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The Last Interglacial (LIG), a warmer period 130-116 ka before present, is a potential analog

for future climate change. Stronger LIG summertime insolation at high northern latitudes

drove Arctic land summer temperatures 4-5 ◦C higher than the preindustrial era. Climate

model simulations have previously failed to capture these elevated temperatures, possibly be-

cause they were unable to correctly capture LIG sea-ice changes. Here, we show the latest

version of the fully-coupled UK Hadley Center climate model (HadGEM3) simulates a more

accurate Arctic LIG climate, including elevated temperatures. Improved model physics, in-

cluding a sophisticated sea-ice melt-pond scheme, result in a complete simulated loss of Arctic
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sea ice in summer during the LIG, which has yet to be simulated in past generations of mod-

els. This ice-free Arctic yields a compelling solution to the longstanding puzzle of what drove

LIG Arctic warmth and supports a fast retreat of future Arctic summer sea ice.

Both land air temperatures and sea surface temperatures in high northern latitudes were con-

siderably warmer during the LIG (≈ 130 000 - 116 000 years before present)1–5 and global sea level

was likely 6-9 m higher than present6, 7. Previous climate model simulations of the LIG, forced by

appropriate greenhouse gas (GHG) and orbital changes, have failed to capture the observed high

temperatures8–11. This suggests that these models may not have accurately captured Arctic key

climate processes in warmer climates.

Whilst knowledge of past Arctic temperatures is robust thanks to the available observations2, 10,

interpretation of Arctic sea ice changes during the LIG has previously been afflicted by uncertainty8, 10, 12, 13.

Water-isotope measurements from ice cores have been interpreted to suggest that, alongside the

Arctic warming, there was a reduction in mean annual sea ice area8. Microfauna in LIG marine

sediments recovered from boreholes on the Beaufort Sea Shelf have been interpreted as implying

a lack of perennial Arctic sea ice cover14, as have planktonic foraminifera recovered from some

Arctic marine cores15, 16. Similarly, ostracodes on the Lomonosov and Mendeleyev Ridges and

Morris Jesup Rise have been interpreted as indicative of minimum sea ice coverage during peak

LIG warmth17. On the other hand, measurements of the recently-developed sea ice proxy IP25 (a

carbon-25 highly-branched isoprenoid lipid), when combined with terrestrial and open-water phy-

toplankton biomarkers, have been interpreted as evidence of perennial LIG ice cover in the central
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part of the Arctic Ocean13. Whilst aspects of this particular application of IP25 are debated18 this

result (see also Methods), along with the fact that no coupled climate models have simulated an

ice-free Arctic during the LIG10, 11, 13, 19, has meant that the research community has spent consid-

erable time debating whether or not summer sea ice disappeared during this important past warm

period8, 12, 13, 19.

New generation climate models, participating in the Coupled Model Intercomparison Project

Phase 6 (CMIP6), constitute to date the most advanced numerical tools we have to investigate the

LIG climate. Recent climate models have an Equilibrium Climate Sensitivity (ECS) which is

high compared to equivalent previous generation models: the published mean ECS of new CMIP6

models is around 1-2 K higher than for CMIP3-5 models20–23. A higher ECS means that the Earth

will warm more under a given GHG forcing scenario24–26. More specifically, ECS indicates how

much warming is expected in response to a doubling of the atmospheric CO2 concentration after

the system has reached equilibrium. Despite mechanisms for the higher ECS that are varied and

model-dependent, it has been found that the most common cause across CMIP6 models for the

increase in ECS is the physical representation of clouds 27.

Within the CMIP UK model family, the ECS has increased (albeit non-monotonically) from

3.3 K (HadCM3 model) in 2007 to 5.5 K (HadGEM3 model) in 2019. The rise in the ECS over the

decades goes hand-in-hand with a faster predicted loss of Arctic sea ice in the future, prompting

questions on the accuracy of climate projections. It is paramount to determine whether the new

high-ECS models models yield an improved representation of the Arctic compared to old low-ECS
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models. In this regard, the LIG provides a valuable out-of-sample test case which helps determine

if new climate models can realistically simulate warm climate conditions in the Arctic and assess

the veracity of current projections of Arctic sea ice decline.

To address this question, we use the latest UK model HadGEM3-GC3.1-N96ORCA1 (hence-

forth HadGEM3)28 to simulate the LIG. HadGEM3 is a fully coupled atmosphere-land-ocean-ice

climate model. The simulation was carried out under the auspices of the CMIP6 model intercom-

parison project and uses the standard Palaeoclimate Model Intercomparison Project Phase (PMIP4)

protocol for the LIG climate29 (see Methods for details). In accordance with the PMIP4-CMIP6

guidelines, in HadGEM3 the vegetation is prescribed and consistent with its relative preindustrial

(PI) simulation. We also ran an identical simulation using a previous (PMIP3) generation version

of the same UK model: HadCM330. We are interested in comparing the old (CMIP5-PMIP3)

and new (CMIP6-PMIP4) generation of UK models in their ability of simulating Arctic surface

temperatures and sea ice under warmer-than-present climate conditions. An overview of what has

changed between the two model generations is given in Suppl.Table 1.

For both HadGEM3 and HadCM3, sea ice and temperature anomalies are computed against

their respective preindustrial simulations (year 1850), and both simulations are evaluated against

summertime LIG Arctic temperatures1, 2.

Our simulation of the LIG with HadGEM3 results in a reduction of Arctic sea ice in all

seasons compared to PI, with the greatest decrease during summer (Fig. 1). The LIG sea ice

decrease commences in June (when the LIG sea ice extent is outside of the PI range of variability,
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Fig.1a) and culminates in a complete loss of ice by the end of the melt season in August and

September (Fig. 1af). The sea ice loss in August and September is robust and persistent, as shown

by the small standard deviation of ∼ 0.6 and 0.4 million km2 respectively, with summer sea ice

being present in just 2 % of the summers (Fig. 1a, and below), whereas summer sea ice persists in

each year in the HadCM3 simulations (Suppl.Fig. 1).

We compare the results from HadCM3 with our new HadGEM3 simulation by evaluating

summer surface air temperature anomalies against a compilation of summer Arctic LIG temper-

ature data1, 2, 26. Note that the observational dataset in use includes peak warmth temperatures

throughout the entire Last Interglacial. Whilst the exact timing of this peak warmth has not yet

been definitively determined, it seems reasonable to assume that these measurements are approxi-

mately synchronous across the Arctic (see Methods for further discussion).

The HadCM3 simulation, in which summer sea ice is persistent, matches only 47% of the

observations within uncertainties (Suppl.Fig. 2 and Suppl.Table 2). In contrast, the ice-free

HadGEM3 simulation matches 95% of the observations (Fig. 2 and Suppl.Table 2). The aver-

age LIG temperature anomaly in HadGEM3, for all locations with observations, is + 4.9 ± 1.2 K

compared with the observational mean of +4.5 ± 1.7 K (RMSE = 1.5). In contrast, the HadCM3

simulation has a clear cold bias with an average temperature anomaly for all sites of + 2.4 ± 0.9 K

(RMSE = 2.7), or only about half of the of the observed warming. Additionally, while HadGEM3

qualitatively captures the geographical pattern of Arctic temperature anomalies, HadCM3 is insen-

sitive to the geographical pattern, and does not reach any of the higher observed temperatures (Fig.
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2b). Thus the ice-free HadGEM3 tends to capture both the observed magnitude and the pattern,

whilst the ice-present HadCM3 captures neither (Fig. 2ab and Suppl.Fig. 2). From this we deduce

that the Arctic was very likely to have been ice-free in summer during the LIG.

Concerning the HadGEM3 simulated mid-latitude temperatures, we point out that these may

be higher than some proxy records. However, the validation of LIG temperatures outside the Arctic

is beyond the scope of this study and suffers from sparse data records.

Why is summertime sea ice lost in HadGEM3 but not in HadCM3 or in other previous

climate-model simulations? The LIG top-of-atmosphere radiative flux north of 70◦N is 60-75

W m2 higher than during the PI in early summer (Fig. 3a). This increase in incoming radiation

is well known and has been applied in previous LIG climate-model simulations10, 11. The crucial

aspect is to what extent this increase causes additional melt of sea ice. Snow-covered sea ice has

a high albedo, so only a small fraction of the additional incoming shortwave radiation flux causes

more melting. The substantial increase of surface net shortwave flux (with maximum value of

around 70 W m2 in July, Fig.3b) is caused by a decrease of surface albedo. In contrast to previous

simulations, HadGEM3 includes a physically-based melt pond model31 which significantly modi-

fies the albedo feedback32. Sea ice melts because of direct absorption of sunlight and transmission

of shortwave radiation through ponded and bare ice to the ocean, which in turn warms. Thus, melt

ponds forming in summer months contribute to melting sea ice as more radiation reaches the ocean.

This is implicated in a faster rate of summer sea ice melt in HadGEM3 in the LIG compared to the

PI. In July, most of the LIG sea ice is already melted or has a concentration smaller than 50% (Fig.
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1d). By September, all the LIG sea ice is melted (Fig. 1af). The timing of the positive radiation

anomaly is of critical importance33. By modifying the surface albedo in the Arctic region (via sea

ice loss) the system is driven towards a new sea ice-free state that is attained in August-September

(Fig. 1a).

We find that clouds over sea ice play little role in determining LIG - PI anomalies in the

surface energy balance of the Arctic region. The contribution from the long-wave radiation to the

total energy balance anomalies (computed between 70 and 90◦N) is almost zero (Fig. 3b). Indeed,

north of 70◦N, the Arctic cloud area fraction is almost identical in the LIG and PI HadGEM3

simulations (Suppl.Fig. 9c), while south of 70◦N, the LIG - PI cloud area fraction anomalies are

actually negative over the North Atlantic in summer (Suppl.Fig. 9c). Fewer clouds during these

summer months allow more solar radiation to reach the ocean, which contributes to the warming

of the LIG North Atlantic (Fig. 2a).

Comparing the surface energy budgets north of 70◦N between HadGEM3 (Fig. 3b) and

HadCM3 (Suppl. Fig. 8b) points to a striking difference in July between the two models. In spite

of the identical top-of-atmosphere shortwave radiation flux anomalies (Fig. 3a and Suppl.Fig. 8a),

the net shortwave radiation flux anomaly at the surface is 40 W m2 smaller in HadCM3 (30 W

m2 vs. 70 W m2 in HadGEM3). This is mainly caused by a smaller surface albedo in HadGEM3

(and to a lesser extent by the differences in cloud fraction). The surface albedo is decreased due

to a larger open water and melt pond fraction. Under current climate conditions the maximum

pond fraction occurs in mid-July 32, 34. In the LIG simulation the melt season starts earlier with a
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maximum pond fraction reached in mid-June (not shown). This confirms that local thermodynamic

processes are responsible for the differences between the two models and that melt pond formation

plays a key role in determining how much of the additional top-of-atmosphere shortwave radiation

during the LIG can be absorbed by the surface. While HadCM3 does indirectly account for the

impact of melt ponds on surface albedo, an explicit melt pond model only exists in HadGEM3

(Suppl.Table 1).

In previous work, the persistence of summer sea ice in the central Arctic during the LIG was

linked to a slowdown of the Atlantic Meridional Overturning Circulation (AMOC)13. However,

over the 200 years of our simulations the AMOC is almost unchanged between the LIG and PI

(Suppl.Fig. 11 and 12). Thus the hypothesised compensating mechanism, by which a reduction in

northward oceanic heat transport (owing to a weakening of the AMOC) prevents sea ice loss in the

central Arctic during the LIG13, does not occur as the LIG and PI heat transport is nearly identical

(Suppl.Fig. 13). The HadGEM3 LIG loss of Arctic sea ice is thus a simple direct response to

increased net short wave radiation, with no significant compensating changes in clouds or ocean

circulation.

The loss of summer sea ice during the LIG has a profound impact on the Arctic and Northern

Hemisphere mean surface temperatures year-around (Suppl.Fig. 3). Contrarily to early summer

months, the Northern Hemisphere LIG - PI top-of-atmosphere radiative flux anomalies are negative

in August, when they attain their lowest value of -65 W m2 (Fig.3a), and autumn, when from

September to November anomalies decrease from approximately -60 W m2 to -10 W m2 (Fig.3a).
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This results in a cooling of the Northern Hemisphere during the LIG compared to PI in autumn

and winter. The cooling is rapid and strong over land and slower and weaker over the Arctic

Ocean (because of the thermal inertia of water masses). HadGEM3 and HadCM3 show remarkably

different seasonal patterns of surface temperature anomalies (Suppl.Fig. 5 and 6). In HadGEM3,

the Arctic region is much warmer in both autumn (SON) and winter (DJF) during the LIG with

maximum positive anomalies of up to ∼ 15 K in SON and ∼ 7 K in DJF (Suppl.Fig. 5c and 5d).

In HadCM3, where in summer sea ice is present, the autumn warming is much reduced with local

regional maxima of ∼ 6 K and in winter the Arctic ocean largely cools down with weaker positive

anomalies of ∼ 2 k (Suppl.Fig. 6c and 6d). In conclusion, because of the loss of summer sea ice,

surface air temperature anomalies are much warmer in HadGEM3 than HadCM3 throughout all

seasons, mainly over the Arctic Ocean but also over land (Suppl.Fig. 5 and 6).

When considering the significance of our results, two aspects are of particular interest.

First, the Arctic sea ice in HadGEM3 historical simulations is too thick compared to present day

observations28. However, this bias toward thick sea ice in HadGEM3 does not provide protection

from complete Arctic summer sea ice loss during the LIG. Indeed, the transition under LIG insola-

tion into a summer sea ice-free (zero multi-year ice) state in HadGEM3 takes around 5 model-years

to complete. Once the multi-year sea ice has disappeared in our simulations it does not return. Over

200 years of simulation, the August and September sea ice extent exceeds the ice-free threshold

of 1 million km2 only in four and five separate years for September and August respectively (not

shown).
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A second aspect of broad significance is the implication of our results for the higher ECS

of CMIP6 models. The HadGEM3 climate model has an ECS which is considerably higher than

most of its predecessors (see 35 for details) and, in common with other CMIP6 models, lies outside

the CMIP3/CMIP5 ECS range (Fig. 4 and Suppl.Table 3).

Climate models have advanced over the CMIP cycles between 2007 and 2020. By compar-

ing CMIP3 to CMIP6 model simulations, we can show the change in ECS and in when the Arctic

is projected to become ice-free under equivalent high-emissions scenarios. We compare standard

scenarios where no additional efforts are made to constrain GHG emissions. See Methods for full

description. The predicted year of disappearance of September sea ice under high-emissions sce-

narios is 2086 for HadCM3 (CMIP3/5), 2048 for HadGEM2-ES (CMIP5), and 2035 for HadGEM3

(CMIP6) (Fig. 4). More broadly, multi-model CMIP3-6 mean predictions (and ranges) for a sum-

mer sea ice-free Arctic are: CMIP3 2062 (2040-2086), CMIP5 2048 (2020-2081), and CMIP6

2046 (2029-2066) (Fig. 4 and Suppl.Table 3). We note that the latest year of sea ice disappearance

for CMIP6 models is 2066 and that 50% of the models predict sea ice-free conditions between ∼

2030-2040. From this we can see that HadGEM3 is not a particular outlier, in terms of its ECS or

projected ice-free year. Thus the 95% match of our LIG CMIP6-HadGEM3 simulation provides

observational support for the HadGEM3 simulation of Arctic conditions, and more broadly sup-

ports the simulation of the Arctic sea ice and Arctic climate in high-ECS CMIP6 models. Note

however, high model skill in simulating Arctic sea ice retreat, such as that shown here, does not

necessarily imply a more accurate simulation of global warming trends. Indeed there is some addi-

tional evidence that suggests that high ECS models, whilst producing better simulations of Arctic
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sea ice change, tend to overestimate global warming36.

Our study has demonstrated that the high ECS HadGEM3 model yields a much improved

representation of Arctic summers during the warmer LIG climate compared to previous old gen-

eration model simulations. We analysed simulated surface air temperatures and proxy reconstruc-

tions of LIG summer temperatures and showed a 95% agreement between model and observations.

Arctic surface temperatures and sea ice are strongly related 37, 38, by simulating an ice-free summer

Arctic our LIG CMIP6 simulation provides (direct) modelling and (indirect) observational support

that the summer Arctic could have been ice-free during the LIG. This offers a unique solution

to the long-standing puzzle of what occurred to drive the temperatures to rise during LIG Arctic

summers. The ability of the HadGEM3 model to realistically simulate the very warm LIG Arctic

climate provides independent support for predictions of ice-free conditions by summer 2035. This

should be of huge concern to Arctic communities and climate scientists.
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Methods

1.1: Observations on Arctic sea ice and sea surface temperature during the LIG. High-

latitude sea surface and surface air temperatures were warmer during the LIG, suggesting lower

summer and winter sea ice cover relative to today3–5. Planktonic foraminifers representative of sub-

polar, seasonally open waters lived in the central part of the Arctic Ocean (measurements from the

GreenICE and HLY0503-8JPC cores: Suppl.Fig 14). These measurements point to a LIG Arctic

Ocean free of summer sea ice15, 16. This finding is supported by microfauna found in LIG marine

sediments recovered from boreholes on the Beaufort Sea Shelf. These microfauna indicate that

more saline Atlantic water was present on the Beaufort Shelf, suggesting a lack of perennial Arctic

sea ice during some part of the LIG14. Ostracodes from the Lomonosov and Mendeleyev Ridges

and Morris Jesup Rise (Suppl.Fig. 6: NP26-5/32, Oden96/12-1pc and PS2200-5 cores) suggest

minimum sea ice cover during the peak of the LIG17. Together this set of observations supports an

ice-free (summer sea ice free) Arctic during some part of the LIG.

A reconstruction of LIG Arctic sea ice changes made by combining terrestrial and open-water

phytoplankton biomarkers with the sea ice proxy IP25 suggest that while a significant reduction of

LIG sea ice occurred across the Barents Sea continental margin (Suppl.Fig 6: PS2138-2 core), the

central part of the LIG Arctic Ocean remained ice covered during summer (Suppl.Fig. 6: PS2200-

5, PS51/038-3 and PS2757-8 cores)13. Stein et al. (2017) thus supports ice-present conditions

throughout the LIG. Stein et al. classify sea ice conditions into seasonal sea ice, ice-free and

permanent sea ice; the latter scenario, which is normally linked to the absence (low concentration)

of all biomarkers, is however most challenging18. An absence of these biomarkers may arise from
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a range of scenarios including degradation in sediments, loss in the water column, or a mixture

of these processes39, 40. Absent/low amounts of IP25 and phytoplankton markers, were associated

with permanent sea ice conditions in Stein et al. (2017). However the presence of forams and

ostracodes at one site, with co-incident absent/low amounts of IP25, imply that seasonal sea ice

may sometimes be misinterpreted as permanent sea ice using this approach. Thus, although there

has been much debate on this, actually the bulk of sea ice observations suggest that the Arctic may

have been ice-free for some part of the LIG.

1.2: Summertime Arctic air temperature during the LIG. The LIG air temperature observa-

tions (Suppl.Table 2) used in this study were previously published1, 2 and used to assess CMIP5

models26. Each observation is of summer LIG air temperature anomaly relative to present day and

is located in the circum-Arctic region; all sites are from north of 51N. There were 7 terrestrial based

temperature records; 8 lacustrine records; a further 2 marine pollen-based records; and 3 ice core

records included in the original compilation26. We add to this an additional new CMIP6-PMIP4

air temperature observation (relative to the past millenium) from the NEEM Greenland ice core4,

bringing the total number of observations to 21 (Suppl.Table 2). Locations and uncertainties for

each observation are provided (Fig. 2; and Suppl.Table 2). Whilst the exact timing of this peak

warmth has not yet been definitively determined, and it seems reasonable to assume that these mea-

surements are approximately synchronous across the Arctic, it is not clear that the peak warmth

occurs at the same time for the whole of the Northern Hemisphere. Indeed it very unlikely that the

peak warmth is synchronous across both hemispheres (see 3, 41). The reader is referred to previous

reports, and references therein, for a detailed description of each observation1, 2, 4, 26. Note that for
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consistency with modelled data, temperature anomalies computed against present day conditions

(i.e. 1961-1990 baseline) were corrected to take into account a 0.4 K of global warming between

preindustrial (1850) and present day (1961-1990) conditions42. Therefore, our values in Fig. 2,

Suppl.Fig. 2 and Suppl.Table 2 differ slightly (+0.4 K) from the original datasets1, 2 and represent

temperature anomalies relative to the preindustrial era.

2.1 LIG protocol for the simulations. We run Tier 1 LIG simulations, based on the standard

CMIP6-PMIP4 LIG experimental protocol29. The prescribed LIG (127 ky) protocol differs from

the CMIP6 Pre-industrial (PI) simulation protocol in astronomical parameters and the atmospheric

trace GHG concentrations. LIG astronomical parameters are prescribed according to orbital constants43,

and atmospheric trace GHG concentrations are based on ice core measurements. See Suppl.Table

4 for full details29. All other boundary conditions, including solar activity, ice sheets, aerosol emis-

sions and etc., are identical to the PI simulation. We run two LIG simulations, one using the UK

CMIP6 HadGEM3 model and the other using the CMIP3 HadCM3 model.

2.2 LIG model details. The simulations presented in this study were carried out using the HadGEM3

and HadCM3 climate models. HadGEM3-GC3.1-N96ORCA1 (referred to here as HadGEM3) is

the lowest resolution version of the UK CMIP6 physical climate model. It is a global coupled

atmosphere-land-ocean-ice model that comprises the Unified Model (UM) atmosphere model44,

the JULES land surface model44, the NEMO ocean model45 and the CICE sea ice model46. The UM

model utilizes a horizontal grid-spacing of approximately 135 km on a regular latitude-longitude

grid. The NEMO model employs an orthogonal curvilinear grid with a 1◦ resolution everywhere

but near the equator, where it decreases down to 0.33◦. The atmosphere and ocean models use 85
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and 75 vertical (pressure) levels respectively.

HadCM3 is the UK CMIP3 coupled atmosphere-ocean general circulation model30. Our ver-

sion of HadCM3 includes the dynamic vegetation model TRIFFID47, and the land surface model

MOSES 2.148. The horizontal resolution of the atmosphere model is 3.75◦ longitude by 2.5◦ lati-

tude. The ocean model uses a resolution of 1.25◦ longitude by 1.25◦ latitude. The atmospheric and

oceanic components use 19 and 20 vertical levels respectively.

2.3 LIG simulation details. The HadGEM3 PI simulation was initialized using the standard

CMIP6 protocol using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric vol-

canic aerosol and land use forcing. The PI spin-up was 700 model-years, which allowed the land

and oceanic masses to attain approximate steady state. Full details on the PI control simulation are

available28, 49. The LIG simulation was initialized from the end of the spin-up phase of the PI sim-

ulation. After initialisation, the LIG was run for 350 model years. This 350 LIG spin-up permits

the model to reach atmospheric equilibrium and to achieve an upper-ocean equilibrium. The model

was then run for further 200 model-years of LIG production run. This has been demonstrated to

be an adequate run length to appropriately capture the model internal variability 50. The 200 years

of production run is the period used for all analysis.

The HadCM3 PI simulation was run for a period of over 600 years. The HadCM3 LIG

simulation was initialized from the end of a previous CMIP5 LIG simulation, which was of length

400 years and initiated from the end of the corresponding PI, and run for further 250 years. The

total spin-up phase for the HadCM3 LIG simulation used in this study was thus 600 model-years,
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and the length of the production (at atmospheric and upper-oceanic equilibrium) LIG HadCM3

simulation is 50 model-years.

3.1 Analysis of LIG simulations. The simulation results presented in this study use long-term

means computed over the entire simulation length. For HadGEM3 the long-term mean is 200

years, for HadCM3 is 50 years. Checks on both show no appreciable drift in the simulations over

these periods, and that 50-200 years is sufficient for obtaining reliable simulated air temperature

and sea ice numbers in the Arctic region.

For model-observations comparison purposes, the single-point model values in Fig. 2b and

Suppl.Table 2 were obtained through nearest-neighbour interpolation on the model grid. Spatial

maps of quantities including surface air temperature and sea ice concentration were created by

averaging monthly simulation outputs over time. To compute the sea ice seasonal cycle and the

surface energy budget of Fig. 2a and 3b, the time average was combined with an area-weighted (to

account for the irregularities of the latitude-longitude grid near the poles) spatial average. The sea

ice extent was regionally-averaged over the whole Northern Hemisphere, while each term of the

surface energy budget was averaged over the Arctic region between 70◦N and 90◦N.

3.2 Equilibrium Climate Sensitivity (ECS) analysis. The Equilibrium Climate Sensitivity (ECS)

data used in Fig. 4 from CMIP3 and CMIP5 models were previously published25, 26. For CMIP6,

the ECS was calculated from the abrupt 4xCO2 idealized emissions experiment for each model

using a standard approach51. A linear regression of annual-mean anomalies (relative to the PI

simulation) in top-atmosphere radiative flux (∆N ) and surface air temperature (∆T ) from the first
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150 years of the abrupt 4xCO2 experiment results in:

∆N = F − λ ∗ ∆T (1)

where F is the 4xCO2 radiative forcing (W m−2) and λ is the climate feedback parameter

(W m−2 K−1)52. This relation is extrapolated to equilibrium (i.e. ∆N = 0) to obtain the estimate

change in surface air temperature (∆T ) and thus ECS:

∆T = ECS =
0.5 ∗ F
λ

(2)

where the multiplicative factor 0.5 indicates that the ECS is defined as the equilibrium warming

for a doubling of a CO2 (rather than a quadrupling).

The abrupt 4xCO2 idealized emissions experiment for each CMIP6 model were downloaded

from the Earth System Grid Federation (ESGF), the data repository for all CMIP outputs (see also

Data availability section, below).

3.3 Analysis of future sea ice changes. We used 21st century Arctic sea ice predictions according

to the CMIP3 Special Report on Emissions Scenarios (SRES) A1B scenario25, the CMIP5 Rep-

resentative Concentration Pathways (RCP) 8.5 scenario26, and the CMIP6 Shared Socioeconomic

Pathways (SSP) 5-8.5 scenario53. SRESA1B, RCP8.5 and SSP5-8.5 are high-emissions scenar-

ios designed to model potential climate outcomes in the absence of any policy-driven mitigation

strategy to tackle global warming. These scenarios differ among each other in how the high GHG

17



forcing is achieved (e.g. SRESA1B predicts a very rapid economic and demographic growth but

a balance used of fossil and non-fossil energy sources, RCP8.5 predicts high population growth

and a mainly coal-based economy, and SSP5-8.5 predicts a high economic growth and a strong

reliance on fossil fuels25, 26, 53).

To determine the date of future summer sea ice disappearance under these high-emissions

scenarios, the first year in which the Arctic September sea ice extent dropped below the threshold

value of 1 million km2 for each CMIP3/5/6 model experiment is calculated. Note that for CMIP6,

only models currently available on ESGF having monthly sea ice concentration data were used.

One ensemble member for each CMIP6 experiment was used.

4. Code availability. The source code of the HadCM3 model and the HadGEM3 model’s atmo-

spheric component (UM model) is available under licence. To apply for a licence go to http://

www.metoffice.gov.uk/research/modelling-systems/unified-model. JULES

is available under licence free of charge, see https://jules-lsm.github.io/. The NEMO

model code is available from http://www.nemo-ocean.eu. The model code for CICE can

be downloaded from https://code.metoffice.gov.uk/trac/cice/browser.

5. Data availability. CMIP3-6 model data used in this study to compute ECS and ice-free years

are available on the Earth System Grid Federation (https://esgf-node.llnl.gov/). HadCM3

and HadGEM3 model outputs used to support the findings of this study are available from http:

//gws-access.ceda.ac.uk/public/pmip4/vittoria/CMIP6LIG_HadGEM3_CMIP3_

HadCM3/. HadGEM3 model outputs prepared for CMIP6 can be found at https://doi.org/
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10.22033/ESGF/CMIP6.41954. The authors declare that all other data are available within

the paper and its Supplementary Information.
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Figure 1 Annual cycle and sea ice concentration maps for the Last Interglacial

and Preindustrial simulations. (a) Shows the HadGEM3 simulated mean seasonal cy-

cle of sea ice extent for PI (blue line) and LIG (orange line). The shaded areas represent

± two times the standard deviation, and the dashed lines are the maximum and mini-

mum sea ice extent for each month over the 200-year period. 200-year means of sea ice

concentration from the LIG (left) and PI (right) simulation in March (b,c), July (d,e) and

September (f,g).

Figure 2 Comparison of observed and simulated temperatures for the Last Inter-

glacial. Modelled HadGEM3 summer (JJA) LIG - PI surface air temperature anomalies

overlain by observed summer temperature anomalies. The scatter plot shows HadGEM3

(orange circles) and HadCM3 (green diamonds) model data versus observations, the

error-bars represent one standard deviation on either side of the observational estimate.

The correlation coefficient computed using linear regression analysis is 0.6 for HadGEM3

and 0.2 for HadCM3. See Suppl.Table 2 for observational data.

Figure 3 Last Interglacial minus Preindustrial top-of-atmosphere radiative forcing

and surface energy balance anomalies. (a) Monthly zonal-mean LIG - PI anomalies of

the Top of Atmosphere (TOA) short-wave incoming radiation. (b) LIG - PI anomalies for

each term of the surface energy budget computed between 70N and 90N. Net surface

heat flux, short-wave and and long-wave radiation components, and the sensible and

latent heat fluxes are shown.
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Figure 4 Equilibrium climate sensitivity and year of September sea ice disappear-

ance for CMIP3, CMIP5 and CMIP6 models. ECS is shown in red (lines), sea ice-free

year in blue (circles). Stars show results for each CMIP generation of the UK model, the

yellow star is the UK CMIP6 model HadGEM3. For CMIP6 models having same date of

sea ice disappearance (2038), an offset of one year was used for visibility. Note that only

models for which both ECS and ice-free year is known are shown. See Suppl.Table 3 for

all values.
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