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Abstract

For a wide range of values of the intensity of the incoming solar radiation, the

Earth features at least two attracting states, which correspond to competing cli-

mates. The warm climate is analogous to the present one; the snowball climate

features global glaciation and conditions that can hardly support life forms.

Paleoclimatic evidences suggest that in the past our planet �ipped between these

two states. The main physical mechanism responsible for such an instability is

the ice-albedo feedback. In a previous work, we de�ned the Melancholia states

that sit between the two climates. Such states are embedded in the boundaries

between the two basins of attraction and feature extensive glaciation down to

relatively low latitudes. Here, we explore the global stability properties of the

system by introducing random perturbations as modulations to the intensity of

the incoming solar radiation.We observe noise-induced transitions between the

competing basins of attraction. In the weak-noise limit, large deviation laws

de�ne the invariant measure, the statistics of escape times, and typical escape

paths called instantons. By constructing the instantons empirically, we show

that the Melancholia states are the gateways for the noise-induced transitions.

In the region of multistability, in the zero-noise limit, the measure is supported

only on one of the competing attractors. For low (high) values of the solar
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irradiance, the limit measure is the snowball (warm) climate. The changeover

between the two regimes corresponds to a �rst-order phase transition in the

system. The framework we propose seems of general relevance for the study of

complex multistable systems. Finally, we put forward a new method for con-

structingMelancholia states from direct numerical simulations, which provides

a possible alternative with respect to the edge-tracking algorithm.

Keywords: climate dynamics, global stability properties, invariant measure,

stochastic dynamics, Melancholia states, phase transitions, basins of attraction

(Some �gures may appear in colour only in the online journal)

1. Introduction

In the late 1960’s and in the 1970’s, Budyko, Sellers, and Ghil [1–3] proposed the idea

that the Earth, in the current astrophysical and astronomical con�guration, supports two

co-existing attractors, the warm (W) state, which is analogous to the one we live in, and

the so-called snowball (SB) state, which is characterised by global glaciation and a glob-

ally averaged surface temperature of about 200–220 K. Using parsimonious yet physically

meaningful energy balance models, they indicated that the bistability of the climate sys-

tem is the result of the competition between the positive ice-albedo feedback (a glaciated

surface re�ects the incoming radiation more effectively) and the negative Boltzmann radia-

tive feedback (a warmer surface emits more radiation to space). The relevance of the the-

oretical ansatz became apparent when paleoclimatic data showed that, indeed, our planet

has been �ipping in and out of states of global glaciations corresponding to the predicated

SB states during the Proterozoic, about 650 Mya [4–6]. According to these energy bal-

ance models, the Earth’s climate is bistable for a substantial range of values of the solar

irradiance S∗, which include the present day value. Below the critical value S∗W→SB, only the SB

state is permitted, whereas above the critical value S∗SB→W, only the W state is permitted. Such

critical values, which determine the boundaries of the region in parametric space where bista-

bility is realised, are de�ned by bifurcations that occur when, roughly speaking, the strength

of the positive, destabilising feedbacks becomes as strong as the negative, stabilizing feed-

backs. Indeed, models of different levels of complexity ranging up to the state-of-the-art Earth

system models currently used for climate projections agree on predicting the existence of

multistability in the climate system and point to the fundamental mechanisms described

above as responsible for it, as well as providing values for S∗W→SB that are in broad agree-

ment with those obtained using simple models [7–9]. We remark that both the concen-

tration of greenhouse gases and the position of the continents have an impact on the val-

ues of S∗W→SB and S∗SB→W and on the properties of the W and SB states [10]. Extremely

high values of the concentration of CO2 seem to be needed to deglaciate from an SB

state [11].

Improving our understanding of the critical transitions associated to such a bistability is a

key challenge of geosciences and has strong implications also in terms of the quest for under-

standing or anticipating planetary habitability. Planets in the habitable zone have astronomical

and astrophysical con�gurations that allow, in principle, the presence of water at surface.

Therefore, S∗W→SB de�nes the cold boundary of the habitable zone. Clearly, an exoplanet in the

habitable zone can be in the regime of bistability: if the planet is in the SB state, it will have
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very hard time supporting life7. Additionally, astronomical parameters such as the obliquity

of the planet [12–14], eccentricity [12], or the length of the year [15, 16] can have a dramatic

effect on the properties of multistability of a planet in the habitable zone, up to the point of

erasing it altogether. In particular, planets with Earth-like atmospheres and high seasonal vari-

ability can have ice-free areas at much larger distance from the host star than planets without

seasonal variability, which leads to a substantial expansion of the outer edge of the habitable

zone.Additionally, one expects that tidally locked planets with an active carbon cycle can never

be found in an SB state [17].

1.1. Multistability of the climate system

Further investigations have proposed the possibility of the existence of alternative cold states

with respect to the SB one. Such states are characterised by the existence of a thin strip of

ice-free region near the equator. Clearly, this possibility has key implications in terms of hab-

itability and the evolution of life on Earth. Different physical mechanisms have been proposed

for explaining the existence of such a state, based either on the role of a dynamical ocean

[18] or the speci�c properties of the albedo of sea ice [19]. In fact, in a previous work [20]

we have found that, indeed, a third co-existing stable state, intermediate between the SB and

theW climate, can be found in a climate model featuring a very simpli�ed representation of the

oceanic heat transport, so that one might expect that the existence of more than two competing

attractors could be a rather robust property of the climate system.

Indeed, the dynamical landscape of the Earth system might be even more complex than

what is usually expected. A recent study [21], performed using a rather sophisticated climate

model run using aquaplanet boundary conditions (without continents), indicates the existence

of at least �ve competing climate states, ranging from a snowball to a very warm state without

sea ice.

Additionally, the physics and the chemistry of the climate system feature further complex-

ities when one considers even warmer conditions. For suf�ciently large values of S∗, the W

climate state loses its stability as a result of the dramatic strengthening of the positive feed-

back associated to the presence of water vapour in the atmosphere. Indeed, warm conditions

favour, through the thermodynamic effect associated with the Clausius–Clayperon relation,

the water vapour retaining capacity of the atmosphere. The water vapour is a powerful green-

house gas, as it is active in the infrared radiation. As a result, when the concentration of

water vapour is suf�ciently high, the planet performs a transition to either the so-called moist

greenhouse state or the so-called runaway greenhouse state (associated to a complete evap-

oration of the oceans) [22, 23]. This de�nes the warm (or inner) edge of the habitable zone

[24].

In what follows, we consider the simpler—yet extremely relevant—scenario where the

only relevant co-existing climates are the SB state and the W state. As discussed in [9], the

physics of the system is especially interesting when the critical transitions are approached. As

the solar irradiance S∗ nears the critical value S∗W→SB with the system being in the W state,

the climatic engine becomes more ef�cient, because larger temperature gradients are realised

inside the domain. Such an increased ef�ciency leads to a stronger atmospheric circulation,

which is fuelled by temperature gradients and tends to reduce them by transporting heat from

warm to cold regions, acting as a non-trivial diffusion process. Such a nonlinear equilibration

mechanism acts as a negative feedback and, broadly speaking, is a macroscopic manifestation

7The project EDEN (http://project-eden.space/) combines ideas and methods in astrophysics, planetary sciences, and

astrobiology to search for and characterize nearby habitable worlds.
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of the second law of thermodynamics. One of the results of the heat transport performed by the

atmospheric circulation is the stabilization of the ice-line. When S∗ = S∗W→SB, the ice-albedo

feedback becomes as strong as the negative feedbacks of the system, and the system �ips to SB

state with the ice-line reaching the equator. Similar mechanisms are in place when the system

is in the SB state and S∗ nears, instead, S∗SB→W. When S∗ = S∗SB→W, the ice begins to melt near

the equator, leading to a rapid poleward retreat of the ice line.

At the critical transitions the climate system is not anymore able to dampen �uctuations

due to (in�nitesimal) external forcings. Using methods borrowed from transfer operator the-

ory [25], the investigation of the behaviour of the same model used in [9] has indeed shown

that when S∗ nears S∗W→SB, the spectral gap—de�ned as the absolute value of the (negative)

imaginary part of the subdominant Ruelle–Pollicott pole [26, 27]—of the transfer operator

constructed in a suitably de�ned reduced phase space vanishes. As a result, exponential decay

of correlation is lost and the system experiences what is often referred to as critical slowing

down [28]; see also references [29, 30].

Far from critical transitions, it has been shown [31–33] that it is possible to perform climate

change projections resulting from a time-dependent CO2 forcing using Ruelle’s response the-

ory [34]. In the case of perturbations not depending explicitly on time, response theory allows

one to describe how the measure of the system changes differentiably with respect to small

changes in the dynamics of the system. In the case of time-dependent perturbations, response

theorymakes it possible to reconstruct the measure supported on the pullback attractor [35–37]

(see also the closely related concept of snapshot attractor [38, 39]) of the non-autonomous

system through a perturbative approach around a reference state, which, in the case of the

climate studies referred to here, corresponds to the pre-industrial conditions. When we are

nearing a critical transition, it is reasonable to expect a monotonic decrease of the spectral gap

[40, 41]. Hence, in the vicinity of the critical transitions the presence of a vanishing spectral gap

leads to having a vanishing radius of expansion for response theory [42]. Indeed, it is expected

that the (near) closure of the spectral gap is associated to a strongly enhanced sensitivity of

the system’s statistics to perturbations [43]. See [44] for a thorough discussion on the various

regimes of climatic response to forcings and of the relationship between climate change and

climate variability across various temporal scales.

1.2. Melancholia states of the climate system

A key question is what lies in-between the stable co-existing climates within the region of

the parameters space where bistability is found. In simple models, it is often possible to iden-

tify unstable solutions sitting in-between the two stable climates. Such unstable solutions are

embedded in the boundary between the two basins of attraction and, are roughly speaking,

ice-covered up to the mid-latitudes. These solutions are saddles because they attract orbits

starting from initial conditions on the basin boundary but are not stable, as small generic per-

turbations push the orbit outside the basin boundary with probability one and then lead to the

system falling eventually into one of the competing attractors [3, 45].

When studying more comprehensive climate models featuring chaotic dynamics, things

are, as described in the next section, considerably more complex from a mathematical point

of view, and the individuation of the unstable saddle solutions is much harder [46–49]. Since

these solutions are unstable, they cannot be found by direct numerical simulation. In a previous

investigation [20], we adapted the edge tracking algorithm [50, 51] introduced for constructing

the edge states, i.e. the special solutions separating laminar from long-lived turbulent regimes
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of motion in a �uid dynamical setting8. We used a recursive technique of bisection on the initial

conditions9 for shadowing trajectories on the basin boundary separating the two co-existingW

and SB states, and managed to populate the corresponding saddles.

The analysis was performed using an intermediate complexity climate model with O(104)

degrees of freedom. The saddles we found had the remarkable property of featuring chaos (we

found evidence that the �rst Lyapunov exponent was positive), and were named as Melan-

cholia (M) states. Figures 1(a) and (b) summarize the main properties of the system, by

showing the long term averages of the globally averaged surface temperature 〈TS〉 and of

the temperature difference between low and high latitudes ∆TS as a function of the relative

solar irradiance µ = S∗/S∗0, where S
∗
0 is the present day value. By focusing on the M states

we have been able to show the existence of much richer than previously thought dynamical

landscape.

As discussed in [20], up to µ ∼ 1.01, the M state is characterised by longitudinal sym-

metry in its statistical properties, just as the boundary conditions of the system, are, indeed,

longitudinally symmetric. The chaotic dynamics manifests itself as weather variability in a

form not too dissimilar from the usual one observed in stable climates. Nonetheless, on long

time scales, orbits initialised near the M states drift to either the W or the cold SB state,

as a result of the dominating positive ice-albedo feedback. For µ ∼ 1.01, the symmetric M

state becomes transient, evolving very slowly (on a time scale much longer than the other

ones typical of the system) into a symmetry-broken state, where very cold and very warm

conditions co-exist, separated by two regions of very strong longitudinal temperature gradi-

ent. The two regions feature rather different dynamical behaviour and the boundary between

them rotates very slowly in time. The nontrivial bifurcation associated to such a symme-

try break leads to dynamical regimes that resembles chimera states in extensive systems

[54, 55]. The third climate state mentioned before exists in a small parametric window near

µ ∼ 1.045 [20].
We remark that the dynamical systems viewpoint clari�es that the critical transitions for

the W (snowball) state occurring when S∗ approaches the critical value S∗W→SB (S∗SB→W) are

associated with the collision between the M state and the W (SB) climate, according to the

dynamical scenario of boundary crisis [48]. The system’s reduced ability to dampen �uctua-

tions near the tipping points and the associated shrinking of the spectral gap described above

can be seen, dynamically, as the result of the fact that the attractor attracts orbits less effectively

in its immediate neighbourhood because of the presence of a nearby M state [28].

1.3. This paper: goals and main results

Studying multistable systems in general, and the climate system in particular, using determin-

istic autonomous dynamical systems faces two important issues, both resulting from the fact

that the phase space is partitioned into disjoint invariant sets—the various basins of attrac-

tions and their respective boundaries. First, it is not possible to account for transitions between

the co-existing basins of attraction. Instead, transitions between distinct regimes of motion are

observed in many systems of interest. Additionally, one cannot establish an ergodic, physi-

cally relevant invariant measure, as the co-existing attractors are disjoint. Assigning a weight

to each of them is, indeed, a highly arbitrary operation. Hence, one cannot answer the question

8Note that in such systems, technically, there are no competing attractors, because the only true attractor is the laminar

state.
9A different approach based on control theory aims at �nding unstable solutions by a feedback loop involving changes

in the value of the control parameter de�ning the region of bistability [52, 53].
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Figure 1. Bifurcation diagram for the coupled climate model studied in [20]. Panel (a)
globally averaged ocean temperature 〈TS〉 vs µ. Bistability is found for a large range
of values of µ. Red continuous line: W attractor; blue continuous line: SB attractor;
green continuous line: chaotic M state; purple continuous line: mean properties of the
symmetry-broken chaotic M state: red dashed line: warm side of the symmetry-broken
chaotic M state; blue dashed line: cold side of the symmetry-broken chaotic M state;
green dotted line; transient symmetric chaotic M state; empty squares: warm side (red),
cold side (blue) and average properties of the third attractor. The W-to-SB tipping point
is located at µ ∼ 0.965; the SB-to-W tipping point is located at µ ∼ 1.055. See [20].

of how likely it is for the system of interest to be found at a given time in a speci�c regime

of motion. Instead, all the statistical properties of an orbit are conditional on which invariant

set its initial condition belongs to. Indeed, building upon the preliminary results reported in a

short communication [56] and giving them a much broader scope and setting them in a more

robust mathematical framework, we want to address these points in the present paper. For the
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bene�t of the reader, we report below the main goals of our investigation and the main �ndings

presented in this paper.

We will introduce a stochastic forcing to the model studied in [20] as a Gaussian perturba-

tion with variance σ2 modulating the intensity of the incoming solar radiation. This impacts

the radiative budget of the planet in a very nontrivial way and, thanks to the ice-albedo feed-

back, acts as a multiplicative noise. Additionally, we conjecture, supported by physical and

qualitative mathematical arguments, that the combination of noise and nonlinear deterministic

dynamics leads to a hypoelliptic diffusion process, i.e. the noise propagates to all degrees

of freedom of the system [57]. The presence of a random forcing allows the system to per-

form transitions between the neighbourhoods of the deterministic attractors, crossing the

basin boundaries that, in the unperturbed case, are impenetrable; see some classical results in

[58–60]. The consideration of a random forcing will allow us to construct the ergodic invari-

ant measure of the system by performing long integrations, and investigate the properties of

noise-induced transitions.

Following [49, 61–63], we show that, in the weak-noise limit and under suitable condi-

tions, the invariant measure can be written as a large deviation law with the following notable

properties. The exponent is given by minus the quasi-potential function divided by σ2/2. We

will show how to compute the quasi-potential from the drift and volatility �elds, and show that

the drift �eld can be decomposed in two contributions having radically different dynamical

meaning. Additionally, the quasi-potential is a Lyapunov function and provides a clear picture

of the evolution of the system in the absence of noise. In the region of bistability, the quasi-

potential has local minima associated to the attractors and has a saddle behaviour at the M

states of the deterministic system. In the region where only one stable state is realised in the

deterministic case, the quasi-potential has just one local (and global) minimum, corresponding

to the unique attractor.

In the case of multistability, the logarithm of the average permanence time in a basin of

attraction increases linearly with the product of 2/σ2 times the difference between the value

of the quasi-potential at the M state through which the transitions takes place and its value

at the corresponding attractor. We also show that the stochastically averaged exit trajectories

connect the attractor with theM state, which is indeed the most likely exit point from the deter-

ministic basin of attraction. In the weak-noise limit, such paths correspond to the instantons

[59, 60, 64–66]. In our simulations, we show that such an identi�cation becomes more accu-

rate as the intensity of the noise is decreased. Exploiting this property, we also propose a new

method for constructing the M states via direct numerical integration of stochastic differential

equations.

We discover that, since generally the local minima of the quasi-potential corresponding to

the two attractors have different values, in the zero-noise limit only one attractor—the one

corresponding to the global minimum of the quasi-potential—is populated. Nonetheless, an

individual trajectory may in fact persist near the competing metastable state for a very long

time, as the permanence time in the corresponding basin of attraction also diverges (but at a

slower rate than for the asymptotic state). As indicated by physical intuition, for low values

of S∗, the noise selects as limit measure the SB state, while for high values of S∗, the limit

measure is the W attractor. The changeover takes place at a critical value of the relative solar

irradiance µ = µcrit, where µcrit ≈ 1.005. For such a value of µ, the equivalent of a �rst-order
phase transition for equilibrium systems takes place in the system. The order parameter that

more obviously captures the transition is the globally averaged surface temperature.

The paper is structured as follows. In section 2 we summarise the main mathematical con-

cepts and ideas that we have used to frame our investigation, to perform the data analysis, and

to interpret our results. In section 3 we report the modelling suite we have used, describe the
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data we have produced, and give information on how they have been processed. In section 4

we present and discuss our results. In section 5 we propose and test numerically a new method

for constructing theM states by looking at the intersections of instantons constructed by taking

into account three different noise laws superimposed on to the same deterministic dynamics.

In section 6 we summarize and interpret our �ndings, describe the limitations of our work, and

propose ideas for future investigations. In appendix A, we speculate on the fact that the frame-

work presented in the paper is potentially suitable for clarifying the role played in complex

historical processes by contingency, as discussed by Gould [67] in the context of evolutionary

biology.

2. Mathematical background

2.1. Geometry of the phase space: attractors and M states

The investigation of systems possessing multiple steady states is an extremely active area of

interdisciplinary research, encompassing mathematics, natural sciences, and social sciences.

The recent review by Feudel et al [68], introducing a special journal issue on the topic,

gives a rather complete overview of the state-of-the-art of the ongoing activities on this topic

and provides several interesting examples. In the context of Earth sciences, it is more common

to refer to critical transitions in multistable systems using the expression tipping points, which

has received a great popularity following a paper by Lenton et al [69].

A possible way to introduce the mathematical background for multistable systems is the

following. We consider a smooth autonomous continuous-time deterministic dynamical sys-

tem de�ned on a smooth �nite-dimensional compact manifoldM (in what follows, a subset of

R
N). We assume that the dynamical system is dissipative, so that the phase space continuously

contracts and the Lebesgue measure is not conserved. The orbit evolves from an initial condi-

tion x0 ∈ M at time t = 0. We de�ne x(t, x0) = St(x0) as the orbit at a generic time t, where St

denotes the evolution operator. The corresponding set of ordinary differential equationswritten

componentwise is:

ẋi = Fi(x), i = 1, . . . , N, (1)

where F(x) = d/dτSτ (x)|τ=0 is a smoothN-dimensional vector �eld. We de�ne such a dynam-

ical system as multistable if it features more than one asymptotic states. Speci�cally, we mean

that there are two or more attractors Ωj, j = 1, . . . , J, each possessing a corresponding basin

of attraction of a �nite Lebesgue measure. Each of the attractors is an invariant set and is

the support of an invariant measure of the system. The asymptotic state where the trajectory

falls into is determined by its initial conditions, and the phase space is partitioned between the

basins of attraction Bl of the various attractors Ωj and the boundaries ∂Bl, l = 1, . . . , L of such

basins.

We assume, for simplicity, that within each basin of attraction an ergodic measure can be

de�ned as the limit of the empirical measure constructed by averaging over in�nitely long

forward trajectories for Lebesgue almost all initial conditions in the basin of attraction. In other

terms, all the invariantmeasures of the system can be written as a convex sum of its j = 1, . . . , J
ergodic components, each supported on the corresponding attractor Ωj, j = 1, . . . , J.

We also assume that an orbit initialized on the basin boundary ∂Bl, l = 1, . . . , L, is attracted
towards one of the invariant saddles Π lk , k=1,. . . ,Kl: the basin boundary ∂Bl contains Kl>1

such saddles. We assume that all saddles feature only one unstable direction. Such instability

repels trajectories initialised near the saddle towards either of the competing attractors.
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In general, one can be in the situation where the asymptotic dynamics on one or more of

the competing attractors can be chaotic (meaning here that at least one Lyapunov exponent

is positive and unstable periodic orbits are dense). In some systems, chaotic dynamics can be

realised on one or more of the saddles embedded in the basin boundaries [46–48, 70]. These

are what we refer to as M states. M states are non-trivial geometrical objects that support a

typically nontrivial measure [49].

A fascinating aspect of multistable systems is the following. If the �rst Lyapunov expo-

nent of a chaotic saddle is larger than the inverse of the life time of the saddle state itself

(which measures the rate at which orbits initialised near the saddle state are repelled towards

the two nearby asymptotic states), then the basin boundary separating the basin of attraction

of the two asymptotic sets has co-dimension strictly smaller than one. In two-dimensional

maps, it has been proved that in this case, and provided that the �rst Lyapunov exponent is

not the cross-boundary one, the basin boundary is not a manifold, but rather a rough frac-

tal [46, 49, 70]. The authors have recently proposed a generalisation of this result to the

case of N-dimensional maps [71]. In [20], despite high-dimensionality of the system, one

could detect that the co-dimension of the basin boundary is strictly smaller than one. In fact,

such a co-dimension was found to be very close to zero, as a result of time scale difference

between the most relevant instabilities: the climatic instability due to the ice-albedo feedback

acting near the M state is much slower than the fast weather-like instability associated to baro-

clinic processes occurring on the M state. This implies that near the basin boundary there is

basically no predictability of the second kind in the sense of Lorenz [72]. The basin boundary

is, de facto, a grey zone, and it is dif�cult to assess where orbits initialised near the boundary

will end up.

2.2. Impact of stochastic perturbations: invariant measure and noise-induced transitions

The goal of our investigation here is to analyse the impact of imposing a random forcing on the

deterministic dynamics discussed above. Processes that can be described as a noise-induced

escape from an attractor have long been studied in the natural sciences; see [58–60].We gener-

alise equation (1) by adding a stochastic component.We then consider a stochastic differential

equation (SDE) in Itô form written as

dxi = Fi(x)dt + σs(x)i jdW j, (2)

where x,F ∈ R
N , F and si j ∈ R

N×N are smooth, σ > 0, dWj is the increment of an

N−dimensional brownian motion, and Cij(x) = sik(x)sjk(x) is the noise covariance matrix. We

consider the case of a hypoelliptic diffusion process. This amounts to assuming that while

the covariance matrix of noise can be singular, the drift term F(x) modi�ed according to the

Stratonovich convention and the columns of the volatility matrix s satisfy the so-called Hör-

mander condition, i.e., the Lie algebra generated by them has dimension N everywhere [73].

As a result of this, a smooth invariant density with respect to Lebesgue is realised because the

noise is propagated to all the coordinates through the drift term; see [57].10 We discuss below

in section 3.2 why such a mathematically important assumption can be heuristically justi�ed

in the speci�c case studied here.

Taking inspiration from the Freidlin–Wentzell [61] theory and modi�cations thereof [49,

62, 63], in the weak-noise limit σ → 0 we seek a special functional form for the invariant

10Assuming an elliptic diffusion process is extremely restrictive because it requires all degrees of freedom to be driven

by Gaussian noise.
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measure. Indeed, we look for a large deviation law:

Πσ(x) ∼ exp

(

−2Φ(x)

σ2

)

, (3)

where the rate function Φ(x) is referred to as quasi-potential, and we have neglected

the pre-exponential term. Speci�cally, the symbol ∼ in equation (3) implies that

Φ(x) = −1/2 limσ→0σ
2logΠσ(x). The function Φ(x) can be obtained as follows. We solve the

stationary Fokker–Planck equation corresponding to equation (2):

∂ jJ j(x) = 0, J j(x) = −F j(x)Πσ(x)+ σ2∂i
(

Ci j(x)Πσ(x)
)

, (4)

where J is the probability current. We then consider the weak-noise limit, and use as ansatz

the expression given in equation (3). We obtain the following Hamilton–Jacobi equation [74]:

Fi(x)∂iΦ(x)+ Ci j(x)∂iΦ(x)∂ jΦ(x) = 0. (5)

This equation allows one to express Φ in terms of the drift and volatility �elds introduced in

equation (2). The quasi-potential Φ can also be computed by solving the variational problem

associated with the Freidlin–Wentzell action [75]. Finally, alternative routes for computing Φ

have been proposed in [76, 77].

The explicit computation of Φ is far from trivial, yet of great interest in many applica-

tions; see e.g. [78] for the case of biological systems. Brackston et al [79] have recently

proposed an algorithm for estimatingΦ in the case that the governing equations are polynomial

and involves solving an optimization over the coef�cients of a polynomial function. Instead,

Tang et al [80] proposed a variational method for estimating in stochastically forced system

the fraction of probability corresponding to each deterministic attractor without resorting to

the computation of the invariant measure.

Following [62, 63], we now describe the dynamical meaning of Φ. Indeed, solving the pre-

vious Hamilton–Jacobi equation corresponds to the fact that it is possible to write the drift

vector �eld as the sum of two vector �elds:

Fi(x) = Ri(x)− Ci j(x)∂ jΦ(x) (6)

that are mutually orthogonal, so that Ri(x)∂ iΦ(x) = 0. In the case equation (2) describes a

thermodynamical system near equilibrium, R de�nes the time-reversible dynamics, while

F− R de�nes the irreversible, dissipative dynamics [81]. One �nds that

dΦ(x)/dt = −Ci j(x)∂iΦ(x)∂ jΦ(x)+ Ri(x)∂iΦ(x) = −Ci j(x)∂iΦ(x)∂ jΦ(x). (7)

As a result of this, Φ has the role of a Lyapunov function whose decrease describes the con-

vergence of an orbit to the attractor. Speci�cally, Φ(x) has local minima at the deterministic

attractors Ωj, j = 1, . . . , J, and has a saddle behaviour at the saddles Πlk , l = 1, . . . , L, k=1,
. . . ,Kl. If an attractor (saddle) is chaotic, Φ has constant value over its support, which can then

be a strange set [62, 63].

Note that in the standard case of dynamics taking place in an energy landscape de�ned

by a (con�ning) potential U(x) and noise correlation matrix proportional to the identity

(obtained by settingFi(x) = −∂ iU(x) andCij(x) = 1 in the previous equations) one hasΦ = U.

Additionally, one derives U̇(x) = −∂iU(x)∂iU(x) < 0 and U(x) is a Lyapunov function, and
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one recovers an equilibrium state, where detailed balance applies and, by de�nition, the current

vanishes (J = 0)11.

We remark that the function Φ(x) is de�ned globally but is not, in general, twice differen-

tiable everywhere. Indeed, discontinuities in its �rst derivatives are present if (a) the Hamil-

tonian associated with the Hamilton–Jacobi equation given in equation (5) is not integrable

(non-integrability being the typical situation), and (b) if the system features more than one

co-existing attractors. These latter discontinuities are of little practical relevance because they

appear only for values of Φ larger than those at the saddles [82], for reasons that will become

apparent below.

2.3. Noise-induced escape from the attractor

The quasi-potentialΦ is key for determining the statistics of noise-induced escape from a given

attractor. Indeed, the probability that an orbit with initial condition in Bj does not escape from

it over a time p decays as:

P j,σ(p) ≈
1

τ j,σ
exp

(

− p

τ j,σ

)

, τ j,σ ∝ exp

(

2∆Φ j

σ2

)

, (8)

where τ j,σ is the expected escape time and∆Φj = Φ(Πl)− Φ(Ωj) is the lowest quasi-potential

barrier height [49], i.e. Φ has the lowest value in Πl compared to all the other saddles

neighbouringΩj. In general, one may need to add a correcting prefactor to Pj,σ(p) [49].

Note that τ j,σ given in equation (8) does not contain the pre-exponential factor. Refer-

ence [66] provided an expression for such pre-exponential factor for general non-equilibrium

diffusion processes under the assumption that attractors and saddles are simple points, thus

generalising what is given in [83]. As we aim at treating also a more general setting for the

geometry of attractors and saddles, we pay below the price of having to take the pre-exponential

factors as phenomenological parameters that one can �nd from experiments or numerical sim-

ulations [84]. We also remark that, in the zero-noise limit, the transition paths outside a basin

of attraction follow the instantons. Instantons are de�ned as solutions of

dxi/dt = F̃i(x) = Ri(x)+ Ci j(x)∂ jΦ(x) (9)

that connect a point in Ωj to a point in Πl. Instantonic trajectories have a reversed component

of the gradient contribution to the vector �eld compared to regular—relaxation—trajectories.

Let us now take the simple case of bistable systems where we have two attractors Ω1, Ω2,

and one saddle Π1. We can then express the average transitions times as follows:

τ 1→2
σ ∝ exp

(

2(Φ(Π1)− Φ(Ω1))

σ2

)

, (10)

τ 2→1
σ ∝ exp

(

2 (Φ(Π1)− Φ(Ω2))

σ2

)

, (11)

so that

τ 1→2
σ

τ 2→1
σ

∝ exp

(

2 (Φ(Ω2)− Φ(Ω1))

σ2

)

. (12)

11Note that, in general, we can have an equilibrium state if and only if the drift term has a gradient structure with

respect to the metric de�ned by the noise covariance tensor [30].
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This implies that, in the weak-noise limit, both escape times diverge, but the escape time out

of the attractor corresponding to the lower value of the quasi-potential diverges faster. Note

that one can expect the proportionality constant in equation (12) to be O(1). Taking a maxi-

mally coarse-grained view on the problem, where we consider the state as represented by the

populations P1,σ , P2,σ of the neighbourhood of the two attractors, we can write the following

master equation:

Ṗ1,σ = − P1,σ

τ 1→2
σ

+
P2,σ

τ 2→1
σ

, (13)

Ṗ2,σ = − P2,σ

τ 2→1
σ

+
P1,σ

τ 1→2
σ

. (14)

The master equation above makes sense if one assumes the presence of clear timescale sepa-

ration between the relaxation motions near each attractor and those across the saddle, which

depends critically on the presence of weak noise [85, 86]. At steady state, we obtain that

P1,σ

P2,σ
=

τ 1→2
σ

τ 2→1
σ

∝ exp

(

2(Φ(Ω2)− Φ(Ω1))

σ2

)

. (15)

Equation (15) could also be obtained by integrating the invariant measure given in equation (3)

in the neighborouhood of the attractors and taking a saddle point approximation. Additionally,

equation (15) implies that in the weak-noise limit only one of the two deterministic attrac-

tors will be populated, and speci�cally the one where the quasi-potential has lower value.

We remark that two different noise laws differing for the correlation matrix Cij acting on top

of the same drift �eld will de�ne two different quasi-potentials, see equation (5). As a result

of that, they will in general feature a different selection of the dominating population in the

zero noise limit. One can easily extend the master equation de�ned above to the case where

multiple states and multiple paths of transitions are present. Finally, note that in [87] the math-

ematical framework described in this section has been used to study stochastic resonance for

general non-equilibrium systems.

3. Numerical modelling

The climate model considered here is constructed by coupling the primitive equations atmo-

sphericmodel PUMA [88]with theGhil–Sellers energybalancemodel [3], the latter describing

succinctly the meridional oceanic heat transport. It has been already presented in [20] with

the name of PUMA-GS, but we report here again its formulation in order to elucidate the role

of stochastic forcing, which was absent in the previous version. The stochastic forcing is added

as a �uctuating term modulating the value of the incoming radiation determining the energy

input into the system.

3.1. The atmospheric component

The atmospheric component of the PUMA-GS model is provided by PUMA [88], which con-

sists of a dynamical core: the dry hydrostatic primitive equations on the sphere (mapped lat-

erally by the latitude φ and longitude λ), solved by a spectral transform method (only linear

terms are evaluated in the spectral domain, nonlinear terms are evaluated in grid-point space).

The equations for the prognostic state variables, the vertical component (with respect to the

local surface) of the absolute vorticity ζ = ξ + 2νΩE (where ξ is the vertical component of the
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relative vorticity, ν = sinφ, and ΩE = 2π/day is the angular frequency of the Earth rota-

tion) the (horizontal) divergence of the velocity �eld D, the (atmospheric) temperature Ta =

T̄a + T ′
a (separated into a time-independent arbitrary reference part T̄a and anomalies Ta

′),
and the logarithmic pressure (normalized by the surface pressure ps) σ = ln p/ps, read as

follows:

∂tζ = s2∂λFv − ∂νFu − τ−1
f ξ − K∇8ξ, (16)

∂tD = s2∂λFu + ∂νFv −∇2[s2(U2 + V2)/2+Ψ+ Ta ln ps]

− τ−1
f D− K∇8D, (17)

∂tT
′
a = s2∂λ(UT

′
a)− ∂ν (VT

′
a)+ DT ′

a − σ̇∂σTa

+ κTaω/p+ τ−1
c (TR(TS)− Ta)− K∇8T ′

a, (18)

∂t ln ps = −s2∂λ ln ps − V∂ν ln ps − D− ∂σσ̇, (19)

∂ln σΨ = −Ta, (20)

where s2 = 1/(1− ν2), Fu = Vζ − σ̇∂σU − T ′
a∂λ ln ps, Fv = −Uζ − σ̇∂σV − T ′

as
−2∂ν ln ps,

U = u cosφ, V = v cosφ, u, v being respectively the horizontal and vertical wind velocity

components, and Ψ is the geopotential height. Equations (16), (17), and (19) express the con-

servation of momentum, equation (18) expresses the conservation of energy, and equation (20)

is the equation of state.

A number of simple parametrizations are adopted in order to improve the realism and

the stability of the model. Firstly, the hyperdiffusion operator K∇8 is added to the equations

of vorticity, divergence and temperature, to represent subgrid-scale eddies. Secondly, large-

scale dissipation of vorticity and divergence is facilitated by Rayleigh friction of time scale

τ f . Thirdly, the physics of diabatic heating due to radiative heat transport is parametrized by

Newtonian cooling: the temperature �eld is relaxed (with a time scale τ c) towards a ref-

erence or restoration temperature �eld TR, which can be considered a radiative-convective

equilibrium solution.We adopt the following simple expression for the restoration temperature

[88]:

TR = (TR)tp +

√

[L(ztp − z(σ))/2]2 + S2 + L(ztp − z(σ))/2, (21)

(TR)tp = 〈TS〉 − L̄ztp, (22)

L(λ,φ) = ∂zTR = (TS(λ,φ)− (TR)tp)/ztp, (23)

where (TR)tp and ztp are the temperature and height of the tropopause, respectively, L (L̄) is

the (average) lapse rate, 〈TS〉 is the globally averaged surface temperature, and z(σ) is deter-
mined by an iterative procedure [88]. The above expressions indicate that the restoration

temperature pro�le is anchored to the surface temperature TS. However, as equation (22)

indicates, TR at any one point on the sphere is determined by not only the local (dynamical)

surface temperature, but also the global average 〈TS〉. We note that Ta(σ = 1) is obtained by lin-

ear extrapolation, according to Ta(σ = 1) ≈ Ta(σ = 0.9)+ η(TS − TR(σ = 0.9)), 0 < η < 1.

With η = 1 the coupling term is k3(Ta(σ = 1)− TS) ≈ k3(Ta(σ = 0.9)− TR(σ = 0.9)).
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Generally Ta(σ = 1)− TS 6= 0 (laterally inhomogeneous heating), but 〈Ta(σ = 1)〉 = 〈TS〉,
where the overbar denotes averaging with respect to time.

For our setup we choose: K−1 = 0.25 days, τ c = 30 days, τ f = 1 day, L̄ = 0.0065 K/m,

ztp = 12 000 m, and k3 = 10−4. We also adopt a coarse resolution of T21 (i.e., the series of

spherical harmonics are triangular-truncated at total wave number 21). This implies the optimal

number of Gaussian grid points: Nlon = 2Nlat = 64. Finally, we consider Nlev = 10 vertical

layers and consider a vanishing orography, so that we have a zonally-symmetric con�guration.

The equations are integrated numerically using a ∆t = 1 [hour] time step size.

3.2. The ocean component and the stochastic forcing

The surface temperature TS is taken to be governed by the a 2D version of the GS EBM [3, 45].

This model includes a simple yet effective representation of the ice-albedo feedback, and basi-

cally de�nes the slow manifold of the coupled atmosphere–ocean system. The partial differ-

ential equation describing the evolution of the ocean surface temperature �eld TS = TS(t,φ,λ)
is:

∂tTS(t,φ,λ) = µ
I(φ)

C(φ)

S∗0
4
(1− α(φ, TS))−

O(TS)

C(φ)
− D̄φ[TS]

C(φ)
+

χ[TS, TA]

C(φ)
+ s.f., (24)

where S∗0 is the present solar irradiance
12, µ = S∗/S∗0 as introduced in section 1, while the heat

capacity C(φ) and the geometrical factor I(φ) are explicitly dependent on φ only, thus enforc-

ing zonally-symmetric boundary conditions. The albedo α depends on φ and, critically, on TS,

with a rapid transition from strong albedo for low values of TS (αmax = 0.6) to weak albedo

for TS&260 K (αmin = 0.2), which fuels the positive ice-albedo feedback. Additionally, O is

the outgoing radiation per unit area, expressed as a monotonically increasing function of TS
(this is responsible for the negative Boltzmann feedback, taking into account also the green-

house effect), D̄φ is a diffusion operator parametrizing the meridional heat transport, and χ
describes the heat exchange with the atmosphere. See [20, 45] for further details.

Finally, the last term on the right-hand side s.f. is the stochastic forcing, which is introduced
as a random modulation of the solar irradiance given by µS∗0. Hence, we have:

s.f. = σs(TS,φ,λ)
dW

dt
= σµ

I(φ)

C(φ)

S∗0
4
(1− α(φ, TS))

dW

dt
, (25)

where σ controls the intensity of the noise, s de�nes the noise law, and dW is the increment of

a one-dimensional Wiener process. Since s depends explicitly on TS via the term α(φ, TS), we
are dealing with a multiplicative noise law. We consider the Itô convention for noise, so that

our (discretised) equations are in the form of equation (2). See a discussion on the relevance of

the chosen convention in section 4.5. Adding a Gaussian random variable of variance σ at each

time step∆t (1 h) of the model amounts to considering that, on the time scale τ = N×∆t, the

relative �uctuation of the solar irradiance scales as στ = σ/
√
N.

As mentioned in section 2.2, our approach requires assuming the validity of the hypoellip-

ticity condition. In order to prove this, we should test theHörmander condition for the evolution

equations of the model. This is of great relevance but is beyond the speci�c scope of this paper,

while indeed deserving a separate and accurate investigation. However, as discussed below,

we can heuristically understand why, indeed, it is reasonable to assume that stochastic forcing

acting on the oceanic surface temperature propagates to all degrees of freedom of the coupled

12The factor 4 emerges as a result of the geometry of the Earth–Sun system [89].
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system, as usually implicitly assumed in basically any numerical study of stochastically forced

geophysical �ows13.

We can �rst approach this problem by looking at the structure of the evolution

equations. The stochastic forcing given in equation (25) impacts directly the TS �eld,

as shown in equation (24). The TS �elds determines the restoration temperature TR, see

equations (21)–(23). In turn, the restoration temperature impacts the anomaly of the atmo-

spheric temperature �eld Ta
′ (see equation (18)), which in turn affects the vorticity �eld

ζ—equation (16)—and divergence �eld D—equation (17). Finally, anomalies in D impact

the surface pressure ps, as is clear from equation (19). The nonlinear terms corresponding to

advective processes on the right hand side of equations (16)–(19), which contain two more

of the above mentioned �elds, make sure that noise propagates across all scales in each �eld.

This latter point could be better understood by taking a truncated Fourier representation of

equations (16)–(19), which, in fact, closely corresponds to the actual formulation of the numer-

ical solving method [88] implemented here. Concluding, no dynamical or thermodynamical

�eld and no scale within each �eld is insulated from the noise, even if the covariance matrix

of the noise law is extremely singular, as noise impacts directly only a small fraction of the

degrees of freedom of the system.

On more physical grounds, one can observe that the ocean surface temperature drives

the restoration pro�le of the atmospheric temperature, and that �uctuations of such a pro-

�le modulate the atmospheric instabilities, whose energy cascades down to the smallest scales

resolved by the model; see [44, 90, 91] for a detailed treatment of the energetics of the climate

system.

4. Results

We �rst treat in detail three cases inside the region of bistability depicted in �gure 1, namely,

µ = 0.98 (close to the tipping point µW→SB), µ = 1.0 (corresponding to present-day solar

irradiance), and µ = 1.02 (in the parametric region where the M state undergoes a symmetry-

break bifurcation).We then construct the weak-noise limit of the invariant measures for all the

values of µ in the region of bistability.We remark that the results shown in �gures 2, 3, and 5(a)

have already been reported in the short communication [56], but we deem extremely useful to

present them here as well, because they are now part of a more complex, coherent, and detailed

narrative.

4.1. Escapes from basins of attraction and instantons

In the case of µ = 0.98, we �rst perform a set of simulations with noise of different intensity

ranging from στ = 0.5% to στ = 1.4%, with τ = 100 years (y). For each value of the noise

intensity, we initialise 50 trajectories in the basin of attraction of the W climate and study the

statistics of the escape time to the SB attractor. When a transition takes place, we stop the

integrations. We observe (not shown) that for each value of στ the escape times are to a good

approximation exponentially distributed, thus obeying equation (8); the process of transition

behaves like a Poisson process. The results on the expectation value of the transition times are

presented in �gure 2, wherewe show that, indeed, τσ agreeswith the prediction of equation (8).
Hence, it is possible to de�ne the difference between the value of the quasi-potential Φ at the

M state and at the W attractor as the slope of the straight line. For reference, we have that

for σ100y = 0.5% the average escape time is about 5.2× 103 y. We can predict that the escape

13Obviously, numerical truncation introduces some additional noise on all degrees of freedom of the system.
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Figure 2. Statistics of the escape times p for the noise-induced W→ SB transitions for
various noise strengths. Each coloured dot corresponds to an observed escape time p.
The estimate of the expected escape times τ̄σ are indicated by the black dots connected
by the red line. The slope of the straight line �t gives the potential difference described in
equation (10). See [84] for an optimal algorithm for estimating the potential difference.
Reproduced from [56]. CC BY 4.0.

rate increases to about 1.5× 107 y when σ100y ∼ 0.3%. We have that the slope of the straight

line in �gure 2 gives ∼ 2(Φ(M)− Φ(W)). Therefore, we show that it is indeed possible to

estimate quantitatively the properties of the quasi-potential also in a very high-dimensional

dynamical system like the one considered here. The operation can be repeated for all the other

values of µ in the range of multistability and for the processes of escape from the SB attractor,

but we do not pursue here a systematic study of this.

We then wish to look at the paths corresponding to the transitions. Following the discussion

in [20, 45], we choose to consider the reduced phase space spanned by the globally averaged

surface ocean temperature 〈TS〉 and by the meridional temperature difference∆TS, de�ned as

the difference between the spatially averaged ocean temperature �eld between the equator and

30◦N and between 30◦N and the north pole. This reduced phase space provides a minimal yet

physically informative viewpoint on the problem, because it is directly linked with the main

physical processes occurring in the climate model:

• The average surface temperature 〈TS〉 is directly associated to the positive ice-albedo

feedback and the negative Bolzmann radiative feedback;

• The meridional temperature difference ∆T controls the meridional heat transport per-

formed by the ocean, as a result of the diffusive law we insert into its evolution

equation;

• The meridional temperature difference ∆T also controls the meridional heat transport

performed by the atmosphere, as a result of the mechanism of baroclinic instability [92].

Figure 3 depicts, for the case στ = 1.0%, the transient two-dimensional distribution func-

tion ρ̃ constructed using a frequentist approach using the 50 simulations described above,
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Figure 3. Main graph: logarithm of the transient density ρ̃ in the reduced space
(∆TS, 〈TS〉) (in units of K on both axes), with indication of the actual position of the W
attractor (red dot) and the M state (green dot) for µ = 0.98. We have used σ100y = 1%.
The W→ SB approximate instanton is indicated. Top left inset: pdf along the path of
the instanton (〈TS〉 on the x-axis). Reproduced from [56]. CC BY 4.0.

where the statistics is collected only until the W→ SB transition is realised. The distribu-

tion we obtain cannot be interpreted as an approximation of the invariant measure, because the

integrations are stopped after the transitions. Nonetheless, it is apparent that the transitions

take prominently place in a very narrow band linking the W attractor and the M state14. In

order to obtain a better understanding of the transition paths, we construct an estimate of the

instanton linking the W attractor to the M state and associated to the W→ SB transitions by

conditionally averaging the trajectories according to the value of 〈TS〉. To a good approxima-

tion, the instanton connects the W attractor to the M state, and follows a path of decreasing

density. We do not �nd evidence of different paths for the trajectories leading to an escape and

the relaxation trajectories, which is, instead, a typical signature of non-equilibrium [93]. This

can be explained by considering [45], where it is shown that the ocean model evolve to a good

approximation in an energy landscape. See also section 5.

4.2. Construction of the invariant measure

The information contained in �gure 3 is limited because we are studying only W→ SB escape

processes, and we do not allow for the establishment of an invariant measure. The problem lies

in the fact that the quasi-potential minimum associated to the SB attractor is much deeper

than the one associated to the W attractor, so that the average escape time associated to

SB→W transitions is prohibitively long for the range of (rather weak) noise intensities used

for constructing �gure 3. In fact, in order to be able to construct the invariant measure of the

14Note that, even if the W attractor and the M state look like dots, they have, in fact, a �nite (yet very small) size,

because they are both chaotic (see caption of �gure 1). Here we are considering oceanic variables, which feature a

very small variability in the deterministic chaotic case.
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Figure 4. Main graph: density in the projected phase space (∆TS, 〈TS〉) (in units of K on
both axes), with indication of the actual position of theW attractor (red dot), SB attractor
(blue dot), M state (green dot) for µ = 0.98. The W→ SB and SB→W approximate
instantons are also indicated. We have used σ100y = 1.5%. Top left inset: marginal pdf
with respect to 〈TS〉. Bottom right inset: marginal pdf with respect to ∆TS. Center left
inset: pdf along the path of the two instantons.

system, we need to observe a suf�cient number ofW→ SB and SB→W transitions, to be sure

that we have collected a satisfactory statistics; see also the master equations for the populations

given in equations (13) and (14). We next increase the noise intensity by setting σ100y = 1.8%,

so that, in an integration lasting about 1.0× 104 y, we observe 10 SB→W andW→ SB tran-

sitions. The number of transitions is low because it is extremely hard to escape from the SB

state.

Our results are shown in �gure 4. We portray the logarithm of the projection of the invariant

measure on the (∆TS, 〈TS〉) plane; we refer to this also as the two-dimensional probability

distribution function (pdf). We have that the peaks of the pdf are in good agreement with

the position of the W and SB attractors, as implied by the large deviation result presented

in equation (3). The agreement is even clearer when considering the two marginal pdfs, con-

structed by projecting the invariant measure on the one dimensional spaces de�ned by ∆TS
and 〈TS〉. Note that the peak over the W state is hardly noticeable because the occupation of

the state is extremely low (less than 5% of the total); compare with the cases studied below

where higher values of µ are considered. We are also able to construct both the W→ SB

and the SB→W instantons, whose starting points agree remarkably well with the position

of the W and the SB attractors, respectively, while their �nal points are in good agreement

with the position of the M state. By constructing the pdf along the instantons, we �nd that

they follow a path of monotonic descent (indeed, they follow closely the crests of the pdf),

with the minimum located at the M state. Again, this last property can be hardly visualised in

�gure 3 for the W→ SB instanton (see inset), because the population near the W state is quite

small.

Next, we repeat the analysis for µ = 1; results are shown in �gures 5(a) and (b). In panel

(a) we consider an integration with σ100y = 1.5% lasting about 2.9× 104 y and characterised
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by 41 SB→W and W→ SB transitions. We have an occupation of about 30% for the W

basin of attraction, and of about 70% for the SB basin of attraction; additionally, we have

τW→SB
σ ∼ 210 y and τSB→W

σ ∼ 460 y. Also in this case, the projection of the invariant measure

in the (∆TS, 〈TS〉) plane shows that there is good agreement between the position of the peaks

of the pdfs and the attractors, and that the estimates of the instantons connect attractors and M

states with a good precision. It is also clear that the instantons follow a path of descent in terms

of probability, as shown by the central inset.

In panel (b) we show the results of repeating the analysis for σ100y = 1.8%. In this case the

simulation lasts about 2.7× 104 y and we obtain 73 SB→W and W→ SB transitions, and

we can draw similar conclusions as in panel (a) regarding the relative position of the attrac-

tors, of the M state, and of the instantons. The marginal pdfs are clearly less peaked than in

panel (a); the occupancy rate changes slightly with respect to the previous case: it is about

35% for the W basin of attraction, and of about 65% for the SB. Instead, the average escape

times change more substantially, and can be estimated as τW→SB
σ ∼ 160 y and τSB→W

σ ∼ 300 y.

These last two results indicate that the difference between the value of the quasi-potential at the

two competing attractors is relatively small. We will explore this matter in section 4.4, where

we will try to deduce where the quasi-potential reaches its absolute minimum for each value

of µ in the bistable region.

It is worth looking more in detail at how the estimate of the instantons is impacted by

the intensity of the noise used in the simulation. As instantons are de�ned in the weak-noise

limit, we would expect that one achieves higher precision when weaker noise is used. This is

con�rmed by the results shown in �gure 6: we have that the estimates of the instantons obtained

using lower noise intensity come closer to the attractors and to the M state. Nonetheless, also

the instantons obtained for very strong noise are relatively accurate.

4.3. Instantons and transitions across the symmetry-broken Melancholia state

We next examine the noise-induced transitions for µ = 1.02. This case is quite interesting

because, as discussed in [20] and reported in �gure 1, the longitudinally-symmetricM state is

transient with a very long life time, and slowly evolves into a symmetry brokenM state featur-

ing a relatively cold and a relativelywarm region, separated by two small regionswith large lon-

gitudinal temperature gradients at all latitudes. It seems relevant to test whether noise-induced

transitions take place through the transient, symmetric M state or the true, symmetry-broken

one. Results are shown in �gure 7, where we use data from a simulation lasting about 104 y

with σ100y = 1.5%. We observe only 6 transitions in both directions. This time, as opposed to

the case of µ = 0.98, the �gure is so low because it is extremely hard to escape from the W

state. We estimate the escape times as τW→SB
σ ∼ 1400 y and τSB→W

σ ∼ 140 y. We portray the

logarithm of the invariant measure of the system in the usual projected space, and the esti-

mates of the instantons. We �rst observe that in this case most of the density is concentrated

around the W attractor, and a nontrivial relation exists between the paths of the instantons and

the dynamical structures on the basin boundary. It is clear that the transient M state plays the

role of the gateway for transitions as seen in the previous cases, despite its transient nature.

The noise-induced transitions do not go through the actual M state (magenta square), while

they seem to go thorough states resembling the properties of the warm (red square) and cold

(blue square) sectors in the asymptotic M state. This feature might result from the considera-

tion of noise with �nite (and not in�nitesimal) strength: the quasi-potential near the transient

M state might be just barely higher than that of the asymptotic M state (and possibly with

a more favourable pre-exponential factor), so that a small but �nite noise perturbation might

push an orbit near the transient M state into the other basin of attraction. In order to address
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Figure 5. Panel (a) main graph: density in the projected phase space (∆TS, 〈TS〉) (in
units of K on both axes), with indication of the actual position of the W attractor (red
dot), SB attractor (blue dot), M state (green dot) for µ = 1. The W→ SB and SB→W
approximate instantons are also indicated. We have used σ100y = 1.5%. Top left inset:
marginal pdf with respect to 〈TS〉. Bottom right inset: marginal pdf with respect to∆TS.
Center left inset: pdf along the path of the two instantons. Reproduced from [56]. CC
BY 4.0. Panel (b): same as panel (a), with σ100y = 1.8%.

this point and �nd instantonic paths connecting the attractors with the true M states, one might

need to resort to using more sophisticated numerical techniques. In particular, one should con-

sider using rare events algorithms [94, 95] to rigorously construct instantonic trajectories [96].

This is beyond the current abilities of the authors but de�nitely deserves attention in future

studies.
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Figure 6. Estimate of the instantons for µ = 1 obtained using σ100y = 1.5% (dashed
lines), σ100y = 1.8% (dash-dotted lines), and σ100y = 2.5% (dotted lines) (units of K on
both axes). The red (blue) lines show the estimates for theW→ SB (SB→W) instanton.
The dots indicate the actual position of the W attractor (red dot), SB attractor (blue dot),
and M state (green dot). The estimate of the instanton improves as the intensity of the
noise is reduced.

4.4. Selection of the limit measure in the weak-noise limit and first-order phase transition

Equation (15) indicates that, in the weak-noise limit, all of the measure will be concentrated

on the attractor featuring the lowest value for the quasi-potential Φ. Since for µ < S∗W→SB/S
∗
0

only the SB state is realised, physical intuition suggests that for low values of µ within the

range of bistability, the SB attractor should contain all the mass in the limit of weak noise, as

one can also anticipate it by looking at �gure 3. Conversely, one expects that for high values

of µ within the range of bistability, the W should be dominant in the weak-noise limit. It is

reasonable (yet far from obvious or rigorous) to expect that there should be a critical value of

µ = µcrit separating the two regimes. Following [20], we consider 18 equally spaced values

of µ (∆µ = 0.005) within the multistable regime. For each of these values of µ (excluding

the case of µ = 1.045, where three stable states are realised) we determine the fraction of

the population residing within the basin of attraction of the deterministic W attractor PW,σ(µ)
and its complement, residing in the basin of attraction of the SB attractor PSB,σ(µ). Related
results are shown in �gure 8. We show how the probability distribution of the variable 〈TS〉
depends on µ for three different noise levels: σ100y = 1.5% (panel a), σ100y = 1.8% (panel b),

and σ100y = 2.5% (panel c). In these panels we superimpose the bifurcation diagram reported

in �gure 1(a). We observe that as the noise is reduced, for all values of µ the distributions are

(a) more peaked around the attractors, and (b) one of the attractors becomes clearly dominant.

In panel (d) we plot for each value of µ the integral of the pdfs reported in the three panels

(a)–(c) up to the values of 〈TS〉 corresponding to the M state (green continuous and dotted

lines). To a very good degree of approximation, this corresponds to the integral of the invariant

measure over the support of the deterministic basin of attraction of the SB climate. We obtain

that for decreasing values of the noise intensity, the emerging invariant measure converges

to the deterministic measure supported on the SB attractor for µ 6 µcrit ≈ 1.005, while the

invariant measure converges to the deterministic measure supported on the W attractor for
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Figure 7. Main graph: density in the projected phase space (∆TS, 〈TS〉), with indication
of the position of the W attractor (red dot), SB attractor (blue dot), transient M state
(green dot) for µ = 1.02 (units of K in both axes). The squares indicate the properties
of the asymptotic M state: W sector (red square); cold sector (blue square); average
(magenta square). The estimates of the W→ SB and SB→W instantons are also indi-
cated as the red and the blue line, respectively. We have used σ100y = 1.5%. Top left
inset: marginal pdf with respect to 〈TS〉. Bottom right inset: marginal pdf with respect
to∆TS. Center left inset: pdf along the path of the two instantons.

µ > µcrit ≈ 1.005. The absoluteminimumof the quasi-potentialΦ is realised in theW attractor

for µ > µcrit and in the SB attractor for µ 6 µcrit. The changeover is, curiously, quite close

to the reference case µ = 1, for which the weak-noise limit of the measure is given by the

SB state.

We add a note on the uncertainty associated to the �gures reported in �gure 8(d).We remark

that for all values of µ and σ we have used simulations lasting at least 104 y. For very low

(6 0.98) and very large (> 1.02) values ofµ in the considered range, the simulation length does

not allow for observing more than a few transitions for the two lowest considered noise levels.

Therefore, according to the fact that the transitions occur following a Poisson law, one expects

in this range an uncertainty on the �gures reported in �gure 8 of the order of the values of the

smaller between PSB,σ(µ) and PW,σ(µ). This corresponds, in fact, to a low uncertainty, because

most of the mass is concentrated near one of the two deterministic attractors. The uncertainty

is quite small also for 0.98 6 µ 6 1.03, because, in all cases, we observe relatively many tran-

sitions. The uncertainty in this range can be safely estimated to be below 5%. Summarising,

while the values reported in �gure 8(d) might have some non-negligible uncertainties, it seems

that the estimate of µcrit is quite robust.

Finally, we have veri�ed that for all values of µ the escape time τW→SB
σ and τSB→W

σ grow

rapidly with decreasing values of the intensity of the noise for all values of µ. In agreement

with what is shown in �gure 8, we have that τSB→W
σ grows more rapidly than τW→SB

σ for µ 6

µcrit (and vice versa for µ > µcrit). As a result, in the weak-noise limit an individual trajectory

might be trapped for a very long time in the metastable, non-asymptotic state. We remark that

we have not performed here a systematic evaluation of the exponential relationship between

the escape times and σ, as instead done for µ = 0.98 and shown in �gure 2, also because, as
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Figure 8. Projection of the measure on the variable 〈TS〉 (units of K) for σ100y = 1.5%
(panel a), σ100y = 1.8% (panel b), and σ100y = 2.5% (panel c). The spacing of the iso-
lines is the same in the three panels. Panel (d) fraction of the measure supported in the
basin of attraction of the SB state as a function of µ and of the noise intensity. As the
noise decreases, we observe a fast transition between SB- andW-dominated populations
for µ = µcrit ≈ 1.005, which corresponds to a �rst-order phase transition.

for the reasons explained before, this would require computational resources that are beyond

what has been allocated for this study.We remark that this would allow for evaluating for each

value of µ the difference between the value of the quasi-potential realised at the attractors and

at the M state. The algorithm proposed in [84] can be very useful to reduce the computational

burden.

We can say that for µ = µcrit our system exhibits a behaviour that is reminiscent of a

�rst-order phase transition for near-equilibrium statistical mechanical systems, like a liq-

uid–gaseous transition. In our case, µ is the control parameter (corresponding to the tem-

perature in the equilibrium case), the quasi-potential Φ is the equivalent of a thermodynamic

potential, the scaling factor for the noise intensity σ is the equivalent of (square root of) the

temperature, and the globally averaged surface temperature 〈TS〉 is the natural order parameter,

e.g. density. The discontinuous change in the properties of the system forµ = µcrit is associated

to the change in the amount of absorbed and emitted radiation, as a result of the macroscopic

change in the albedo of the planet due to the discontinuity in the position of the ice-line. We

remark that choosing a different noise law would in general lead to a different value of µcrit, as

a result of the fact that the functional form of Φ would be different.

4.5. Relevance of the choice of the Itô convention for the noise

A reasonable question to ask concerns the extent to which our results are sensitive to the fact

that we have chosen the Itô convention for the noise, which provides the starting point of the
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results discussed in sections 2.2 and 2.3. We argue that choosing other conventions would not

alter essentially our �ndings because, to a �rst approximation, the stochastic forcing we have

introduced can be treated as one corresponding to perturbing the system with additive noise

of different strengths near the cold and W attractors, plus a transition region between the

two attractors (which is evidently very sparsely populated by the system), where the effec-

tive intensity of the noise decreases with the globally averaged surface temperature 〈TS〉 and
the multiplicative nature of the noise is more evident.

In the phase space region near the cold attractor, we have that 1− α(φ, TS) ∼ 0.4, because
the temperature TS is extremely low and the planet is fully glaciated (or almost entirely so), so

that α(φ, TS) is virtually constant, with α(φ, TS) ∼ αmin. Near the W attractor, the properties

of the �eld α(φ, TS) are slightly more complex, because part of the planet is glaciated and

part of it is ice-free. Nonetheless, to a �rst approximation, the ratio of the variance of the noise

in the SB attractor vsW attractor is of the order ((1− αmin)/(1− αW))
2 ∼ 3. Loosely speaking,

the competingW and SB climate states have different statistical mechanical, microscopic—as

well as thermodynamical, macroscopic—temperatures.

5. An alternative construction of the M states using stochastic perturbations

As discussed above, the construction of saddles for multistable systems is far from being a

trivial task, and requires the use of the edge tracking algorithm introduced in [50, 51] and

used also by the authors in [20, 45]. We wish to provide here a proof of concept of an alter-

native procedure for constructing the saddles—especially relevant when they are complex M

states—without resorting to such an algorithm, but rather using only direct numerical simu-

lations. The procedure discussed below might be useful when the edge tracking algorithm is

hard to implement. As an example, this could be the case when the presence of similar time

scales associated to the instability along and across the basin boundary might hinder an accu-

rate computation of the saddles. Alternatively, it can be seen as a way to test the results obtained

from the study of the deterministic dynamics.

The idea is to exploit the fact that, as discussed in section 2, under rather general conditions

on the noise law, the saddle, in the weak-noise limit, acts as the gate for noise-induced transi-

tions between the competing attractors. We then propose to proceed as follows. Let us consider

the following SDEs:

dx = F(x)dt + σsk(x)dW, k = 1, . . . ,K. (26)

We consider the possibility of perturbing the deterministic �ow with K different noise laws,

de�ned by the K functions sk(x), each leading to a noise with a different covariance matrix

Cij,k(x). We assume, for simplicity, that the deterministic system de�ned by ẋ = F(x) is

bistable. We choose K noise laws such that they obey the hypotheses discussed in sections 2.2

and 2.3.

In the weak-noise limitσ → 0, the invariantmeasure of the kth SDE can bewritten asΠσ,k ∼
exp

(

− 2Φk(x)

σ2

)

. Clearly, for each noise law the quasi-potentialΦk(x) is different. Nonetheless,

as discussed above, in all cases Φk(x) has a local minimum (and is constant) on the support of

the two deterministic attractors, and it is a saddle with constant value on the saddle separating

the two attractors. We here have to assume that either the saddle is unique, or that all the

quasi-potentialsΦk(x) select the same saddle as the one with the lowest quasi-potential.

Additionally, for each of the K SDEs the drift �ow is split differently between the gradient-

like component and the rest (see equation (6)). Therefore, as suggested by equation (9), the

instantonic paths are also different; yet, they connect the same attractors to the same saddle.
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Figure 9. Projected measure in the (∆TS, 〈TS〉) space (units of K on both axes) for
selected stochastically perturbed simulations of the Ghil–Sellers models and related
instantons. All results have been obtained with simulations lasting 1.6× 106 model
years. (a) Additive noise s1: Logarithm of the pdf; W→ SB instanton (red dashed line);
SB→W instanton (blue dashed line); W attractor (red dot); SB attractor (blue dot);
saddle (green dot). The results have been obtained with σ = 0.4. (b) Same as in (a), for
additive noise s2 (results obtained setting σ = 2. (c) Same as in (a), for the multiplicative
noise used in the rest of the paper (results obtained setting σ = 1.0). (d) The instantons
from (a) (black line), (b) (cyan line) and (c) (magenta line) are plotted together. Dashed
(dotted) lines correspond to the W→ SB (SB→W) instantons. They cross at the saddle
(green dot) and at the W attractor (red dot) and at the SB attractor (blue dot).

Assuming that the attractors and the saddles are points or at least small sets given in a coarse-

grained description of the phase space, we can identify the saddle as the only point in space

where the instantons corresponding to all the K noise laws will intersect.

In order to show that this approach does indeed work, we investigate the properties ofK = 3

variants of the Ghil–Sellers diffusive model we studied in [45], differing with respect to the

law of the stochastic perturbation impacting the energy balance of the climate system. The

Ghil–Sellers diffusive model can be written by removing the atmosphere-ocean coupling term

in equation (24). In order to conform to equation (2) (note that we treat below the numerical

discretization of a stochastically perturbed partial different equation), we express the three

stochastically perturbed models as follows:

∂TS(φ, t)

∂t
= µ

S∗0
4

I(φ)

C(φ)
(1− α(φ, TS))−

O(TS)

C(φ)
− Dφ[TS]

C(φ)
+ σsk(φ, TS)

dW

dt
, k = 1, 2, 3,

(27)
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where dW is the increment of a one-dimensional Wiener process, and we have:

s1(φ, TS) = µ
S∗0
4

I(φ)

C(φ)
, (28)

s2(φ, TS) = 1, (29)

s3(φ, TS) = µ
S∗0
4

I(φ)

C(φ)
, (1− α(φ, TS)). (30)

Speci�cally, we have that s1(φ, TS) = s1(φ) and s2(φ, TS) = s2(φ) correspond to additive noise
laws, which feature different diffusion matrices. Instead, s3(φ, TS) is a multiplicative noise law

as a result of the temperature-dependence of the albedo and is closely related to what has

been studied in the rest of the paper; see equation (24). We construct for these three SDEs

the invariant measure and, by stochastically averaging, we estimate the instantons connecting

the attractors and the saddles. These sets are simple points. We make sure that the instantons

are estimated using very weak noise amplitudes. Results are presented in �gure 9, where we

show the projections on the (∆TS, 〈TS〉) space. Panels (a)–(c) show the invariant measures

and the instantons constructed for the noise laws s1 (using σ = 0.4), s2 (using σ = 2.0), and
s3 (using σ = 1.0), respectively. Note that the instanton constructed with the multiplicative

noise law looks qualitatively different from what is shown in �gures 5 and 6, as a result of

the lack of atmospheric motions in the simpler model discussed here. Panel (d) portrays the

instantons constructed for the three noise laws. Indeed, we have a con�rmation that all of

them are different, as a result of the different noise laws of the three SDEs, and intersect at

the attractors and at the saddle. The position of the saddle in the projected phase space can

be identi�ed through this geometric procedure, which is based exclusively on direct numerical

simulations. Considering additional noise laws can be helpful in resolving possible geometrical

degeneracies due to the use of projections. Projecting in more than two dimensions could also

serve a similar scope and provide a better understanding of the alternative transition paths.

6. Conclusions

The goal of this paper has been the investigation of the properties of the noise-induced tran-

sitions across the multiple basins of attractions in an intermediate complexity climate model

with O(104) degrees of freedom, describing the coupled evolution of atmospheric (fast) and

oceanic (slow) variables. The model features the co-existence of W and SB attractors for a

fairly broad range of values of the solar irradiance. In a previous investigation, we had been

able to construct the full phase portrait of the deterministic version of the climate model con-

sidered here, and had constructed, beside the attractors, the M states of the climate system in

the region of bistability [20].

The stochastic forcing is introduced here as a randommodulation of the incoming solar radi-

ation, and leads to a nontrivialmultiplicative noise law, because the radiative forcing is affected

by the albedo of the surface, which, in turn, depends on the surface temperature. The noise, by

allowing transitions between the deterministic basins of attraction, allows for establishing an

(apparently) ergodic invariantmeasure of the system. The theory of SDEs indicates that for sys-

tems obeying the hypoellipticity condition, and for a suitable class of noise laws one can write

fairly generally the invariant measures in terms of a large deviation law, where the rate function

can be identi�edwith the quasi-potential.We have clari�ed how to compute the quasi-potential

from the drift and volatility �elds of the SDE and explained its property of being a Lyapunov

function. The quasi-potential has local minima on the deterministic attractors, and has a saddle
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behaviour at the M states. Additionally, in the weak-noise limit, transitions take place along

special paths called instantons, which link the deterministic attractors and the M states. While,

for a given deterministic dynamics, instantons corresponding to different noise laws follow

different paths, they all link the same deterministic attractors to the same M states. We have

shown how this property can be exploited to geometrically construct M states directly from

direct numerical simulations of stochastic systems. Indeed, while the edge tracking algorithm

applied to the deterministic system is a priori the preferred choice for �ndingM states, it might

become nontrivial to implement in complex numerical models where the intermediate states

constructed by bisection might correspond to regions where the model is numerically unstable,

possibly because the realised physical �elds are extremely exotic or non-realisable.

We have studied in detail the noise-induced transitions between the deterministic basins

of attraction in the range of multistability, extending the results presented in a short commu-

nication [56]. We have shown that by studying how the average escape time depends on the

intensity of the noise it is possible to estimate the difference between the value of the quasi-

potential at theM state and at the attractor that the trajectories are escaping from. The estimates

of the instantons are shown to become more precise as weaker noise is used in the simula-

tions. The instanton, in a case of special interest where the M state was shown to undergo a

symmetry-break process, selects as optimal point of passage between the SB and theW climate

the transient M state instead of the asymptotic one, possibly as a result of the �nite amplitude

of the noise.

Finally, by studying how the populations of the W and SB climate change as a function of

the intensity of the noise, and using the large deviation law for the measure predicted by the

theory, we �nd an estimate of a critical value of µ = µcrit ≈ 1.005, such that for µ > µcrit the

zero-noise limit of the invariant measure is supported on the W deterministic attractor, while

for µ 6 µcrit the weak-noise limit of the invariant measure is supported on the SB attractor.

The asymptotic state corresponds to the attractor featuring the lowest value of the quasi-

potential.

These results obtained here indicate that, as soon as noise—in some form—is added to the

system, multistability is factually lost in the weak-noise limit, as the noise law is responsi-

ble for selecting, for each value of the control parameter (here µ), a speci�c asymptotic state.

Changing the value of the control parameter, one will �nd one or more abrupt transitions in

the statistical properties of the system (here realised at µcrit), i.e., in other terms discontinu-

ities in the response of the system to changes in the control parameter. What happens in our

model at µ = µcrit is mathematically analogous to a �rst-order phase transition occurring in a

near-equilibrium statistical mechanical system. We remark that, since the escape time away

from either attractor grows exponentiallywith the inverse of the parameter controlling the vari-

ance of the noise, an individual trajectory might be trapped for very long time in a metastable

state.

In collaboration with C Kilic (Bern) and F Lunkeit (Hamburg) the authors have started

some preliminary simulations where stochastic forcing is added to PLASIM [97], a much

more complex climate model than the one used in this study (yet missing some essential ocean

dynamical processes). As shown in �gure 10, the �rst results we have obtained are encouraging

in indicating that the �ndings of this papermight be relevant formore realistic model con�gura-

tions. For the future, we aim to obtain detailed information on the large scale properties of the

�ow con�gurations leading to the noise-induced transitions, taking the thermodynamic lens

we originally explored in [9]. An important question of speci�c relevance for paleoclimatic

and planetary science studies is to understand whether the third climatic state found in [20]

for µ = 1.045 is recovered also for more realistic model con�gurations. Additionally, the

complexity of the dynamical landscape of the climate system discussed in [21] suggests the
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Figure 10. Example of noise-induced transitions between SB and W climate state for
present-day solar constant (σ100y = 2%) for the climate model PLASIM [97] in a simu-
lation of 103 y (reproduced with permission from F Lunkeit). From top to bottom: zonal
averages of the temperature �eld and of the sea ice cover; globally averaged surface tem-
perature; fraction of ice-covered ocean. The characteristic escape times is comparable
with what is obtained in the simpler model PUMA-GS used in this work.

existence of a possibly topologically non-trivial network of transition paths between the many

competing attractors, each crossing an M state. Maybe the itinerancy between possibly many

competing attractors might be a way to explaining the ultralow frequency variability of the

climate. The computational needs of a naive approach to these issues seem prohibitive, so

that one should de�nitely take advantage of rare events algorithms to construct instantonic

trajectories [94–96].

The approach presented here, based upon combining the knowledge of the dynamical land-

scape of a multistable deterministic dynamical system with the analysis of the impacts of

stochastic perturbations, seems of more general interested than the speci�c problem we have

studied. Along these lines, in appendix A we speculate on the possible relevance of M states
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in the context of the theory of biological evolution and of synthetic models of evolution.

Speci�cally, the idea is that the presence of qualitatively diverse historical paths of evolution

might result from the presence of M states in suitable de�ned dynamical landscapes, exactly

because M states hinder predictability of the second kind in the sense of Lorenz.

In the speci�c case of the geosciences, we believe that it can be key for addressing the

challenge of understanding tipping points in the Earth system [69] as well as providing insights

to a large class of multistable systems [68]. We will dedicate future efforts exactly to exploring

these research lines, in particular looking at the Atlantic meridional overturning circulation,

an element of the global ocean circulation that is well-know to have more than one competing

modes of operation. The occurrence of one or of the other state has important implications

for the global climate, and rather dramatic ones for the regional climate of the north Atlantic

sector; see [98] for a review of this topic. Multistability has been recently reported in the von

Karman turbulent �ow in [99]: the methods proposed in this paper could elucidate paths and

mechanisms underlying the transitions between the asymptotic states.
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Appendix A. An interdisciplinary outlook: evolutionary biology

The concepts discussed in this paper might provide a conceptual and mathematical framework

of possible interest for thinking at evolutive processes in biology and for constructing synthetic

models of evolution. In the speculative discussion below, speci�cally, we want to highlight

the role of M states in making possible the existence of multiple possible yet vastly different

paths of historical development of biological systems.

In the in�uential book discussing the Cambrian fossils from the Burgess shale and their

importance for explaining the mechanisms of evolution, Gould [67] presents some ideas on

the scienti�c methodology inherent to historical sciences, and, speci�cally, to evolutionary

biology. He clari�es that historical scienti�c explanations take the form of a narrative, whereby

subsequent phenomena follow in a speci�c order15: the time-ordering and causal links between

such phenomena can be discovered and convincingly explained when multiple, independent

15The related storyline approach is being currently proposed for studying weather and climate phenomena [100].
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sources provide indication for the same historical pattern of change. Gould argues that this

method is fundamentally different from the classic—which he calls stereotypical—scienti�c

method á la Galileo whereby one speci�c experiment can be repeated in idealised conditions,

and the �nal outcomes of the experiment can be predicted using the fundamental laws of nature.

The latter is the—indeed too simpli�ed—version he gives of how hard scienceswork.An obvi-

ous difference between the two methods comes from the fact that certain experiments—like

the evolution of the climate and of the biosphere of a speci�c planet—cannot be repeated.

Another difference comes from the fact—Gould argues—that historical processes are domi-

nated by contingency: while we observe a speci�c path of historical development, many others

of such paths are indeed compatible with the laws of nature, and could have been realised had

the system been forced in a slightly different way in the past. We are able to understand the

mechanisms of historical development, but not to predict accurately the speci�c path. Gould

argues that the evolution in our planet could have led to fundamentally different forms of life,

had the contingencies been different in the distant past. The existence of our own species is

the—a priori very unlikely—result of such contingencies. In general, in systems dominated by

contingency, if we could run again the movie the outcome would be vastly different. Gould’s

views on evolution have been criticised by other authors, as Conway Morris, proposing that

convergence, rather than contingency, is the main mechanism of evolution, so that evolution is

seen as a—mostly—deterministic path of change, of which nowadays we see the unavoidable

outcome [101]; see the debate in [102]. Some authors have proposed that both mechanisms are

indeed in action, yet dominant at different scales of diversi�cation of the organisms [103].

We argue that Gould’s view can be put in the context of the mathematical framework dis-

cussed in this paper. Stochastically forced complex systems evolve in a phase space where

an individual trajectory corresponds to a historical realisation of the system. The histori-

cal realisations, even starting from the same initial condition, can be vastly—even qualita-

tively—different if the deterministic dynamics supports the existence of multiple attractors,

because different realisations can be trapped for very long times in very distant regions of the

phase space. As discussed here, stochastic forcing allows for the system to jump across the

various basins of attraction, and the mechanism de�ning the evolution of the trajectory are

de�ned by the differential equations. The predictability of the system, both of the �rst and sec-

ond kind in the sense of Lorenz, is �nite but non-zero. Finally, we can interpret the M states

as the true agents of the contingency discussed by Gould. It is not the presence of a forcing,

however strong, that changes radically the future history of the system, but rather the existence

of special regions of the phase space—near the M states—where even small perturbations can

force two nearby trajectories towards qualitatively different future histories. What Conway

Morris proposes is associated with a scenario where M states are either absent—so that the

system is not multistable—or the noise is so weak that the probability of getting close to an

M state is exceedingly low, despite the presence of stochastic perturbations, the system will

be (almost) always quite close to a speci�c deterministic attractor, whose basin of attraction

the initial condition belongs to. In other terms even if we could run again the movie, i.e., run

another simulation, the outcome would be very similar.

The interpretation given above receives some support from recent results obtained on syn-

thetic models of evolution. Using the so-called “tangled nature” model, which is conjectured to

be a prototypical example of evolution, evolutive processes are interpreted as orbits of stochas-

tic systems in a complex dynamical landscape featuring two or more competing metastable

states [104, 105]. This viewpoint, which has been openly inspired by Gould’s ideas, is in close

correspondencewith what has been discussed in this paper. While in these works the language

and methodology are eminently of statistical mechanical nature and they aim at detecting and
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studying the metastables states, the viewpoint proposed in this paper has a stronger empha-

sis on understanding the transitions paths between such competing attractors through the M

states.
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