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Understanding the herd structure of housed dairy cows has the potential to reveal

preferential interactions, detect changes in behavior indicative of illness, and optimize

farm management regimes. This study investigated the structure and consistency of

the proximity interaction network of a permanently housed commercial dairy herd

throughout October 2014, using data collected from a wireless local positioning system.

Herd-level networks were determined from sustained proximity interactions (pairs of

cows continuously within three meters for 60 s or longer), and assessed for social

differentiation, temporal stability, and the influence of individual-level characteristics such

as lameness, parity, and days in milk. We determined the level of inter-individual variation

in proximity interactions across the full barn housing, and for specific functional zones

within it (feeding, non-feeding). The observed networks were highly connected and

temporally varied, with significant preferential assortment, and inter-individual variation

in daily interactions in the non-feeding zone. We found no clear social assortment by

lameness, parity, or days in milk. Our study demonstrates the potential benefits of

automated tracking technology to monitor the proximity interactions of individual animals

within large, commercially relevant groups of livestock.

Keywords: animal group, animal movement, dairy cow, lameness, local positioning system (LPS), precision

livestock farming (PLF), proximity interactions, social network analysis (SNA)

INTRODUCTION

The herd social structure of cows on most commercial dairy farms differs significantly from their
wild counterparts (1). Dairy cows are typically kept in exclusively female groups, separated by age
and reproductive status, with access to a more restricted space allowance in the form of either
indoor housing or fenced grazing paddocks andmay be subject to frequent regrouping events (2–5).
Understanding the structure and dynamics of housed dairy cattle networks may give insights on
preferential interactions and aid in optimizing their management (6, 7).

The social structure of animal groups, including how associations and interactions between
individuals change over time, can be assessed using social network analysis (SNA) (8). The approach
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is well established; SNA is used across multiple disciplines
including sociology (9), computer science (10), and transport
(10, 11), and has been developed to study animal social networks,
particularly over the last decade (12, 13). SNA has been
used to explore interactions in dairy cattle, revealing highly
clustered herds (14–16). Cows appear to associate non-randomly,
potentially based on attributes such as lactation number (14,
15). Inter-individual variation in sociality has been found in
dairy cattle, potentially driven by personality, established as
consistent from calf to adulthood (except during puberty) (17), or
dominance, as studied in (18) who found that some individuals
are more influential than others within the social network.
Housed cattle are known to avoid interactions with dominant
conspecifics whilst feeding to reduce competition (19), and the
social positioning of individuals may also be altered where a
resource is deemed more valuable (20). Individual attributes are
thought to be important in disease transmission (7), as cows
participate in contact behaviors based on age and sex. Dairy cows
may groom conspecifics based on familiarity and dominance
(21), although affiliative and agonistic interaction networks may
not be correlated (22).

Data can be collected for SNA in non-automated ways,
such as through direct observation (7, 21) or through analysis
of video recordings (22). Although detailed social interaction
data can be obtained through these methods, they are highly
time-consuming, and limit sample size and sampling duration.
Developments in technology mean that it is now possible
to collect absolute or relative spatial positioning data in an
automated way using proximity sensors or positioning systems,
recording detailed locations of all animals in the herd over time.
Global positioning system (GPS) can be used to track cattle
outdoors (23), but mean location errors are typically around 5m
in commercial systems and can be as high as 19.6m (24). As
GPS does not function indoors, alternative systems are needed
for housed dairy cows, such as sensor-based local positioning
systems (LPS), which have been validated with dairy cows with
mean error typically around 2–3m, although 0.5m mean error
may be achievable (15, 25–28). The simplest interaction networks
are then developed by assuming interactions occur when two
individuals are within a given proximity, usually based on metric
distance, for a specified time duration (6, 8, 14, 29); while analysis
based on topological distances (30) or more complex interactions
and social dominance are also feasible (31).

Modern productions systems, while efficient, expose cattle
to risks for several production diseases, including lameness,
mastitis, and metabolic diseases. Lameness is a significant issue
globally with average farm level prevalence estimates of 28–
32% in Europe (32, 33), 28–39% in South America (34, 35)
and 30–55% in North America (36). System related promoters
of lameness include high yields (37, 38) driven by genetic
selection, and nutrition and environmental factors such as
increased standing time on unsuitable floor surfaces (39–41).
Early detection of lameness and prompt treatment is essential
to reduce its severity and duration (42, 43) and to prevent re-
occurrence (44, 45). Under-estimation of lameness by farmers
remains a problem which can lead to delays in treatment (46–
48). To identify lame cows, farmers typically observe elements of

a cow’s gait, which is prone to error and largely subjective (49),
and abnormal behaviors may not be immediately obvious (50).
While on some farms this process may be formalized by scoring
all cows against a recognized locomotion score (51), on many
farms cows are only observed during routine tasks, increasing
subjectivity and the risk of missing a large proportion of the
herd. Precision Livestock Farming (PLF) techniques, where farm
management is aided through continuous automated real-time
monitoring of animals or the environment (24, 26, 27) provide
opportunities to support rapid identification of lameness and
other production diseases. Lameness has been associated with
inflammatory responses (52) and results in generalized sickness
behaviors which could be monitored using PLF techniques.
Changes to individual cow behavior associated with lameness
have also been investigated using PLF techniques to identify
modified feeding and lying behavior (53–56), and space use (57).
Sick cows are less likely to approach humans (58, 59), and both
cows and calves have been observed to alter their positioning in
a herd when ill (60–62). Evidence suggests cows with ketosis and
mastitis displace conspecifics less frequently (63–65). Lame cows
may alter their time budgets with lame individuals spending less
time feeding than their healthy counterparts (53, 57). Lame cows
also appear to be licked by conspecifics more than non-lame cows
(66). Despite this existing evidence, to our knowledge automated
PLF techniques have not been applied to monitor changes in
social behavior in cattle that could be associated with disease.

In this study we investigate the structure and consistency of
the proximity interaction network of a large permanently housed
dairy herd using positional data collected from an automated
local positioning system (LPS). We determine the level of inter-
individual variation in proximity interactions across different
functional zones of the barn (feeding, non-feeding) and assess
how these interactions vary during the month-long study period.
We consider the influence of health status (specifically lameness),
parity, and days in milk (DIM), on the sociality and interactions
of individuals within the herd.

METHODOLOGY

Animals and Housing
A high-yielding management group of Holstein-Friesian dairy
cattle were observed continuously throughout October 2014
on a commercial farm in southeast England. Our study group
consisted of 92 cows that were continuously present in the barn
throughout the study duration (mean days in milk (DIM) =

136 and mean parity = 3). These cows formed part of a larger
group (100 to 111 on any given day in the month, mean = 105,
standard error = 0.59), with averages calculated from April 2013
to April 2014 of: calving interval of 416 days, 305 daily milk
yield of 10,909 liters, 63% pregnant, somatic cell count of 140,000
cells/ml. Localized weather and temperature, which are known
to affect behavior (67), were largely stable throughout the study
period (mean range of 12.4–19.9 degrees Celsius). Cows were
housed permanently indoors inside one half of a commercial free-
stall barn containing 98 useable cubicles bedded with sawdust
over mattresses (Figure 1). Central passageways allowed free
movement around the barn and access to the central feeding
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FIGURE 1 | Barn layout showing (n = 92) example cow locations recorded on 01/10/2020 at 05:09:50. A highlighted illustrative subset of cows (n = 6) are colored

according to their mean daily interactions: least = blue (cow ID = 3124 and 3317), median = yellow (cow ID = 3602 and 3132), most = red (cow ID = 635 and 3361).

Data for each individual cow is indicated with a small circle. The area shown in gray (upper barn area) was not used by this group of cows during the study period.

passage. Cows were milked three times per day (morning, 5 a.m.;
afternoon, 1 p.m.; and evening, 9 p.m.) and provided with a total
mixed ration once daily during morning milking; fresh feed was
pushed up several times throughout the day. Health status, parity
and days in milk were downloaded from the farm records, held in
UNIFORM- (UNIFORM-Agri, Somerset, UK). A specific study
of the effects of lameness on behavior with a smaller subset of the
same herd group, within the same barn environment but over a
different time period, has previously been reported (53, 57).

During the study, cows were assigned a mobility score
fortnightly as they exited the parlor (on the 30/9/2014,
13/10/2014, and 27/10/2014), using the AHDB mobility score
(51). A mobility score of 0- 3 was assigned, where 0 is good
mobility, 1 is imperfect mobility, 2 is impaired mobility and
3 is severely impaired mobility (Supplementary Material 1). If
a score was not recorded, “NS” was noted. For this study,
cows with score 2 or 3 were considered as clinically lame (L)
and cows with scores 0 or 1 were considered non-lame (NL).
Cows scored as not lame for two successive scoring sessions
(NL-NL-L or L-NL-NL) were classed as “dominant not lame,”
and cows scored as “dominant lame” for most sessions (L-L-
NL or NL-L-L) were classed as lame. Cows that changed status
twice within the study (NL-L-NL or L-NL-L) or those with
missing data were not included in the lameness classification.
For the purposes of the main analysis presented here, we
combine “lame” and “dominant lame” cows into a single group

(“lame”), and similarly “non-lame” and “dominant non-lame”
cows are combined into a single group (“non-lame”). In total,
48 of the 92 cows within the study group were classified
as either “lame” (22 cows) or “non-lame” (26 cows) using
this approach (Supplementary Material 1), and were included
in the part of our analysis focusing on lameness differences.
Our results are qualitatively similar if we do not combine the
groups and keep four separate classifications for lameness, see
Supplementary Material 1.

Local Positioning System
Cows were each fitted with a mobile Oms500 (Omnisense Ltd,
Cambridge, UK) combined local-positioning and accelerometer
sensor, attached to a weighted neck collar to ensure the
sensors remained stable in the same orientation. The sensors
deployed on the cows form a localized wireless network that
uses triangulated radio signal communication to automatically
determine the relative local position of every cow in the herd, at a
temporal resolution of 0.1Hz throughout the full study duration.
Additional fixed sensors were strategically positioned throughout
the barn to fix the absolute spatial location of each sensor and
to maximize the sensor network performance (Figure 1). The
performance of this specific sensor system in the same barn
environment was evaluated in (53), who reported a 50% circular
error of probability (CEP) measurement of 1.07m for a static
sensor (not mounted on a cow) and 1.90m for a sensor mounted
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on a standing cow (i.e., 50% of all measurements lay within
1.07m of the mean location of static sensors and within 1.90m
of the mean location of cow mounted sensors). In the same
study, mean distance errors of 2.66m (static sensors) and 2.80m
(sensors on standing cows) were also reported.

Pre-processing and Cleaning of Positional
Data
All data processing and analysis was conducted in R forWindows
3.6.3 64 bit, with RStudio (68, 69). Extended interruption
occurred because of a system malfunction on three of the study
days (09/10/2014, 27/10/2014, and 31/10/2014); these incomplete
days were not included in the analysis. Data cleaning and
analysis were conducted on the 92 cows which were continuously
present in the free-stall barn throughout the study duration
(d = 28), see Supplementary Material 2 for full details. In the
first pre-processing step, location data further than a 3m buffer
distance outside the main barn area were removed; the 3m buffer
was included to avoid excluding data due to minor positional
inaccuracies. Data removed at this stage included (correct)
locations recorded in the milking parlor and collecting yard
(where the cows were constrained for up to 3–4 h per day in total
during the three milking events), as well as (incorrect) erroneous
locations entirely outside the barn area. In total 22.81% of the
original data was removed in this step. An automated “cleaning”
algorithm was then used to identify and remove any nonsensical
positional data (e.g., sensors apparently getting “stuck” in exactly
the same, or a similar, point location for several consecutive time
points, often shortly after the system reset at the end of each
day; 3.06% of original data removed). The remaining location
data were smoothed to remove noise using a simple moving
average with a window size of 15 time points (corresponding
to 150 s; 0.17% of original data removed due to losing 7
points at the start and end of the time series because of the
smoothing window). A final combination of automated cleaning,
and manual observation and checking, were then used to remove
any further nonsensical data identified (e.g., cows that stayed
relatively stationary for most of an entire day; 0.01% of original
data removed). In total, 26.05 % (5,675,319 points) of the total
original data points were removed through these pre-processing
and data cleaning stages (see Supplementary Material 2); a total
of 16,114,423 data points remained for the subsequent analysis.

Protocol for Determining Proximity
Interactions
Using the smoothed and cleaned positional data, an interaction
was defined between dyads (each pair of cows) using a protocol
based on sustained proximity (radial metric distance) over a
specified time period, and was hence non-directed (if cow
A is close to cow B, then B is close to A, and so on).
In Supplementary Material 3 we explain how and why we
selected a “strict” protocol for identifying proximity interactions.
The protocol specifies that, for a given dyad, all inter-cow
distances over a time period of t = 60 s (i.e., 6 time points
at 0.1Hz) must be contained within a radius of r = 3m for
an interaction to be identified. While this parameter choice is

consistent with previous studies (e.g., 14,16), we also considered
a range of other parameter values for r and t, as well as
less stringent protocols (where only a certain percentage of
points within the specified time period need to be within
the radius for an interaction to be identified). Using observed
data of (n = 35) known proximity interactions we were able
to validate our algorithm and determine the sensitivity (true
positive rate) of this protocol (0.83); it was not possible to
estimate the specificity using this observed data, but the r and
t parameters were chosen to reduce the expected false positive
rate, as well as taking into account practical and biological
considerations, including the sensor mean error distance and
the typical size of a dairy cow (see Supplementary Material 3

for details). It should also be noted that qualitatively similar
results were obtained when using t = 40, 80, 100 s (for r = 3m)
(Supplementary Material 3 Tables 6–8) and r = 1, 2, 4 and 5m
(for t= 60 s) (Supplementary Material 3 Tables 2–5), and hence
our conclusions should be robust to this parameter choice.

Positional data within the barn were filtered by coordinate
into functional zones: the “feeding zone” (defined as the feeding
passage and nearest passageway; see 10.5m ≤ y ≤ 17.2m in
Figure 1), the “non-feeding zone” (cubicles and passageways;
1.62m ≤ y ≤ 10.5m,−1.6m ≤ x ≤ 58.6m in Figure 1) and
the “full barn” (the combined feeding and non-feeding areas); a
buffer of 3m was used around each zone. The proximity protocol
defining an interaction described above was subsequently applied
to the data for every given dyad located in each functional zone,
outputting the total number of interactions over the course of
each day. A non-directed weighted matrix for every given day (d
= 28) and functional zone was produced, holding the number
of interactions recorded for every possible dyad (92 x 92). The
matrices were therefore symmetrical, with “NA” inputted along
the diagonals of each.

Network Visualization
The interaction matrices for each day, for the full barn, and
each functional zone, were converted into network graphs, using
the package “igraph” (70) in R (68, 69), where nodes represent
individuals (n = 92), and edges represent interactions between
dyads, with increasing weight (more interactions) indicated by
increasing width of the edges. The Fruchterman-Reingold layout
algorithm was used to determine the node positions; connected
nodes are pulled toward each other and unconnected vertices
are repelled.

Social Network Analysis
The edge density, the proportion of direct ties in a network
relative to the total ties possible, was calculated for the full
barn and functional zones (feeding and non-feeding zone). Cows
periodically entered and left the feeding zone, so edge density
was expected to be lower in this zone, in comparison to the non-
feeding zone. The networks were also assessed for components, to
reveal any potential divisions or isolated individuals, which could
be linked to social assortment by lameness (or other factors) in
later analysis.

Permutations are used to test the normality of observed
network data and are essentially a form of null model (71, 72).
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A widely used method to account for the non-independence of
dyads in SNA is by using a node-level permutation (71, 72).
Node identities are randomized, and the original test statistic is
compared against permuted test statistics. Here we implement
node-level permutations to test our hypotheses by randomizing
the identity of cows (q = 10,000 in equation 1). A test statistic,
comparing a given measure, i.e., differences in daily interactions
between lameness states etc., was calculated for each permutation
(tp). If the proportion of permuted test statistics was equal to
or more than the original test statistic (to), was ≥ 5% (p ≥

0.05) (see equation 1), then the null hypothesis was accepted
i.e., there was no significant difference in the measure between
the groups. A Bonferroni correction was applied to the p-value
to account for multiple comparisons on the same dataset. As
computing an exact p-value is not possible with a finite number
of permutations, if the p-value was calculated to be zero a biased
estimator was applied: one was added to both the numerator and
denominator of Equation 1, following the suggestion in (73).

p =
6

(

tp ≥ to
)

q
(1)

Social Differentiation
As the data on daily interactions was found to be not normally
distributed (Shaprio-Wilk normality test; W = 1.00, 1.00, 0.98,
p = 0.04, < 0.01 and < 0.001, for the full barn, feeding
zone and non-feeding zone, respectively), a Kruskal-Wallis
Rank Sum test was conducted to assess whether there is a
significant difference in the median daily interactions individuals
had, with 10,000 node-level permutations to account for non-
independence of dyads.

The interactions between each dyad may be uniformly
distributed across an interaction matrix for a given day, or
specific dyads may interact more or less than other dyads.
The structure of a network can be assessed by comparing the
number of observed interactions between every given dyad
with the number of expected interactions between every dyad.
To assess whether associations between individuals were more
heterogeneous than we would expect given a null hypothesis that
all dyads associate uniformly, the following statistic for social
differentiation (S) was calculated (see Equation 2) based on (29),
Appendix 9.4, and following (14):

S =

∑n
i

∑n
j (Oij − Eij)

2

n(n− 1)
(2)

As shown in Equation (2), the difference between the observed
number of interactions and the expected number of interactions
was summed for each dyad, and then divided by the total number
of dyads (n= 4186 [= ((92 x 91)/2)]), for each day.

Temporal Variation in Sociality
A Kruskal-Wallis Rank Sum test was conducted to assess
whether there was a significant difference in median daily
interactions between days, for each functional zone, with 10,000
permutations. Pearson’s correlation was used to test if temporal

variations in daily interactions were correlated across time in
each functional zone, and then with mean daily temperature.

To assess whether the network structure was stable or
varied over time, seven interaction matrices were created, each
holding the average number of interactions between dyads
(n = 4186) over four consecutive days. Each consecutive
network was compared by conducting a Mantel Test (8, 74).
The “mantel” function was used, from the “vegan” package
in R (75). As the interaction data within the matrices were
not normally distributed (as shown through a one-sample
Kolmogorov-Smirnov test), a Spearman’s Rank Sum test was
used to calculate a Mantel statistic Z, for each consecutive
averaged matrix, with 10,000 permutations and Bonferroni
correction applied to account for multiple comparisons. We
also completed a similar analysis using shorter- and longer-day
partitions, and results were found to be qualitatively similar
(Supplementary Material 3 Table 9).

Impact of Lameness Status, Parity, and Days in Milk

on Sociality

Lameness Status
Themean daily interactions between non-lame (n= 26) and lame
(n = 22) cows were compared using a two-tailed Wilcoxon test,
with 10,000 permutations

Node degree (the number of immediate neighbors each node
in the network has) was compared between non-lame and lame
cows. As a cumulative measure, node degree is less prone to
sampling error, such as temporal loss of signal of the sensor
system, than other measures such as betweenness (the number
of shortest paths that pass through a given node), which can
change dramatically with removed or missing data (76), so
mean node degree was compared between non-lame and lame
cows. Local clustering coefficient (the extent to which nodes
cluster in a graph, calculated by the proportion of connections
a node has with its neighboring nodes divided by the maximum
number of connections that could exist in this neighborhood)
was also compared between non-lame and lame cows. The mean
node-level measures, calculated for each individual over the full
study period, were compared between lameness states using two-
tailed Wilcoxon tests with 10,000 permutations (Shapiro-Wilk
normality test, p < 0.01).

A matrix was created, showing the absolute differences in
lameness between all dyads (n = 1128), as in (16) (e.g., if cow
A was lame, a score of 1 was assigned, and cow B was not
lame, a score of 0 was assigned, and their absolute difference
would be 1). The absolute difference matrix was compared to
the original interaction matrix for every given day, using a
Mantel test again with Spearman’s Rank Correlation Coefficient.
Bonferroni correction was applied to account for multiple
comparisons (n= 28).

Parity and Days in Milk
To assess whether parity and days in milk (DIM) affected
social assortment, a matrix was created, showing the absolute
differences in parity between all dyads (n= 4186), as in (16) (e.g.,
if cow A had a parity of 1, and cow B had a parity of 3, their
absolute difference would be 2). An absolute difference matrix

Frontiers in Veterinary Science | www.frontiersin.org 5 December 2020 | Volume 7 | Article 583715

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chopra et al. Proximity Interactions in Dairy Cows

FIGURE 2 | Undirected original and filtered (by mean degree) networks on a randomly chosen day, 01/10/2014, in (A) the full barn, (B) feeding zone, and (C)

non-feeding zone, showing mean daily interactions between cows (n = 92 in original networks). Thicker edges indicate a higher number of daily interactions. The

Fruchterman-Reingold layout algorithm was used to determine the node positions; unconnected vertices are repelled. The highlighted illustrative subset of cows

correspond, respectively to the least (blue, cow ID = 3124 and 3317), median (yellow, cow ID = 3132 and 635), and most (red, cow ID = 2273 and 2266) mean daily

interactions, with squared nodes representing lame cows. A clearer network structure is shown after filtering, with a more uniform distribution of interactions in the

main barn and the non-feeding zone in comparison to the feeding zone. Created in RStudio using the “vegan” package (68, 69, 75).

for days in milk (DIM) was also created. The absolute difference
matrix for a given attribute was compared to the original matrix
for every given day, using a Mantel test (as described in Section
Lameness Status).

RESULTS

Basic Network Measures and Visualization
Figure 2 compares visualizations of the original and mean node
degree filtered networks for the full barn, and the feeding
and non-feeding zones. A key notable difference between the
networks is that the full barn network was more connected than
the non-feeding zone network (0.02 difference in edge density)
and the feeding zone network (0.63 difference in edge density;
Figure 1; Table 1). This is expected since interactions occurring

at the boundaries of the feeding and non-feeding zones were
likely to be missed when considering these zones separately.
The non-feeding zone network was more connected than the
feeding zone network (0.31 difference in edge density) (Figure 2;
Table 1).

The full barn and non-feeding zone networks remained as
one component, whereas in the feeding zone network one to
three individuals isolated from the main component on each day
(Table 1).

Inter-individual Variation
Throughout the following analysis and presentation of results, a
subset of individuals at the middle and extreme ends of the data
set are highlighted to aid interpretation and to illustrate the extent
of the observed data: two with the lowest mean daily interactions
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TABLE 1 | Overview of results using a spatial threshold radius of r = 3m and time duration of t = 60 s to define an interaction for the full barn (FB) and the functional

zones: feeding zone (FZ) and non-feeding zone (NFZ): basic network measures (original and filtered by mean degree), inter-individual variation, temporal variation in

sociality, lameness status, and parity and days in milk, where (M)DI = (median) daily interactions.

Measure Test value (p-value) Summary

Full barn Feeding zone Non-feeding zone

Basic network

measures

Mean edge density (d = 28) 0.96 0.33 0.94 The networks are highly

dense, more so the NFZ

than the FZ.

Components (by day)

(d = 28)

1 2-6 1 The networks typically

consist of one component.

Inter-individual

variation

Inter-individual differences in

median DI (n = 92)

K-W = 26.53 (p <

0.001)

K-W = 851.71 (p = 1) K-W = 19.21 (p <

0.001)

Inter-individual variation

in DI in the NFZ but not in

the FZ or the FB.

Social differentiation (SD)

(n = 92)

SD between ≤ 92.96

% of dyads (p < 0.01)

SD between 100 % of

dyads (p < 0.01)

SD between 92.96 %

of dyads (p < 0.01)

Social differentiation

present in all networks.

Temporal variation

in sociality

Difference in median DI

between days (n = 92,

d = 28)

K-W = 2252.30 (p = 1) K-W = 61.00 (p = 1) K-W = 2268.9 (p = 1) No difference in DI between

days in all networks.

Relationship between MDI

and days (n = 92, d = 28)

Pearson correlation, ρ

= 0.03 (p = 0.88)

Pearson correlation, ρ

= 0.55 (p < 0.01)

Pearson correlation, ρ

= 0.02 (p = 0.90)

MDI correlated over time in

the feeding zone but not in

the non-feeding zone.

Relationship between MDI

and temperature (n = 92,

d = 28)

Pearson correlation, ρ

= 0.04 (p = 0.83)

Pearson correlation, ρ

= −0.09 (p = 0.66)

Pearson correlation, ρ

= 0.04 (p = 0.82)

Weak correlation between

MDI and temperature in

both functional zones.

Relationship between

four-day block consecutive

networks (six networks,

n = 92 per network)

Mantel test, range of Rs

= 0.03 to 0.23 (p ≤

0.001) for three

comparisons (day

blocks 1–2, 2–3, 5–6);

range of Rs = −0.04

to−0.001 (p > 0.23) for

three comparisons (day

blocks 3–4, 4–5, 6–7)

Mantel test, range of Rs

= 0.20 to 0.31 (p <

0.001)

Mantel test, range of Rs

= 0.05 to 0.24 (p <

0.01) for four

comparisons (day

blocks 1–2, 2–3, 5–6,

6–7); range of Rs

= −0.04 to 0.01

(p = 1) for two

comparisons (day

blocks 3–4, 4–5)

Weak correlation between

all consecutive networks.

Individual

characteristics

Difference in mean DI

between non-lame (n = 26)

and lame cows (n = 22)

Wilcoxon test, W =

297 (p = 0.56)

Wilcoxon test, W =

342 (p = 0.86)

Wilcoxon test, W =

276 (p = 0.40)

No difference in DI between

non-lame and lame cows in

both functional zones.

Difference in mean

clustering coefficient

between non-lame (n = 26)

and lame cows (n = 22)

Wilcoxon test, W =

392 (p = 0.98)

Wilcoxon test, W =

284 (p = 0.53)

Wilcoxon test, W =

398 (p = 0.99)

No difference in clustering

coefficient between

non-lame and lame cows in

either functional zone.

Difference in mean node

degree between non-lame

(n = 26) and lame cows

(n = 22)

Wilcoxon test, W =

304.5 (p = 0.63)

Wilcoxon test, W =

321.5 (p = 0.25)

Wilcoxon test, W =

241.5 (p = 0.17)

No difference in node

degree between non-lame

and lame cows in either

functional zone.

Social assortment by

lameness status by day,

n = 48)

Mantel test, Rs = 0.11

(p < 0.01) for day 16;

range of Rs = −0.07 to

0.05 (p = 1) for

remaining 27 days

Mantel test, range of Rs

= −0.06 to 0.04 (p = 1

for all days)

Mantel test, range of Rs

= −0.07 to 0.06 (p >

0.80)

Cows did not socially assort

according to their lameness

status, parity, or DIM in

either functional zone.

Social assortment by parity

(by day, n = 92)

Mantel test, range of Rs

= −0.02 to 0.03 (p = 1

for all days)

Mantel test, range of Rs

= −0.05 to 0.03 (p = 1

for all days)

Mantel test, range of Rs

= −0.02 to 0.03 (p = 1

for all days)

Social assortment by DIM

(by day, n = 92)

Mantel test, range of Rs

= −0.03 to 0.03

(p = 0.80 for all days)

Mantel test, range of Rs

= −0.03 to 0.04 (p = 1

for all days)

Mantel test, range of Rs

= −0.03 to 0.03 (p >

0.44 for all days)

Significant results (p < 0.05) are in bold.

over the full study period (cow ID = 3324 and 3317 with mean
daily interactions of 1955 and 1956, respectively), two with mean
daily interactions closest to themedian (cow ID= 2602 and 3132,

with mean daily interactions of 2084 and 2085, respectively),
and two with the highest mean daily interactions (cow ID =

635 and 3361, with mean daily interactions of 2266 and 2273,
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respectively); across the full herd themean daily interactions were
2093 (median= 2085, standard deviation= 76.63).

There was significant inter-individual variation in daily
interactions in the non-feeding zone (Kruskal-Wallis chi-squared
[hereafter K-W]= 19.21, df= 91, after 10,000 permutations, p <

0.01), but not in the full barn (K-W= 26.53, df= 91, after 10,000
permutations, p < 0.001) or the feeding zone (K-W = 851.71, df
= 91, after 10,000 permutations, p= 1).

Figure 3 illustrates the lack of inter-individual variation in
daily interactions in the full barn and the non-feeding zone, and
the greater inter-individual variation in daily interactions in the
feeding zone for the highlighted subset of individuals.

Social differentiation was observed across the full barn (>
92.96 % of dyads, p < 0.01 across days), the feeding zone (100 %
of dyads, p < 0.01 across days), and the non-feeding zone (92.96
% of dyads, p < 0.01 across days), see Table 1.

Temporal Variation in Sociality
There was no significant difference in median daily interactions
between days in the full barn (K-W chi-squared = 2252.30, df =
27, after 10,000 permutations, p = 1; Table 1), feeding zone (K-
W = 61.00, df = 27, after 10,000 permutations, p = 1; Table 1),
nor in the non-feeding zone (K-W= 2268.9, df= 27, respectively
after 10,000 permutations, p= 1; Table 1).

Figure 4 highlights the temporal instability in both the
functional zone networks. Although there were no clear trends
over time, where there were changes these are seen to be highly
correlated across all individuals in the feeding zone (n = 92;
Pearson’s coefficient [hereafter ρ] = 0.02, n = 92, p = 0.90)
(Figure 4). Conversely, individual interactions in the feeding
zone showed much more random variation than in the non-
feeding zone (ρ = 0.55, n = 92, p < 0.01), as demonstrated with
the highlighted subset of individuals (Figure 4). There was a weak
but non-significant relationship between mean temperature and
mean daily interactions across days in both the feeding zone (ρ
= −0.09, df = 26, p = 0.66; Table 1; Figure 4) and non-feeding
zone (ρ = 0.04, df= 26, p= 0.82; Table 1; Figure 4).

In the feeding zone, there were significant weak positive
correlations between all the four-day block averaged- consecutive
networks (n = 7, comparisons = 6) (range of Spearman’s
coefficient [hereafter Rs] across days = 0.20 to 0.31, after 10,000
permutations and Bonferroni correction, p < 0.001 for all
comparisons; Table 1; Figure 5). In the full barn there were also
weak correlations between the four-day averaged consecutive
networks (range of Rs = 0.03 to 0.23, after 10,000 permutations
and Bonferroni correction, p≤ 0.001 for three comparisons (day
blocks 1–2, 2–3, 5–6); range of Rs−0.04 to−0.001, after 10,000
permutations and Bonferroni correction, p > 0.23 for three
comparisons (day blocks 3–4, 4–5, 6–7). In the non-feeding zone,
there were inconsistent weak correlations between consecutive
networks (range of Rs = 0.05 to 0.24, after 10,000 permutations
and Bonferroni correction, p < 0.01 for four comparisons (day
blocks 1–2, 2–3, 5–6, 6–7); range of Rs = −0.04 to 0.01, after
10,000 permutations and Bonferroni correction, p = 1 for two
comparisons (day blocks 3–4, 4–5); Table 1; Figure 5). We also
conducted this analysis using the original (n = 28), and two-,

seven- and 14-day blocks, and we obtained qualitatively similar
results (Supplementary Material 3 Table 9).

Impact of Health Status, Parity, and Days in
Milk on Sociality
Lameness
Lame cows (n = 22) did not have significantly more mean daily
interactions than non-lame cows (n = 26) in the feeding zone
(Wilcoxon test statistic [hereafterW]= 342, p= 0.86 after 10,000
permutations; Table 1; Figure 6) nor in the non-feeding zone (W
= 276, p= 0.40 after 10,000 permutations; Table 1; Figure 6).

In the feeding zone, lame cows did not show a significantly
different mean clustering coefficient or degree than non-
lame cows (W = 284 and 321.5, respectively, after 10,000
permutations, p= 0.53 and 0.25, respectively; Table 1; Figure 6).
Similarly, in the non-feeding zone, mean clustering coefficient or
degree did not differ between the lameness states (W = 398 and
241.5, after 10,000 permutations, p = 0.99 and 0.17 respectively;
Table 1; Figure 6).

There was no significant social assortment by lameness in the
feeding zone (range of across days Rs = −0.06 to 0.04), nor
the non-feeding zone (range of across days Rs = −0.07 to 0.06)
where, after Bonferroni Correction and 10,000 permutations, p
> 0.80 in all cases for all days (n = 28; Table 1). In other words,
cows with the same lameness state did not associate more than
cows of different lameness states.

Parity and Days in Milk
There was no significant social assortment by parity in the feeding
zone (range of across days Rs = −0.05 to 0.03, after 10,000
permutations and Bonferroni Correction, p = 1 for all days;
Table 1) or in the non-feeding zone network (range of Rs across
days = −0.02 to 0.03, after 10,000 permutations and Bonferroni
Correction, p= 1 for all days; Table 1).

There is also no significant social assortment by DIM in the
feeding zone (range of across days Rs = −0.03 to 0.04, after
10,000 permutations and Bonferroni Correction p = 1 for all
days) or the non-feeding zone (range of Rs across days = −0.3
to 0.03, after 10,000 permutations and Bonferroni Correction, p
≥ 0.44 for all days; Table 1).

The results for social assortment by lameness, parity and DIM
in the full barn network were similar to those of the non-feeding
zone (results in Table 1).

DISCUSSION

Within this study we found that the interaction network of
the housed dairy herd was highly connected with significant
social differentiation, interactions between cows were more
heterogenous than expected by chance (18), but the network
structure was temporally unstable. There was no evidence of
preferential social assortment, showing cows did not associate
more than expected by chance according to lameness state, parity,
or days in milk (DIM).

Visualization of the full barn interaction network (Figure 2)
illustrates that the herd was highly connected, as confirmed by
the mean edge density (96%, Table 1). This indicates that each
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FIGURE 3 | Daily interactions in (A) the full barn, (B) feeding zone, and (C) non-feeding zone, for a highlighted illustrative subset of individuals: two individuals with the

least mean daily interactions (blue, cow ID = 3124 and 3317), two with mean daily interactions closest to the median value (yellow, cow ID = 2602 and 3132) and two

with the highest mean daily interactions (red, cow ID = 635 and 3361).
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FIGURE 4 | Mean daily interactions across time (01/10/2014 to 31/10/2014 with days excluded from the study omitted) in (A) feeding zone, and (B) non-feeding

zone. An illustrative subset of individuals are highlighted: two individuals with the least mean daily interactions (blue, cow ID = 3124 and 3317), two with mean daily

interactions closest to the median value (yellow, cow ID = 2602 and 3132) and two with the highest mean daily interactions (red, cow ID = 635 and 3361). Data for

each individual cow is indicated with a gray line. Mean daily temperature is shown with the dashed black line.
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FIGURE 5 | Interaction networks, filtered by mean node degree, over time for (A) feeding zone, and (B) non-feeding zone. An illustrative subset of individuals are

highlighted: two individuals with the least mean daily interactions (blue, cow ID = 3124 and 3317), two with mean daily interactions closest to the median value

(yellow, cow ID = 2602 and 3132) and two with the highest mean daily interactions (red, cow ID = 635 and 3361). The Fruchterman-Reingold layout algorithm

determined the node positions; unconnected vertices are repelled. Created in RStudio using the “vegan” package (68, 69, 75).

cow was likely to have had interactions with most other cows
in the herd each day. It is not clear from this study whether
these cows actively seek out and connect with their conspecifics,
perhaps to maintain social structure in the group, or whether this
high connectivity is a function of the building layout and high
stocking density. It must be acknowledged that, due to building
works on the farm, the stocking rates were high during our
study period (feed space = 0.48m per cow, lying space = 0.72
cubicles per cow). This may have reduced the ability of the cows
to actively choose with whom to be in close proximity with. In
agreement with this study, high connectivity was also reported
for cows housed in loose straw yards with concrete loafing areas
with moderate (to high) stocking rates of 9.50 m2 per cow to
(7.66 m2 per cow) from sensor derived proximity measurements
(14, 15). Lower edge densities have been reported in a grazing
system, in (7), but in their study an interaction was based on
the occurrence of specific behaviors considered to increase the
risk of disease transmission rather than social proximity. Lower
edge density and a sparse structure was also reported for cows
housed in cubicles at a moderate stocking rate (1.03 cubicles per
cow), but the group in their study only comprised of 36 cows
and interactions were only recorded during two 15min time
slots per day, therefore not capturing changes in location and
near neighbors throughout the day (77). Further investigations
of dairy cows in a range of housing types and stocking rates are
needed to determine if cows are naturally highly connected or
whether aspects of the commercial dairy lead to cows spending
time in proximity to a greater number of conspecifics.

Analysis on the interaction networks revealed significant
inter-individual variation in daily interactions in the non-feeding

zone, but not across the feeding zone or when considering the
full barn (Figure 3; Table 1). The feeding zone is likely to be
a more dynamic location than the loafing and resting areas.
Feed bouts are shorter than lying bouts and cows will begin and
end their eating bouts at different times, leading to a greater
turnaround of contacts at the feed face than other areas of the
barn. It is possible however, that cows have greater control over
the individual interactions they have in the non-feeding zone and
therefore we are able to observe a greater degree of individuality.
Researchers have demonstrated that inter-individual variation
in sociality is an individual trait in dairy cows (28) influenced
by dominance status and personality traits. This may affect an
individual’s ability to gain resources, such as cubicles, impacting
their proximity interactions in the non-feeding zone (17, 21), as
also speculated by (14), although we cannot distinguish between
these potential factors in this study.

The structure of the interaction network was weakly correlated
over time (Figures 3, 4), and individuals periodically isolated
from the main network component of the feeding zone (Table 1).
These individuals were not the same each day, and they were
not of the same lameness status, suggesting their isolation was
due to them choosing not to feed at the same time, or being
unable to compete due to the lack of space. The overall herd was
subject to changes throughout the study period, with the addition
and removal of cows outside of the study group (n = 92, whole
herd = 100–111 cows on a given day), which could have affected
the social structure of the herd. In (28), while introductions
of new cows to a stable group did not affect the sociality of
individual cows, it did weaken the overall social network. The
highly connected network in (14) was also subject to changing
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FIGURE 6 | Comparison of Mean Daily Interactions and node-level measures (degree and clustering coefficient) between non-lame (NL) (n = 26) and lame (L) (n = 22)

cows. (A,C,E) feeding zone; (B,D,F) non-feeding zone. The horizontal line in each boxplot represents the median value. The mean [standard deviation] values for NL

and L cows are given, respectively by: (A) 74 [35] and 90 [44]; (B) 2015 [70] and 2006 [45]; (C) 27.92 [8.53] and 30.14 [9.37]; (D) 85.85 [0.45] and 85.68 [0.26]; (E)

0.44 [0.09] and 0.46 [0.02]; (F) 0.94 [0.001] and 0.94 [0.001]. Each individual cow is indicated with a small circle.

group composition and the researchers similarly reported weak
to moderate correlations in structure between consecutive one-
week networks. Further analysis on the temporal stability of
dairy cow networks whilst removing specific individuals could
aid management.

There were no significant correlations between daily
interactions and temperature in this study (Figure 4, Table 1).
However, the study period was selected based on there being
a relatively stable temperature throughout with temperature
low enough not to induce heat stress. Cows have been shown
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to modify their collective behavior, in terms of clustering for
example, or individual behaviors in extreme heat conditions,
or show long-term signs of heat stress due to high stocking
densities (78–81). Therefore, environmental temperature and
even individual cow temperature should be considered when
monitoring the herd social structure over longer study periods.
Furthermore, the social network may have been more dynamic
than initially envisioned due to factors not accounted for, such as
farm management actions or treatment interventions (82).

Considering the known social withdrawal response of
unhealthy cows (83), it might be predicted that lame cows
would be less willing to compete for preferred food or access to
cubicles, but no differences in the sociality or positioning were
found between lame and non-lame cows (Figure 6, Table 1). At
a particularly high stocking rate in intensive cubicle housing,
there may have been little opportunity for the 22 “lame” cows
identified in this study to self-isolate. Lame cows have been
shown to modify their space-use in this barn, but this was with
access to an additional loafing area at the end of the cubicle shed
which wouldmake social distancing easier than in this study (57).
Furthermore, (84) found that lame cows received approximately
twice as much allogrooming as cows that were non-lame, and
this explanation would also support our finding of no individual-
level social assortment by lameness state i.e., cows of the same
lameness state did not associate more or less than expected
(84) (Table 1). When interpreting the result above we should
consider that use of a visual locomotion score is not without
the potential for classification errors, especially when scoring
large groups of cows at the parlor exit as was the case in this
study. It has been reported that mild claw lesions are not always
accompanied with a corresponding increase in locomotion score,
indicating that locomotion scoring even by trained observers
may not be sensitive enough to detect all lameness cases (35).
Indeed in a previous study a predictive statistical model correctly
classified two cows that were incorrectly classified by observer
locomotion scoring (57). Cows with dominant lameness status
were also discretely grouped as either “non-lame” or “lame”
during analysis (38, 85) (Supplementary Material 1), and these
cows may have behaved differently during various time periods
of the study. Nonetheless, this study demonstrates a potential
way to assess the influence of health status on social interactions
within a typical herd. Quantitative measures of individual social
interactions and network position may be useful indicators to use
within automated monitoring approaches in PLF.

Social differentiation was present in both functional zones
(Table 1); some dyads interacted more than others, as similarly
shown in (15, 86). A number of previous studies have indicated
social differentiation can occur with age, as cows of a similar age
would have had greater opportunity to develop social ties with
one another (86, 87), particularly if they calved at similar times.
In addition, stronger bonds may also form between calves born
at similar times, who remain together throughout rearing before
joining the milking herd; cows have been shown to invest more
time and energy into relationships with herd members sharing
long-term experiences (88). Our study does not find that cows
differentiate by parity, a proxy for age. While parity may give an
indication as to a cow’s experience in the herd andmay contribute
to her personality traits, this measure is probably too coarse to

identify cows with historical associations, such as shared calf
cohorts, which has been suggested to result in stronger bonds.
In this study a recent shared transition period, as indicated by
similar DIM, was not sufficient to result in differentiation on
this basis. This is in line with the findings of (89), where recent
familiarity with cows had no effect on lying down behaviors of
cows transitioning to the herd but early familiarity lead to greater
synchrony of lying behaviors. Greater detail of the cohorts of
cows kept from birth through to the milking herd, unmeasured
in this study, may explain the social differentiation observed.
It is possible that the high temporal variation of the network
structure, and insufficient space within the barn may have
impeded the ability to identify these structures. Alternatively,
non-random associations may have been the result of cows of
similar dominance rank positioning closely, with subordinates
displaced from favorable feeding positions by dominant cows
(20), particularly as feed space was limited to < 0.60 m/cow.
Interactions may be more likely to develop between cows with
similar energy requirements and motivation, and hence similar
activity time budgets. For example, cows that spend more time
eating may spend a lot of time near the feed face and hence
position closely to similar cows (15, 86, 87). Stage of lactation
affect the time an individual allocates to feeding, given that energy
requirements vary with milk yield; for instance, dry matter intake
is typically highest during mid-lactation (90).

When interpreting our results, it is important to consider
potential limitations of the relatively novel technology and SNA
techniques used in this study (82, 91). Although the proximity
used to define an interaction was also tested for other radii
and time durations, and similar qualitative results were obtained
(Supplementary Material 3), any interactions detected were
limited by the accuracy of the LPS system (2.66m mean error for
a static sensor). Additionally, a fundamental problem with this
type of automated approach to identify proximity interactions
is that we are unable to distinguish between which proximity
interactions were true social interactions (e.g., allogrooming)
and which were non-deliberate or non-social proximity events
[e.g., due to the positioning of neighboring cows at the feed
face (3, 82) or in cubicles (3)]. Our results are likely to contain
both genuine sustained social interactions, as well as proximity
events which were not directly social. Distinguishing between
genuine social interactions and indirect or non-social proximity
interactions is an open research question that requires further
investigation. Our chosen proximity identification protocol was
tested and validated using observational data and was found to
have a sensitivity of 83% (r = 3m and t = 60 s), but we were
unable to directly estimate the rate of false positives and hence the
specificity (Supplementary Material 3). Using a time duration of
60 s is likely to reduce the rate of false positives (compared to
using a shorter time duration) but will also potentially exclude
genuine social interactions of short duration. Multiple shorter
interactions may be as socially relevant as longer sustained
interactions. Our analysis was based on a comparison of daily-
level network statistics and comparing these over time or between
individuals with different lameness status, parity and DIM. It
is quite plausible that, although the daily level behavior may be
similar across the network, there could be significant individual
variability in social interactions on a finer timescale (e.g., hourly
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or less), particularly around key events such as feeding and
milking, and this variability in social behavior may be linked
to social status or health. A further limitation is that, although
we included the vast majority of cows that were present in the
herd throughout the study period (n = 92), there were cows
that entered and left the group throughout this period, and
hence some potential interactions involving these cows would
not have been recorded. The effect of missing individuals on
the conclusions drawn from a social network analysis are not
well understood and this remains an open research question
(82, 91). Despite the drawbacks to using proximity to detect
potential social interactions, our approach based on using a local
positioning system is useful for quickly accumulating the large
datasets needed for SNA in an automated way (82).

CONCLUSION

A local positioning sensor network was used to automatically
monitor the spatial position of a large herd group of permanently
housed dairy cows at high temporal resolution for a full month.
Proximity interactions were identified by sustained periods of
closeness between dyads. The proximity interaction network
structure of the herd was highly connected, with significant
differentiation in interactions between dyads, and high temporal
variability. Lameness, parity, and days in milk were not found
to directly influence social interactions or network position.
This study demonstrates how automated sensor technology
could be used to monitor the social structure of a large
commercially relevant group of livestock, and how individual
differences in social interactions and network measures could
be used to potentially identify health differences between
animals. Future work should aim to better distinguish social
interactions from indirect non-social interactions and consider
how interactions within a larger group may differ in different
housing environments and at different stocking densities.
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Data Sheet 1 | Classification of lameness and additional related results. Further

details of how individual mobility scores were used to classify lameness states:

dominant lame (DL; n = 10), lame (L; n = 12), dominant non-lame (DNL; n = 11)

and non-lame (NL; n = 15). Additional results are included where the former two

groups were each compared to the latter two groups, in terms of mean daily

interactions, node degree and clustering coefficient.

Data Sheet 2 | Data selection, cleaning, and processing. Further details and

justification of the steps taken to select, clean and process the raw positional data

collected during the study period. Only cows present throughout the entire

duration of the study period were included (n = 92), resulting in 21,789,742

location data points. The data cleaning and processing steps resulted in total data

removal of‘26%.

Data Sheet 3 | Validation of proximity identification protocol and additional results

for different time durations and spatial thresholds, and temporal segmentation. We

test and validate our algorithm for identifying and classifying proximity interactions

against observed proximity events across a range of parameters (spatial threshold

radii, r = 1–5 m; time duration, t = 20-160 s). We include additional results similar

to the main paper for these additional parameter values, as well as alternative

formats of temporal segmentation of the 28-day study period. In all cases, the

results are qualitatively similar to the results given in the main paper and our

conclusions hold.
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