
Parameterized algorithms of fundamental
NP-hard problems: a survey
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Li, W. ORCID: https://orcid.org/0000-0001-6121-588X, Ding,
Y., Yang, Y., Sherratt, R. S. ORCID: https://orcid.org/0000-
0001-7899-4445, Park, J. H. and Wang, J. (2020)
Parameterized algorithms of fundamental NP-hard problems: a
survey. Human-centric Computing and Information Sciences,
10 (1). 29. ISSN 2192-1962 doi: 10.1186/s13673-020-00226-w
Available at https://centaur.reading.ac.uk/91587/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1186/s13673-020-00226-w

Publisher: Springer Berlin Heidelberg

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Parameterized algorithms of fundamental
NP‑hard problems: a survey
Wenjun Li1  , Yang Ding1, Yongjie Yang2, R. Simon Sherratt3, Jong Hyuk Park4 and Jin Wang1*

Introduction
In the modern society, computers play an important role in solving optimization prob-
lems, most of which are shown to be computationally hard in theory. On the one hand,
computers accelerate the developments of various practical fields, such as artificial intel-
ligence [1–6], bioinformatics [7, 8], big data [9–13], smart grid [14, 15], wireless sensor
networks [16–19], internet of things [20–25], vehicular network [26–29], cloud comput-
ing [30–34], computer vision [35–37], security [38–43] and so on. On the other hand, all
these applications promote improvement of computer science and technology.

Over the last decade, many new and powerful techniques have attracted a great atten-
tion in computer science, and have been successfully used in solving optimal problems
in a body of applications. There are a great deal of computational problems derived from
practical applications which can be modeled as combinatorial optimization problems.
Acquiring optimal solutions of them became a crucial task for relevant engineers or
researchers. Unfortunately, some of them turned out to be computationally hard to be
solved when the input size of these problems are considerably large. Due to the huge
amount of information and data to be processed, the existing computers often fall into
an awkward situation of “powerlessness” when solving many practical computing prob-
lems. In other words, it is unlikely for them to solve these problems in acceptable time.

Abstract 

Parameterized computation theory has developed rapidly over the last two decades. In
theoretical computer science, it has attracted considerable attention for its theoretical
value and significant guidance in many practical applications. We give an overview on
parameterized algorithms for some fundamental NP-hard problems, including MaxSAT,
Maximum Internal Spanning Trees, Maximum Internal Out-Branching, Planar (Con-
nected) Dominating Set, Feedback Vertex Set, Hyperplane Cover, Vertex Cover, Packing
and Matching problems. All of these problems have been widely applied in various
areas, such as Internet of Things, Wireless Sensor Networks, Artificial Intelligence, Bio-
informatics, Big Data, and so on. In this paper, we are focused on the algorithms’ main
idea and algorithmic techniques, and omit the details of them.

Keywords:  NP-hard, Parameterized complexity, FPT, W[t]-hard, AI, IoT

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29
https://doi.org/10.1186/s13673-020-00226-w

*Correspondence:
jinwang@csust.edu.cn
1 Department of Computer
and Communication
Engineering, Changsha
University of Science
and Technology, Changsha,
China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-6121-588X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00226-w&domain=pdf

Page 2 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

As to the problems hard to be solved, we do not only want to get exact solutions,
but also need some systematic theories as guidance, so as to avoid detours in the pro-
cess of finding solutions. The complexity theory provides the support to some extent.
The guiding role of this theory lies in that it provides a systematic and strict theoreti-
cal framework for the classification of difficult problems. It gives the formal definition
of NP-hard problems. Based on which, there is a conclusion that if a computational
problem is NP-hard, unless P = NP, then finding an polynomial optimal algorithm for
it is impossible. In a sense, if P = NP, an NP-hard problem is actual un-computational
when the size of instance is large.

In order to cope with NP-hard problems, certain effective algorithmic frameworks
have been proposed, among which are approximation algorithms, heuristic algo-
rithms, and randomized algorithms. A common disadvantage of these approaches is
that they cannot always guarantee optimal solutions. Yet, this may be essentially the
case because assuming P  = NP any exact algorithm for an NP-hard problem runs in
exponential time. Exponential time algorithms are usually extremely time-consum-
ing when the input size is considerably large, but this is not always the case for rela-
tively small instances with the help of modern computers. Let us look at the following
example.

Assume that Q is an NP-hard problem and A is an O(nc · 2n)-time optimal algorithm
of Q, where n is the input size of instances of Q and c is a constant. If n = 100 , the
running time O(nc · 2n) is usually un-acceptable for the current computing resources.
For a decision problem Q′ with a parameter k, the output of any algorithm for Q′ is
“yes” or “no”. Assume there is an algorithm A′ which can give the right answer in
O(nc

′ · 3k) . At first glance, the time complexity of A′ is exponential, and the base is
larger than that of A. But the exponent k in O(nc

′ · 3k) maybe far less than the expo-
nent n in O(nc · 2n) . In that situation ,the running time O(nc

′ · 3k) is acceptable. From
the theory perspective, when given a fixed parameter as k, then the time complex-
ity of A′ is polynomial. Based on this observation, Downey and Fellows proposed the
parameterized computation and complexity theory about two decades ago, which
became a branch of computational complexity of theory rapidly. It focuses on algo-
rithms and complexity of the NP-complete problems with different parameters, and
is considered to be a new method dealing with NP-hard, or NP-complete problems.

In the paper, we will give an overview about the parameterized algorithms and
complexity for fundamental NP-hard problems, accurately fixed-parameter tractable
(FPT) problems, which are derived from the modern industrial applications. We will
introduce the applications and definitions of them first. And then, we will illustrate
the kernelization and/or FPT algorithms. More preciously, we show the main idea of
the algorithms, the algorithmic techniques used and time complexity.

Preliminaries
In this part, we introduce several concepts about Parameterized Complexity first.
And then, we show some fundamental or frequently-used parameterized algorithms
techniques. We do not give the formal definitions of them, but present the main idea
or the framework of them.

Page 3 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

Parameterized complexity

Parameterized complexity deals with problems whose instances are 2-tuples (I, k) where
I and k are respectively referred to as the main part and the parameter of the prob-
lem. The major goal of parameterized complexity is to investigate how the parameters
influence the tractability of the problems, and classifies the problems into correspond-
ing complexity classes. In a formal way, a parameterized problem Q∗ is a language
Q∗ ⊆

∑∗ ×
∑∗ , where

∑
 is an alphabet. The complexity theory of parameterized com-

putation classifies NP-complete problems with different hardness. If A∗ can output
right answer for each instance of Q∗ in time O(f (k) · nO(1)) [44], where f is a monotone
non-decreasing function of parameter k and n is the cardinality of the problem, then
we say Q∗ is a fixed-parameter tractable (shorted by FPT) problem, and the algorithm
A∗ is an FPT algorithm. Furthermore, if Q∗ is an FPT problem, then it has a kernel with
size bounded by g(k), where g(k) is a function only related to k. However, some of the
NP-complete problems are not FPT. The theory of Parameterized Computation further
define these problems as W[t], W[P] or XP problems (see the textbook of Downey and
Fellows [44] for further details).

As a commonly recognized framework to handle NP-hard problems, parameterized
complexity has been successfully used in a wide range of areas (see, e.g., [45–51]). Many
FPT-algorithms have been derived for a large number of classical problems including,
for example, Feedback Vertex Set, Vertex Cover, Hyperplane Cover, Maximum Internal
Spanning Tree, Planer Dominating Set, Edge Dominating Set, etc. On the other hand,
some NP-complete problems turned out to be W[t]-hard, t ≥ 1 . For instance, the fun-
damental parameterized NP-complete problems Weighted 3-SAT, Clique, and Inde-
pendent Set are W[1]-hard, and Dominating Set, Weighted CNF-SAT and Set Cover are
W[2]-hard.

Algorithmic techniques of parameterized algorithms

In this subsection, we show some algorithmic techniques for FPT algorithms and ker-
nelization. It should be remarked that kernelization, usually consisting of a set of reduc-
tion rules, is a pre-procedure to solve an FPT problem, which not only can decrease the
size of instances, but also can make the reduced instances holding some special proper-
ties. These special properties are usually to be the key points of developing efficient FPT
algorithms. For this reason, kernelization can be seen as one kind of algorithmic tech-
nique of parameterized algorithm.

Kernelization:

•	 Crown decomposition: Crown decomposition has been proposed in the early days
of birth of parameterized computation theory, and it has been successfully applied
in the kernelization of the Vertex Cover Problem. Subsequently, this technology is
also used in the kernelization of many other problems, such as P2 Packing, Hitting
Set, Co-path\cycle Packing, and so on. A crown in a graph G = (V ,E) is a struc-
ture holding special property, which can be defined as a triple (I, H, R), where I, H,
R are three disjoints set, V = I ∪H ∪ R , I is a nonempty independent set, H is the
neighbors set of I and R = V \I\H  . Furthermore, there is a matching M between

Page 4 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

I and H such that |M| = |H | . The Fig. 1 shows a crown, where the cardinality of
H is 4. Usually, if a crown is found, deletion or replacement operations could be
done in kernelization for many problems. Therefore, how to find the crowns is an
important step during the kernelization.

•	 Linear programming: Linear programming (LP) is a powerful tool to solve optimal
computation problems. In parameterized computation, we usually consider com-
binatorial problems. Fortunately, many of them can be modeled by Integer Lin-
ear Programming (ILP), in the instances of which, variables are with integer value,
constraints are linear inequalities, and cost function is linear. But these problems
can not be handled by Linear Programming, where the value of variables are not
restricted to integer. Since finding the optimal solution of an ILP instance is NP-
hard and that of a LP instance is polynomial-time solvable, transforming an ILP
instance to a LP instance is a reasonable way in kernelization. This method has
been successfully applied in the kernelization for Vertex Cover.

•	 Local reduction: Local reduction is the most widely used kernelization technique.
The local reduction rules are based on observation of local structure properties of
the problem, which are different as to different problems. The local reduction tech-
nique has two characteristics: The one is the local property of the rules. That is, the
object considered by the rule is not the whole input. The other one is the particu-
larity of the rules. Due to the special property of the problem, there is no universal
reduction rule. And the rules are developed according to specific problems.

Algorithmic techniques of FPT algorithms:

•	 Bounded Search Trees: This method is originated from the general idea of backtrack-
ing and is one of most widely used techniques for parameterized algorithms design.
The main idea of this technique is to enumerate all the possible cases for the prob-
lem, so that it makes a series of possible decisions. For each decision, there will be a
corresponding sub-problem, in which the parameter is decreased by some constant.
Such an procedure will be repeated until the parameter is equal to or smaller than
0. Furthermore, each subproblems are solved one by one. The key point of Bounded
Search Trees method is how to make the instances with some property so that some
of the branches can be omitted. For this reason, applying some reduction rules
before/or during branching are usually an effective way to get an FPT algorithm, by
Bounded Search Trees method, with low time complexity.

Fig. 1  A crown with 4 head vertices

Page 5 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

•	 Iterative compression: Normally, iterative compression is novel parameterized algo-
rithmic technique. It is used to design FPT algorithms for minimization problems,
the task of which is to find the minimum solution. The algorithms based on this tech-
nique employing the “compression” iteratively. In the procedure of compression, the
algorithm tries to find a smaller solution or outputs that the solution is exactly the
smallest one. For this technique, the greatest feature is that the compression proce-
dure can take the advantage of the intermediate solutions.

•	 Randomized method: Randomized method has been applied to the FPT algorithms
for Feedback Vertex Set, Longest paths, P2 Packing and d-clustering problems. Color
Coding is a non-trivial randomized method. Its main idea is coloring vertices or
edges of graph with a set of colors randomly. And the color is a mark that distinguish
different vertices or edges.

•	 Treewidth: Treewidth is a relative new technique to design parameterized algo-
rithms. Treewidth of a graph measures how much it is close to a tree. For a graph of a
problem, if the treewidth is small, then the problem will be effectively solved by con-
structing a tree decomposition and using dynamic programming. If the tree width
is large, then appropriately handling the obstacle structure will be a common way.
This technique has shown great advantages in designing subexponential algorithm
for some problems on planar graphs.

•	 Others: There are many other FPT algorithmic techniques, including Dynamic Pro-
gramming, Linear Programming and Sun flower Lemma, etc.

Parameterized algorithms for FPT problems
In this section, we will give a survey on existed FPT algorithms and kernelization for
some fundamental NP-complete problems in industrial applications, including Satisfi-
ability, Spanning Trees and Out-branching, Planar Dominating Set, Feedback Vertex
Set, Covering, Matching and Packing (see Table 1 for details). In this paper, we just con-
sider the parameterized version of these optimal problems. For the convenience, the
word “parameterized” is omitted where no ambiguity exist. And as to the running time
O(f (k)nO(1)) for some algorithm, we use O∗(f (k)) to replace it in the whole paper.

Satisfiability problems

Satisfiability (SAT) problem is a fundamental NP-hard problem and has wide applica-
tions in artificial intelligence, combinatorial optimization, expert systems, and data-
base systems [52–56]. The formal definition of SAT is: Given a CNF formula F, decide
if an assignment that satisfy all the clause in F exists. A CNF formula consists of some
clauses, which are joined by AND. In each clause, there some literals joined by OR. And
the literal could be positive (the same name as the corresponding variable) or negative
(negation of the positive literal). Equation (1) shows a CNF formula that consists of six
variables ( g1, g2, . . . , g6 ) and three clauses. It is known that the SAT problem is NP-hard
even in many special cases.

(1)F = (g1 ∨ g2 ∨ g3) ∧ (ḡ1 ∨ g4) ∧ (g1 ∨ g5 ∨ g6) ∧ (ḡ2 ∨ g5 ∨ ḡ6)

Page 6 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

When the target of the SAT problem is not to find an assignment satisfy all the clauses
in F, but to find an assignment satisfying as many clauses as possible. The SAT problem
becomes the MaxSAT problem. When the literal number in each clause is restricted to
two, the MaxSAT problem is shorted by Max-2-SAT. This problem is also NP-hard even
if their at most three clauses contain the same variable in F [57]. It has been proved that
the (s, t)-MaxSAT problem is polynomial-time solvable when t = 2 [58]. The parameter-
ized version of MaxSAT is as follows.

Definition 1  MaxSAT: Given a CNF formula F and an integer parameter k, is there an
assignment which satisfies at least k clauses in F?

For the parameterized MaxSAT problem, there is a long line of researches (see
Table 2 for details). Almost all the extant FPT algorithms consist of two parts. The
one is the part that contains some reduction rules which can decrease the size of the
formula and make the given CNF formula having some special properties. For exam-
ple, if there is a (q, 1)-literal g in F, then the q + 1 clauses containing literal g or ḡ can
be reduce to q clauses, where a (n1, n2)-literal g is a literal such that g and ḡ occurs n1
and n2 times respectively, and the details of the rule are omitted here. After this rule

Table 1  A summary of parameterized algorithms for the problems discussed in this paper

Categories Problems Kernelization FPT algorithms

Satisfiability MaxSat
√

(n, 3)-MaxSAT
√

Spanning Trees and Out-Branching MIST
√ √

MIOB
√

Dominating Set Planar DS
√ √

Planar CDS
√ √

EDS
√ √

Feedback Vertex Set FVS
√ √

Planar FVS
√

Covering Vertex Cover
√ √

Hyperplane cover
√ √

Packing and matching P2 Packing
√ √

r-D Maching
√

WrDM
√

r-Set packing
√

WrSP
√

EDTP
√

Table 2  Research history of FPT algorithms for MaxSAT

Year Time complexity References

1997 O
∗(1.618k) Raman and Mahajan [57]

1999 O
∗(1.3995k) Niedermeier and Rossmanith [60]

1999 O
∗(1.380278k) Bansal et al. [61]

2004 O
∗(1.370k) Chen et al. [62]

2012 O
∗(1.358k) Ivan et al. [63]

Page 7 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

applied, formula F can be reduced to F ′ as the Eq. 2. In the following, we lists several
simple reduction rules.

For a variable g in formula F,

•	 If there only positive literals or negative literals of g in F, then assign g = 1 or
g = 0.

•	 If there exists a clause containing literal g and literal ḡ , then delete this clause and
k = k − 1.

•	 If there is a clause containing two or more literal x, then remove all the literals g from
this clause except one.

•	 If the number of clause {ḡ} in F is no less than that of clauses containing literal g, then
assign g = 0.

•	 If g is a (q, 1)-literal and the clauses containing g are (gC1) , gC2 , ..., gCq , ḡC ′ , then
replace these q + 1 clauses by the q clauses C1C

′ , C2C
′ , ..., CqC

′ , where Ci is the com-
bination of several literals by ’OR’, 1 ≤ i ≤ q.

The other one is the branching part, in which the algorithms branch on variables whose
degree are not too small, where the degree of some variable is the number of corre-
sponding literals (including positive and negative) in the given formula. For example, the
degree of variable g1 in the formula F is 3, since the literal g1 appears twice and the literal
ḡ1 appears once in F. Because of the reduction rules mentioned above, there exist no
variable with degree smaller than 4.

Raman and Mahajan considered parameterized algorithm for the MaxSAT prob-
lem [57]. Their algorithm is depend on the framework proposed by Downey and Fel-
lows [59]. Firstly, the clauses are divided into two kinds of clauses: (1) long clauses, each
clause contains k or more literals; and (2) short clauses. For the given CNF formula F,
if there are no less than k long clauses, then output ’Yes’. Otherwise, after some trivial
preprocess, branch on some variable whose corresponding positive and negative literal
appears in the formula at least once. The time complexity of this simple algorithm based
on Bounded Search Trees method is O∗(2k) . Through a minor modification, they devel-
oped an algorithm in time O∗(1.618k).

For obtaining a more efficient algorithm for the MaxSAT problem, Niedermeier and
Rossmanith [60] used two kinds of rules: transformation rule and splitting rule. The
former one is the rule replacing a formula by another formula, and the later is replac-
ing a formula by several other formulas. After these rules applied, the Davis-Putnam-
procedure is used to get the solution of the problem. The algorithm’s running time is
O∗(1.3995k).

Later, Bansal et al. proposed an algorithm for MaxSAT in time O∗(1.380278k) [61]. By
using some simple rules, they got the solution of MaxSAT problem equivalent to the
original formula, such as elimination of (1, 1)-literals and replacement of almost com-
mon clauses. At the same time, it combines the rules of some branches in davisputnam-
type branching algorithm, according to the above two methods, two general algorithms
are proposed.

(2)F ′ = (g2 ∨ g3 ∨ g4) ∧ (g4 ∨ g5 ∨ g6) ∧ (ḡ2 ∨ g5 ∨ ḡ6)

Page 8 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

Chen et al. by using the created low literal subroutine to enforce the invariant of the
formula containing text that rarely appears, thus making the overall algorithm work
better. In addition, they introduced a branch rule, which uniformly and systematically
captures several branches and makes them more efficient, they greatly improved the
bound O∗(1.370k) proved [62].

Ten years later, Ivan et al. presented an algorithm was based on standard splitting
techniques with running time of O∗(1.358k) to examine if at least k clauses in an input
formula are satisfied parameterized MaxSAT. They propose a easy way that improves
the upper bound for MaxSAT [63].

(n, 3)-MaxSAT is a restricted version of MaxSAT in which each variable occurs
no more than three times. The original bound of the (n, 3)-MaxSAT is the result
O∗(1.3247k) [62]. For the first time, Ivan and Golovnev [63] treated the problem as a
separate problem and got a bound O∗(1.2721k) . New simplification rules are proposed
on some traditional rules and introduced Create-Low-Literal subroutine. On the basis
of the former, they proposed some new simplification and branching rules, and sim-
plification rules can decrease k at least by one. Simplifying an example of restricted
Max-SAT to an example of minimum set cover. Direct branching can give a good
number of branching for a variable of high degree immediately. The main bottleneck
is that the formula only contains variables of low degree. Branch processing is carried
out through the “resolution-like” rule.

Based on two new resolution rules for the (n, 3)-MaxSAT problem, Xu et al. got an
improved upper bound O∗(1.194k) of this problem [64]. After exhaustively applied
of there rules, the given CNF formula will become linear, which is the key point of
their contribution. And this property makes their branch and search strategy more
efficient. As a consequence, for the MaxSAT problem, it significantly improved run-
ning times bound. Later, Li et al., through introducing some new rules, proposed an
improved FPT algorithm bounded by O∗(1.175k) [65].

In order to obtain a lower upper bound for the (n, 3)-MaxSAT problem,
Belova et al. proposed a very simple algorithm. And for the running time analysis, no
case analysis is needed. They achieved an algorithm with running time of O∗(1.175k) .
Furthermore, they found that the upper bound for (n, 3)-MaxSAT in terms of k could
be improved if that of the problem in terms of n is improved.

Spanning Trees and Out‑Branching problems

Finding Spanning Trees in a given graph has widely applications in communication
network design. The most fundamental one aims to construct a spanning tree with
minimum edge-weight for a given edge-weighted undirected problem, which can find
a solution by the Prim- or Kruskal-algorithm in polynomial time. But there are many
other NP-hard combinatorial optimization problems about finding spanning, which
are NP-hard. Finding spanning paths is also a classical problem in computational
geometry, which is motivated by design of VLSI, the movement of heavy machinery
and other applications. In this part, we will focused on Maximum Internal Spanning
Tree (mist) and Maximum Internal Out-Branching (miob).

Page 9 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

Definition 2  Maximum Internal Spanning Tree: Given a simple undirected connected
graph G and an integer parameter k, is there a spanning tree of G with at least k internal
nodes?

For this problem, Prieto et al. [66] developed an O(k2)-vertices kernelization algorithm
and an O∗(k2.5k)-time FPT algorithm. They used a simplified set of rules to modify any
spanning tree of the graph to a spanning tree so that there are no edge between any two
leaves in graph. This rule either produces an independent set with large size, or gener-
ates a tree with many internal vertices. For the former case, the graph is likely to contain
a crown structure, and the Crown Decomposition will be applied. For the later case, a
small kernel for the problem could be obtained directly.

Fernau et al. obtained a branching algorithm with time complexity of O∗(k2.1364k) for
the problem in cubic graphs [67]. This paper focuses on the case of degree-bounded. The
main innovation is that they analyze the algorithm by Measure and Conquer method.

Fomin et al. based on a min-max characterization of hypergraphs containing hyper-
trees in [68], firstly constructed a spanning tree by depth-first search, and then proposed
a kernelization algorithm with 3k-vertices linear kernel. Based on the kernel, an O∗(8k)

-time FPT algorithm could be obtained.
On the basis of the algorithm proposed by Fomin et al. [68], Li et al. [69] changed the

structure of spanning tree by using deeper local search method. They use edge-swapping
operation deeply, which makes that some internal nodes in spanning tree T were not
neighbors of leaf nodes in graph G. Edge-swapping operation is to replace some edge
in spanning tree T by some edge in G but not in T. The aim of this operation is to make
the constructed spanning tree with more internal nodes. Figure 2 shows an example of
edge-swapping operation, which exchanges one edge in an edge-swapping operation.
After this operation executed, the number of internal nodes is increased by one. The
authors’ main contribution is to exchange five edges in an edge-swapping operation. Fig-
ure 3 shows an example of edge-swapping operation, which exchanges threes edges in an
edge-swapping operation. Furthermore, they provide an effective method to analyze the
structure property of the spanning tree. Their kernelization algorithm can construct a
spanning tree that there a certain number of internal nodes do not adjacent to the leaves.

a b
Fig. 2  An example of swapping operation exchanging one edge

Fig. 3  An example of swapping operation exchanging 3 edges

Page 10 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

Due to this structure property, a kernelization algorithm with a size of 2k was obtained
finally, which results in an O∗(4k)-time algorithm directly.

Now we show the parameterized algorithms for miob, a generalization of mist. The
following definition is for the parameterized version of MIOB.

Definition 3  Maximum Internal Out-Branching: Given a directed graph G and a non-
negative integer k, is there an out-branching with at least k internal nodes?

Gutin et al. [70] proposed a kernelization algorithm for the problem which results
in a kernel of size O(k2) . This kernel directly leads to a trivial O∗(2O(k log k))-time FPT-
algorithm. Cohen et al. [71] investigated the problem restricted symmetric digraphs. In
particular, based on complex color coding and an unbalanced partitioning technique,
a random algorithm with time complexity O∗(49.4k) was obtained in [71]. Along with
this randomized algorithm, a deterministic algorithm running in O∗(55.8k) time was also
proposed in [71]. Later, Fomin et al. [72] used the Sharp Separation Theorem to craft an
FPT-algorithm running in O∗(16k+O(k))-time. This result has been further improved to
O∗(4k) by Zehavi et al. [73].

Dominating Set problems

(Connected) Minimum Dominating Set problem has wide applications in a variety of
fields, such as resource allocation, power network, wireless sensor network and so on. A
vertex u dominates all the vertices in N[u], where N[u] consists of all the neighbors of u
and u itself. A dominating set of a graph G is a subset of vertices such that every vertex
in the graph is dominated by at least one vertex in the subset. A connected dominating
set is a dominating set which induces a connected subgraph. The (connected) domi-
nating set problem is formally defined as follows.

Definition 4  (Connected) Dominating Set: Given a graph G and an integer parameter
k, is there a (connected) dominating set of size at most k in G?

In general, the (connected) dominating set problem is W[2]-hard. However, the
problem becomes FPT when restricted to certain special graph classes such as planar
graphs. In this section, we discuss this special case and use pds to denote it.

The FPT algorithms of PDS have attracted great attention (see Table 3). And various
methods or techniques have been used to the algorithms’ designing and analysis.

In a graph, a vertex could dominate itself and its neighbors. Therefore, for any vertex
v in G, if it has been chosen to be one vertex in an optimal solution, then itself and all
of its neighbors will be dominated. In this case, the vertex v could be removed from the
given graph. However, the neighbors will be not allowed. Since each neighbor of v is a
candidate for an optimal dominating set. Based on this simple observation, Alber et al.
[74] consider a more general problem, named Annotated Dominating Set. In this prob-
lem, the vertices that are in the solution are colored by white, and the other vertices are
colored by black. More specifically, the black vertices are un-dominated, while the white
vertices are dominated. The task of Annotated Dominating Set is to seek out at most k
vertices dominating all the black vertices. They proposed some reduction rules firstly

Page 11 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

and then used Bounded Search Trees method to deal with the reduced graph. The reduc-
tion rules make the reduced given graph holding some special properties. For example,
there is no edge between white vertices and no pendant white vertex in reduced graph.
Of course, there are some other relatively more complicated properties. Through deeply
analysis of all these properties and combining with the classical Euler formula for planar
graphs, the authors got a critical theorem that there is a black vertex with degree no
larger than 7. Based on this theorem, Bounded Search Trees method can results in a
trivial O∗(8k)-time FPT algorithms for the problem. Since MDS is a special case of the
Annotated Dominating Set problem (no white vertices in the given graph), the above
mentioned algorithm can solve MDS directly.

Later, Alber et al. [77] proposed the first sublinear exponential FPT algorithm for
PDS, which enhanced previous algorithms dramatically. This great improvement is due
to two facts: (1) if a planar graph G has a dominating set with size of k, then the tree-
width of G is no more than 6

√
34

√
k + 8 ; and (2) if a w-width tree decomposition of G

is constructed, then a minimum dominating set can be found in time O(4w) . The algo-
rithm constructs a treewidth decomposition for the given graph firstly, and then find a
minimum dominating set on the tree-width decomposition. Since the treewidth decom-
position can be constructed in time O(

√
kn) , the total time complexity of the whole algo-

rithm is O∗(46
√
34

√
k).

Following the work in [77], Kanj et al. [75] improved the FPT algorithm depending on
some novel observations. Firstly, they found that Baker’s algorithm, through modifica-
tion, not only can be used to solve the PDS problem but also can deal with the Planar
Red-Black-White Dominating Set, which is a variety of PDS. Secondly, they can find the
separator of large components with size of 15k, which is much smaller than the separa-
tor with size of 51k established in [77]. Combining the two new rules with the divide-
and-conquer approach immediately led to a significant improved FPT algorithm with
time O∗(227

√
k).

Instead of using the tree decomposition process mentioned above, Fomin and Thilikos
in [77] introduced branch decomposition for PDS. Similar to relationship between the
treewidth of tree decomposition and the domination number of a planar graph, there
is also a relationship between branchwidth and the size of dominating set of a planar
graph. More specifically, when a planar graph G admits a k-dominating set, the branch-
width will be no more than 6.37

√
k  . Furthermore, constructing such a branch decompo-

sition is polynomial. Combined with the linear kernel (335k) of the problem proposed by
Alber et al. [76], they get an O∗(215.13

√
k)-time FPT algorithm.

For the kernelization of the PDS problem, Alber et al. [76] gave the first kernelization
algorithm with kernel size of 335k. The reduction rules in the kernelization procedure

Table 3  Research history of FPT algorithms for PDS

Year Time complexity References

2002 O
∗(8k) Alber et al. [74]

2002 O
∗(227

√
k) Kanj et al. [75]

2004 O
∗(215.13

√
k) Alber et al. [76]

2005 O
∗(46

√
34
√
k) Alber et al. [77]

Page 12 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

are respecting to local structures of the given graph. Even though there is no global
reduction rule, they can get a linear kernel for the problem because the given graph is
planar and the planarity make the region decomposition becoming a useful tool dur-
ing the kernel size analysis. Later, Chen et al. [78] introduced some improved and new
reduction rules for the kernelization problem. In order to get some new and useful
structure properties, they color the vertices of the graph. Finally, they improved the ker-
nel size to 67k. For the kernelization of the PCDS problem, Lokshtanov et al. [79] pro-
vided an algorithm with kernel size of ck, where c = 3968187 . Although the constant c
is huge, it is a linear kernel for PCDS. This result is based on method reduce-or-refine,
which consists of two operations: reduce and refine. The kernelization algorithm, firstly,
computes a region decomposition from an approximated connected dominating set.
And then, it checks the structure of each region. If there are two many copies of a par-
ticular structure in the region, then removing some vertex is safe for the problem. It is
the reduce operation, which can reduce the graph. Otherwise, it turns to pay attention
to a smaller region which contains many vertices and no particular structure mentioned
above. This is the refine operation. The process is repeated until each region looks simple
and is easy to deal with. Later, based on some new observations, Gu et al. [80] proposed
a set of similar reduction rules for connected dominating sets. Combining with refined
kernel analysis, they improved the kernel to 413k. Later, using similar method, Luo et al.
[81] obtained a smaller kernel of 130k by new reductions and careful kernel analysis.

There some researchers are interested in kernelization of the Connected Dominat-
ing Set (CDS) problem in special graphs. For instance, Misra et al. [82] considered the
graphs with no little cycles, and proved that, when the given graph contains cycles of
length smaller than 7, then there is no polynomial kernel for CDS (assuming the Polyno-
mial Hierarchy does not collapse to the third level). Furthermore, they showed a kerneli-
zation algorithm for CDS on graphs with no cycle of length smaller than 7. They colored
the vertices by red, white or black, developed some simple reduction rules, and got an
O(k3)-vertex kernel finally. Based on refined kernel analysis, Li et al. [83] simplified the
algorithm and obtained a small kernel ( O(k2) ) for this problem.

The Dominating Set problems mentioned above are respected to vertex-domination.
There is another kind of dominating problems: Edge dominating Set, which is respected
to the edge-domination.

Definition 5  Edge Dominating Set (EDS): Given a graph G = (V ,E) and an integer
parameter k, is there a subset E∗ ⊆ E of at most k edges such that {u, v} ∩ V (E∗) �= ∅ for
all edges {u, v} ∈ E.

From the definition of EDS, we know that if E∗ ⊆ E is an edge dominating set, then
V (E∗) is a Vertex Cover of G. Furthermore, if |E∗| ≤ k , then there exists a vertex cover
of G with size no more than 2k. Thus, enumerating all the minimal vertex covers is
reasonable in the algorithms for EDS and Partial Vertex Cover is introduced. Fernau
et al. [84] found that if any vertex in G\C is with degree no more than 1, where C
is vertex subset of some vertex cover, then finding an edge dominating set of G is
polynomial. Thus, it is reasonable for the algorithm to branch on the vertices in G\C
with degree no less than 2. Based on these two facts, Fernau proposed an O∗(2.6181k)

Page 13 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

-time FPT algorithm for EDS. In 2009, Fomin et al. [68] gave a similar algorithm, but
picked the vertices with degree larger than 2 to branch. And then, they used path
decomposition to handle the rest vertices in G\C . Finally, they got an O∗(2.4181k)-
time FPT algorithm for EDS. In 2011, Xiao et al. developed an O∗(2.3147k) due to
a technique which can deal with remaining graphs with maximum degree 3 in [85].
Furthermore, they showed EDS has a kernel with 2k2 + 2k vertices and O(k3) edges,
which improved the previous results [84] [86]. Through refinement of kerneliza-
tion algorithm in [85] and a bit different analysis, Hagerup [87] got a smaller kernel
(max(1/2k2 + 7/2k , 6k) ) for this problem.

Feedback Vertex Set problem

Feedback Vertex Set (FVS) problem is crucial in dealing with deadlock in operating
systems. Each deadlock situation has a corresponding directional loop in the graph
derived from the operating system. The solution to deadlock is to abort some blocked
processes, and a feedback vertex set corresponds to the processes that should be
aborted [88]. In addition, the FVS problem is often used in designing VLSI chip [89].

Definition 6  Feedback Vertex Set (FVS): Given a graph G = (V ,E) and an integer
parameter k, can we remove at most k vertices so that the resulting graph does not con-
tain any cycles?

Raman et al. proposed an O∗(max{12k , (4 log k)k}) algorithm for FVS problem [90],
improved the previous O∗((2k + 1)k)-time algorithm. They proved that, for an undi-
rected n-vertices graph with degree no less than three, if there is a feedback vertex set
with size no more than c

√
n , then the length of any cycle in the graph is at most 12 (c

is a constant).
Kanj et al. proposed an O∗((2 log k + 2 log log k + 18)k) [91]-time algorithm for FVS.

The algorithm applies an operation called short-cut repeatedly on the graph G, which led
to no vertex with degree 1 and the degree-2 vertices only exist in the cycle with length of
3 in the graph. On the reduced graph, a quasi-shortest cycle C with length l can be found
in time O(n2) , which is close to the shortest cycle. When the length l of C satisfied cer-
tain conditions, then branch on C and update k, F and G accordingly. Later, Dehne et al.
[92] Proposed an O∗(2O(k))-time algorithm for FVS, which uses iterative compression
technique. They used some reduction rules to simplify problem instances. These rules
are applied so that all the vertices in the graph have degree at least three.

Chen et al. proposed two algorithms with O∗(5k) respectively for the FVS problem
on un-weighted graph [93]. Their method also used iterative compression technology,
which differs from other papers in that they proposed a new recursive process and intro-
duced an subproblem (Disjoint FVS, see Fig. 4). They found a implicit parameter (the
number of trees in the solution), which is the key point that could improve the previous
algorithms. Cao et al. [94] provided an O∗(3.83k)-time algorithm for FVS. The frame-
work of it is almost the same as that of [93]. But, they found that Disjoint FVS is polyno-
mial-time solvable when the degree of each vertex in the graph is no more than 3.

Page 14 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

Kociumaka et al. proposed a new deterministic O∗(3.619k)-time algorithm for FVS
[95]. The main idea of their algorithm is similar to that of the algorithm proposed by
Cao et al. Their contribution for the improvement of the algorithm is due to a new
and simple reduction rule. Furthermore, they developed a set of more complicated
branching rules, which can achieve an algorithm with upper bound O∗(3.592k).

Recently, Cao designed smart O∗(8k)-time algorithm for FVS [96]. His algorithm is a
naive greedy branching algorithm, which always branches on an undecided vertex with
the largest degree. The algorithm analysis is based on the following two facts: the one is
that none of the vertices’ degree in the algorithm increases; the other is that there is no
vertex in the graph with degree ≤ 2.

For kernelization of the FVS problem, Burrage et al. proposed a kernel of size O(k11)
for FVS on undirected graphs [97]. Their algorithm calculates the specific structure map
of problem instances in polynomial time and defines some polynomial-time data reduc-
tion rules for these specific structures. Bodlaender et al. considered the FVS problem
on un-weighted undirected graphs and gave a kernel of size O(k3) [98]. Their algorithm
is divided into two steps. In the first step, they used existed approximation algorithms
(with ratio of 2) to find a feedback vertex set. The second step consists of several simple
reduction rules. Based on Sun Flower Lemma, Thomasse [99] proposed a simple and
novel 4k2-vertex kernelization algorithm for FVS.

For fvs on planar graphs, Bodlaender et al. proposed kernelization algorithm with lin-
ear kernel with size of 112k [100]. They proposed a novel notion, the bases of induced
subgraphs, and used it to testify if the reduction rules they used is right or not. It is
worthy to mention that all the rules in kernelization are local, and which are applied only
on specific subgraphs. Abu-khzam et al. improved this kernel to 97k [101]. Later, Xiao
et al. obtained a kernel with size of 29k for the planar FVS problem [102]. The improve-
ment is mainly due to a different kernel analysis based on the properties of planar
graphs. Bonamy et al. proposed a kernel of size 14k for fvs on planar graphs [103]. They
proposed some new reduction rules to simplify the problem instances. The most impor-
tant contribution they made was the application of region decomposition technology in
kernel size analysis. Later, they revised the kernel size to 13k in the journal version [104].

Covering problems

Covering problems are generally such problems where we aim to find a subset of given
elements to hit all or a partial of some specific structures. These problems have sig-
nificant applications in the fields of process analysis, computational biology, network

Fig. 4  An example of Disjoint FVS

Page 15 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

address selection and circuit design. In this part, we will overview the parameterized
algorithms for Vertex Cover and Hyperplane Cover. A vertex cover in a graph is a sub-
set of vertices such that every edge in the graph has at least one of its endpoints in the
subset.

Definition 7  Vertex Cover: Given a graph G = (V ,E) and an integer parameter k, does
G have a vertex cover of size at most k?

Buss proposed a trivial O∗(2k)-time algorithms in [105]. Later, almost all the FPT algo-
rithms for Vertex Cover are based on some reduction rules and Bounded Search Trees
method. Figure 5 shows a reduction rule, which handles the degree-2 vertex in the case
that the two neighbors of it are not adjacent. There are a lot of improvements focusing
on improving the exponent 2k (see Table 4 of the research history of parameterized algo-
rithms for Vertex Cover).

Balasubramanian et al., depending on Bounded Search Trees method, gave an
O∗(1.324718k)-time algorithm [106]. Later, Downey et al. slightly improved it to
O∗(1.31951k) [107]. Niedermeier et al. developed an O∗(1.129175k)-time FPT algorithm
for Vertex Cover. They proposed a general technique for polynomial factors in which the
complexity of the algorithm above can be removed from the dominating term. Nieder-
meier and Rossmanith got a new upper bound of O∗(1.29175k) [108].

Chen et al. [109], based on several simple new reduction rules, proposed an
O∗(1.2852k)-time algorithm for Vertex Cover. They used kernelization as a preprocesses
for the FPT algorithm. According to a theorem of Nemhauser and Trotter [111], if some
instance admits a vertex cover with size no more than k, then there are at most only
2k vertices needed to be concerned. The second is a simple new technique for dealing
with vertices with degree of 2, which avoids complicated case-by-case analysis. At the
same time, they developed a new technology of “iteration branch” to maintain the spe-
cial effective of the graph.

Fig. 5  An example of local reduction for Vertex Cover

Table 4  Research history of FPT algorithms for Vertex Cover

Year Time complexity References

1993 O
∗(2k) Buss et al. [105]

1998 O
∗(1.324718k) Balasubramanian et al. [106]

1999 O
∗(1.31951k) Downey et al. [107]

1999 O
∗(1.129175k) Niedermeier et al. [108]

2001 O
∗(1.2852k) Chen et al. [109]

2006 O
∗(1.2738k) Chen et al. [110]

Page 16 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

Later, Chen et al. [110] gave an O∗(1.2738k)-time algorithm for vertex cover [110].
Different from the previous way, such as case-by-case branching rules, worst-case-
scenario assumption, they introduced some new techniques, including vertex folding,
amortized analysis. Based on which, their algorithms are simpler and more uniform.
They briefly describe several new and previous technologies, such as general folding,
local amortized analysis and tuples. They developed two types of graph operations: a
generalization of folding operation and a special case of construction operation pro-
posed by Ebengger et al. [112] These two operations allow them to delete some simple
structures from the graph without branching.

For kernelization of vertex cover, there are two algorithms with kernel size of 2k.
They used matching and linear programming respectively. Faisal et al. [113] proposed
an algorithm by Crown Decomposition. But the kernel size of it is 3k. Through deep
analysis of the crown decomposition for vertex cover, Li et al. improved the exist-
ing crown decomposition technique. The central idea of this method is, using deeper
local search, try to find and delete all the crowns from the given graph. After the
improved rule applied, the graph becomes a disjoint set of odd cycles and a subgraph
having a perfect matching. It is easy to verify that all the crown structures have been
removed from the given graph and a kernel with size of 2k exists [114].

Definition 8  Hyperplane Cover: Given n points in d-dimensional Euclidean space and
an integer k, does there exist k hyperplanes covering all the points.

Langerman and Morin [115] proposed an O∗(kdk+d)-time algorithm by Bounded
Search Trees method. Later, based on simple observation, Wang et al. [116] provided
a similar algorithm in O∗(k(d−1)k/1.3k) time. The improvement is mainly due to an
interesting time complexity analysis. When d = 2 , Hyperplane Cover problem is
exactly the Line Cover problem. For the Line Cover problem, besides the algorithms
mention above, Langerman and Morin proposed a O∗((k/2.2)2k)-time algorithm.
Recently, by taking Szemeredi-Trotter-type incidence bounds and non-parameterized
O(2n)-algorithm for Curve Cover (a generalization of Line Cover), Afshani et al. [117]
developed an FPT algorithm for Hyperplane Cover (in R3 ) in time O∗((Ck2/logk1/5)k)
and an O∗((Ck/logk)k)-time algorithm for Line Cover.

Packing and Matching problems

Packing and matching problems are classical problems in combinatorial optimization.
Using parameterized algorithm to improve the results not only has great theoreti-
cal significance, but also has a significant impact on the actual industry, such as code
optimization and scheduling. In practical applications, matching and packing prob-
lems are also classified, including 3-Set Packing, 3-D Matching, P2-Packing and Edge
Disjoint Triangle Packing.

Definition 9  P2 Packing: Given a simple undirected graph G and an integer k, does
there exists k P2 s in G (a P2 is a path with length 2) such that no two P2 s share a common
vertex?

Page 17 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

Prieto and Sloper [118] used a set of reduction rules based on crown decomposition
to obtain a kernel with size of 15k for the P2-Packing problem. Later, some researcher
followed this work, and used local search to find larger P2-Packing (see Fig. 6).

Wang et al. [119] proposed two novel concepts: double crown decomposition and
fat crown decomposition (see Figs. 7 and 8). Based on these two decompositions, they
got a kernel for P2 Packing with size of 7k. In addition, on the basis of this new ker-
nelization algorithm, they obtained an FPT algorithm in time O∗(17.66k) . Through
deep analysis of the relationship between the vertices not in P2-packing and the ver-
tices in P2-packing, they realized that the number of vertices not in P2-packing was
reduced while the size of P2-packing increased. Chen et al. [78] used the concept of
combinatorial duality to transform the kernel of the packing problem and the cover-
ing problem. They proposed a kernelization algorithm for P2-packing with kernel size
of 6k. Their algorithm first found a non-expandable P2-packing and then optimized it
according to the five rules they gave.

Fig. 6  Two examples of finding larger P2-packing by local search

Fig. 7  An example of fat crown with 3 head vertices

Fig. 8  An example of double crown with 3 head vertices

Page 18 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

Li et al. [120] considered the kernelization algorithm for the P2-Packing problem and
obtained a 5k kernel by Deeper Local Search method. Figure 9 shows an example of the
process of deeper local search. Based on previous algorithms, they proposed a more sys-
tematic and comprehensive local search method, which is a powerful tool to find more
crowns.

Definition 10  r-D Matching: Given a set S of n r-tuples and an integer k, is there a set
S∗ ⊆ S consists of no less than k many r-tuples such that there is no common element
between any two r-tuples in S∗.

Definition 11  Weighted r-D Matching (wr dm): Given a set S of n weighted r-tuples
and an integer k, is there a set S∗ ⊆ S with weight value no less than k such that there is
no common element between any two r-tuples in S∗.

Definition 12  r-Set Packing: Given a set S of n r-sets and an integer k , is there a set
S∗ ⊆ S consists of no less k r-sets such that there is no common element between any
two sets in S∗.

Definition 13  Weighted r-Set Packing (wr sp): Given a set S of n weighted r-sets and
an integer k, is there a set S∗ ⊆ S with weight value at least k so that there is no common
element between any two sets in S∗.

When r = 3 , the problems defined above are NP-hard. Chen et al. proposed an
O∗((5.7k)k)-time algorithm for 3-D Matching. They greatly improved the previous trivial
algorithm with time complexity of O((3k)!(3k)9k+1) , which was proposed by Downey
et al. [121]. They first designed a non-deterministic algorithm, and then used the deter-
ministic simulation stage to eliminate the non-determinism of the algorithm. The
method they used in the deterministic simulation phase was to calculate the number of
guessed binary bits first, and then enumerate and check all the possibilities.

Fellows et al. proposed an FPT algorithm for r-D Matching and r-Set Packing. The
running time of them are O∗(2(c+1)rk) and O∗(2O((c+1)rk) respectively [122], and the algo-
rithm for r-Set Packing was obtained by adjusting the algorithm for r-D Matching. They
built a common framework to discover and exploit problem kernels with small size. In
this framework, they use the techniques color coding and dynamic programming to
design PFT algorithms. The method they proposed is very flexible, and the smaller con-
stants in the exponent can be achieved by adjusting the algorithm.

Chen et al. improved the deterministic and randomized algorithms for some pack-
ing and matching problems. Using the Divide-and-Conquer, they proposed a rand-
omized algorithm with O∗(4k) [123]. In order to implement the improved deterministic

Fig. 9  An example of finding larger P2-packing by Deeper Local Search

Page 19 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

algorithm, they proposed a new (n, k)-family perfect hash function. Combining with
color coding technology, they improved the deterministic algorithms for the following
three problems. The first one is for k-path, which runs in O∗(4k+o(k))-time; the second
one is for 3-D Matching, the time complexity of which is O∗(2.803k) ; the last one is for
3-Set Packing, whose running time is O∗(43k+o(k)) [123]. They proposed a new method
called iterative extension, which is based on the integration and improvement of known
techniques including greedy localization, color coding, and dynamic programming.
They gave a deterministic construction of scheme of the k-color coding and replaced
the enumeration phase of the greedy location method with a more efficient enumeration
phase using improved color coding and dynamic programming methods.

Later, Wang et al. considered w3sp. They, by using color coding technique, obtained
an O∗(10.63k)-time deterministic algorithm [124]. Furthermore, they pointed out that
the bound could be improved to O∗(7.563k) by combining the random divide-and-con-
quer method.

Jia et al. proposed an O∗((5.7k)k)-time algorithm for 3-Set Packing [125]. They first
designed a non-deterministic algorithm and then used intelligent “deterministic tech-
niques” to transform non-deterministic algorithms into effective deterministic algo-
rithms for r-Set Packing problem. Based on the modified dynamic programming and
color-coding, Wang et al. obtained an improved FPT algorithm for weighted r-Set Pack-
ing, which runs in time O∗(12.8rk) [126]. They also proposed an FPT algorithm with run-
ning time O∗(12.8(r−1)k) for wr dm.

Chen et al. proposed an O∗(4(r−1)k+o(k))-time deterministic algorithm for wr dm
[127]. Their algorithm further analyzed the structure of the problem, and combined
(n, k)-universal set and Divide-and-Conquer method. Applying this algorithm to
unweighted 3-D Matching problem, they obtained an O∗(16k+o(k))-time deterministic
algorithm. They also gave a deterministic FPT algorithm for wr sp which runs in time
O∗(2(2r−1)k+o(k)) . Furthermore, this algorithm can solve the unweighted 3-Set Packing in
O∗(32k+o(k)) time.

For 3-Set Packing, Wang et al. [128] proposed a refined parameterized algorithm
which runs in time O∗(3.533k) . The improvement is mainly due to two sub-algorithms:
one can deal with the instances in the case that there is one known element in each 3-set
of the solution; the other can deal with the instances in the case that there are at least
two known elements in each 3-set of the solution. Furthermore, they can invert one gen-
eral instance into two instances mention above.

Definition 14  Edge Disjoint Triangle Packing (edtp): Given a graph G = (V ,E) and a
non-negative integer k, the question is whether G contain k many edge disjoint triangles.

Mathieson et al. [129] proposed a kernelization algorithm resulting in a 4k-kernel for
the EDTP problem. The algorithm use a modified Crown Decomposition method, in
which the matching is between an independent set and a set of edge (not vertices). Fig-
ure 10 shows an example of such an modified crown. Yang [130] proposed an algorithm
with a kernel size of 3.5k for the EDTP problem. He first found a maximum triangle
packing with kernelization technology, containing no more than 3k vertices, then bound
the size of the rest of the graph by using reduction rules. Lin et al. [131] further studied

Page 20 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

the edge disjoint triangle packing problem and obtained a (3+ ε)k kernel. They used
Divide-and-Conquer techniques in the algorithm, so that some parts of the graph could
be solved independently, which improving the analysis process. They proposed a prop-
erty called p-property, where p is a non-negative integer constant.

Conclusion
Aiming at providing a reference for researchers interested in parameterized algorithms
or engineers in practical applications, we surveyed the parameterized complexity of
numerous fundamental NP-hard problems, including MaxSAT, Spanning Trees, Domi-
nating Set, Feedback Vertex Set, Covering, Matching, Packing problems, etc. These
problems have significant applications in a wide range of industrial fields. The prob-
lems discussed in the paper are selected due to their influence, representativeness, and
significance.
Acknowledgements
The authors would like to thank the reviewers for their valuable comments which improve the quality of this paper
dramatically.

Authors’ contributions
Everyone in the author list has participated in the writing of this article, reviewed and revised the article reasonably. All
authors read and approved the final manuscript.

Funding
This work was supported by National Natural Science Foundation of China (Nos. 61872048, 61772454, 61811530332,
61702491, 61702557).

Competing interests
No competing interests.

Author details
1 Department of Computer and Communication Engineering, Changsha University of Science and Technology, Chang-
sha, China. 2 Saarland University, Saarbrücken, Germany. 3 School of Systems Engineering, University of Reading, Reading,
UK. 4 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul,
South Korea.

Received: 7 January 2020 Accepted: 15 April 2020

References
	 1.	 Ghrabat MJJ, Ma G, Maolood IY, Alresheedi SS, Abduljabbar ZA (2019) An effective image retrieval based on opti-

mized genetic algorithm utilized a novel svm-based convolutional neural network classifier. Hum Centr Comput
Inform Sci 9:31. https​://doi.org/10.1186/s1367​3-019-0191-8

	 2.	 Darwish A, Hassanien AE, Das S (2020) A survey of swarm and evolutionary computing approaches for deep learn-
ing. Artif Intell Rev 53(3):1767–1812. https​://doi.org/10.1007/s1046​2-019-09719​-2

	 3.	 Chen Y, Wang J, Liu S, Chen X, Xiiong J, Xie J, Yang K (2019) The multi-scale fast correlation filtering tracking algo-
rithm based on a features fusion model. Concurr Comput Pract Exp. https​://doi.org/10.1002/cpe.5533

Fig. 10  An example of modified crown for EDTP

https://doi.org/10.1186/s13673-019-0191-8
https://doi.org/10.1007/s10462-019-09719-2
https://doi.org/10.1002/cpe.5533

Page 21 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

	 4.	 Yu F, Liu L, Xiao L, Li K, Cai S (2019) A robust and xed-time zeroing neural dynamics for computing time-variant
nonlinear equation using a novel nonlinear activation function. Neurocomputing 350:108–116. https​://doi.
org/10.1016/j.neuco​m.2019.03.053

	 5.	 Rostami SMH, Sangaiah AK, Wang J, Liu X (2019) Obstacle avoidance of mobile robots using modified artificial
potential field algorithm. EURASIP J Wireless Comm Netw 2019:70. https​://doi.org/10.1186/s1363​8-019-1396-2

	 6.	 Danial SN, Smith J, Veitch B, Khan FI (2019) On the realization of the recognition-primed decision model for artifi-
cial agents. Hum Centr Comput Inform Sci 9:36. https​://doi.org/10.1186/s1367​3-019-0197-2

	 7.	 Cohen J (2005) Computer science and bioinformatics. Commun ACM 48(3):72–78. https​://doi.org/10.1145/10476​
71.10476​72

	 8.	 Toro-Dominguez D, Villatoro-Garca JA, Martorell-Marugan J, Roman-Montoya Y, Alarcon-Riquelme ME, Carmona-
Saez P (2020) A survey of gene expression meta-analysis: methods and applications. Briengs Bioinf. https​://doi.
org/10.1093/bib/bbaa0​19

	 9.	 Naimi AI, Westreich DJ (2014) Big data: a revolution that will transform how we live, work, and think. Oxford Uni-
versity Press, Oxford

	 10.	 Liao Z, Zhang R, He S, Zeng D, Wang J, Kim H (2019) Deep learning-based data storage for low latency in data
center networks. IEEE Access 7:26411–26417. https​://doi.org/10.1109/ACCES​S.2019.29017​42

	 11.	 Wang J, Gu X, Liu W, Sangaiah AK, Kim H (2019) An empower Hamilton loop based data collection algorithm with
mobile agent for WSNs. Hum Centr Comput Inform Sci 9:18. https​://doi.org/10.1186/s1367​3-019-0179-4

	 12.	 Xiang L, Shen X, Qin J, Hao W (2018) Discrete multi-graph hashing for large-scale visual search. Neural Process Lett.
https​://doi.org/10.1007/s1106​3-018-9892-7

	 13.	 Wang J, Yang Y, Wang T, Sherratt RS, Zhang J (2020) Big data service architecture: a survey. J Internet Technol
21(2):393–405. https​://doi.org/10.3966/16079​26420​20032​10200​8

	 14.	 Gungor VC, Lu B, Hancke GP (2010) Opportunities and challenges of wireless sensor networks in smart grid. IEEE
Trans Ind Electr 57(10):3557–3564. https​://doi.org/10.1109/TIE.2009.20394​55

	 15.	 Tang Q, Wang K, Song Y, Li F, Park JH (2019) Waiting time minimized charging and discharging strategy based on
mobile edge computing supported by software defined network. IEEE Intern Things J. https​://doi.org/10.1109/
JIOT.2019.29571​24

	 16.	 Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330. https​://doi.
org/10.1016/j.comne​t.2008.04.002

	 17.	 Wang J, Gao Y, Wang K, Sangaiah AK, Lim S-J (2019) An affinity propagation-based self-adaptive clustering method
for wireless sensor networks. Sensors 19(11):2579. https​://doi.org/10.3390/s1911​2579

	 18.	 He S, Xie K, Xie K, Xu C, Wang J (2019) Interference-aware multisource transmission in multiradio and multichannel
wireless network. IEEE Syst J 13(3):2507–2518. https​://doi.org/10.1109/JSYST​.2019.29104​09

	 19.	 Wang W, Deng Z, Wang J (2019) Enhancing sensor network security with improved internal hardware design. Sen-
sors 19(8):1752. https​://doi.org/10.3390/s1908​1752

	 20.	 Nieto A, Rios R (2019) Cybersecurity profiles based on human-centric IoT devices. Hum Centr Comput Inform Sci.
https​://doi.org/10.1186/s1367​3-019-0200-y

	 21.	 Li W, Chen Z, Gao X, Liu W, Wang J (2019) Multimodel framework for indoor localization under mobile edge com-
puting environment. IEEE Intern Things J 6(3):4844–4853. https​://doi.org/10.1109/JIOT.2018.28721​33

	 22.	 Jo D, Kim GJ (2019) Iot + AR: pervasive and augmented environments for “digi-log” shopping experience. Hum
Centr Comput Inform Sci 9:1. https​://doi.org/10.1186/s1367​3-018-0162-5

	 23.	 Li W, Xu H, Li H, Yang Y, Sharma PK, Wang J, Singh S (2019) Complexity and algorithms for superposed data
uploading problem in networks with smart devices. IEEE Intern Things J. https​://doi.org/10.1109/JIOT.2019.29493​
52

	 24.	 Luo Y, Li W, Qiu S (2020) Anomaly detection based latency-aware energy consumption optimization for iot data-
flow services. Sensors 20(1):122. https​://doi.org/10.3390/s2001​0122

	 25.	 Wang J, Gao Y, Zhou C, Sherratt RS, Wang L (2020) Optimal coverage multi-path scheduling scheme with multiple
mobile sinks for WSNs. Comput Mater Continua 62(2):695–711. https​://doi.org/10.32604​/cmc.2020.08674​

	 26.	 Bilal SM, Bernardos CJ, Guerrero C (2013) Position-based routing in vehicular networks: a survey. J Netw Comput
Appl 36(2):685–697. https​://doi.org/10.1016/j.jnca.2012.12.023

	 27.	 Cao D, Zheng B, Ji B, Lei Z, Feng C (2018) A robust distance-based relay selection for message dissemination in
vehicular network. Wireless Netw. https​://doi.org/10.1007/s1127​6-018-1863-4

	 28.	 Cao D, Liu Y, Ma X, Wang J, Ji B, Feng C, Si J (2019) A relay-node selection on curve road in vehicular networks. IEEE
Access 7:12714–12728. https​://doi.org/10.1109/ACCES​S.2019.28929​79

	 29.	 Gao K, Huang S, Han F, Li S, Wu W, Du R (2020) An integrated algorithm for intersection queue length estimation
based on IoT in a mixed trac scenario. Appl Sci 10(6):2078. https​://doi.org/10.3390/app10​06207​8

	 30.	 Alresheedi SS, Lu S, Elaziz MEA, Ewees AA (2019) Improved multiobjective salp swarm optimization for virtual
machine placement in cloud computing. Hum Centr Comput Inform Sci 9:15. https​://doi.org/10.1186/s1367​
3-019-0174-9

	 31.	 He S, Xie K, Zhou X, Semong T, Wang J (2019) Multi-source reliable multicast routing with qos constraints of nfv in
edge computing. Electronics 8:10. https​://doi.org/10.3390/elect​ronic​s8101​106

	 32.	 Tang Q, Changa L, Yang K, Wang K, Wanga J, KumarSharma P (2020) Task number maximization offloading strategy
seamlessly adapted to UAV scenario. Comput Commun 151:19–30. https​://doi.org/10.1016/j.comco​m.2019.12.018

	 33.	 Gu K, Wu N, Yin B, Jia W (2019) Secure data query framework for cloud and fog computing. IEEE Trans Netw Serv
Manag. https​://doi.org/10.1109/TNSM.2019.29418​69

	 34.	 Gu K, Wu N, Yin B, Jia W (2019) Secure data sequence query framework based on multiple fogs. IEEE Trans Emerg
Top Comput. https​://doi.org/10.1109/TETC.2019.29435​24

	 35.	 Loce RP, Bernal EA, Wu W, Bala R (2013) Computer vision in roadway transportation systems: a survey. J Electr Imag
22(4):041121. https​://doi.org/10.1117/1.JEI.22.4.04112​1

	 36.	 Zhang J, Xie Z, Sun J, Zou X, Wang J (2020) A cascaded r-cnn with multiscale attention and imbalanced samples
for traffic sign detection. IEEE Access. https​://doi.org/10.1109/ACCES​S.2020.29723​38

https://doi.org/10.1016/j.neucom.2019.03.053
https://doi.org/10.1016/j.neucom.2019.03.053
https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1186/s13673-019-0197-2
https://doi.org/10.1145/1047671.1047672
https://doi.org/10.1145/1047671.1047672
https://doi.org/10.1093/bib/bbaa019
https://doi.org/10.1093/bib/bbaa019
https://doi.org/10.1109/ACCESS.2019.2901742
https://doi.org/10.1186/s13673-019-0179-4
https://doi.org/10.1007/s11063-018-9892-7
https://doi.org/10.3966/160792642020032102008
https://doi.org/10.1109/TIE.2009.2039455
https://doi.org/10.1109/JIOT.2019.2957124
https://doi.org/10.1109/JIOT.2019.2957124
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.3390/s19112579
https://doi.org/10.1109/JSYST.2019.2910409
https://doi.org/10.3390/s19081752
https://doi.org/10.1186/s13673-019-0200-y
https://doi.org/10.1109/JIOT.2018.2872133
https://doi.org/10.1186/s13673-018-0162-5
https://doi.org/10.1109/JIOT.2019.2949352
https://doi.org/10.1109/JIOT.2019.2949352
https://doi.org/10.3390/s20010122
https://doi.org/10.32604/cmc.2020.08674
https://doi.org/10.1016/j.jnca.2012.12.023
https://doi.org/10.1007/s11276-018-1863-4
https://doi.org/10.1109/ACCESS.2019.2892979
https://doi.org/10.3390/app10062078
https://doi.org/10.1186/s13673-019-0174-9
https://doi.org/10.1186/s13673-019-0174-9
https://doi.org/10.3390/electronics8101106
https://doi.org/10.1016/j.comcom.2019.12.018
https://doi.org/10.1109/TNSM.2019.2941869
https://doi.org/10.1109/TETC.2019.2943524
https://doi.org/10.1117/1.JEI.22.4.041121
https://doi.org/10.1109/ACCESS.2020.2972338

Page 22 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

	 37.	 Zhang J, Wang W, Lu C, Wang J, Sangaiah AK (2019) Lightweight deep network for traffic sign classification. Ann
Telecommun. https​://doi.org/10.1007/s1224​3-019-00731​-9

	 38.	 Imran M, Durad MH, Khan FA, Derhab A (2019) Reducing the effects of dos attacks in software defined networks
using parallel flow installation. Hum Centr Comput Inform Sci 9:16. https​://doi.org/10.1186/s1367​3-019-0176-7

	 39.	 Xiang L, Guo G, Yu J, Sheng V, Yang P (2020) A convolutional neural network-based linguistic steganalysis for
synonym substitution steganography. Math Biosci Eng 17:1041–1058. https​://doi.org/10.3934/mbe.20200​55

	 40.	 Zhang P, Wang J (2019) On enhancing network dynamic adaptability for compressive sensing in wsns. IEEE Trans
Comm 67(12):8450–8459. https​://doi.org/10.1109/TCOMM​.2019.29389​50

	 41.	 Yu F, Liu L, He B, Huang Y, Shi C, Cai S, Song Y, Du S, Wan Q (2019) Analysis and FPGA realization of a novel 5D
hyperchaotic four-wing memristive system, active control synchronization, and secure communication applica-
tion. Complexity 2019:4047957. https​://doi.org/10.1155/2019/40479​57

	 42.	 Yuan C, Xia Z, Sun X, Wu QJ (2019) Deep residual network with adaptive learning framework for fingerprint live-
ness detection. IEEE Trans Cogn Dev Syst. https​://doi.org/10.1109/TCDS.2019.29203​64

	 43.	 Zhang J, Zhong S, Wang T, Chao H-C, Wang J (2020) Blockchain-based systems and applications: a survey. J Intern
Technol 21(1):1–14. https​://doi.org/10.3966/16079​26420​20012​10100​1

	 44.	 Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Springer, London. https​://doi.
org/10.1007/978-1-4471-5559-1

	 45.	 Xu C, Li W, Yang Y, Chen J, Wang J (2019) Resolution and domination: An improved exact maxsat algorithm. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pp. 1191–1197. https​://doi.org/10.24963​/ijcai​.2019/166

	 46.	 Yang Y, Guo J (2018) Parameterized complexity of voter control in multi-peaked elections. Theory Comput Syst
62(8):1798–1825. https​://doi.org/10.1007/s0022​4-018-9843-8

	 47.	 Ganian R, Kanj IA, Ordyniak S, Szeider S (2018) Parameterized algorithms for the matrix completion problem. In:
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, pp. 1642–1651. http://proce​eding​s.mlr.press​/v80/gania​n18a.html

	 48.	 Grohe M (2001) The parameterized complexity of database queries. In: Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California, USA,
pp. 82–92. https​://doi.org/10.1145/37555​1.37556​4

	 49.	 Yang Y, Wang J (2018) Parameterized complexity of multi-winner determination: More effort towards fixed-
parameter tractability. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pp. 2142–2144. http://dl.acm.org/citat​ion.
cfm?id=32380​99

	 50.	 Chen Y, Goebel R, Lin G, Su B, Xu Y, Zhang A (2019) An improved approximation algorithm for the minimum
3-path partition problem. J Comb Optim 38(1):150–164. https​://doi.org/10.1007/s1087​8-018-00372​-z

	 51.	 Yang Y, Shrestha YR, Li W, Guo J (2018) On the kernelization of split graph problems. Theor. Comput. Sci. 734:72–82.
https​://doi.org/10.1016/j.tcs.2017.09.023

	 52.	 Braunstein A, Mézard M, Zecchina R (2005) Survey propagation: an algorithm for satisfiability. Random Struct Algor
27(2):201–226. https​://doi.org/10.1002/rsa.20057​

	 53.	 Battiti R, Protasi M (1997) Reactive search, a history-sensitive heuristic for MAX-SAT. ACM J Exp Algor 2:2. https​://
doi.org/10.1145/26421​6.26422​0

	 54.	 Gallaire H, Minker J, Nicolas J-M (1989) Logic and databases: a deductive approach. In: Readings in Artificial Intel-
ligence and Databases, pp. 231–247. New York: Elsevier

	 55.	 Hansen P, Jaumard B (1990) Algorithms for the maximum satisfiability problem. Computing 44(4):279–303. https​://
doi.org/10.1007/BF022​41270​

	 56.	 Nguyen TA, Perkins WA, Laffey TJ, Pecora D (1985) Checking an expert systems knowledge base for consistency
and completeness. In: Joshi AK (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence, pp. 375–378

	 57.	 Raman V, Ravikumar B, Rao SS (1998) A simplified NP-complete MAXSAT problem. Inform Process Lett 65(1):1–6.
https​://doi.org/10.1016/S0020​-0190(97)00223​-8

	 58.	 Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–215. https​://doi.
org/10.1145/32103​3.32103​4

	 59.	 Downey RG, Fellows MR (1995) Fixed-parameter tractability and completeness I: basic results. SIAM J Comput
24(4):873–921. https​://doi.org/10.1137/S0097​53979​22282​28

	 60.	 Niedermeier R, Rossmanith P (1999) New upper bounds for MaxSat. In: ICALP, pp. 575–584. https​://doi.
org/10.1007/3-540-48523​-6_54

	 61.	 Bansal N, Raman V (1999) Upper bounds for MaxSAT: Further improved. In: ISAAC, pp. 247–258. https​://doi.
org/10.1007/3-540-46632​-0_26

	 62.	 Chen J, Kanj IA (2004) Improved exact algorithms for Max-Sat. Discr Appl Math 142(1–3):17–27. https​://doi.
org/10.1016/j.dam.2003.03.002

	 63.	 Bliznets I, Golovnev A (2012) A new algorithm for parameterized MAX-SAT. In: International Symposium on Param-
eterized and Exact Computation Springer, pp. 37–48. https​://doi.org/10.1007/978-3-642-33293​-7_6

	 64.	 Xu C, Chen J, Wang J (2019) Resolution and linear CNF formulas: Improved (n, 3)-maxsat algorithms. Theor Com-
put Sci 774:113–123. https​://doi.org/10.1016/j.tcs.2016.08.008

	 65.	 Li W, Xu C, Wang J, Yang Y (2017) An improved branching algorithm for (n, 3)-MaxSAT based on refined observa-
tions. In: International Conference on Combinatorial Optimization and Applications, pp. 94–108. https​://doi.
org/10.1007/978-3-319-71147​-8_7

	 66.	 Prieto-Rodriguez E, Sloper C (2005) Reducing to independent set structure - the case of k-internal spanning tree.
Nordic J Comput 12(3):308–318. https​://doi.org/10.5555/11458​84.11458​90

	 67.	 Binkele-Raible D, Fernau H, Gaspers S, Liedloff M (2013) Exact and parameterized algorithms for max internal span-
ning tree. Algorithmica 65(1):95–128. https​://doi.org/10.1007/s0045​3-011-9575-5

https://doi.org/10.1007/s12243-019-00731-9
https://doi.org/10.1186/s13673-019-0176-7
https://doi.org/10.3934/mbe.2020055
https://doi.org/10.1109/TCOMM.2019.2938950
https://doi.org/10.1155/2019/4047957
https://doi.org/10.1109/TCDS.2019.2920364
https://doi.org/10.3966/160792642020012101001
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.24963/ijcai.2019/166
https://doi.org/10.1007/s00224-018-9843-8
http://proceedings.mlr.press/v80/ganian18a.html
https://doi.org/10.1145/375551.375564
http://dl.acm.org/citation.cfm?id=3238099
http://dl.acm.org/citation.cfm?id=3238099
https://doi.org/10.1007/s10878-018-00372-z
https://doi.org/10.1016/j.tcs.2017.09.023
https://doi.org/10.1002/rsa.20057
https://doi.org/10.1145/264216.264220
https://doi.org/10.1145/264216.264220
https://doi.org/10.1007/BF02241270
https://doi.org/10.1007/BF02241270
https://doi.org/10.1016/S0020-0190(97)00223-8
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/3-540-48523-6_54
https://doi.org/10.1007/3-540-48523-6_54
https://doi.org/10.1007/3-540-46632-0_26
https://doi.org/10.1007/3-540-46632-0_26
https://doi.org/10.1016/j.dam.2003.03.002
https://doi.org/10.1016/j.dam.2003.03.002
https://doi.org/10.1007/978-3-642-33293-7_6
https://doi.org/10.1016/j.tcs.2016.08.008
https://doi.org/10.1007/978-3-319-71147-8_7
https://doi.org/10.1007/978-3-319-71147-8_7
https://doi.org/10.5555/1145884.1145890
https://doi.org/10.1007/s00453-011-9575-5

Page 23 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29 	

	 68.	 Fomin FV, Gaspers S, Saurabh S, Stepanov AA (2009) On two techniques of combining branching and treewidth.
Algorithmica 54(2):181–207. https​://doi.org/10.1007/s0045​3-007-9133-3

	 69.	 Li W, Cao Y, Chen J, Wang J (2017) Deeper local search for parameterized and approximation algorithms for maximum
internal spanning tree. Inf Comput 252:187–200. https​://doi.org/10.1016/j.ic.2016.11.003

	 70.	 Gutin GZ, Razgon I, Kim EJ (2009) Minimum leaf out-branching and related problems. Theor Comput Sci 410(45):4571–
4579. https​://doi.org/10.1016/j.tcs.2009.03.036

	 71.	 Cohen N, Fomin FV, Gutin GZ, Kim EJ, Saurabh S, Yeo A (2010) Algorithm for finding k-vertex out-trees and its application
to k-internal out-branching problem. J Comput Syst Sci 76(7):650–662. https​://doi.org/10.1016/j.jcss.2010.01.001

	 72.	 Fomin FV, Grandoni F, Lokshtanov D, Saurabh S (2012) Sharp separation and applications to exact and parameterized
algorithms. Algorithmica 63(3):692–706. https​://doi.org/10.1007/s0045​3-011-9555-9

	 73.	 Zehavi M (2013) Algorithms for k-internal out-branching. In: 8th International Symposium on Parameterized and Exact
Computation, pp. 361–373. https​://doi.org/10.1007/978-3-319-03898​-8_30

	 74.	 Alber J, Bodlaender HL, Fernau H, Kloks T, Niedermeier R (2002) Fixed parameter algorithms for DOMINATING SET and
related problems on planar graphs. Algorithmica 33(4):461–493. https​://doi.org/10.1007/s0045​3-001-0116-5

	 75.	 Kanj IA, Perkovic L (2002) Improved parameterized algorithms for planar dominating set. In: 27th International Sympo-
sium on Mathematical Foundations of Computer Science, pp. 399–410. https​://doi.org/10.1007/3-540-45687​-2_33

	 76.	 Alber J, Fellows MR, Niedermeier R (2004) Polynomial-time data reduction for dominating set. J ACM 51(3):363–384. https​
://doi.org/10.1145/99030​8.99030​9

	 77.	 Alber J, Fan H, Fellows MR, Fernau H, Niedermeier R, Rosamond FA, Stege U (2005) A refined search tree technique for
dominating set on planar graphs. J Comput Syst Sci 71(4):385–405. https​://doi.org/10.1016/j.jcss.2004.03.007

	 78.	 Chen J, Fernau H, Shaw P, Wang J, Yang Z (2012) Kernels for packing and covering problems - (extended abstract).
In: Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, pp. 199–211. https​://doi.
org/10.1007/978-3-642-29700​-7_19

	 79.	 Lokshtanov D, Mnich M, Saurabh S (2009) Linear kernel for planar connected dominating set. In: Proceedings of Theory
and Applications of Models of Computation. Lecture Notes in Computer Science, vol. 5532, pp. 281–290. https​://doi.
org/10.1007/978-3-642-02017​-9_31

	 80.	 Gu Q, Imani N (2010) Connectivity is not a limit for kernelization: Planar connected dominating set. In: Latin American
Symposium on Theoretical Informatics, pp. 26–37. https​://doi.org/10.1007/978-3-642-12200​-2_4

	 81.	 Luo W, Wang J, Feng Q, Guo J, Chen J (2011) An improved kernel for planar connected dominating set. In: Proceedings of
Theory Applications of Models of Computation-conference. Lecture Notes in Computer Science, vol. 6648, pp. 70–81.
https​://doi.org/10.1007/978-3-642-20877​-5_8

	 82.	 Misra N, Philip G, Raman V, Saurabh S (2014) The kernelization complexity of connected domination in graphs with (no)
small cycles. Algorithmica 68(2):504–530. https​://doi.org/10.1007/s0045​3-012-9681-z

	 83.	 Li W, Feng Q, Chen J, Hu S (2017) Improved kernel results for some FPT problems based on simple observations. Theor
Comput Sci 657:20–27. https​://doi.org/10.1016/j.tcs.2016.06.012

	 84.	 Fernau H (2006) Edge dominating set: Efficient enumeration-based exact algorithms. In: International Workshop on
Parameterized and Exact Computation, pp. 142–153. https​://doi.org/10.1007/11847​250_13

	 85.	 Xiao M, Kloks T, Poon S (2013) New parameterized algorithms for the edge dominating set problem. Theor Comput Sci
511:147–158. https​://doi.org/10.1016/j.tcs.2012.06.022

	 86.	 Rodríguez EP (2005) Systematic kernelization in FPT algorithm design. PhD thesis, The University of Newcastle
	 87.	 Hagerup T (2012) Kernels for edge dominating set: Simpler or smaller. In: Rovan B, Sassone V, Widmayer P (eds) 37th

International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science,
vol. 7464, pp. 491–502 (2012). https​://doi.org/10.1007/978-3-642-32589​-2_44

	 88.	 Silberschatz A, Galvin PB, Gagne G (2005) Operating system concepts. Wiley, New York
	 89.	 Festa P, Pardalos PM, Resende MGC (2009) Feedback set problems. In: Floudas CA, Pardalos PM (eds.) Encyclopedia of

Optimization, Second Edition, pp. 1005–1016. https​://doi.org/10.1007/978-0-387-74759​-0_178
	 90.	 Raman V, Saurabh S, Subramanian CR (2002) Faster fixed parameter tractable algorithms for undirected feedback vertex

set. In: 13th International Symposium on Algorithms and Computation, pp. 241–248. https​://doi.org/10.1007/3-540-
36136​-7_22

	 91.	 Kanj IA, Pelsmajer MJ, Schaefer M (2004) Parameterized algorithms for feedback vertex set. In: International Workshop on
Parameterized and Exact Computation, pp. 235–247. https​://doi.org/10.1007/978-3-540-28639​-4_21

	 92.	 Dehne FKHA, Fellows MR, Langston MA, Rosamond FA, Stevens K (2007) An o(2O(k))n3) FPT algorithm for the undirected
feedback vertex set problem. Theory Comput Syst 41(3):479–492. https​://doi.org/10.1007/s0022​4-007-1345-z

	 93.	 Chen J, Fomin FV, Liu Y, Lu S, Villanger Y (2007) Improved algorithms for the feedback vertex set problems. In: 10th Inter-
national Workshop on Algorithms and Data Structures, pp. 422–433. https​://doi.org/10.1007/978-3-540-73951​-7_37

	 94.	 Cao Y, Chen J, Liu Y (2015) On feedback vertex set: new measure and new structures. Algorithmica 73(1):63–86. https​://
doi.org/10.1007/s0045​3-014-9904-6

	 95.	 Kociumaka T, Pilipczuk M (2014) Faster deterministic feedback vertex set. Inform Process Lett 114(10):556–560. https​://
doi.org/10.1016/j.ipl.2014.05.001

	 96.	 Cao Y (2018) A naive algorithm for feedback vertex set. In: 1st Symposium on Simplicity in Algorithms, pp. 1–119. https​://
doi.org/10.4230/OASIc​s.SOSA.2018.1

	 97.	 Burrage K, Estivill-Castro V, Fellows MR, Langston MA, Mac S, Rosamond FA (2006) The undirected feedback vertex set
problem has a poly(k) kernel. In: International Workshop on Parameterized and Exact Computation, pp. 192–202. https​
://doi.org/10.1007/11847​250_18

	 98.	 Bodlaender HL, van Dijk TC (2010) A cubic kernel for feedback vertex set and loop cutset. Theory Comput Syst 46(3):566–
597. https​://doi.org/10.1007/s0022​4-009-9234-2

	 99.	 Thomassé S (2010) A 4k2 kernel for feedback vertex set. ACM Trans Algor 6(2):1–8. https​://doi.org/10.1145/17218​37.17218​
48

	100.	 Bodlaender HL, Penninkx E (2008) A linear kernel for planar feedback vertex set. In: Parameterized and Exact Computa-
tion, Third International Workshop, IWPEC 2008, Victoria, Canada, May 14-16, 2008. Proceedings, pp. 160–171. https​://
doi.org/10.1007/978-3-540-79723​-4_16

https://doi.org/10.1007/s00453-007-9133-3
https://doi.org/10.1016/j.ic.2016.11.003
https://doi.org/10.1016/j.tcs.2009.03.036
https://doi.org/10.1016/j.jcss.2010.01.001
https://doi.org/10.1007/s00453-011-9555-9
https://doi.org/10.1007/978-3-319-03898-8_30
https://doi.org/10.1007/s00453-001-0116-5
https://doi.org/10.1007/3-540-45687-2_33
https://doi.org/10.1145/990308.990309
https://doi.org/10.1145/990308.990309
https://doi.org/10.1016/j.jcss.2004.03.007
https://doi.org/10.1007/978-3-642-29700-7_19
https://doi.org/10.1007/978-3-642-29700-7_19
https://doi.org/10.1007/978-3-642-02017-9_31
https://doi.org/10.1007/978-3-642-02017-9_31
https://doi.org/10.1007/978-3-642-12200-2_4
https://doi.org/10.1007/978-3-642-20877-5_8
https://doi.org/10.1007/s00453-012-9681-z
https://doi.org/10.1016/j.tcs.2016.06.012
https://doi.org/10.1007/11847250_13
https://doi.org/10.1016/j.tcs.2012.06.022
https://doi.org/10.1007/978-3-642-32589-2_44
https://doi.org/10.1007/978-0-387-74759-0_178
https://doi.org/10.1007/3-540-36136-7_22
https://doi.org/10.1007/3-540-36136-7_22
https://doi.org/10.1007/978-3-540-28639-4_21
https://doi.org/10.1007/s00224-007-1345-z
https://doi.org/10.1007/978-3-540-73951-7_37
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.1007/11847250_18
https://doi.org/10.1007/11847250_18
https://doi.org/10.1007/s00224-009-9234-2
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1007/978-3-540-79723-4_16
https://doi.org/10.1007/978-3-540-79723-4_16

Page 24 of 24Li et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:29

	101.	 Abu-Khzam FN, Khuzam MB (2012) An improved kernel for the undirected planar feedback vertex set problem. In: 7th
International Symposium on Parameterized and Exact Computation, pp. 264–273. https​://doi.org/10.1007/978-3-642-
33293​-7_25

	102.	 Xiao M (2014) A new linear kernel for undirected planar feedback vertex set: Smaller and simpler. In: 10th International
Conference on Algorithmic Aspects in Information and Management, pp. 288–298. https​://doi.org/10.1007/978-3-
319-07956​-1_26

	103.	 Bonamy M, Kowalik L (2014) A 14k-kernel for planar feedback vertex set via region decomposition. In: International
Symposium on Parameterized and Exact Computation, pp. 97–109. https​://doi.org/10.1007/978-3-319-13524​-3_9

	104.	 Bonamy M, Kowalik L (2016) A 13k-kernel for planar feedback vertex set via region decomposition. Theor Comput Sci
645:25–40. https​://doi.org/10.1016/j.tcs.2016.05.031

	105.	 Buss JF, Goldsmith J (1993) Nondeterminism within P. SIAM J Comput 22(3):560–572. https​://doi.org/10.1137/02220​38
	106.	 Balasubramanian R, Fellows MR, Raman V (1998) An improved fixed-parameter algorithm for vertex cover. Inf Process Lett

65(3):163–168. https​://doi.org/10.1016/S0020​-0190(97)00213​-5
	107.	 Downey RG, Fellows MR (1999) Parameterized complexity. Springer, New York. https​://doi.

org/10.1007/978-1-4612-0515-9
	108.	 Niedermeier R, Rossmanith P (1999) Upper bounds for vertex cover further improved. In: 16th annual symposium on

theoretical aspects of computer science, pp. 561–570. https​://doi.org/10.1007/3-540-49116​-3_53
	109.	 Chen J, Kanj IA, Jia W (2001) Vertex cover: further observations and further improvements. J Algor 41(2):280–301. https​://

doi.org/10.1006/jagm.2001.1186
	110.	 Chen J, Kanj IA, Xia G (2006) Improved parameterized upper bounds for vertex cover. In: 31st International symposium

on mathematical foundations of computer science, pp. 238–249. https​://doi.org/10.1007/11821​069_21
	111.	 Nemhauser GL, Trotter LE Jr (1975) Vertex packings: structural properties and algorithms. Math Program 8(1):232–248.

https​://doi.org/10.1007/BF015​80444​
	112.	 Ebengger C, Hammer P, de Werra D (1984) Pseudo-boolean functions and stability of graphs. Ann Discr Math 19:83–93.

https​://doi.org/10.1016/S0304​-0208(08)72955​-4
	113.	 Abu-Khzam FN, Fellows MR, Langston MA, Suters WH (2007) Crown structures for vertex cover kernelization. Theory

Comput Syst 41(3):411–430. https​://doi.org/10.1007/s0022​4-007-1328-0
	114.	 Li W, Zhu B (2018) A 2k-kernelization algorithm for vertex cover based on crown decomposition. Theor Comput Sci

739:80–85. https​://doi.org/10.1016/j.tcs.2018.05.004
	115.	 Grantson M, Levcopoulos C (2006) Covering a set of points with a minimum number of lines. In: 6th Italian Conference

on Algorithms and Complexity, pp. 6–17. https​://doi.org/10.1007/11758​471_4
	116.	 Wang J, Li W, Chen J (2010) A parameterized algorithm for the hyperplane-cover problem. Theor Comput Sci 411(44–

46):4005–4009. https​://doi.org/10.1016/j.tcs.2010.08.012
	117.	 Afshani P, Berglin E, van Duijn I, Nielsen JS (2016) Applications of incidence bounds in point covering problems. In: 32nd

International symposium on computational geometry, pp. 60–16015. https​://doi.org/10.4230/LIPIc​s.SoCG.2016.60
	118.	 Prieto-Rodriguez E, Sloper C (2006) Looking at the stars. Theor Comput Sci 351(3):437–445. https​://doi.org/10.1016/j.

tcs.2005.10.009
	119.	 Wang J, Ning D, Feng Q, Chen J (2010) An improved kernelization for p2-packing. Inform Process Lett 110(5):188–192.

https​://doi.org/10.1016/j.ipl.2009.12.002
	120.	 Li W, Ye J, Cao Y (2018) Kernelization for p2-packing: A gerrymandering approach. In: International frontiers of algorith-

mics workshop, pp. 140–153. https​://doi.org/10.1007/978-3-319-78455​-7_11
	121.	 Chen J, Friesen DK, Jia W, Kanj IA (2004) Using nondeterminism to design efficient deterministic algorithms. Algorithmica

40(2):83–97. https​://doi.org/10.1007/s0045​3-004-1096-z
	122.	 Fellows MR, Knauer C, Nishimura N, Ragde P, Rosamond FA, Stege U, Thilikos DM, Whitesides S (2008) Faster fixed-param-

eter tractable algorithms for matching and packing problems. Algorithmica 52(2):167–176. https​://doi.org/10.1007/
s0045​3-007-9146-y

	123.	 Chen J, Lu S, Sze SH, Zhang F (2007) Improved algorithms for path, matching, and packing problems. In: Proceedings of
the eighteenth annual ACM-SIAM symposium on discrete algorithms, pp. 298–307. https​://doi.org/10.1145/12833​
83.12834​15

	124.	 Wang J, Feng Q (2008) Improved parameterized algorithms for weighted 3-set packing. In: 14th annual international
conference on computing and combinatorics, pp. 130–139. https​://doi.org/10.1007/978-3-540-69733​-6_14

	125.	 Jia W, Zhang C, Chen J (2004) An efficient parameterized algorithm for m-Set Packing. J Algor 50(1):106–117. https​://doi.
org/10.1016/j.jalgo​r.2003.07.001

	126.	 Wang J, Liu Y (2008) Parameterized algorithms for weighted matching and packing problems. Discr Optim 5(4):748–754.
https​://doi.org/10.1016/j.disop​t.2008.07.002

	127.	 Chen J, Feng Q, Liu Y, Lu S, Wang J (2011) Improved deterministic algorithms for weighted matching and packing prob-
lems. Theor Comput Sci 412(23):2503–2512. https​://doi.org/10.1016/j.tcs.2010.10.042

	128.	 Wang J, Feng Q, Chen J (2011) An o∗(3.533k)-time parameterized algorithm for the 3-set packing problem. Theor Com-
put Sci 412(18):1745–1753. https​://doi.org/10.1016/j.tcs.2010.12.048

	129.	 Mathieson L, Prieto-Rodriguez E, Shaw P (2004) Packing edge disjoint triangles: a parameterized view. In: First interna-
tional workshop on parameterized and exact computation, pp. 127–137. https​://doi.org/10.1007/978-3-540-28639​
-4_12

	130.	 Yang Y (2014) Towards optimal kernel for edge-disjoint triangle packing. Inform Process Lett 114(7):344–348. https​://doi.
org/10.1016/j.ipl.2014.02.003

	131.	 Lin W, Xiao M (2019) A (3+ ǫ)k-vertex kernel for edge-disjoint triangle packing. Inform Process Lett 142:20–26. https​://
doi.org/10.1016/j.ipl.2018.10.006

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-33293-7_25
https://doi.org/10.1007/978-3-642-33293-7_25
https://doi.org/10.1007/978-3-319-07956-1_26
https://doi.org/10.1007/978-3-319-07956-1_26
https://doi.org/10.1007/978-3-319-13524-3_9
https://doi.org/10.1016/j.tcs.2016.05.031
https://doi.org/10.1137/0222038
https://doi.org/10.1016/S0020-0190(97)00213-5
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/3-540-49116-3_53
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1007/11821069_21
https://doi.org/10.1007/BF01580444
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1016/j.tcs.2018.05.004
https://doi.org/10.1007/11758471_4
https://doi.org/10.1016/j.tcs.2010.08.012
https://doi.org/10.4230/LIPIcs.SoCG.2016.60
https://doi.org/10.1016/j.tcs.2005.10.009
https://doi.org/10.1016/j.tcs.2005.10.009
https://doi.org/10.1016/j.ipl.2009.12.002
https://doi.org/10.1007/978-3-319-78455-7_11
https://doi.org/10.1007/s00453-004-1096-z
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1145/1283383.1283415
https://doi.org/10.1145/1283383.1283415
https://doi.org/10.1007/978-3-540-69733-6_14
https://doi.org/10.1016/j.jalgor.2003.07.001
https://doi.org/10.1016/j.jalgor.2003.07.001
https://doi.org/10.1016/j.disopt.2008.07.002
https://doi.org/10.1016/j.tcs.2010.10.042
https://doi.org/10.1016/j.tcs.2010.12.048
https://doi.org/10.1007/978-3-540-28639-4_12
https://doi.org/10.1007/978-3-540-28639-4_12
https://doi.org/10.1016/j.ipl.2014.02.003
https://doi.org/10.1016/j.ipl.2014.02.003
https://doi.org/10.1016/j.ipl.2018.10.006
https://doi.org/10.1016/j.ipl.2018.10.006

	Parameterized algorithms of fundamental NP-hard problems: a survey
	Abstract
	Introduction
	Preliminaries
	Parameterized complexity
	Algorithmic techniques of parameterized algorithms

	Parameterized algorithms for FPT problems
	Satisfiability problems
	Spanning Trees and Out-Branching problems
	Dominating Set problems
	Feedback Vertex Set problem
	Covering problems
	Packing and Matching problems

	Conclusion
	Acknowledgements
	References

