R(T; α1ðTÞ;…; αNðTÞ). Let us assume, further-
more, that for a certain reference temperature T ¼ T0 one
has RðT0Þ ¼ 0, which corresponds to steady-state conditions.
The simplest framework for climate sensitivity is to think of

the difference in global annual mean surface air temperature
ΔT between two statistical steady states that have distinct
CO2 concentration levels. We then assume that changing the
CO2 concentration corresponds to applying an extra net
radiative forcing ΔR̃ to the system, and we look for the
corresponding change ΔT in the average temperature so that
RðT0 þ ΔTÞ þ ΔR̃ ¼ 0.
For small ΔT and smooth R ¼ RðTÞ, the Taylor expansion

yields

ΔR̃ ¼ −
dR
dT

����
T¼T0

ΔT þO(ðΔTÞ2) ¼ −∂R
∂T

����
T¼T0

ΔT

−
XN
k¼1

∂R
∂αk

∂αk
∂T

����
T¼T0

ΔT þO(ðΔTÞ2). ð44Þ

Here OðxÞ is a function such that OðxÞ ≤ Cx as soon as
0 < x < ϵ for some positive constants C and ϵ. While the
higher-order terms in ΔT are usually small, they can become
important where the smooth dependence of R on T breaks
down. Specifically, rapid climate change may ensue when the
system crosses a tipping point, as we explain later.
Introducing the notations

1

λ0ðT0Þ
¼ −

∂R
∂T

����
T¼T0

; ð45aÞ

fkðT0Þ ¼ −λ0ðT0Þ
∂R
∂αk

∂αk
∂T

����
T¼T0

; ð45bÞ

for the “reference sensitivity” λ0 and the “feedback factors” fk
at the reference state T ¼ T0, we obtain

ΔR̃ ¼ 1 −
P

N
k¼1 fkðT0Þ

λ0ðT0Þ
ΔT þO(ðΔTÞ2); ð46Þ

which readily leads to

ΔR̃ ¼ ΛðT0ÞΔT þO(ðΔTÞ2): ð47Þ

Here

ΛðT0Þ ¼ −
dR
dT

����
T¼T0

¼ λ0ðT0Þ
1 −

P
N
k¼1 fkðT0Þ

ð48Þ

is the linear gain factor, which can be defined as long asP
N
k¼1 fkðT0Þ ≠ 1; note that if the sum of the feedback

factors exceeds unity, i.e.,
P

N
k¼1 fkðT0Þ > 1, the system is

unstable.
Referring again to Eq. (13), the feedback associated with

the dependence of α on the temperature in Eq. (13b) is usually
taken to be the ice-albedo feedback [see Sec. III.A], while
the dependence of the emissivity m on the temperature in
Eq. (13c) is associated with the changes in the atmospheric
opacity. For the latter one, the standard reference sensitivity
associated with deviations from Planck’s law for black-body
radiation is λ0ðT0Þ ¼ −∂R=∂TjT¼T0

¼ 4σmðT0ÞT3
0.

More specifically, feedbacks that can contribute to changes
in reflectivity in Eq. (13b) include, aside from the incremental
presence of snow and ice, the climate-vegetation feedback;
see, e.g., Watson and Lovelock (1983), Zeng and Neelin
(2000), Rombouts and Ghil (2015), and references therein.
The feedbacks that can affect the sensitivity of emitted
radiation in Eq. (13c) include atmospheric alteration in water
vapor content and cloud cover, as well as in GHGs and aerosol
concentration.
In climate studies, different measures of climate sensitivity

are used. The so-called equilibrium climate sensitivity (ECS)
denotes the globally and annually averaged surface air
temperature increase that would result from sustained dou-
bling of the concentration of carbon dioxide in Earth’s
atmosphere versus that of the reference state after the climate
system reaches a new steady-state equilibrium (Charney et al.,
1979). The ECS was used extensively by the IPCC’s first
three assessment reports, up to IPCC (2001).
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Taking the linear approximation in Eqs. (44)–(47), one has

ECS ¼ ΛðT0ÞΔR̃2×CO2

¼ λ0ðT0Þ
1 −

P
N
k¼1 fkðT0Þ

ΔR̃2×CO2
: ð49Þ

Note that the radiative forcing is, to a good approximation,
proportional to the logarithm of the CO2 concentration.
Hence, in the linear-response regime and for a given reference
state T0 the long-term globally averaged surface air temper-
ature change resulting from a quadrupling of the CO2

concentration is twice as large as the ECS; see Fig. 35.
The concept of climate sensitivity can be generalized to

describe the linear dependence of the long-term average of any
climatic observable with respect to the radiative forcing due to
changes in CO2 or in other GHGs, as well as to changes in
solar radiation, aerosol concentration, or any other sudden
changes in the forcing (Ghil, 1976, 2015; Lucarini, Fraedrich,
and Lunkeit, 2010b; von der Heydt et al., 2016).

B. Climate sensitivity: Uncertainties and ambiguities

The ECS is widely considered to be the most important
indicator in understanding climate response to natural and
anthropogenic forcings. It is usually estimated from instru-
mental data coming from the industrial age, from proxy
paleoclimatic data, and from climate models of different
levels of complexity. In climate models, the ECS results from
a nontrivial combination of several model parameters that
enter the feedback factors ffkg in Eq. (45b), and it requires
careful tuning. Despite many years of intense research, major
uncertainties still exist in estimating it from past climatic data,
as well as substantial discrepancies among different climate

models (IPCC, 2001, 2007, 2014a). In fact, Charney et al.
(1979) estimated the ECS uncertainty as 1.5–4.5 K for CO2

doubling, and this range of uncertainties has increased rather
than decreasing over the four intervening decades.
The basic reason for these uncertainties lies in the high

sensitivity of the ECS to the strength of the feedbacks fk as a
result of the factor 1=f1 −P

N
k¼1 fkðT0Þg in Eq. (48). Efforts

to reduce the uncertainty in ECS values for the current climate
include adopting ultra-high-resolution GCMs (Satoh et al.,
2018), in which one may better account for feedbacks that
act on a larger range of scales, as well as applying so-called
emergent constraints, i.e., relations that are rigorously valid
for simple stochastic models, to climate datasets (Cox,
Huntingford, and Williamson, 2018), where one hopes to
take advantage of general, and possibly universal, relation-
ships between climatic variables.
In particular, the largest uncertainty in defining the ECS for

the current climate state is associated with the difficulty in
estimating correctly the strength of the two main feedbacks
associated with clouds (Bony et al., 2015; Schneider et al.,
2017). Awarmer climate leads to increased presence of water
vapor in the atmosphere, and, in turn, to more clouds. An
increased cloud cover leads, on the one hand, to an increase in
the climate system’s albedo (cooling effect) and, on the other
hand, to a more efficient trapping of longwave radiation near
the surface (warming effect). The balance between the two
feedbacks changes substantially according to the type of
cloud, with the cooling effect dominant for low-lying clouds,
while the warming effect is dominant for high-altitude ones.
This is a striking example of the multiscale nature of the
climate system: an extremely small-scale, short-lived dynami-
cal process, cloud formation, has a substantial effect on the
planet’s global and long-term energy budget.
Despite the previous highly simplified description, it should

be clear that the ECS is a state-dependent indicator. This state
dependence is further supported by the evidence in Figs. 36
and 37. In particular, we have as follows.

• Both the Planck response and the strength of the
feedbacks that determine the gain factor Λ in
Eq. (48) depend on the reference state T0. As an
example, in warmer climates where sea ice is absent,
the positive ice-albedo feedback is greatly reduced,
thus contributing to a smaller climate sensitivity. On
the other hand, in warmer climates the atmosphere is
more opaque as a result of the presence of more
water vapor, leading to a strong enhancement of the
greenhouse effect.

• The radiative forcing is only approximately linear
with the logarithm of the CO2 concentration, so
ΔR̃2×CO2

depends on the concentration’s reference
value. In fact, this dependence is weak across a large
range of CO2 concentrations, but it is greatly
strengthened by optical saturation effects in the
CO2 absorption bands.

• Near the moist greenhouse threshold, which corre-
sponds to a tipping point of the Earth system, the
ECS is greatly strengthened. Figure 36 shows that
for a solar irradiance comparable or stronger than the

FIG. 35. Test of the linear scaling of the long-term climate
response with respect to the CO2 concentration increase in 15
GCMs. On the abscissa, standard ECS, as in Eq. (49); on the
ordinate, long-term response of the globally averaged surface air
temperature to quadrupling of the CO2 concentration. From
Pfister and Stocker, 2017.
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present one, the peak in the value of the ECS is
realized at a surface temperature of about 320 K,
which corresponds to a lower CO2 concentration in
the case of weaker irradiance; see the discussion by
Gómez-Leal et al. (2018). Note that reaching the
moist greenhouse threshold for lower values of the
solar irrandiance requires exceedingly high CO2

concentrations.
• Recently Schneider, Kaul, and Pressel (2019), using
extremely high-resolution simulations that represent
explicitly convective processes, proposed a mecha-
nism of instability of stratocumulus clouds occurring
at high CO2 concentrations that greatly enhances the
ECS and eventually leads to an abrupt transition to a
much warmer climatic regime.

While useful, the ECS concept faces practical difficulties
because its definition assumes that after the forcing is applied
the climate reaches a new steady state after all transients have
died out. Since the climate is multiscale in both time and
space, it is extremely nontrivial to define an effective cutoff

timescale able to include all transient behavior. Thus, a
timescale of 100 yr is long compared to atmospheric proc-
esses, but short with respect to oceanic ones that involve the
deep ocean. While a timescale of 5000 yr is long compared
to oceanic processes, it is short with respect to cryospheric
ones that involve the dynamics of the Antarctic ice sheets.
Therefore, one needs to associate each ECS estimate from
observational or model data to a reference timescale; see
Fig. 3821 for an illustrative cartoon, and a discussion by
Rohling et al. (2012) and von der Heydt et al. (2016).

C. Transient climate response (TCR)

TCR has recently gained popularity in the study of climate
change and climate variability because of its ability to help
capture the evolution in time of climate change by addressing
the transient rather than asymptotic response of the climate

FIG. 36. Estimates of the state dependence of the ECS using
the Community Earth System Model (CESM). The four curves
correspond to CESM simulations with four multiples of the
solar constant Q0: in the notation of Eq. (13), μ ¼ 0.75, 0.875,
1.0, and 1.1 for the blue, green, brown, and red curves. (a) ECS
as a function of CO2 partial pressure (μ ¼ 0.75, 0.875, 1.0, and
1.1 from the rightmost to the leftmost curve, respectively).
(b) ECS as a function of global mean surface air temperature
(μ ¼ 0.75, 0.875, 1.0, and 1.1 from the uppermost to the
lowermost curve, respectively). The temperatures shown in
(b) are an average between the base and doubled-CO2 state. The
shaded regions in (a) and (b) indicate the IPCC estimated range
for ECS. From Wolf, Haqq-Misra, and Toon, 2018; see also
Gómez-Leal et al. (2018).
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FIG. 37. State dependence of the ECS: estimates from proxy
data and climate models. The large number of datasets, models,
and acronyms is detailed by von der Heydt et al. (2016). The ΔT
on the x axis refers to the difference of the given T0 from the
preindustrial value T00, i.e., T0 ¼ T00 þ ΔT; the S½CO2;LI� on the y
axis refers to sensitivity with respect to CO2 concentration
corrected for land-ice albedo feedback. Mean values: for data,
color-coded circles with shaded probability density functions; for
models, squares with error bars. From von der Heydt et al., 2016.

FIG. 38. Dependence of the effective ECS on the reference
timescale. Consideration of longer timescales entails taking into
account a larger set of slow climate processes.

21From http://www.realclimate.org/index.php/archives/2013/01/
on-sensitivity-part-i/.
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system to perturbations in the CO2 concentration. TCR is
defined as the change in the globally averaged surface air
temperature recorded at the time at which CO2 has doubled
due to an increase at a 1% annual rate, i.e., roughly after 70 yr,
having started at a given reference value T0 (Otto et al., 2013).
This operational definition agrees well with the standard
IPCC-like simulation protocols, and TCR is therefore better
suited than ECS to test model outputs against observational
datasets from the industrial era.
As shown in Fig. 39, the TCR is found to have been lower

than the ECS because of the climate system’s thermal inertia,

which is dominated by the ocean’s heat capacity. A smaller
effective heat capacity c in Eq. (13a), and hence a shorter
relaxation time, would result in the TCR catching up much
faster with the ECS, as is the case in regular diffusion
processes; see Fig. 40(a). Assuming linearity in the response,
a relationship must clearly exist between ECS and TCR. Thus
far this inference has been based, by and large, on heuristic
arguments of timescale separation between climate feedbacks,
not rigorous derivations (Otto et al., 2013); it is derived more
systematically in Sec. IV.E.

D. Beyond climate sensitivity

The standard viewpoint on climate sensitivity previously
discussed is associated with the idea that the climate is in
equilibrium in the absence of external perturbations. In the
setting of deterministic, autonomous dynamical systems, this
view can be described by the change in the position of a fixed
point X0 ¼ X0ðμÞ as a function of a parameter μ.
We illustrate in Fig. 40 the difference between the ways that

a change in a parameter can affect a climate model’s behavior
in the case of equilibrium solutions [see Fig. 40(a)] versus
more complex dynamical behavior [see Figs. 40(b) and 40(c).
Assume that the climate state is periodic, i.e., it lies on a limit
cycle, rather than being a fixed point, as in Fig. 40(a). In this
case, climate sensitivity can no longer be defined by a single
scalar ∂T̄=∂μ but needs four scalars, the sensitivity of the
mean temperature along with that of the limit cycle’s fre-
quency, amplitude, and phase, or more, e.g., the orbit’s
ellipticity too.
But the internal climate variability can be better described in

terms of strange attractors than by fixed points or limit cycles.
Moreover, the presence of time-dependent forcing, determin-
istic as well as stochastic, introduces additional complexities
into the proper definition of climate sensitivity. It is thus
apparent that a rigorous definition of climate sensitivity
requires considerably more effort.
Ghil (2015) proposed measuring the change in the overall

properties of the attractor before and after the change in forcing
by computing the Wasserstein distance dW between the two
invariant measures. The Wasserstein distance or “earth mover’s
distance” dW quantifies the minimum effort in morphing one

FIG. 39. Transient climate response (TCR) estimates from
two climate models: (i) a coupled atmosphere-ocean GCM,
red (nonsmooth) curves, and (ii) a simple illustrative model with
no energy exchange with the deep ocean, green (smooth) curves.
Time on abscissa from start of CO2 concentration increase at
preindustrial levels, with change in global mean temperature on
the ordinate. The “additional warming commitment” corresponds
to temperature stabilization at a given CO2 level, i.e., at 2 × CO2

or 4 × CO2. From IPCC, 2001.

FIG. 40. Climate sensitivity (a) for an equilibrium model, (b) for a nonequilibrium, oscillatory model, and (c) for a nonequilibrium
model featuring chaotic dynamics and stochastic perturbations. As a forcing (atmospheric CO2 concentration, blue dash-dotted line)
changes suddenly, global temperature (red thick solid line) undergoes a transition. (a) Only the mean temperature T̄ changes. (b) The
amplitude, frequency, and phase of the oscillation change too. (c) All details of the invariant measure, as well as the correlations at all
orders, are affected. From Ghil, 2017.
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measure into another one of equal mass on a metric space, like
an n-dimensional Euclidean space (Dobrushin, 1970).
Monge (1781) originally introduced this distance to study a

problem of military relevance. Roughly speaking, dW repre-
sents the total work needed to move the “dirt” (i.e., the
measure) from a trench you are digging to another one you are
filling, over the distance between the two trenches. In general,
the shape of the two trenches and the depth along the trench,
i.e., the support of the measure and its density, can differ.
Robin, Yiou, and Naveau (2017) and Vissio and Lucarini
(2018b) recently showed the effectiveness of applying this
idea to climate problems.

E. A general framework for climate response

A major use of state-of-the-art climate models is to produce
projections of climate change taking into account different
possible future scenarios of emission of greenhouse gases and
pollutants like aerosols, as well as changes in land use, which
has substantial impacts on the terrestrial carbon cycle. Not
only are projections needed for quantities like the global
average surface air temperature, but detailed information on
spatially and temporally is needed for a multitude of practical
needs; see, for instance, Fig. 18.
The ECS concept is well suited for describing the properties

of equilibrium solutions of heuristically simplified equations
for the climate system, like Eq. (13a), and has clear intuitive
appeal, as in Fig. 40(a). But it also has the following basic
scientific limitations:

• It addresses long-term climatic changes only and no
detailed temporal information, an issue only parti-
ally addressed by the information provided by
the TCR.

• It addresses changes in the globally averaged surface
air temperature only and no spatial information at
the regional scale or at different levels of the
atmosphere, the ocean, or the soil.

• It cannot discriminate between radiative forcings
resulting from different physical and chemical proc-
esses, e.g., differences resulting from changes in
aerosol versus GHG concentration: these two forc-
ings impact shortwave and longwave radiation
differently and their effects depend in distinct ways
on the atmospheric level.

We thus try to address these shortcomings by taking the
complementary points of view of nonequilibrium statistical
mechanics and dynamical-systems theory. The setting of
nonautonomous and of stochastically forced dynamical sys-
tems allows one to examine the interaction of internal climate
variability with the forcing, whether natural or anthropogenic;
it also helps provide a general definition of climate response
that takes into account the climate system’s nonequilibrium
behavior, its time-dependent forcing, and its spatial patterns.

1. Pullback attractors (PBAs)

The climate system experiences forcings that vary on many
different timescales [see, e.g., Saltzman (2001)], and its
feedbacks also act on multiple timescales ; see, e.g., Ghil
and Childress (1987). Hence, defining rigorously what climate

response to forcing, versus intrinsic variability, actually is
requires some care. Observed variations can be related to the
presence of natural periodicities such as the daily and the
seasonal cycle and orbital forcings; to rapid, impulsive
forcings such as volcanic eruptions; or to slow modulations
to the parameters of the system, as in the case of anthropo-
genic climate change.
For starters, consider a dynamical system in continuous

time

_x ¼ Fðx; tÞ ð50Þ

on a compact manifold Y ⊂ Rd; here xðtÞ ¼ ϕðt; t0Þxðt0Þ,
with initial state xðt0Þ ¼ x0 ∈ Y. The evolution operator
ϕðt; t0Þ is assumed to be defined for all t ≥ t0, with
ϕðs; sÞ ¼ 1, and it thus generates a two-parameter semigroup.
In the autonomous case, time-translational invariance reduces
the latter to a one-parameter semigroup since ∀ t ≥ s
ϕðt; sÞ ¼ ϕðt − sÞ. In the nonautonomous case, in other terms
there is an absolute clock.
We are interested in forced and dissipative systems such

that, with probability 1, initial states in the remote past are
attracted at time t toward AðtÞ, a time-dependent family of
geometrical sets that define the system’s PBA. In the autono-
mous case, AðtÞ≡A0 is the time-independent attractor of the
system, and it is known to support, under suitable conditions,
a physical measure μðdxÞ (Eckmann and Ruelle, 1985;
Ledrappier and Young, 1988).22

Such a PBA can also be constructed when random forcing
is present [see, e.g., Arnold (1988) and references therein],

dx ¼ Fðx; tÞdtþ gðxÞdη; ð51Þ

where η ¼ ηðt;ωÞ is a Wiener process, while ω labels the
particular realization of this random process and dηðtÞ is
commonly referred to as white noise. The noise can be
multiplicative, and one then uses the Itô calculus for the
integration of Eq. (51).
In the random case, the PBA Aðt;ωÞ is commonly referred

to as a random attractor. A more detailed and mathematically
rigorous discussion of these concepts appears in Chekroun,
Simonnet, and Ghil (2011), Carvalho, Langa, and Robinson
(2013), and the appendix of Ghil, Chekroun, and Simonnet
(2008). Careful numerical applications of PBAs to explain the
wind-driven circulation and the THC are now available
(Sevellec and Fedorov, 2015; Pierini, Ghil, and Chekroun,
2016; Pierini, Chekroun, and Ghil, 2018).
In the purely deterministic case, the theory of nonauton-

omous dynamical systems goes back to the skew-product
flows of Sell (1967, 1971). A concept that is closely related to

22Among invariant measures, a natural measure is one obtained by
flowing a volume forward in time, and a physical measure is one for
which the time average equals the ensemble average almost surely with
respect to the Lebesgue measure; moreover, physical implies natural.
A particular class of invariant measures of interest are Sinai-Ruelle-
Bowen (SRB) measures [see, e.g., Young (2002)], and an important
result is that, for a system with no null Lyapunov exponents, except the
one corresponding to the flow, an ergodic SRB measure is physical.
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PBAs is that of snapshot attractors; it was introduced in a more
intuitive and less rigorous manner to the physical literature by
Romeiras, Grebogi, and Ott (1990). Snapshot attractors have
also been used for studying time-dependent problems of
climatic relevance (Bódai, Károlyi, and Tél, 2011,2013;
Bódai and Tél, 2012; Drótos, Bódai, and Tél, 2015).
Note that in the most recent IPCC reports (IPCC, 2001,

2007, 2014a) and according to the standard protocols
described in Sec. II.D.2, future climate projections are
virtually always performed using as initial states the final
states of sufficiently long simulations of historical climate
conditions. As a result, it is reasonable to assume that the
pullback time τ, as defined in Fig. 41, is large enough, and that
the covariance properties of the associated AðtÞ sets are
therefore well approximated.

2. Fluctuation dissipation and climate change

The fluctuation-dissipation theorem (FDT) has its roots in the
classical theory of many-particle systems in thermodynamic
equilibrium. The idea is simple: the system’s return to equi-
librium will be the same whether the perturbation that modified
its state is due to a small external force or to an internal,
random fluctuation. The FDT thus relates natural and forced
fluctuations of a system; see, e,g., Kubo (1957, 1966). It is a
cornerstone of statistical mechanics and has applications in
many areas; see, Marconi et al. (2008) and references therein.
We emphasized in Sec. III.B that even when the climate

system is in a steady state it is not at all in thermodynamic
equilibrium; see, e.g., Lucarini and Ragone (2011) and Ghil
(2019). Still, Leith (1975) showed that the FDTapplies to a 2D
or QG turbulent flow with two integral invariants, kinetic
energy E and enstrophy Z, under some additional assumptions
of normal distribution of the realizations and stationarity. Soon
thereafter, Bell (1980) showed that the FDT still seemed to
work for a highly truncated version of such a model, even in
the presence of dissipative terms that invalidate the thermo-
dynamic equilibrium assumption.
The FDT has been applied to the output of climate models

to predict the climate response to a steplike increase of the

solar irradiance (North, Bell, and Hardin, 1993), as well as to
increases in atmospheric CO2 concentration (Cionni, Visconti,
and Sassi, 2004; Langen and Alexeev, 2005), while Gritsun
and Branstator (2007) and Gritsun, Branstator, and Majda
(2008) used it to predict the response of an atmospheric
model to localized heating anomalies. Most recently Cox,
Huntingford, and Williamson (2018) tried to reduce the
uncertainty in the ECS discussed in Sec. IV.B by a systematic
FDTapplication to an ensemble of model outputs, as well as to
the observed instrumental climate variability.
The FDT-based response of the system to perturbations in

the previous examples reproduces the actual changes at a good
qualitative rather than strictly quantitative level. An important
limitation of these insightful studies is the use of a severely
simplified version of the FDT that is heuristically constructed
by taking a Gaussian approximation for the invariant measure
of the unperturbed system. This approximation amounts to
treating the climate as being in thermodynamic equilibrium;
see also Majda, Gershgorin, and Yuan (2010), who specifi-
cally addressed the applicability of the FDT in a reduced
phase space.
To address the problem of Gaussian approximation, Cooper

and Haynes (2011) proposed constructing a kernel-based
approximation of the actual invariant measure of the unper-
turbed system and then used Eq. (56) to construct the system’s
Green’s function. This approach has been applied successfully
in an extremely low-dimensional system, but its robustness
may be limited by the kernel’s arbitrary cutoff not being able
to account for the smaller scales of the invariant measure’s fine
structure.

3. Ruelle response theory

FDT generalizations to systems out of equilibrium have been
developed since the early 1950s; see, e.g., Kubo (1966). But a
particularly fruitful change in point of view was provided by
Ruelle (1998, 1999, 2009), who considered the problem in the
setting of dynamical-systems theory, rather than that of stat-
istical mechanics. The former point of view is justified in this
context by the so-called chaotic hypothesis (Gallavotti and
Cohen, 1995), which states, roughly, that chaotic systems with
many degrees of freedom possess a physically relevant invariant
measure, as discussed in Sec. IV.E.1.
It is common in practice to assume that a time-dependent

measure μtðdxÞ associated with the evolution of the dynamical
system given by Eq. (50) does exist. Still, computing the
expectation value of measurable observables with respect to
this measure is in general far from trivial and requires setting
up a large ensemble of initial states in the Lebesgue meas-
urable set B mentioned earlier. Moreover, PBAs and the
physical measures they support set the stage for predicting
the system’s sensitivity to small changes in the forcing or the
dynamics.
Ruelle’s response theory allows one to compute the change

in the measure μðdxÞ of an autonomous Axiom A system due
to weak perturbations of intensity ϵ applied to the dynamics, in
terms of the unperturbed system’s properties. The basic idea
behind it is that the invariant measure of such a system,
although supported on a strange attractor, is differentiable with
respect to ϵ. Baladi (2008) reviewed extensions of response

FIG. 41. A cartoon depicting the pullback attractor (PBA) for a
nonautonomous system as in Eq. (50). The set B of finite
Lebesgue measure, initialized at time t ¼ t0 − τ, evolves toward
the set Aðt0Þ. The construction is exact in the limit τ → ∞; for a
random attractor, see Ghil, Chekroun, and Simonnet (2008),
Figs. A.1 and A.2. Adapted from Sevellec and Fedorov, 2015.
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theory and provided a complementary approach to it, while
Lucarini (2016) estimated its radius of convergence in ϵ.
The establishment of a rigorous response theory is some-

what simpler in a sense if one considers stochastic instead of
strictly deterministic processes (Hairer, 2010). Recently,
Wormell (2019) clarified the link between the deterministic
and stochastic perspectives
The nonautonomous version of the Ruelle response theory

allows one to calculate the time-dependent measure μtðdxÞ on
the PBA by computing the time-dependent corrections to it
with respect to a reference state xðtÞ ¼ x̃ðtÞ. This provides a
fairly general formulation for the climate system’s response to
perturbations.
Let us assume that we can write

_x ¼ Fðx; tÞ ¼ FðxÞ þ ϵXðx; tÞ; ð52Þ

where ∀ t ∈ R and ∀ x ∈ Y ⊂ Rd, jϵXðx; tÞj ≪ jFðxÞj.
Hence, we can take FðxÞ as the background dynamics and
ϵXðx; tÞ as a perturbation. We treat here only the case of
deterministic dynamics; see Lucarini (2012) for stochastic
perturbations. As shown by Lucarini, Ragone, and Lunkeit
(2017), we can restrict our analysis without loss of generality
to the separable case of Fðx; tÞ ¼ FðxÞ þ ϵXðxÞTðtÞ.
To evaluate the expectation value hΨiϵðtÞ of a measurable

observable ΨðxÞ with respect to the measure μtðdxÞ of the
system governed by Eq. (50), one writes

hΨiϵðtÞ ¼
Z

ΨðxÞμtðdxÞ ¼ hΨi0 þ
X∞
j¼1

ϵjhΨiðjÞ0 ðtÞ. ð53Þ

Here hΨi0 ¼
R
ΨðxÞμ̄ðdxÞ is the expectation value of Ψ with

respect to the SRB invariant measure μ̄ðdxÞ of the autonomous
dynamical system _x ¼ FðxÞ. We restrict ourselves here to the
linear correction term, which can be written as

hΨið1Þ0 ðtÞ ¼
Z Z

∞

0

ΛSτ0ΨðxÞTðt − τÞdτμ̄ðdxÞ;

¼
Z
0

∞
Gð1Þ

Ψ;XðτÞTðt − τÞdτ: ð54Þ

The Green’s function Gð1Þ
Ψ;XðτÞ in Eq. (54) is given by

Gð1Þ
Ψ;XðτÞ ¼

Z
ΘðτÞΛSτ0ΨðxÞμ̄ðdxÞ; ð55Þ

where Λð•Þ ¼ X ·∇ð•Þ and St0ð•Þ ¼ expðtF ·∇Þð•Þ is the
semigroup of unperturbed Koopman operators,23 ð·Þ denotes
the inner product in Y, and the Heaviside distribution ΘðτÞ
enforces causality. If the unperturbed invariant measure μ̄ðdxÞ
is smooth with respect to the standard Lebesgue measure, one
has μ̄ðdxÞ ¼ μ̃ðxÞdx, with μ̃ðxÞ the density, and the Green’s
function can be written as follows:

Gð1Þ
Ψ;XðτÞ ¼ ΘðτÞ

Z
−∇ · ½μ̃ðxÞX�

μ̃ðxÞ Sτ0ΨðxÞμ̃ðxÞdx

¼ ΘðτÞCðΦ; Sτ0ΨÞ. ð56Þ

Here Φ ¼ −f∇ · ½μ̃ðxÞX�g=μ̃ðxÞ and CðA; Sτ0BÞ is the τ-lagged
correlation between the variables A and B, and the average of
Φ vanishes. Note that Eq. (56) is the appropriate generaliza-
tion of the FDT for the nonautonomous, out-of-equilibrium
system (52).
Given any specific choice of the forcing’s time dependency

TðtÞ in Eqs. (52)–(54) and measuring the linear correction

term hΨið1Þ0 ðtÞ from a set of experiments, the same equations
allow one to derive the appropriate Green’s function.
Therefore, using the output of a specific set of experiments
or of GCM simulations, we achieve predictive power for any
temporal pattern of the forcing XðxÞ.
Consider now the Fourier transform of Eq. (54):

hΨið1Þ0 ðωÞ ¼ χð1ÞΨ;XðωÞTðωÞ; ð57Þ

where we introduce the susceptibility χð1ÞΨ;XðωÞ ¼ F ½Gð1Þ
Ψ;X�,

defined as the Fourier transform of the Green’s function

Gð1Þ
Ψ;XðtÞ. Under suitable integrability conditions, the fact that

the Green’s function GðtÞ
Ψ;X is causal is equivalent to saying that

its susceptibility obeys the so-called Kramers-Kronig relations
(Ruelle, 2009; Lucarini and Sarno, 2011); these provide
integral constraints that link the real and imaginary parts so

that χð1ÞΨ;XðωÞ ¼ iPð1=ωÞ⋆χð1ÞΨ;XðωÞ, where i ¼ ffiffiffiffiffiffi
−1

p
, ⋆ indi-

cates the convolution product, and P stands for integration by
parts. Extensions to the case of higher-order susceptibilities
are also available (Lucarini et al., 2005; Lucarini, 2008a,
2009a; Lucarini and Colangeli, 2012).
Instead of studying merely individual trajectories, one can

study the evolution of ensembles of trajectories to obtain
probabilistic estimates. The evolution of the measure ρ driven
by the dynamical system _x ¼ FðxÞ is described by the transfer
or Perron-Frobenius operator Lt

0 (Baladi, 2000; Villani, 2009;
Chekroun et al., 2014), which is the adjoint of the Koopman or
composition operator St0; it is defined as follows:

Z
Lt
0ρðxÞΨðxÞdx ¼

Z
ρðxÞSt0ΨðxÞdx: ð58Þ

Assuming that no degenaracies are present, the generator of
the semigroup fLt

0g is the so-called Liouville operator L and it
satisfies ∂tρ ¼ −∇ðρFÞ ¼ Lρ.
Let fðσk; ρkÞ∶k ¼ 1;…;∞g be the eigenpairs of L. Then

the eigenvalues of Lt
0 are given by fexpðσktÞg, with the same

eigenvectors fρkg. Correspondingly, the invariant measure μ̄
is the eigenvector having the null eigenvalue σ1 ¼ 0 for L or
∀ t ≥ 0 unit eigenvalue of Lt

0. Note that ∀ k ≥ 2 ℜðσkÞ < 0,
which implies exponential decay of correlations for all the
system’s smooth observables, with an asymptotic rate that is
given by the largest value of ℜðσkÞ, k ≥ 2. Moreover, the
presence of a small spectral gap between the unit eigenvalue of
Lt
0 and its other eigenvalues within the unit disk leads to a

23In discrete-time dynamics given by xkþ1 ¼ gðxkÞ, the Koopman
operator is a linear operator acting on observables h∶Y → R via
UhðxÞ ¼ h(fðxÞ). In continuous-time dynamics like Eq. (50), this
operator is replaced by a semigroup of operators, as in Eq. (55); see
Budivsić, Mohr, and Mezić (2012).
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small radius of expansion for Ruelle’s perturbative approach
(Chekroun et al., 2014; Lucarini, 2016).
It turns out that if one neglects the essential part of the

spectrum, the susceptibility can be written as

χð1ÞΨ;XðωÞ ¼
X∞
k¼1

αkfΨ; Xg
ω − σk

; ð59Þ

where the factor αk evaluates how the response of the system
to the forcing X for the observable Ψ projects on the
eigenvector fρkg. The constants πk ¼ iσk are usually referred
to as Ruelle-Pollicott poles (Pollicott, 1985; Ruelle, 1986).
Note that Eq. (59) implies that the Green’s function corre-
sponding to the susceptibility can be written as a weighted
sum of exponential functions if one neglects possible
degeneracies.24

4. Climate change prediction via Ruelle response theory

A somewhat different approach to constructing the climate
response to forcings focuses on computing it directly from
Eq. (55) without relying on the applicability of the FDT,
which fails in certain cases of geophysical relevance; see, e.g.,
Gritsun and Lucarini (2017). The difficulty in applying this
direct approach lies in the fact that the formula contains
contributions from both stable and unstable directions in the
tangent space (Ruelle, 2009).
Evaluating the contribution of the unstable directions is

especially hard; hence, Abramov and Majda (2007) proposed
a blended approach that also uses the FDT. Using adjoint
methods in the direct approach has yielded promising results
(Wang, 2013). Faced with the so-called cold-start problem of
climate simulations, Hasselmann et al. (1993) suggested a
heuristic approach to computing a climate model’s Green’s
function and applied it to study the relaxation to steady state of
a coupled GCM’s globally averaged surface temperatures.
Lucarini and Sarno (2011), Ragone, Lucarini, and Lunkeit

(2016), and Lucarini, Ragone, and Lunkeit (2017) proposed
evaluating the Green’s function using an experimental but
rigorous approach suggested by standard optics laboratory
practice (Lucarini et al., 2005). The idea is to use a set of
carefully selected probe experiments, typically, steplike
increases of the parameter of interest, to construct the
Green’s function and then, exploiting Eq. (55), use this
operator to predict the response of the system to a temporal
pattern of interest for the forcing.
Given a set of forced climate simulations and a background

unperturbed one, such an approach allows one to construct the
Green’s function’s response operators for as many observables

as desired, global as well as local in space. Such a tool kit
allows one to treat a continuum of scenarios of temporal
patterns forcings, thus providing a general framework for
improving climate change projections given in the form
shown in Fig. 18.
The idea is to consider the set of equations describing

an unperturbed climate evolution in the form _x ¼ FðxÞ,
with the vector field X ¼ XðxÞ in Eq. (52) as the 3D
radiative forcing associated with the increase of CO2 con-
centration, and ϵTðtÞ its time modulation. By plugging
TðtÞ ¼ ϵΘðtÞ into Eq. (54), we have, for any climatic
observable Ψ,

d
dt

hΨið1Þ0 ðtÞ ¼ ϵGð1Þ
Ψ;½CO2�ðtÞ: ð60Þ

We estimate hΨið1Þ0 ðtÞ by taking the system’s average of
response over an ensemble of initial states and use the

previous equation to derive our estimate of Gð1Þ
Ψ;½CO2�ðtÞ by

assuming linearity in the response.
Note that these Green’s functions are specifically related to

changes in the atmospheric CO2 concentration, rather than to a
generic radiative forcing. Indeed, for each climatic variable,
the response to changes in the solar irradiance, e.g., via
modulation of the parameter μ in Eq. (13), is different from
the impact of changes in the CO2 concentration because the
details of the radiative forcing are extremely different in the
two cases. Thus, geoengineering proposals that aim to reduce
solar irradiance by injecting sulphate aerosols into the
stratosphere [see, e.g., Smith and Wagner (2018)] rely on
flawed scientific reasoning (Lucarini, 2013; Bódai, Lucarini,
and Lunkeit, 2020), are of dubious practical help (Proctor
et al., 2018), and are hardly defensible from an ethical
perspective (Lawrence et al., 2018).
Ragone, Lucarini, and Lunkeit (2016) derived, moreover, a

closed formula relating the TCR and the ECS. Indeed, with
the definition of TCRðτÞ given at the beginning of Sec. IV.C,
one gets

ECS − TCRðτÞ
¼ INRðτÞ

¼ ΔR̃2×CO2
× P

Z
∞

−∞
χð1ÞTS;½CO2�ðω0Þ

×
1þ ½sinðω0τ=2Þ=ðω0τ=2Þ� exp½−iω0τ=2�

2πiω
dω0: ð61Þ

The difference between ECS and TCR is a weighted integral
of the susceptibility, accounting for the contribution of
processes and feedbacks occurring at different timescales.

The integral in Eq. (61) yields χð1ÞTS;½CO2�ð0Þ if τ → 0 [i.e.,

TCRð0Þ ¼ 0], decreases with τ, and vanishes in the limit
τ → ∞. INRðτÞ is a measure of the system’s inertia at the
timescale τ due to the overall contribution of the internal
physical processes and characteristic timescales of the relevant
climatic subsystems.
Figure 42 illustrates a climate prediction obtained by

applying the previously mentioned response theory to the

24Note that Eq. (59) mirrors the quantum-mechanical expressions
for the electric susceptibility of atoms or molecules. In the latter case,
the summation involves all eigenstate pairs of the system’s unper-
turbed Hamiltonian operator; in each term, the pole’s imaginary part
corresponds to the energy difference between the pair of considered
eigenstates, and the real part is the so-called linewidth of the
transition, whose inverse is the lifetime. Finally, the numerator is
its so-called dipole strength (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 2007).
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open-source model PlaSim,25 an atmospheric GCM of inter-
mediate complexity coupled with a mixed-layer ocean model
(Fraedrich et al., 2005; Fraedrich, 2012). The figure shows
good agreement between (a) the ensemble average of 200
simulations where the CO2 concentration is increased at the
rate of 1% until doubling (black curve), and then kept
constant, and (b) the prediction done by convolving the
Green’s function of Eq. (60) with the time pattern of the
forcing (blue curve). Note that the temperature increase
predicted at year 70, when doubling of the CO2 is reached,
gives as estimate the TCR ≃ 4.1 K (blue curve). The true
value of the TCR ≃ 4.3 K is given by the black line. The TCR
is indeed smaller than the ECS ≃ 4.8 K, which corresponds to
a good approximation to the temperature increase predicted
at year 200.
The power of response theory lies in the fact that once the

Green’s function of interest has been computed one can predict
the future evolution of bespoke observables, defined as needed.
Furthermore, Lucarini (2018) showed that it is possible to use
certain classes of observables as surrogate forcings of other
observables, in the spirit of the linear feedback analysis of
Eq. (44). Given the notoriously more difficult prediction of
precipitation, Lucarini, Ragone, and Lunkeit (2017) found that
predictions of changes in the globally averaged precipitation
can be as good as those of the temperature.
Proceeding from global predictions to more localized ones,

Fig. 43 shows the outcome of predicting the change in the
zonal averages of the surface temperature. It is clear that
response theory does a good job in reproducing the spatial
patterns of temperature change, except for an underestimate
of the temperature change in the high latitudes on the scale
of few decades. Indeed, such a mishap is due the strong
polar amplification of the warming due to the ice-albedo

feedback, which can be qualitatively captured only by a linear
approach like the one used by Lucarini, Ragone, and Lunkeit
(2017). A major limitation of the investigations by Ragone,
Lucarini and Lunkeit (2016) and Lucarini, Ragone, and
Lunkeit (2017) was the use of a model unable to represent
explicitly the dynamical processes of the global ocean. More
recently, Lembo, Lucarini, and Ragone (2020) proved the
effectiveness of response theory in predicting the future
climate response to CO2 on a vast range of temporal scales,
from interannual to centennial, and for very diverse climatic
variables, including those representing the strength of the
Atlantic Ocean’s meridional overturning circulation and of
the ACC.

5. Slow correlation decay and sensitive parameter dependence

Equation (59) implies that resonant amplification occurs if
the forcing acts as a frequency ω that is close to the imaginary
part of a subdominant Ruelle-Pollicott pole πk; k ≥ 2, that has
a small real part and corresponds therewith to a sharp spectral
feature, i.e., for some k ≥ 2,

jω − ℑðπkÞj ≪ ω; jℜðπkÞj ≪ ω; ð62Þ
because the system’s susceptibility is greatly enhanced at such
an ω. Conditions (62) are easily satisfied for a broadband
forcing and a system that has a small spectral gap. Conversely,
as discussed after Eq. (58), the presence of a small spectral gap
is associated with a slow decay of correlation for smooth

FIG. 42. Comparison between the climate model simulation
(black line) and response theory prediction (blue line) for a TCR
experiment using PlaSim, a GCM of intermediate complexity.
The CO2 concentration was ramped up by 1% per year to double
its initial value. The upper and lower limit of the light-shaded
bands are computed as 2 standard deviations of the ensemble
distribution. From Lucarini, Ragone, and Lunkeit, 2017.

FIG. 43. Patterns of climate response for the zonal average of
the surface temperature. (a) Prediction via response theory (red
and black lines are not relevant in this context). (b) Difference
between the ensemble average of the direct numerical simulations
and the predictions obtained using the response theory. From
Lucarini, Ragone, and Lunkeit, 2017.

25See http://tiny.cc/zgk0bz.
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observables. We now provide two examples that show how
linear response breaks down for forced systems possessing
slow decay of correlations due to a small spectral gap in the
unperturbed dynamics.
The first example is due to Chekroun et al. (2014), who

investigated the response of the highly simplified ENSO
model of Jin and Neelin (1993), to which Jin, Neelin, and
Ghil (1994) added periodic forcing that led to chaotic
behavior. Chekroun et al. focused on how the response
changes when one varies the model parameter δ that controls
the travel time of the equatorially trapped waves, which play
an essential role in the ENSO mechanism. As shown in
Fig. 44, Chekroun et al. (2014) found that when the spectral
gap is small the system exhibits rough dependence of its
properties with respect to small modulations of the parameters
since Ruelle’s perturbative expansion breaks down even for an
extremely small intensity of the forcing.
The second example shows the importance of correlation

slowdown near saddle-node bifurcation points in the PlaSim
model discussed in Sec. IV.E.4. This intermediate-complexity
model is multistable: its bifurcation diagram with respect to
the solar insolation parameter μ is similar to Fig. 21; see
Lucarini, Fraedrich, and Lunkeit (2010a) and Lucarini et al.
(2013). PlaSim’s bifurcation diagram is reproduced in
Fig. 45(a), where the present climate S¼S0¼1360Wm−2

is denoted by a bullet and the bifurcation points associated
with the transition from the warm to the snowball state W-SB
and from the snowball to the warm state SB-W are indicated
by solid arrowheads. For a comparison with Fig. 21, note that
μ ¼ S=S0 there.
Tantet et al. (2018) investigated PlaSim’s response to

changes in the solar irradiance for S < S0. They found
that as the W-SB transition nears, the lag correlation for a

large-scale observable, namely the average equatorial near-
surface air temperature, decays more and more slowly as a
result of a narrowing spectral gap. Indeed, near the saddle-
node bifurcations, the response of the system to perturbations
is significantly amplified and, by definition, becomes singular
exactly at the bifurcation point.
More generally, Scheffer et al. (2009) proposed a set of

“early warning signals” (EWSs) that occur when a dynamical
system approaches a critical transition. Correlation slowdown
is one of the main signals, and it is verified in the Tantet et al.
(2018) case for the back-to-back saddle-node bifurcations that
make up the backbone of the PlaSim model’s hysteresis cycle.
Colon, Claessen, and Ghil (2015), though, found that in a
predator-prey system—modeled either by a set of coupled
ODEs or by an agent-based model—more complex critical
transitions can behave differently than in the simplest saddle-
node case.
Biggs, Carpenter, and Brock (2009) provided a broader

perspective on EWSs in the generic codimension-1

FIG. 44. Rough dependence (red dots) of the skewness of the
equatorial ocean temperature’s distribution with respect to
changes in the parameter δ that controls the travel time of
equatorially trapped waves in a simplified ENSO model; see
text for details. Black points refer to nonchaotic windows where
the parameter dependence is smooth; cyan points indicate
particularly sharp jumps in the parameter dependence. From
Chekroun et al., 2014.

FIG. 45. Slowdown of correlations near a saddle-node bifurca-
tion point in the PlaSim model. (a) The model’s bifurcation
diagram as a function of the value of the solar irradiance S. The
critical transitions warm to snowball and snowball to warm as
well as the present-day conditions are indicated. From Lucarini,
Fraedrich, and Lunkeit, 2010a. (b) Decay of correlation of the
equatorial mean surface temperature for various values of the
solar irradiance S. The decay becomes considerably slower as S
approaches the critical value of S ≃ 1265 Wm−2 . From Tantet
et al., 2018.
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bifurcations in multidimensional systems. The literature on
EWSs, their successes, their failures, when they work and
when they do not, is rich and beyond the scope of this review.
These considerations naturally lead us to an inves-

tigation of the climate system’s global stability properties
and its critical transitions, which are the subject of Sec. V.

V. CRITICAL TRANSITIONS AND EDGE STATES

In Sec. III, we introduced several types of bifurcations that
involve transitions between two or more regimes: saddle-node
bifurcations whose pairing can lead to coexistence of two
stable steady states (fixed points), pitchfork bifurcations that
in the presence of a mirror symmetry can lead from one stable
symmetric steady state to the coexistence of two steady states
that are mirror images of each other, Hopf bifurcations that
lead from a stable steady state to a stable periodic solution
(limit cycle) and then again from the stable limit cycle to a
stable torus on which an infinity of quasiperiodic solutions
live, and nonlocal bifurcations associated with the existence
of homoclinic and heteroclinic orbits that lead to chaotic
regimes.
Successive-bifurcation scenarios (Eckmann, 1981; Ghil and

Childress, 1987; Dijkstra and Ghil, 2005; Dijkstra, 2013) that
involve several of these bifurcations and additional ones lead
from solutions with high symmetry in space and time to
successively more complex and chaotic ones. We saw in
Sec. III that such bifurcation scenarios shed considerable light
on the phenomenology of large-scale atmospheric, oceanic,
and coupled ocean-atmosphere flows. Finally, in Secs. III.G
and IV.E, we introduced stochastic effects into the nonlinearly
deterministic setting recalled previously and outlined the role
of PBAs and of the invariant measures they support in the
theory of nonautonomous and random dynamical systems
(NDSs and RDSs).
Recently the interest in bifurcations in the climate and

environmental sciences has signicantly increased due to the
introduction of the concept of tipping points from the social
sciences (Gladwell, 2000; Lenton et al., 2008). A tipping
point sounds a lot more threatening than a bifurcation point,
especially when dealing with a hurricane or dramatic and
irreversible climate change.
Beyond the linguistic effectiveness of the term, it does

also generalize the bifurcation concept in the context of
open systems that are modeled mathematically by NDSs or
RDSs. As we saw in Secs. III and II, the climate system.
as well as its subsystems, namely, the atmosphere, ocean,
biosphere, and cryosphere, are open and exchange time-
dependent fluxes of mass, energy, and momentum with each
other and with outer space. Hence, it is quite appropriate
to consider this generalization. Following Ashwin et al.

(2012), one distinguishes among three kinds of tipping
points, as shown in Table II.
The investigation of systems possessing multiple attractors,

which may include fixed points, limit cycles, strange attrac-
tors, and PBAs or random attractors, is an active area of
research encompassing mathematics as well as the natural and
socioeconomic sciences. Feudel, Pisarchik, and Showalter
(2018), for instance, provide a review that introduces a special
issue of the journal Chaos on the topic and sketch several
interesting examples. More generally, Kuehn (2011) studied
tipping points and critical transitions in the NDS and RDS
context.
This section is devoted to providing a general framework

for the study of multistability in the Earth system, to forced
transitions between different regimes when multistability is
present, and to the critical transitions taking place at
classical bifurcation and more general tipping points.
Recall, for motivation, two cases of multistablility in the
climate system.
First, Earth as a whole has boundary conditions that arise

from its space environment in the solar system that are
compatible with at least two competing stable regimes: today’s
relatively ice-free and warm climate and a deep-freeze or
snowball climate; see Sec. III.A. Second, the ocean’s THC is,
over a broad range of the parameters that control its heat
and freshwater budget, bistable, with the current active state
coexisting with a greatly reduced or even reversed circulation;
see Sec. III.C.
To illustrate the main mathematical and physical aspects

of the problem, we choose at first the specific example of
coexistence between the warmer Holocene-like state and the
much colder snowball state of Earth, as discussed in
Secs. III.A and IV.E.5; see, in particular, Figs. 21 and 45(a).

A. Bistability for gradient flows and EBMs

The theory of SDEs and of RDSs provides a comprehensive
framework for deriving the probability of occurrence of
coexisting regimes in multistable systems and for estimating
the probability of stochastic-forcing-triggered transitions
between them. A good starting point is gradient flow in the
presence of additive white noise.
The governing SDE in this case is

dx ¼ −∇xVðxÞdtþ ϵdW; ð63Þ

where x ∈ Rd, the potential V∶Rd → R is sufficiently
smooth, and dW is a vector of d independent increments of
Brownian motion, while ϵ determines the strength of the
noise. The Fokker-Planck equation associated with Eq. (63)
describes the evolution of the PDF pϵðx; tÞ of an ensemble of
trajectories obeying the SDE.

TABLE II. Tipping points in open systems; see also Ashwin et al. (2012) and Fig. 46.

Type Cause Mechanism

B tipping Bifurcation-due tipping Slow change in a parameter leads to the system’s passage through a classical bifurcation
N tipping Noise-induced tipping Random fluctuations lead to the system crossing an attractor basin boundary
R tipping Rate-induced tipping Because of rapid changes in the forcing, the system loses track of a slow change in its attractors
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The stationary solution corresponding to the latter equa-
tion’s invariant measure limt→∞ pϵðx; tÞ ¼ pϵðxÞ is given by a
large-deviation law (Varadhan, 1966)

pϵðxÞ ¼
1

Z
exp

�
−
2VðxÞ
ϵ2

�
; ð64Þ

where Z is a normalization constant. The local minima of the
potential V are the stable fixed points of the deterministic
dynamics. One obtains them by setting ϵ ¼ 0 in the SDE (63),
and they correspond to the local maxima of p. Thus, for
instance, the double-well potential of Fig. 20 corresponds to a
bimodal PDF.
The mountain pass lemma [see, e.g., Bisgard (2015)] states

that the two minima of V that give rise to the two stable fixed
points have to be separated by an unstable one of the saddle
type, which is a maximum of V in one direction and a
minimum in all other ones. Such a saddle looks like a
mountain pass on a topographic map (hence the name of
the lemma). Ghil and Childress (1987) discussed in their
Sec. 10.4 its application to 1D EBMs.
In the limit of weak noise, trajectories starting near a local

minimum of V located at x ¼ x1 typically wait a long time
before moving to the neighborhood of a different local
minimum of V. The transitions are most likely to occur
through the lowest energy saddle x ¼ xs that links the initial
basin of attraction to any other basin. Call the corresponding
local minimum x ¼ x2.
The optimal path linking x1 to xs minimizes the Freidlin and

Wentzell (1984) action and is called an instanton. In the weak-
noise limit ϵ → 0, the persistence time inside the basin of
attraction of x ¼ x1 is

τ̄ϵ ∝ exp

�
2½VðxsÞ − Vðx1Þ�

ϵ2

�
; ð65Þ

which is referred to as the Kramers (1940) formula.
Assume now, for simplicity, that we deal with a bistable

system, as in Fig. 20. If the potential V depends on a slowly
varying control parameter ϕ, a B tipping would involve, for

instance, the number of local minima decreasing from 2 to 1,
as a local minimum merges with a saddle point at ϕ ¼ ϕc.
This merging is illustrated in Fig. 46 for a simple 1D case like
that of the 0D EBM governed by Eq. (13).26

When the system nears the tipping point, the persistence
time in the shallow, metastable minimum is reduced because
ΔV ≡ Vs − V1 → 0. Another flag anticipating the tipping
point is the increase of the autocorrelation time τ in the
metastable state, which is proportional to the inverse of the
second derivative of the potential evaluated at the mini-
mum τ̄ϵ ∝ 1=V 00

x1 .
These two easily observable phenomena are the simplest

manifestation of the slowing-down process (Scheffer et al.,
2009), which was discussed in Sec. IV.E.5 when describing
the findings of Tantet et al. (2018). As indicated in footnote 28
there, the warning signals of the tipping-point approach have
been studied mostly in the B-tipping case for saddle-node
bifurcations. Much remains to be done in this context for more
complex situations that may involve N-tipping, R-tipping, or
global bifurcations rather than local ones. For instance,
Ditlevsen and Johnsen (2010) analyzed a high-resolution
ice-core record and excluded the possibility of interpreting
Dansgaard-Oeschger events as B tipping by noting the lack of
the two early warning signals mentioned previously. Their
results leave us with the alternative of interpreting the
associated irregular oscillations [see, e.g., Boers, Ghil, and
Rousseau (2018)] either as the result of N tipping for an
S-shaped back-to-back saddle-node bifurcation or as
B tipping for a Hopf bifurcation; see Fig. 29 and its discussion
in Sec. III.E.3 for similar ambiguities in interpreting changes
in atmospheric LFV.
Returning to the right-hand side of the 0D EBM of Eq. (13),

it can be written as minus the derivative of a potential VðTÞ;
see Ghil (1976). The gain factor Λ given in Eq. (47), as well as
the ECS, is proportional to the inverse of the second derivative
of the potential V evaluated at the local minimum defining
the reference climate T0, ECS ∝ Λ ∝ 1=V 00

T0
. Hence, near the

critical transition a small forcing in the right direction can lead
the system to jump to the other basin of attraction, even in the
absence of noise. Note, though, that near such a transition the
linear stability analysis performed in Eqs. (46) and (47) is no
longer valid, and an accurate quantitative analysis of climate
response requires taking into account the essential nonlinear-
ity in the problem; see the Zaliapin and Ghil (2010) comments
on Roe and Baker (2007).
Determining the saddle point that potentially connects, via

instantons, two local minima is not at all trivial when looking at
high- or even infinite-dimensional systems. Figure 47 reports
the findings of Bódai et al. (2015) on the Ghil (1976) 1D EBM.
Figure 47(a) shows the bifurcation diagram of the model, in
which the control variable is the globally averaged surface air
temperature T̄, and the tuning parameter is the insolation
parameter μ ¼ S=S0 introduced in Eq. (13b).
Figure 47(b) shows the zonally averaged temperatures

of the 1D model’s steady states for the reference conditions
T ¼ TðxÞ at μ ¼ 1. The red and blue lines represent the two

FIG. 46. Schematic diagram of B tipping. As a control param-
eter is slowly changed, the number of stable equilibria is reduced
from 2 to 1. From Lenton et al., 2008.

26Note that the number of dimensions in phase space is 1, while
that of the model in physical space is 0.
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stable solutions, warm W and snowball SB, respectively,
while the green line is the unstable solution lying between.
Note that at each tipping point the unstable state comes in
contact with a stable one and then both disappear, in
accordance with the scenario of basin boundary crisis (Ott,
2002). In fact, the lack of stability of the steady-state solution
described by the green line is apparent by observing that T̄ in
Fig. 47(a) decreases with increasing solar radiation, as
opposed to the W and SB states, which is clearly not physical
(Ghil, 1976; North, Cahalan, and Coakley, 1981) and can be
loosely interpreted as the result of a negative heat capacity; see
Bódai et al. (2015).

B. Finding the edge states

In one phase space dimension, every first-order system
_x ¼ fðx; μÞ is a gradient system since one can always write
Vðx; μÞ ¼ −

R
fðξ; μÞdξ. This is not so in two or more

dimensions, and one might wonder whether it is possible
to compute unstable solutions for more general multistable
systems with no gradient property. Scott, Marotzke, and Stone
(1999) presented an example of such an unstable stationary

solution in a simple box model of the THC featuring
competing stable solutions and no gradient structure.
Moreover, the actual computation of the unstable steady state
in Fig. 3(a) of Ghil (1976) relied not on the system’s potential
V(TðxÞ) but on its 1D character in physical space and on a
shooting method to solve the Sturm-Liouville equation that
results when setting ∂Tðx; tÞ=∂t≡ 0 in the Ghil-Sellers
model. Neither of these approaches (Ghil, 1976; Scott,
Marotzke, and Stone, 1999) can easily be extended to more
general systems.
In the remainder of this section, we discuss a more general

paradigm of multistability for determininistic systems and,
subsequently, how this paradigm may be useful for studying
the problem of noise-induced transitions between competing
states without the simplifying assumption of a gradient, as
in Eq. (63).
One can formally introduce general multistable systems as

follows. We consider a smooth autonomous continuous-time
dynamical system acting on a smooth finite-dimensional
compact manifold M, described by an ODE system of the
form _x ¼ FðxÞ. The system is multistable if it possesses more
than one asymptotically stable state, defined by the attractors
fΩj∶j ¼ 1;…; Jg. The asymptotic state of an orbit is deter-
mined by its initial state, and the phase space is partitioned
between the basins of attraction fBjg of the attractors fΩjg
and the boundaries f∂Bl∶l ¼ 1;…; Lg separating these
basins.
The basin boundaries can be strange geometrical objects

with a codimension smaller than 1. Orbits initialized on the
basin boundaries f∂Blg are attracted toward invariant saddles
fΠlk∶l ¼ 1;…; L; k ¼ 1;…; klg, where we allow for the
existence of kl separate saddles in the basin boundary ∂Bl;
these saddles are often referred to as edge states; see Skufca,
Yorke, and Eckhardt (2006) and Schneider, Eckhardt, and
Yorke (2007).27 For nongradient flows, the edge states, like
the asymptotic states, can feature chaotic dynamics (Grebogi,
Ott, and Yorke, 1983; Robert et al., 2000; Ott, 2002; Vollmer,
Schneider, and Eckhardt, 2009). Lucarini and Bódai (2017,
2019, 2020) refer to the chaotic edge states as melancholia
(M) states. Hence, we cannot expect to easily find edge states
and, a fortiori, M states for such general multistable systems.
The edge tracking algorithm by Skufca, Yorke, and

Eckhardt (2006) and Schneider, Eckhardt, and Yorke
(2007) allows one to do so by constructing a shadowing
trajectory that leads an orbit starting on the basin boundary
toward the corresponding edge state; see Fig. 48. Therein, one
uses a bisection method to control the instability associated
with the trajectories’ divergence from the basin boundary.
Bódai et al. (2015) first used edge tracking in a geophysical
context to reproduce the unstable solution of Ghil (1976) with
this more easily generalizable approach; compare to the green
line and circles in Fig. 47(b).
Lucarini and Bódai (2017) computed M states for an

intermediate-complexity climate model with Oð105Þ degrees
of freedom that couples PUMA, an atmospheric primitive

FIG. 47. Bistability for the Ghil-Sellers 1D EBM. (a) Simplified
bifurcation diagram for the Ghil (1976) 1D EBM; compare
Figs. 21 and 45. The red, blue, and green lines correspond to the
globally averaged surface air temperature for the warm, snowball,
and melancholia states, respectively, as a function of the relative
solar irradiance μ; see also Arcoya, Diaz, and Tello (1998).
(b) Meridional temperature profile for the warm state (red line),
snowball state (blue line), and M state (green line) for this model
under present-day conditions (μ ¼ 1), with the sine of latitude on
the x axis; compare to Ghil (1976), Fig. 3(a). The circles indicate
the M-state estimate obtained using the edge tracking method.
Adapted from Bódai et al., 2015.

27Note that edge states refer to solutions separating long-lived
turbulence and laminar flow, rather than the interface between truly
separated attractor basins.
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equation model (Frisius et al., 1998) with a modified version
of the 1D EBM of Ghil (1976) that acts as a surrogate ocean
and contributes to meridional heat transport. Figure 49 shows
the bifurcation diagram of this climate model, where the
W → SB tipping point is located near μ ¼ 0.98, while the
SB → W tipping point is located near μ ¼ 1.06. Just as in
the 1D EBM of Fig. 47, the tipping points are associated with
basin boundary crises (Ott, 2002).
Over a wide range of μ values, the edge state features

chaotic dynamics that arises from the atmospheric model’s
baroclinic instability; it leads to weather variability and to a
limited predictability horizon. Since this instability is much
faster than the climatic one due to the ice-albedo feedback, the
basin boundary is a fractal set with near-zero codimension, in
agreement with results obtained in low-dimensional cases
(Grebogi, Ott, and Yorke, 1983; Lai and Tél, 2011). In other
words, the basin boundary has almost full Lebesgue measure.
As a result, near the basin boundary there is virtually no

predictability on the asymptotic state of the system because
infinitesimally close initial states have a high probability of
belonging to separate basins of attraction.

C. Invariant measures and noise-induced transitions

As mentioned previously, transitions across the basin
boundaries of competing attractors are possible and quite
likely in the presence of stochastic perturbations. Noise-
induced escape from an attractor has, in fact, long been
studied in the natural sciences; see, e.g., Hanggi (1986), Kautz
(1987), and Grassberger (1989).
Let us generalize Eq. (63) as follows:

dx ¼ FðxÞdtþ ϵsðxÞdW. ð66Þ

Here x ∈ Rd, FðxÞdt is the drift term given by a vector flow
field that admits multiple steady states, as previously dis-
cussed, and dW are the increments of a d-dimensional
Brownian motion. The volatility matrix sðxÞ ∈ Rd×d is such
that sðxÞTsðxÞ is the covariance matrix of the noise. Finally,
the parameter ϵ ≥ 0 controls the noise intensity.
Recent extensions of the classical Freidlin and Wentzell

(1984) theory (Graham, Hamm, and Tél, 1991; Hamm, Tél,
and Graham, 1994; Lai and Tél, 2011) yield results that
closely mirror those summarized earlier in the case of gradient
flows with additive noise [see Eqs. (64) and (65)], given
suitable assumptions on the drift term and the volatility; see,
e.g., Lucarini and Bódai (2019, 2020). In the weak-noise limit
given by ϵ → 0, the invariant measure of the system can be
written as a large-deviation law. Formally, one must replace
VðxÞ with a general quasipotential ΦðxÞ, which depends in a
nontrivial way on FðxÞ and sðxÞ. Moreover, the constant Z in
Eq. (64) is replaced by a function ζðxÞ, which is relatively
unimportant because the behavior of the system depends
mostly on the properties of ΦðxÞ.
Certain general properties of ΦðxÞ apply to all choices of

the noise law, and once a noise law is chosen one can derive
how the properties of the system change as a function of the
parameter ϵ. In general, regardless of the noise law, ΦðxÞ has
local minima supported on the attractors fΩj∶j ¼ 1;…; Jg of
the deterministic dynamics. Correspondingly, the invariant
measure has local maxima on the attractor. Moreover, ΦðxÞ
has a constant value on the support of each edge state Πl and
each attractor Ωj.
In the simplest case of J ¼ 2 attractors and L ¼ 1 edge state

in the basin boundary, in the weak-noise limit transitions away
from either attractor basin take place exponentially more
likely along the instanton connecting the corresponding
attractor with the edge state Π1. As for the gradient flows
in Sec. V.A, instantons can be calculated as minimizers of a
suitably defined action (Kautz, 1987; Grassberger, 1989;
Kraut and Feudel, 2002; Beri et al., 2005).
Consider now the case in which more than one edge state

separates a givenΩj from the other attractors fΩk∶k ≠ jg. Let
us denote then by Πj the edge state for which the value ofΦ is
lowest. In this case, the most probable exit path connects Ωj

with Πj, while the other escape channels are basically
switched off in the weak-noise limit.

FIG. 48. Schematic diagram of the edge tracking algorithm
proposed by Skufca, Yorke, and Eckhardt (2006) and Schneider,
Eckhardt, and Yorke (2007) as applied to the 1D EBM of Fig. 47.
From Bódai et al., 2015.

FIG. 49. Bifurcation diagram for the intermediate-complexity
climate model in Lucarini and Bódai (2017), drawn for the
long-term, globally averaged ocean temperatures ½hTSi�. Bist-
ability is found for a large range of values of the control
parameter μ ¼ S=S0. The relevant solid lines are in red for the
warm W states, in blue for the snowball SB states, and in green
for the melancholia M states, as in Fig. 47. From Lucarini and
Bódai, 2019.
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Note that if the attractors and the edge states are more
complex sets than isolated points, the instantons connecting
them are not unique because, in principle, any point of the
attractor can be linked by an instanton to any point of the edge
state because the quasipotential is constant on Ωj and Πj.
Indeed, the edge states are the gateways for the noise-induced
escapes from the deterministic basins of attraction, as
illustrated in the bistable example with nongradient flow
given later.
Lucarini and Bódai (2019) introduced stochastic forcing

into the climate model studied by Lucarini and Bódai (2017)
as a fluctuating factor of the form 1þ ϵdW=dt, where dW is a
Brownian motion that modulates the solar insolation
parameter μ. This forcing yields a multiplicative noise law
because the energy input into the system depends on the
product of μ times the co-albedo (1 − α), where the albedo
α ¼ αðTÞ depends explicitly on the surface air temperature
T ¼ Tðx; tÞ, which is a state variable of the model; compare
with Eq. (13b).
In Fig. 50, we reproduce the estimate by Lucarini and Bódai

(2019) of a 2D projection of the invariant measure for μ ¼ 1

from a climate simulation of ≃6.0 × 104 yr with fluctuations
in the solar insolation of 1.5% on the scale of 100 yr. The
simulation features 92 SB → W and W → SB transitions, and
the measure is projected onto the ð½TS�;ΔTSÞ plane; here ½TS�
is the globally averaged surface air temperature and ΔTS
measures the temperature difference between the surface
temperature in the low- and high-latitude regions.
The peaks of the PDFs are close to theW and SB attractors,

and the agreement improves even further when considering
the two marginal PDFs (top left and bottom right insets). Both

the W → SB and SB → W instantons can be estimated: their
starting and final points agree well with the attractors and the
M state. The instantons follow a path of monotonic descent
that closely tracks the crests of the PDF, with the minimum
occurring at the M state.
These features are all in excellent agreement with the

theoretical predictions for multistable systems with a gener-
alized quasipotential.

D. Nearing critical transitions

The general framework outlined in Sec. V.C is also useful
for studying the properties of such systems near a critical
transition; see, e.g., Lucarini and Bódai (2019). In Fig. 49, it is
clear that μ ¼ 0.98 is close to theW → SB tipping point. One
finds that at low noise intensities, i.e., at a relative μ
fluctuation less than or equal to 1.4% on a centennial scale,
it is extremely hard to escape from the SB state. This finding
happens to agree with snowball-state simulations that used
more detailed models as well; see, e.g., Crowley, Hyde, and
Peltier (2001), Pierrehumbert (2004), and Ghil (2019).
Let us then focus on the escape from the W state. Lucarini

and Bódai (2019) estimated the expected value of the
transition time from theW to the SB state using 50 simulations
per noise strength value. These values grow exponentially
with the inverse of the square of the parameter ϵ, as predicted
by the theory; see Fig. 51(a). Note that the difference between
the quasipotential value Φ at the M state and at the W state is
equal to half the slope of the straight line, which is in
agreement with Eq. (65).
Finally, the escape transition paths from the W state to the

M state are plotted in Fig. 51(b). In the weak-noise case of
relative μ fluctuation smaller than 1% on a centennial scale,
the highest densities of these paths lie quite close to the
instanton connecting theW attractor to theM state and follow
a path of decreasing probability.
These encouraging results suggest that the underlying

methodology of edge tracking and instanton estimation could
be applied to observational and reanalysis datasets. As
discussed in Sec. III.E.3, the episodic, or particle, approach
to atmospheric LFV results in a Markov chain of regimes
fRj∶j ¼ 1;…; Jg that involves preferential transition paths
fΘj;k∶j ¼ 1;…; J; k ¼ 1;…; Jg between them. Heretofore,
these transition paths, as well as the regimes themselves, were
estimated by purely statistical methods; see Ghil et al. (2019)
and Fig. 29(a). Deloncle et al. (2007) and Kondrashov et al.
(2007) applied a random-forest algorithm (Breiman, 2001) to
find the best real-time predictors of the next regime in a
Markov chain, conditional upon the one currently occupied.
The results were quite satisfying for the QG3 model by
Marshall and Molteni (1993), and encouraging for an obser-
vational dataset of 55 winters of Northern Hemisphere 700-
hPa geopotential height anomalies; see Deloncle et al. (2007)
and Kondrashov et al. (2007).

E. Chaos-to-chaos transition

Thus far we have seen that critical transitions associated
with saddle-node bifurcations and mild generalizations
thereof are fairly well understood by now. We conclude this

FIG. 50. Invariant measure of the transitions between the two
stable regimes of the stochastically perturbed climate model by
Lucarini and Bódai (2017) via the M state separating them for
μ ¼ 1. (Main panel) Projection of this invariant measure on the
reduced space ðTS; ½ΔTS�Þ. W attractor, red dot; SB attractor,
blue dot; M state, green dot. Red and blue dashed lines plot
the W → SB and SB → W instantons, respectively. (Top left
inset) Marginal PDF with respect to ΔTS. (Bottom right inset)
Marginal PDF with respect to ½TS�, (Center right inset)
Probability along the two instantons. From Lucarini and Bódai,
2019.
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section and the main part of the text with a somewhat more
exotic example of chaos-to-chaos transition for a DDE system
with and without stochastic perturbations.
We saw in Secs. II.B.1 and III.E.2 that ENSO plays a key

role in the global climate on interannual-to-interdecadal
scales. Hence, a large number of relatively simple models
thereof exist to better understand its main features. Important
mechanisms involved are air-sea interaction, equatorial wave
dynamics, and radiative forcing by the seasonal cycle
(Bjerknes, 1969). In particular, the role of wave dynamics
has been captured by introducing one or two delays into the
governing equations of some of the simpler models; see, e.g.,
Tziperman et al. (1994b), and Ghil, Zaliapin, and Thompson
(2008) and references therein.
Chekroun, Ghil, and Neelin (2018) studied the PBA of the

seasonally forced Tziperman et al. (1994b) model both with
and without stochastic perturbations. The model has two
delays, associated with a positive and a negative feedback;
these delays are based on the basin-crossing times of the

eastward-traveling Kelvin waves and the westward-traveling
Rossby waves. The control parameter a is the intensity of the
positive feedback, and the PBA undergoes a crisis that consists
of a chaos-to-chaos transition; they refer to it as a strange
PBA since model behavior is chaotic within it in the purely
deterministic case.
The changes in the invariant, time-dependent measure μt

supported on this ENSO model’s PBA are illustrated in
Figs. 52(a)–52(d) as a function of the control parameter a.
The PBA experiences a critical transition at a value a�, as
illustrated in Fig. 52, where hðtÞ is the thermocline depth
anomaly from seasonal depth values at the domain’s eastern
boundary, with t in years. Here a ¼ ð1.12þ δÞ=180 and
0.015 700 < δ� < 0.015 707.
The transition in the Kolmogorov-Smirnov metric of the

invariant measure’s dependence on the parameter a, i.e., in
μt ¼ μtðaÞ, is quite sharp according to Chekroun, Ghil,
and Neelin (2018), Fig. 3 (not shown). The singular
support of the measure is in full agreement with rigorous
mathematical results, as well as with the numerical results
(Chekroun, Simonnet, and Ghil, 2011; Ghil, 2017) on the
random attractor of the stochastically perturbed Lorenz (1963)
convection model.
The change in the PBA is associated with the population

lying toward the ends of the elongated filaments apparent in
Figs. 52(a)–52(d). This population is due to the occurrence of
large warm El Niño and cold La Niã events. Thus, μtðaÞ
encripts faithfully the disappearance of such extreme events
as a↗a�.
Note that Mukhin, Loskutov et al. (2015) and Mukhin,

Kondrashov et al. (2015) used neural-network methodology
to predict such transitions between two types of chaotic
regimes in inverse models learned from time series simulated
by ENSO models of increasing complexity. The ENSO
models were subjected to a linear change in a parameter
meant to represent gradual global warming. Transitions
between regimes in the inverse model did occur out of sample,
even when the training interval did not contain both types
of behavior.
Returning to the results of Chekroun, Ghil, and Neelin

(2018), they found that perturbing the Tziperman et al.
(1994b) model by small additive noise eliminated the crisis.
The explanation of this numerical observation is tied to the
role played in ENSO dynamics by the interaction between
the intrinsic frequency of the coupled ocean-atmosphere
system [see, e.g., Neelin et al. (1998)] and the seasonal
forcing (Jin, Neelin, and Ghil, 1994,1996; Tziperman et al.,
1994b; Ghil, Zaliapin, and Thompson, 2008). This inter-
action induces the devil’s staircase in model frequency,
which has plausible counterparts in observations (Ghil and
Robertson, 2000).
As shown by Ghil, Chekroun, and Simonnet (2008) in

their Appendix B, the devil’s staircase step that corresponds
to a rational rotation number can be smoothed out by a
sufficiently intense noise. In fact, the narrower the devil’s
staircase step is, the less robust is it to noise perturbations,
while wider ones are the most robust. The effect of noise on
the paradigmatic example of such a staircase, the standard
circle map, was examined in greater depth by Marangio
et al. (2019).

FIG. 51. Escape from the W attractor near the W → SB critical
transition of the stochastically perturbed climate model by
Lucarini and Bódai (2017) for μ ¼ 0.98. (a) The expected value
of the transition time obeys Eq. (65) in the weak-noise regime;
the diagram is in log-linear coordinates and σ on the x axis is the
relative fluctuation of the solar insolation μ. (b) Estimate of the
W → SB instanton and, in the inset, logarithm of the empirical
density; both use 50 trajectories that escape to the SB state. From
Lucarini and Bódai, 2019.
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This example is just one step on the long road of using
the tools of nonautonomous and random dynamical systems
for a better understanding of major climatic phenomena and
processes. Note, however, that the model, while relatively
simple, is actually infinite dimensional because of the
dependence of a DDE solution on a full interval of initial
values on the real axis.

VI. CONCLUSIONS

The goal of this review is to highlight some of the key
physical and mathematical ingredients that can help address
the description, understanding, and prediction of climate
variability and climate change. Complementary aspects of
observations, theory, and numerics were taken into consid-
eration. We leaned heavily on dynamical-systems theory and
nonequilibrium statistical mechanics and tried to present a
coherent picture of the time dependence of the climate system,
its multiscale nature, and its multistability.
We emphasized the complex interplay between intrinsic

climate variability and the climate’s response to perturbations.
The topic is, in fact, relevant for three problems of significant
scientific relevance: (a) anthropogenic climate change,

(b) coevolution of Earth’s climate and the biosphere, and
(c) the quest for life on other planets, along with the
habitability of our own planet.
The presentation also aimed to show the extent to which

basic mathematical and physical tools could help solve the
main challenges inherent to the climate sciences. These
challenges cannot be overcome merely by increasing the
resolution of numerical models and including in them
more and more physical and biogeochemical processes.
In addition, a balanced interplay of observations, modeling,
and theory is definitely needed to achieve the necessary
progress.
This review is far from exhaustive: we had to make hard

personal choices on the topics to be covered. We want to
briefly mention here several additional approaches to the
problems at hand that have been developed in recent years.

• Network theory [see, e.g., Barrat, Barthelemy, and
Vespignani (2008) and Newman (2010)] has provided
a novel viewpoint for constructing a parsimonious yet
efficient representation of many complex processes
taking place in the Earth system; see, e.g., Tsonis and
Roebber (2004), Tsonis, Swanson, and Roebber
(2006), and Donges et al. (2009). Gozolchiani,

FIG. 52. Embedding of the invariant, time-dependent measure μt supported on the PBA associated with the highly idealized ENSO
DDE model by Tziperman et al. (1994b). The embedding is shown within the (hðtÞ; hðtþ 1Þ) plane for a ¼ ð1.12þ δÞ=180,
t ≃ 147.64 yr, and (a) δ ¼ 0.0, (b) δ ¼ 0.015 00, (c) δ ¼ 0.0157, and (d) δ ¼ 0.015 707. The red curves on the (hðtÞ; hðtþ 1Þ) plane in
the four panels represent the singular support of the measure. From Chekroun, Ghil, and Neelin, 2018.
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Havlin, and Yamasaki (2011) and Wang et al. (2013)
provided examples of the use of networks for
capturing specific climatic processes, while
Boers et al. (2014) provided an example of applying
network theory to climate prediction.

• Extreme value theory (EVT) [see, e.g., Embrechts,
Klüppelberg, and Mikosch (1999) and Coles (2001)]
has been used extensively in studying the statistical
properties of rare hydrometeorological events, such
as the occurrence of intense rain or extreme temper-
atures; see Katz, Parlange, and Naveau (2002),
Ghil et al. (2011), and references therein. Yet this
classical methodology has been almost entirely
neglected in IPCC reports dedicated to the study
of extremes; see IPCC (2012). Recently, though,
rapid advances in EVT theory for general observ-
ables of chaotic deterministic dynamical systems
(Holland et al., 2012; Lucarini, Kuna et al., 2014;
Lucarini et al., 2016) have led to the derivation of
indicators of weather regimes based on extreme
value statistics in the recurrence of atmospheric
fields. In addition to the mere classification of such
regimes, as mentioned at the end of Sec. V.D, this
approach allows one to infer higher or lower
instability of these regimes, and hence their lower
or higher predictability (Faranda, Messori, and Yiou,
2017; Hochman et al., 2019).

• Large-deviation theory [see, e.g., Varadhan (1984)
and Touchette (2009)] was first used in the context
of geophysical fluid dynamics for studying the self-
organization and the multistability of turbulent flows
and, specifically, of jet structures (Bouchet and
Venaille, 2012; Bouchet, Laurie, and Zaboronski,
2014); see also Secs. V.A and V.C. More recently
it has been applied successfully to the study of
weather and climate extremes. First, it has helped
formulate rare event algorithms able to nudge a
climate model toward representing preferentially the
class of extreme events of interest (Ragone, Wouters,
and Bouchet, 2018). Second, it has provided a solid
theoretical and numerical basis for the study of
spatially extended or temporally persistent temper-
ature extremes (Gálfi, Lucarini, and Wouters,
2019). Large-deviation theory has also recently been
used to study multiscale and coupled atmosphere-
ocean instabilities in a hierarchy of climate models
(Vannitsem and Lucarini, 2016; De Cruz et al.,
2018).

• Detection and attribution studies. In a complex
system like the climate, inferring causal relationships
among events and phenomena is far from obvious.
Nonetheless, doing so for well-defined weather and
climate events is essential for building simplified
models and, at a practical level, for causal attribution
of weather- and climate-related events. This is quite
important in the case of detection and attribution
studies of anthropogenic climate change, especially

when aiming to go beyond changes in mean climate
properties, such as globally averaged temperatures,
and on to determining to what extent the occurrence
of an individual extreme event (e.g., of a hurricane or
an extended drought) can be attributed to climate
change (Allen, 2003; Adam, 2011).

Methodologies based on the causal counterfactual
theory of Pearl (2009) are being increasingly recog-
nized as a key instrument for providing a more
rigorous basis for detection and attribution studies;
see, e.g., Hannart, Pearl et al. (2016). They also seem
better suited for defining reliably the link between
anthropogenic climate forcing and individual events
(Hannart and Naveau, 2018). Combining these meth-
ods with those of data assimilation, discussed in
Sec. II.A, appears to be well suited to refine the
distinction between the factual and counterfactual
world that separates causation from the lack thereof;
see, e.g., Hannart, Carrassi et al. (2016).

• Beyond linear-response theory. As shown in
Sec. IV.E, linear-response theory can provide a
systematic improvement upon the standard method-
ology of forward integration of model ensembles
with perturbed initial states and parameters. While it
does apply to systems out of thermodynamic equi-
librium, it is still limited by its linearity to fairly
small perturbations in parameters. In Sec. IV.D, we
mentioned that one can use the Wasserstein distance
to measure arbitrary changes between two invariant
measures, whether supported on a time-independent,
classical attractor or a time-dependent PBA. One
might thus want to apply the PBA-based method-
ologies herein directly to observational datasets or to
the simulations of IPCC-class models, either instead
of or in combination with previously tested statis-
tical methods.

In Sec. V.E, we showed that the PBA of an
intermediate but still infinite-dimensional ENSO
model can undergo a chaos-to-chaos transition that
involves major changes in its invariant measure.
Moreover, these changes could be connected to a
physically quite significant change in model behav-
ior, namely, in the number and size of extreme
events, i.e., of the largest warm and cold events.
Thus, exploring similarly interesting changes in
model PBAs and in the time-dependent invariant
measures supported by them appears to be a prom-
ising road toward a deeper understanding of climate
variability and its interaction with both natural and
anthropogenic forcing.

In this review, we have pointed out several open scientific
problems; see Ghil (2019) for a historical perspective. An
important matter that was left practically untouched, aside
from the brief discussion of ENSO and its prediction in
Sec. III.E.2, is the tropical atmosphere. Half of Earth’s surface
lies in the Tropics, between 30° N and 30° S, and much of
humanity lives there. As one gets closer to the Equator, the
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quasigeostrophic approximation collapses and moist proc-
esses take on a much greater importance. Four of the classical
references are Palmer (1951), Riehl (1954), Krishnamurti,
Stefanova, and Misra (1979), and Yanai (1975). The current
literature is too plethoric to marshal here.
We have also alluded, in Sec. I.B, to the increasing

importance of the issues discussed herein for the economic
well-being of our society and for the political decisions
needed to mitigate climate change as well as adapt to it;
see, for instance, IPCC (2014a, 2014b). A prudent way to
address such decisions requires better estimates of the
uncertainties involved; see, e.g., Barnett, Brock, and
Hansen (2020). Ghil (2020) provided an introduction to
recent efforts at including the nonlinearities and stochasticities
discussed herein in coupled climate-economy models for
uncertainty quantification.
More broadly, we alluded at the end of Sec. I to the lack of a

proper definition of climate and to the efforts to provide a
mathematically rigorous definition that would distinguish it
from weather. We also mentioned in Sec. III.E.1 the distinction
made by Von Neumann (1960) between the short-, medium-,
and long-term prediction problem in the climate sciences.
At an even higher level of abstraction, one might wish

to recall the parallel drawn by H. Poincaré between the
deterministic unpredictability of weather and that of the
position of the planets on the ecliptic; see Poincaré (1902),
pp. 69 and 70. Harking back to these two giants of both
physics and mathematics, we could say that (i) the astro-
nomical ephemerides are the analog of weather and of its
short-term prediction, (ii) the problem of climate corresponds
to that of the long-term stability of the solar system, and
(iii) the secular variations of the orbital configurations in the
Solar System are the appropriate counterpart of the slow
evolution of the climate system’s low-frequency modes of
variability (Chown, 2004).
Making these analogies stick at a level that might help

determine more reliably climate sensitivity to human activities
is a worthwhile effort for the best mathematicians, physicists,
and climate scientists.

LIST OF SYMBOLS AND ABBREVIATIONS

ACC Antarctic Circumpolar Current
AR assessment report
AS Arakawa-Schubert (parametrization)
CMIP Climate Model Intercomparison Project
CNs complex networks
DDE delay-differential equation
DNS direct numerical simulation
EBM energy balance model
ECMWF European Centre for Mid-range Weather

Forecasts
ECS equilibrium climate sensitivity
ENSO El Niño–Southern Oscillation
EMS empirical model reduction
EWS early warning signal
FDT fluctuation-dissipation theorem
GCM general circulation model

GCM global climate model
GFD geophysical fluid dynamics
GHGs greenhouse gases
GLE generalized Langevin equation
IPCC Intergovernmental Panel on Climate

Change
LFV low-frequency variability
MJO Madden-Julian oscillation
MOC meridional overturning circulation
MZ Mori-Zwanzig
NAO North Atlantic Oscillation
NCAR National Center for Atmospheric Research
NCEP National Center for Environmental

Prediction
NDS nonautonomous dynamical system
NWP numerical weather prediction
NSEs Navier-Stokes equations
ODE ordinary differential equation
PBA pullback attractor
PCMDI Program for Climate Model Diagnostics

and Intercomparison
PDE partial differential equation
PNA Pacific North American (pattern)
PSA Pacific South American (pattern)
QG quasigeostrophic (flow, model)
RDS random dynamical system
SDE stochastic differential equation
SPM Summary for Policy Makers
TCR transient climate response
THC thermohaline circulation
UNEP United Nations Environmental Programme
WCRP World Climate Research Programme
WMO World Meteorological Organization
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