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Abstract 32 

The characteristics of tropical cyclone (TC) activity over 5 TC basins lying within four 33 

Coordinated Regional Downscaling Experiment (CORDEX) domains are examined for present 34 

and future climate conditions using a new ensemble of projections completed as part of the 35 

CORDEX-CORE initiative with the regional climate model RegCM4. The simulations are 36 

conducted on a 25 km horizontal grid spacing using lateral and lower boundary forcing from 37 

three CMIP5 general circulation models (GCMs) under two Representative Concentration 38 

Pathways (RCP2.6 and RCP8.5). The RegCM4 is capable of capturing most features of the 39 

observed TC climatology over the different basins and exhibits a improved simulation of several 40 

TC statistics compared to the driving GCMs, except over the North Indian Ocean basin. Analysis 41 

of the influence of global warming on TC activity indicates significant increases in their 42 

frequency over the North Indian Ocean, the Northwest Pacific and Eastern Pacific regions. These 43 

changes are consistent with an increase in mid-tropospheric relative humidity. On the other hand, 44 

the North Atlantic and Australasia regions show a decrease in TC frequency, mostly associated 45 

with an increase in wind shear. We also find a predominant increase in the frequency of the most 46 

intense TCs over most domains. Our study shows robust and statistically significant responses 47 

often, but not always, in line with previous studies, still implying the presence of significant 48 

uncertainties. A robust assessment of TC changes requires analyses of ensembles of simulations 49 

with high-resolution models capable of representing the response of different TC characteristics 50 

to key atmospheric factors. 51 

 52 

Keywords: Regional climate model, CORDEX-CORE, Tropical cyclones, Climate change. 53 

 54 
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1. Introduction 55 

Tropical cyclones (TCs) have a wide-ranging socioeconomic impact (Camargo and Wing 56 

2016; Knutson et al. 2019), mostly related to the destructive effects of their intense winds, storm 57 

surges, and extreme precipitation. They also play a beneficial role in providing freshwater for 58 

agriculture and other water resources (Czajkowski et al. 2013; Rappaport 2000; Dominguez and 59 

Magaña 2018). Therefore, increasing our knowledge of how TC characteristics could change 60 

with anthropogenic warming is critical to assessing their impacts on human and natural systems 61 

and to developing suitable adaptation and mitigation strategies. 62 

Recently, numerous studies have examined how TC genesis, occurrence, maximum wind 63 

speed and mean precipitation could change under warmer conditions. These have used General 64 

Circulation Models (GCMs; Bengtsson et al., 2007; Camargo 2013; Murakami et 65 

al. 2012a, b, 2014; Knutson et al. 2015; Sugi et al. 2017; Bacmeister et al. 2018; Wehner et al. 66 

2018) and regional climate models (RCMs), with a focus on different ocean basins (Lavender 67 

and Walsh 2011; Knutson et al. 2013; Diro et al. 2014; Manganello et al. 2014; Jin et al. 2016; 68 

Wang et al. 2017). These studies have shown a wide range of basin-dependent potential shifts in 69 

future TC characteristics with respect to TC frequency of occurrence and the frequency of very 70 

intense TCs (Category 4–5). For both these variables, for example, there is no consistent signal 71 

of change across individual basins (Camargo et al. 2013; Knutson et al. 2020), which might be 72 

related to differences in model resolution, physics, dynamical core or sea-surface temperatures 73 

(SSTs) warming patterns (e.g. Li et al. 2010; Walsh et al. 2010; Murakami et al. 2012b; 74 

Martínez-Sanchez and Cavazos 2014; Reed et al. 2015; Fuentes-Franco et al. 2017; Hsu et al. 75 

2019). 76 
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The World Meteorological Organization (WMO) task team report (Knutson et al. 2010), 77 

the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC; 78 

Christensen et al. 2013), and Walsh et al. (2016) summarized the results of many modeling 79 

studies of future changes in TC climatology. They concluded that increasing greenhouse gas 80 

(GHG) concentrations is projected to lead to a global decrease in TC frequency by 5-30%, but 81 

with an increase in the frequency of TC categories 4 and 5 by up to 25%. They also reported an 82 

increase in TC lifetime and maximum intensity, along with increases in TC rainfall rate by 5–83 

20%. However, these conclusions are highly basin- and scenario-dependent, and many uncertain 84 

aspects remain, such as the patterns of decrease in TC frequency, increase in very intense TCs 85 

(Category 4–5), and slowdown in TC translation speed (Knutson et al. 2020).  86 

There is thus a need for further investigation of the TC's response to global warming, 87 

especially at the regional scale. This is particularly important in view of the fact that current 88 

GCMs used in the Coupled Model Intercomparison Project (CMIP) still suffer from the lack of 89 

sufficient model resolution to resolve important TC processes. One way to approach this issue is 90 

to use higher resolution RCMs (Murakami et al. 2012b; Giorgi 2019), which have demonstrated 91 

a relatively good performance in reproducing the general characteristics of TCs and have been 92 

used to assess the response of TC characteristics to global warming in different basins (e.g. 93 

Lavender and Walsh 2011; Knutson et al. 2013; Diro et al. 2014; Fuentes-Franco et al. 2017; 94 

Wang et al. 2017; Vishnu et al. 2019).  95 

In this regard, recently a new set of 21st century projections with the RegCM4 regional 96 

model (Giorgi et al. 2012) have been completed for multiple domains defined by the 97 

COordinated Regional Downscaling EXperiment (CORDEX, Giorgi et al. 2009) as part of the 98 

CORDEX-CORE initiative (Gutowski et al. 2016). The simulations are conducted with 25 km 99 
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grid spacing through downscaling of three GCMs from the CMIP5 ensemble (Taylor et al. 2012) 100 

for two GHG Representative Concentration Pathways (RCPs), the low end RCP2.6 and high end 101 

RCP8.5 (Moss et al. 2008). The availability of this new dataset thus offers the opportunity to 102 

analyze TC characteristics over multiple basins and their response to different global warming 103 

scenarios within a common simulation framework. The unique aspect of this analysis is that the 104 

different basins and scenarios are treated in a fully consistent way from a set of high-resolution 105 

RCM experiments following the same simulation protocol, which facilitates cross-basin and 106 

cross-scenario intercomparisons. In fact, previous RCM-based work mostly focused on 107 

individual basins and/or scenarios.  108 

We analyze a range of TC characteristics, such as frequency of occurrence, intensity, 109 

duration, track position, frequency of high intensity TCs, and precipitation associated with TCs. 110 

In addition, we analyze both the model performance in reproducing these characteristics under 111 

present day climate conditions, and the changes induced by global climate warming scenarios. In 112 

particular, we attempt to identify the physical mechanisms driving the simulated TC responses 113 

and discuss relevant underlying uncertainties. 114 

The paper is organized as follows. The data, TC tracking algorithm and methods are first 115 

described in section 2. Then, the evaluation of the model performance is presented in section 3, 116 

while section 4 and 5 examine the changes in tropical cyclone climatology and their driving 117 

mechanisms for the mid- (2041–2060) and late 21st century (2075–2099), under the RCP2.6 and 118 

RCP8.5 radiative forcing scenarios. A summary of the results, with final considerations, are 119 

finally given in section 6. 120 

 121 

2. Data and methods 122 
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a. Regional Climate Model 123 

Here we analyze simulations with the RegCM version 4, or RegCM4, the latest version of the 124 

RCM developed by the Abdus Salam International Centre for Theoretical Physics (ICTP; Giorgi 125 

et al. 2012). RegCM4 utilizes the hydrostatic dynamical core from the mesoscale model MM5 126 

(Grell et al. 1994), with split-explicit advection, sigma-p vertical coordinates and an Arakawa-b 127 

staggered horizontal grid. The model includes multiple physics options, and for each region, 128 

physics parameterizations were selected based on a series of preliminary experiments using 129 

boundary conditions from reanalyses aimed at optimizing the model performance over the 130 

different domains. This selection was not done specifically with the aim of TC simulation but for 131 

the CORDEX-CORE application as a whole and, as a standard procedure before use of RegCM4 132 

for production runs, was based on standard metrics such as biases and probability density 133 

functions of variables such as temperature, precipitation and winds. For the Central America 134 

domain Diro et al. (2014) and Fuentes-Franco et al. (2017) have shown that the RegCM4 135 

simulation of TC characteristics such as track density, frequency, lifetime and intensity is 136 

sensitive to the convection scheme and ocean flux parametrization used, and these studies have 137 

contributed to our choice of optimal physics schemes for this domain. The scheme utilized for 138 

each domain are reported in Table 1.    139 

The RegCM4 simulations follow the CORDEX-CORE protocol (Giorgi et al. 2012, Giorgi 140 

and Gutowsky 2015, Gutowski et al. 2016) over nine CORDEX domains (Giorgi et al. 2009). 141 

They extend from 1970 to 2099 with a horizontal grid spacing of 25 km and 23 vertical sigma 142 

levels. Three GCMs are downscaled for each of two RCPs, the low level RCP2.6 and the high-143 

end RCP8.5 (Moss et al. 2008). Table 1 reports the driving GCMs used for each RegCM4 144 

simulation (for the Northwest Pacific region only two simulations are currently available). These 145 
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GCMs were chosen within the CORDEX-CORE protocol as performing generally well over the 146 

domains of interest (Elguindi et al. 2014) and having a low-, medium-, and high-equilibrium 147 

climate sensitivity (ECS), so as to approximately cover the CMIP5 climate sensitivity range.  148 

The GCMs provide 6-hourly driving wind, pressure, temperature and water vapor as lateral 149 

boundary conditions for the RegCM4, and daily Sea Surface Temperature (SST) as lower 150 

boundary condition. In addition, the GHG concentrations in the RegCM4 are updated every 10 151 

years based on observations for the historical period and on the selected scenario for the 21st 152 

century period, as is done in the driving GCMs.  153 

  Of the nine CORDEX-CORE domains, here we focus on five areas of TC formation each 154 

covered by a different domain (Figure 2).  We examine data for three 20-year periods, i.e. a 155 

reference historical period (1995–2014) and two future periods (2041–2060 and 2080–2099) for 156 

each scenario. Also, we compare the RegCM4 results with results from the driving GCMs, 157 

although due to the lack of some data for the RCP2.6 scenario, the GCM future runs are analyzed 158 

only for the RCP8.5. The TC characteristics analyzed, such as frequency, track density, intensity, 159 

lifetime and TC rainfall, are calculated for each simulation and each period separately. Then, 160 

ensemble averaged results are calculated by averaging of the individual simulations for each 161 

basin and period.  162 

 163 

b. Data 164 

To evaluate the simulated TCs, we use observed data from the International Best Track 165 

Archive for Climate Stewardship (IBTrACS, version v04; Knapp et al. 2010, 2018), which 166 

provides 6-hr data of TC locations, surface wind speed and central pressure from different 167 

basins. IBTrACS collects observed TC data from 11 agencies around the world covering all 168 
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major ocean basins where TCs occur: the North Atlantic (NA), Eastern Pacific (EP), western 169 

North Pacific (WP), North Indian Ocean (NI), South Indian Ocean (SI), and South Pacific (SP; 170 

Kruk et al. 2010). The minimum intensity reported by IBTrACS in each region varies from 25 kt 171 

(WP) to 30 kt (NA, EP) and 35 kt (NI, SI, SP), and here in order to facilitate a cross basin 172 

comparison we selected a common threshold of 17.5 m/s (~ 35 kt), which is used in the majority 173 

of the IBTrACS domains. Note that IBTrACS presents a homogeneous track dataset, with all 174 

non-10-min winds normalized to a 10-min average (Kruk et al. 2010). 175 

For precipitation validation, we use the multi-source weighted-ensemble precipitation, 176 

version 2, (MSWEP – V2), a dataset based on a combination of rain-gauge measurements, 177 

satellite products and reanalysis data (Beck et al. 2017a, b). This dataset has shown good 178 

performance in describing precipitation over different regions around the world (Beck et al. 179 

2017, 2019; Liu et al. 2019; Satgé et al. 2020) and has been used in global TC precipitation 180 

studies (Zhang et al. 2019). 181 

 182 

c. Cyclone tracking  183 

Tropical cyclone tracking is based on the objective feature-tracking algorithm TRACK 184 

(Hodges 1994; Hodges et al. 1995; Hodges 1999). This method has been widely used in previous 185 

studies for analyzing both tropical and extratropical cyclone tracks (Bengtsson et al. 2007, 2009; 186 

Manganello et al. 2012, 2014; Rastogi et al. 2018; Seiler et al. 2018). The algorithm initially 187 

identifies where grid point values of 6 hourly vertically averaged relative vorticity between 850 188 

and 600 hPa are greater than 5 × 10−6 s−1 for the Northern Hemisphere (NH) and less than -5 × 189 

10−6 s−1 for the Southern Hemisphere (SH) – at a spectral resolution of T63. These locations are 190 

refined using B-spline interpolation and greatest ascent maximization to find the off-grid 191 
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maxima/minima. Initially, all systems are tracked by first initializing a set of tracks using a 192 

nearest neighbor method and then refining the tracks by minimizing a cost function for track 193 

smoothness. Following tracking the T63 vorticity maxima/minima at all levels between 850 and 194 

200hPa (850, 700, 600,500, 400, 300, 200hPa) are iteratively added to the tracks by searching for 195 

the extrema within a 50 radius (geodesic) of the cyclone centers. Additionally, the maximum 10-196 

m wind within a 60 radius of the cyclone centers are added to the tracks. The TCs are initially 197 

identified from amongst all tracked features by applying criteria to detect a TC warm core, as a 198 

difference in the T63 vorticity field between 850 and 200 hPa greater than 6 ×10−5 s−1 and a 199 

vorticity maximum/minimum for all levels between 850 and 200 hPa   for a coherent vertical 200 

structure and a maximum 10-m wind speed greater than 17.5 ms-1. These criteria must be 201 

satisfied for at least one day over the oceans and the tracks must have lifetimes greater than 2 202 

days. Furthermore, the maximum 10-m wind speed near the center of a cyclone must be greater 203 

than 17.5 ms-1 during the whole life cycle of the tropical cyclone. For the GCMs, instead of using 204 

10-m wind data, which are not available, following Franklin et al (2003) and Walsh et al (2007) 205 

we use the maximum 850hPa wind speed near the center of the TC, with a threshold of 22 ms-1. 206 

 207 

d. Track density 208 

The TC track density is defined for each 25 km grid point as the total number of days in a 209 

calendar year in which a storm center passes within a 500-km great circle distance of the grid 210 

point (Vecchi et al. 2014; Liu et al. 2018). The criteria for a 500-km storm size is used in 211 

observations and simulations and is consistent with previous TC studies (Chavas and Emanuel 212 

2010; Barlow 2011; Prat and Nelson 2013; Khouakhi et al. 2017; and Liu et al. 2018). 213 

 214 
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e. TC intensity 215 

At the present models' horizontal grid spacings (25 km for the RegCM4 and greater for the 216 

GCMs) it is impossible to reproduce observed cyclone wind intensities, which requires 217 

resolutions as fine as a few km (e.g. Gentry and Lackmann 2010). To overcome this systematic 218 

bias and adequately assess statistics of very intense tropical cyclones, the bias correction method 219 

used by Zhao and Held (2010) is applied to the simulated lifetime maximum 10 m wind speed 220 

(or 850hPa wind for the GCMs). This method adjusts the wind speed of a simulated TC to the 221 

wind speed of the observed TC with the same probability in the cumulative distribution function 222 

of maximum wind speed. For each basin, the adjustment is calculated using observations from 223 

the IBTrACS dataset. A comparison of observed TC intensities and RegCM4 results before the 224 

bias correction (Figure S1) showed that the simulations reproduce, and in fact in some basins 225 

overestimate, TCs of intensity less than 50 ms-1 but underestimate the occurrence of the most 226 

intense TCs. 227 

 228 

f. TC rainfall 229 

Here the TC rainfall is defined as the rainfall within a 500-km radius of each TC center. 230 

Similar to Zappa et al. (2015) and Liu et al. (2018), the total annual accumulated TC 231 

precipitation at a grid point can be expressed as P = R × F, where P is the total storm 232 

rainfall, R is the average annual accumulated rainfall per storm, and F is the annual storm 233 

frequency expressed in days. Then, the change in rainfall related to TCs under GHG-induced 234 

warming can be directly attributed to the changes in the storm rainfall, or to the changes in storm 235 

frequency using P’ = R’F+ RF’ + R’F’, where P′ is the change of total storm rainfall, R′ is the 236 

change in storm rainfall rate, and F′ is the change in storm frequency. Therefore, the first and 237 
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second terms are contributions from storm rainfall rate and frequency, respectively, while the 238 

third term is the covariance effect, generally much smaller than the other terms (Liu et al. 2018). 239 

Additionally, similar to Khouakhi et al. (2017), we assess the changes in the contribution of 240 

TCs to extreme rainfall using the peak-over-threshold (POT) method. For the POT calculation, at 241 

each grid point we compute the number of days exceeding the 95th percentile for rainy days (i.e. 242 

days with precipitation > 1mm), considering daily rainfall to be TC-induced only if the center of 243 

the storm is located within a 500-km radius of the grid point during a window of ±1 day. 244 

 245 

3.  Assessment of model simulated TCs 246 

Figure 1 shows the mean annual cycle of TC frequency for the IBTrACS observations, 247 

GCMs and GCM-driven RegCM4 simulations during the reference period for the five basins 248 

highlighted by the boxes in Figure 2a. To determine the number of TCs in a particular month, we 249 

selected the time of maximum intensity in the simulations and IBTrACS. The observations show 250 

a peak of the TC season in August - September for the basins of the North and Eastern Pacific 251 

and North Atlantic Ocean, a double peak in the North Indian Ocean and a maximum in January 252 

through March over Australasia. The timing of seasonal peaks in TC activity are mostly 253 

reproduced by the RegCM4 simulations, although in some cases discrepancies of one month are 254 

found in the timing of the peak. Specifically, for the Northwest Pacific and North Atlantic basins 255 

the peak is shifted to September-October, while for the Eastern Pacific to July-August. These 256 

shifts mostly follow corresponding shifts in the driving GCMs, except over the Eastern Pacific. 257 

In addition, for the North Indian Ocean (Figure 1d), the RegCM4 simulations are not capable of 258 

producing the second maximum of TC activity, which is better captured by the MIROC5 GCM. 259 

In the other cases, the GCMs tend to severely underestimate the TC occurrence, except for the 260 
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MPI-ESM-MR and HadGEM2-ES models over Australasia. In the other basins, the RegCM4 261 

simulations produce an annual TC frequency closer to the observed (IBTrACS) when compared 262 

with the GCMs.  263 

Considering the ensemble average, the RegCM4 simulations tend to overestimate the TC 264 

frequency over the eastern North Pacific and Australasia, and to underestimate it over the 265 

Northwest Pacific and North Indian Ocean. The model performance is poorest over the North 266 

Indian Ocean (except for the MPI-driven runs), with the GCMs producing more TCs. 267 

Importantly, in most cases the RegCM4 ensemble mean appear more consistent with IBTrACS 268 

than the individual RegCM4 simulations, demonstrating the general usefulness of the ensemble 269 

and its better reliability for this analysis.  270 

            For a quantitative assessment of the model in reproducing the TC frequency, Table 2 271 

shows the correlation coefficients between the simulated (individual and ensemble GCMs and 272 

RCMs) and observed (IBTrACS) annual cycle of TC frequency for each basin, along with the 273 

mean annual absolute error (MAE) calcualted as the sum of the monthly MAE. For four of the 274 

five basins in RegCM4, (except the North Indian Ocean) and three basins in the GCMs (except 275 

the North Indian Ocean and the Northwestern Pacific), the correlations are quite high, 276 

demonstrating a good performance by the individual simulations and the ensembles. The 277 

ensembles mostly show intermediate MAE in comparison with the individual simulations, and in 278 

comparison with the GCMs, the RegCM4 simulations show a better MAE over the North 279 

Atlantic and Northwestern Pacific oceans. For the other basins the differences in correlation and 280 

MAE across the two sets of models are small.  281 

The geographic distribution of the TC track density for IBTrACS, GCM and RegCM4 282 

simulations are shown in Figure 2a, 2b, and 2c, respectively. The observed track density shows 283 
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maxima in TC activity over the Northwest Pacific, tropical eastern Pacific, the ocean areas off 284 

the eastern coast of the United States, the Gulf of Mexico, the Bay of Bengal, and the tropical 285 

regions of Australia and adjacent oceans. The ensemble of GCMs is not able to reproduce the 286 

regions of maximum TC activity over the Northwest Pacific, tropical eastern Pacific and North 287 

Atlantic and overestimates the TC density over the Bay of Bengal and northwestern Australia.  288 

The RegCM4 captures the spatial patterns of the TC climatology such as the maximum 289 

concentration over the tropical Eastern and Western Pacific, the western Atlantic, and northern 290 

Australia. The main model deficiency is the underestimation of TCs over the two cyclogenetic 291 

areas of the Indian Ocean, the Bay of Bengal and the Arabian Sea, areas where problems have 292 

been encountered also in previous studies (Manganello et al. 2012; Knutson et al. 2015; 293 

Bacmeister et al. 2018; Vishnu et al. 2019). The poor results in simulating TCs over the North 294 

Indian Ocean could be related to the difficulty in separating monsoon depressions from TCs in 295 

our tracking criteria and to a cold bias in sea surface temperature (SST) simulated over the North 296 

Indian Ocean in the GCMs (Supplementary Figure S2). Overall, Figure 2 shows that, compared 297 

to the GCMs, the RegCM4 simulates TC patterns which are closer to observations except for the 298 

two TC areas in the North Indian Ocean. 299 

To investigate the physical processes underlying the TC frequency bias described in the 300 

GCMs above, we examine the bias (model minus ERA5 reanalysis) in SST, relative humidity at 301 

700 hPa (RH700) and vertical wind shear (Vs) for the GCMs (Supplementary Figure S1). The 302 

underestimation in North Atlantic storms in the three GCMs can be potentially explained by the 303 

cold SST and dry RH700 biases in two of the models. Furthermore, the North Atlantic tropical 304 

cyclone genesis is strongly linked with tropical easterly waves, and these waves are not well 305 

represented in GCMs (Camargo et al, 2005). Similarly, the low production of TCs in the 306 
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NorESM1-M model over Australasia, Northwestern Pacific and North Indian Ocean can be 307 

related to a cold SST bias there. The MPI-ESM-MR is the model with the smallest bias in SST 308 

and RH700 and storm simulations closer to observations in all domains.  309 

Figure 3 shows the mean annual TC frequency on the Saffir-Simpson hurricane wind 310 

scale after the wind adjustment is carried out for both model ensembles. For the North Atlantic, 311 

Northwest Pacific and Australasia (Figures 3a, e, b), the RegCM4 experiments in each category 312 

are in line with the observations except for a systematic underestimation of tropical storms 313 

(Category 0). For the Eastern Pacific, the RegCM4 ensemble mean overestimates TCs in all 314 

categories, except Category 5, while over the North Indian Ocean (Figure 3d), as already 315 

discussed, the RegCM4 ensemble simulations produce too few TCs. The GCM ensemble 316 

severely underestimates TCs in all categories for the North Atlantic, Eastern Pacific and 317 

Northwest Pacific basin, it overestimates TCs over the North Indian Ocean basin (except for 318 

Category 0) and is comparable to observations over Australasia (again except for category 0). 319 

Overall, the models tend to systematically underestimate category 0 events and to show more 320 

mixed results for the other categories.  321 

Figure 4 shows the storm duration in each basin. Overall, the RegCM4 experiments 322 

simulate adequately the lifetime of the events and improve those generated by the GCMs over 323 

Australasia, the Northwest Pacific and North Atlantic Ocean. Table 3 shows the correlation and 324 

cumulated MAE between simulated (GCM and RCM ensembles) and observed (IBTrACS) 325 

normalized frequencies in the life cycle of TCs over the regions identified in figure 2a. The 326 

correlations for the RegCM4 ensemble are higher than the GCM ensembles in all basins, 327 

indicating that the regional model reproduces better the observed life cycle distribution. For the 328 

North Indian Ocean, the GCMs simulate better the long-lived events (Figure 4d) and also exhibit 329 
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a lower MAE than the RegCM4. In the Eastern Pacific (Figure 4c), neither the GCMs 330 

(underestimate) nor the RegCM4 (overestimate) can reproduce adequately the duration of the 331 

TCs, presenting relatively low correlations and high MAEs. 332 

The average annual rainfall associated with TCs is displayed in Figure 5. The observed 333 

climatology of TC rainfall (MSWEP) has the largest magnitude in the eastern United States, 334 

southern Mexico, eastern China, Japan, northern Australia, eastern India and Bangladesh 335 

(Figure 5a). This is supported by a higher TC density in these regions (Figure 2). The GCM 336 

ensemble (Figure 5b) shows good agreement with observations at the coasts of the Bay of 337 

Bengal and the South China Sea but a large underestimation of TC precipitation over the other 338 

regions. The RegCM4 ensemble (Figure 5c) is generally closer to observations over the coastal 339 

regions of central and south America, Australia a northeastern Asia, while it substantially 340 

underestimates TC precipitation over the Bay of Bengal and Vietnam coasts.  341 

Table 4 shows the correlation coefficients and spatial MAE between observed and 342 

simulated TC precipitation. The correlations are generally high, in excess of 0.8, for both 343 

ensembles, except for the RegCM4 over North India and the GCMs over the eastern Pacific. The 344 

MAE values are lower for the RegCM4 than the GCMs over the North Atlantic and Australasia, 345 

higher over the North Indian Ocean and comparable in the remaining two basins.  346 

To quantify the relevance of cyclones for extreme precipitation events, we examined the 347 

TC impact on extreme rainfall using the POT approach. Using the TC tracks from IBTrACS and 348 

the MSWEP precipitation (Figure 6a), we find that Baja California and the Pacific Coast of 349 

southwestern Mexico are the most affected by TC-induced heavy rainfall, where more than 45% 350 

of the 95th percentile rainfall is TC-related.  Other regions such as northwestern Australia, 351 

eastern India, the southern part of the Arabian Peninsula, and Somalia (Figure 6a) show a large 352 
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contribution from TC-induced heavy rainfall, while in the southeastern United States and the 353 

Caribbean region, values are in the range of 15% to more than 25% in the Yucatan Peninsula.  354 

In general, the GCMs underestimate the contribution of TCs to extremes of precipitation 355 

over northern Australia, North and Central America (Figures 6b, S3a) and overestimate it over 356 

eastern Asia, but capture adequately the spatial pattern over Japan. Similar to the results for total 357 

precipitation (Figure 5c), the RegCM4 simulations (Figures 6c, S3c) underestimate the TC 358 

contribution to extreme rainfall over the North Indian Ocean and Australia. However, the 359 

ensemble mean shows only a small underestimation along the southwestern Mexican coast and 360 

the northern coasts of Australia, improving the GCMs results there. These results are consistent 361 

with the correlations and bias shown in the Table 5. The general underestimation of TC-induced 362 

precipitation can probably be attributed to the relatively low track density in the RegCM4 363 

simulations compared with observations over coastal areas (Figure 2).  364 

The spatial distribution of 95th-percentile precipitation (RR95p), as obtained from the 365 

MSWEP observations and the GCM and RegCM4 ensembles, is presented in Fig. 7. In the 366 

observed field (MSWEP, Fig. 7a), the highest values of 95th-percentile precipitation (RR95p) 367 

appear over the Himalayan foothills, the western Indochina Peninsula, western India and 368 

southern Japan. Both the GCMs and RegCM4 capture the main observed features of RR95p. 369 

However, the GCMs (Figs. 7b, S3b) show a larger bias over eastern Asia, and an overestimation 370 

over Australia and India, while the RegCM4 simulations (Figs. 7c, S3d) show an overestimation 371 

in the Himalayas, Mexico and Central America and an underestimation over Australia and India.  372 

In summary, the RegCM4 ensemble shows a relatively good performance in reproducing most of 373 

the observed TC characteristics over the different basins analyzed, in several regions improving 374 

the driving GCM results. The exception is the North Indian Ocean basin, where the regional 375 
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model underestimates TC occurrences and the GCM ensemble actually produces a better TC 376 

climatology, especially in the second peak of the TC seasons. 377 

 378 

4. Future projections of TC characteristics 379 

In this section, we examine the changes in TC characteristics for the mid- (2041–2060) 380 

and late (2080–2099) 21st century time slices relative to the baseline period (1995–2014) under 381 

the RCP8.5 and RCP2.6 scenarios.  382 

The projected changes in the TC seasonal cycle from the RegCM4 ensemble mean are 383 

shown in Figure 8. For the North Atlantic (Figure 8a) and Australasia (Figure 8b), the 384 

simulations project a prevailing decrease in TC occurrence, especially during the 385 

climatologically active TC months (June to September in the Atlantic and February to April in 386 

Australasia). For the RCP8.5 and the late future, the changes are statistically significant at the 387 

95% confidence level, reaching a decrease in the North Atlantic of -2.3 and in Australasia of -4.6 388 

TCs per year. For the Eastern Pacific (Figure 8c), North Indian Ocean (Figure 8d) and 389 

northwestern Pacific (Figure 8e), the models show opposite trends, with a prevailing increase in 390 

TC frequency, especially for the far future RCP8.5 (4.7, 0.85 and 4.3 TCs per year, respectively). 391 

More specifically, we find a significant increase in TC activity in the Eastern Pacific during 392 

August, November and December under the RCP8.5 scenario, while for the North Indian Ocean, 393 

the largest and most significant changes occur in November and December, during the second 394 

peak of TC activity. For the Northwest Pacific, the increase is shown during the peak of the 395 

season (July-October). Hence, our results suggest an extension of the TC season in the Eastern 396 

Pacific basin from April to December. Overall, our projected changes in the frequency of TCs 397 

are qualitatively consistent with the changes found in the CMIP3 models (Knutson et al. 2010) 398 
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and with the CMIP5-RCP4.5 scenario (Knutson et al. 2015). Interestingly, the changes over the 399 

North Indian Ocean and North Atlantic Ocean for the latter part of 21st century and the low-400 

emissions scenario are larger than those reported for the same period by Knutson et al. (2015). 401 

The discrepancy among different results can be partly explained by differences in the design of 402 

the experiments, tracking algorithms and subsets of CMIP5 models included in the studies. 403 

The changes in the TC seasonal cycle from the GCMs (Figure 9) are generally similar to 404 

those in the RegCM4 over the Eastern Pacific, North Atlantic and Australasia, but of smaller 405 

magnitude. Conversely, for the North Indian and Northwest Pacific Ocean, the GCMs project a 406 

decrease in the number of TCs during the peak season, opposite to those projected in the 407 

RegCM4 simulations.  408 

Figure 10 shows projected ensemble-mean changes in the spatial distributions of TC 409 

occurrences as percentage change relative to the baseline period (1995-2014). Hatched areas 410 

indicate where these changes are statistically significant at the 95% confidence level. For the 411 

RCP8.5 scenario, the track densities in the RegCM4 experiments show consistent changes in the 412 

two time slices, with greater magnitudes in the far future one: a strong and statistically 413 

significant decrease over the Australasia region; a strong and statistically significant increase in 414 

the northwestern Pacific; a decrease in the eastern Arabian Sea and, in the far future period, over 415 

the Bay of Bengal; a prevailing decrease over the Gulf of Mexico, with an increase north of these 416 

regions over the ocean areas off the coasts of the United States; a decrease over the eastern 417 

Pacific coastal regions, with an increase further west over the ocean.  These results are consistent 418 

with those reported by Murakami et al. (2013, 2017) for the North Indian Ocean and Gleixner et 419 

al. (2014) for Australasia. (about -20% and +40%, respectively).  420 
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Some of these patterns are similar in the RCP2.6, but with more mixed features.  The 421 

results over the North Atlantic and Eastern Pacific mostly agree with previous simulations by 422 

Diro et al. (2014) and Knutson et al. (2015), with the exception of the northwestern part of the 423 

North Atlantic Ocean. Over this region, Knutson et al. (2015) found a decrease in TC frequency, 424 

in contrast to the increase shown in our results and in previous studies using a downscaling 425 

framework with CMIP3 (Emanuel 2008) and with CMIP5 data (Diro et al. 2014). Note that aside 426 

from the Australasia and Gulf of Mexico regions, the GCMs show patterns which are quite 427 

different from those of the RegCM4, often in fact of opposite sign, such as over the Bay of 428 

Bengal and the South China Sea.  429 

 Concerning landfalls, we find in the RegCM4, RCP8.5 scenario, significant and robust 430 

increases over the land surfaces bordering the South China Sea, such as Vietnam, southern China 431 

and for the far future over Philippines, where populations are already vulnerable to TC-induced 432 

flooding (Gupta 2010). In addition, in the late 21st century RCP8.5 there is a significant increase 433 

in TC density over the offshore areas northeast of the United States, indicating a greater potential 434 

for damage in this region, although a decrease is found over the Eastern U.S. in the mid-future 435 

slice.  436 

Another important feature to consider is the impact of climate change on TC intensity. 437 

The changes in the ensemble mean annual TC frequency on the Saffir-Simpson Scale are shown 438 

in Figure 11. In general, the GCM and RegCM4 bias-adjusted model output shows either small 439 

or positive changes in the frequency of more intense (Categories 4 and 5) TCs in all basins, with 440 

prevailing positive changes in the RCP8.5 scenario, by 1.2, 3, 0.3 and 0.6 TCs/year over the 441 

North Atlantic, Eastern Pacific, North Indian Ocean and Northwest Pacific basins respectively.  442 

Over Australasia and the North Atlantic basin, the number of low-intensity TCs (Categories 0-2) 443 
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are significantly reduced in both ensembles in the RCP8.5, while for the Eastern Pacific an 444 

increase in TCs is projected for all categories. Over the North Indian Ocean we find the largest 445 

disagreement between RegCM4 and GCM projections, with opposite signs of changes between 446 

the ensembles, while a generally mixed change response is finally seen in the Northwest Pacific. 447 

In general, the results using winds without bias correction are in line with the bias corrected ones 448 

(Supplementary Figure S4).  449 

The increase in the occurrence of high-intensity TCs is consistent with Knutson et al. 450 

(2015), who also project a large increase in TCs of categories 4-5 for the Eastern Pacific, North 451 

Atlantic, Northwest Pacific and Arabian Sea. However, the RegCM4 results are opposite to those 452 

of Knutson et al. (2015) over the northeastern Indian Ocean, where they report a decrease. These 453 

differences could be related to different model resolutions and simulation design, although we 454 

emphasize that the North Indian ocean is the region where the RegCM4 simulated TC statistics 455 

show the lowest performance with respect to observations.  456 

Figure 12 shows the RegCM4 ensemble-mean projected changes in TC duration, where 457 

the values of TC duration are normalized with respect to the total number of TCs in each period. 458 

Three of the five domains (North Atlantic, Australasia and Northwest Pacific) show a reduction 459 

in the number of TCs with a long-life cycle, especially those lasting longer than seven days, 460 

while the North Indian Ocean basin shows small changes and the Eastern Pacific an increase in 461 

correspondence with a consistent reduction in the frequency of short-duration TCs. The results 462 

for this latter basin are qualitatively in agreement with those of Emanuel et al. (2008). For the 463 

other basins, the response of short-duration events shows mixed signals. The changes in TC 464 

duration projected by the GCMs (Supplementary Figure S5) show more mixed results, but of 465 
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relevance is the fact that the GCM-produced responses are of opposite sign compared to the 466 

RegCM4's over the Australasia and Eastern Pacific Basin.  467 

Figure 13 shows the change of mean annual TC rainfall in the different periods and 468 

scenarios for both the RegCM4 and GCM ensembles. In the RegCM4, under both scenarios, we 469 

find a significant decrease over Australasia (hatched areas), by up to 60-90%, and over Mexico 470 

and Central America by 20-40%, except for areas of northern Mexico. Over India, the Arabian 471 

Peninsula, Myanmar, eastern China and Japan, the RCP8.5 RegCM4 projections show large 472 

increases, significant in some regions, although this signal reverses sign in RCP2.6 in some areas 473 

of southeastern China and northern Indochina Peninsula. The eastern coastal regions of the 474 

United States show different changes depending on the forcing and period analyzed. Moving to 475 

the GCM projections, in several cases changes are of opposite sign between the GCMs and 476 

RegCM4, most noticeably over Australasia and southern Mexico. 477 

Turning our attention to the changes in the TC contribution to extreme precipitation 478 

(Figure 14), in the RegCM4, consistent with the differences in the rainfall rate, for all future 479 

periods and scenarios, the percentage of extremes related to TCs primarily increases over the 480 

North Indian Ocean, eastern China, Korea, and Japan by 20%. Over northern Australia, Mexico 481 

and the eastern United States, our simulations indicate a prevailing, but not ubiquitous, decrease 482 

in the percentage of high-precipitation events related to TCs, the change being larger for the 483 

RCP8.5 and for the late future. Observational studies (Cavazos et al. 2008 and Pfahl and Wernli 484 

2012) are consistent with these trends in the future projections. Again, the GCMs show some 485 

instances of noticeably different responses, such as over Australasia and Mexico. 486 

 487 

5. Analysis of driving mechanisms 488 
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 The occurrence and development of TCs depends strongly on the SSTs and on 489 

characteristics of the large-scale environment such as vertical wind shear (Vs) and vertical 490 

thermodynamic profiles (Emanuel 1995). In general, the SST increases in the future, which 491 

should lead to increased TC occurrence and intensity. However, other atmospheric factors can 492 

drastically modulate this response and can help to explain the strongly basin-dependent 493 

responses found in the previous analysis.  494 

Figure 15 presents the changes in large-scale environments over the different basins in 495 

the RegCM4 and GCM RCP8.5 simulations. The mean differences were calculated for the June-496 

November season for the Atlantic, Western and Eastern Pacific basins, the November-March 497 

season for the Australasia domain and for the months of May, June, September-December for the 498 

North Indian Ocean. The first column shows the changes in vertical wind shear (Vs), defined as 499 

the vector difference of the wind at 850hPa and 200hPa. Excluding the influence of other 500 

environmental factors, high values in Vs are related to reduced TC activity and intensity (Frank 501 

and Ritchie 2001; Emanuel and Nolan 2004; Camargo et al. 2007).  502 

Focusing on the RegCM4 runs first, there are prevailing decreases in Vs over the North 503 

Indian Ocean, the Gulf of Mexico, the eastern Pacific off the Mexican coast, the 504 

Florida/Caribbean region and the southeast Asia regions north of Australia i.e. favorable 505 

conditions for the increased TC activity. Over these regions, except north of Australia, the track 506 

densities indeed increase. Conversely, Vs increases across the Australia continent, over Central 507 

America and the south Gulf of Mexico and over the western Pacific off the coast of China, which 508 

is consistent with the reduced TC activity found over these regions (Figure 10d), with the 509 

exception of the eastern Pacific coastal areas. The projected changes in Vs, which appear to be 510 

an important factor driving the TC responses in the model, are broadly in line with those reported 511 



 23 

by Vecchi and Soden (2007) and Murakami et al. (2012a), except over the northern part of the 512 

Gulf of Mexico.  513 

The second column shows changes in relative humidity at 700hPa (RH700), projecting a 514 

consistent increase in mid-tropospheric RH over most regions except for the Northeastern Asia, 515 

North of Australia and central America areas. In these latter two regions, this factor appears to be 516 

dominant in inducing a decrease of TC activity (Figure 10d), a result in line also with Vecchi and 517 

Soden (2007). Note that the changes over the Eastern Pacific are opposite to those documented 518 

by Vecchi and Soden (2007) and Murakami et al. (2012a), but they are broadly consistent with 519 

the changes in track density (Figure 10).  520 

The third column shows the Maximum Potential Index (MPI; Emanuel 1995), i.e. the 521 

maximum sustainable intensity of TCs based on the thermodynamics of the atmosphere and sea 522 

surface. The RegCM4 simulations exhibit MPI increases over most TC regions (North Atlantic, 523 

Eastern Pacific, North Indian and Northwest Pacific Ocean), possibly explaining the increase in 524 

the frequency of the most intense TCs (Figure 11). However, for Australasia, the differences in 525 

MPI between the future and historical periods are not homogenous throughout the basin. These 526 

results are consistent with those obtained by Murakami et al. (2012a) and Camargo (2013) using 527 

GCMs.  528 

The change in the Genesis Potential Index (GPI; Emanuel and Nolan 2004) for 529 

the ensemble mean is displayed in the last column. This is a metric that estimates the 530 

potential for a TC to develop, combining the values of Vs, RH700, MPI, and large-scale 531 

vorticity. Larger values of GPI are associated with enhanced tropical storm development. Model-532 

projected GPI increases modestly in the North Indian Ocean and Eastern Pacific but decreases in 533 

the Caribbean and Australasia, consistent with the changes in the TC density (Figures 9 and 10). 534 
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However, over the central tropical Atlantic a statistically significant decrease in track density 535 

(Fig. 10d) is noted with negligible or increasing GPI (Fig. 15). Additionally, over the tropical 536 

Northwestern Pacific a strong increase in GPI occurs in the mid-future time period, but with 537 

slightly decreasing track density in the same region (Fig. 10a). In these regions it appears that 538 

large-scale forcings not captured by the GPI parameter are causing changes to the track density. 539 

For instance, over the central tropical Atlantic it is possible that a weakening of the west African 540 

monsoon may decrease the frequency of easterly waves which are the focus of tropical cyclone 541 

development over the central tropical Atlantic. Overall, the changes presented here for GPI are 542 

similar to the projections of Vecchi and Soden (2007) and Murakami et al. (2012a), with the 543 

exception of those for the Eastern Pacific. However, the RegCM4 projections for TC frequency 544 

over the Eastern Pacific agree with most recent studies using high-resolution models (Knutson et 545 

al. 2015; Bhatia et al. 2018).  546 

A Similar analysis for the ensemble of the GCMs (bottom panels Figure 15), shows a 547 

prevailing, but not ubiquitous, consistency with the RegCM4 results. For both periods under the 548 

RCP8.5 scenario, there are increases in Vs and a reduction in the mid-troposphere RH over the 549 

North Atlantic Ocean, explaining the decrease in the tropical storm development in the GCMs 550 

(Figure 10f). Also, the MPI values show high values over the eastern Australian coast, consistent 551 

with the significant increase in the frequency of the most intense TC (Figure 11b), Finally, the 552 

inconsistencies in the changes in the TC activity between GCMs and RegCM4 found over the 553 

Bengal Bay and South China Sea can be explained by the projected changes in the RH700, for 554 

which the RegCM4 simulations produce a larger increase in the mid-troposphere, which then 555 

contributes to the simulated increase of TC activity.  556 
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The projected changes in seasonal mean SST and vertical wind shear from the five GCM 557 

analyzed are shown in Supplementary Figures S6 and S7, as they can help to explain the changes 558 

in the TC frequency. As expected, all the models show a global increase in SST in the range of 559 

1-6 C (Figure Supplementary S6), larger for the far future and for the RCP8.5 scenario. The 560 

largest warming is projected over the Northwestern Pacific and Northeastern basins, this latter 561 

showing also a significant increase in TC activity. Overall, the HadGEM2-ES produces the 562 

largest warming, particularly over the North Pacific Ocean. 563 

Over the North Atlantic and Australasia, almost all the models, scenarios and periods 564 

exhibit an increase in vertical wind shear (Vs, Figure S7), while a decrease in Vs is found over 565 

the North Indian Ocean. All these changes are broadly consistent with the changes in TC 566 

frequency. For the Northwester Pacific, the changes in Vs are small in the south of the basin, 567 

while in the north they are not consistent across scenarios and periods. Similar results are found 568 

in the Northeastern Pacific Ocean. 569 

 570 

6. Summary and Conclusions  571 

The characteristics of TC activity over four CORDEX domains including 5 TC regions 572 

are examined for present and future climate conditions using the regional climate model 573 

RegCM4 driven by three GCMs. We analyze results from a series of simulations conducted as 574 

part of the CORDEX-CORE program at a horizontal grid spacing of 25 km for a historical period 575 

(1995–2014) and two future periods (2041–2060 and 2080–2099) under the RCP 2.6 and RCP 576 

8.5 scenarios. Overall, the RegCM4 captures most of the features of the observed TC 577 

climatology, albeit with some systematic biases, such as an overestimate of TC density in the 578 

Eastern Pacific Ocean and an underestimate in the North Indian Ocean. In general, as expected 579 
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from its higher resolution, the RegCM4 generally shows an improved simulation of several TC 580 

statistics compared to the driving GCMs in most basins, the main exception being the North 581 

Indian Ocean, where the GCMs produce more TCs than RegCM4 especially in the second peak 582 

season, more in line with observations.  583 

Regarding the future scenarios, the changes in TC characteristics produced by RegCM4 584 

indicate prevailing increases in TC frequency over the North Indian Ocean and the Eastern 585 

Pacific, this latter region showing also a longer TC season in the future (from April to 586 

December). These changes are consistent with the changes in GPI, particularly as related to an 587 

increase in mid-tropospheric relative humidity. On the other hand, the North Atlantic and 588 

Australasia basins show a decrease in TC frequency mostly associated with an increase in wind 589 

shear over these basins. Over land, the changes in TC days show a prevailing increase in India 590 

and decreases in Australia, Central America and Mexico. These results are qualitatively 591 

consistent with a number of earlier studies (Emanuel et al. 2008; Lavender and Walsh 2011; 592 

Murakami et al. 2013; Diro et al. 2014; Knutson et al. 2010, 2015; Bacmeister et al. 2018), but 593 

they are opposite to those of Murakami et al. (2012b, 2014) over the northwest and northeast 594 

Pacific. The main difference between the GCMs and RegCM4 TC responses occur over the 595 

North Indian ocean basin, where the GCMs project a decrease in TC number.  596 

The projections show a significant increase in the frequency of the strongest TCs over the 597 

Eastern Pacific, the North Atlantic and the North Indian Ocean basins where the MPI has higher 598 

values for all future scenarios (Murakami et al. 2012a). It is important to highlight that these 599 

results are robust across the simulations using different driving GCMs for RCP8.5 scenario. Over 600 

the northeast Pacific, Australasia and North Indian Ocean, the projected changes in the duration 601 

of TCs in the RegCM4 are consistent with those documented by Webster et al. (2005) and 602 
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Emanuel et al. (2008) who showed a reduction in the number of long lasting TCs. However, the 603 

GCM and RegCM4 ensembles show different responses over Australasia, where the GCMs 604 

project a reduction in the frequency of short-duration TCs and an increase in those with a longer 605 

lifetime.  606 

The change in total annual TC rainfall exhibits a spatial pattern similar to that of the track 607 

density, increasing significantly over the North India Ocean and decreasing in Australasia and 608 

southern Mexico. We also find that future TCs will have a stronger effect on the upper part of 609 

rainfall distribution over locations in the North Indian Ocean and northwestern Mexico, 610 

consistent with trends observed by Cavazos et al. (2008) and Zhang and Zhou (2019). The 611 

change in the TC rainfall rate exhibits an increase over Korea, Japan, India and the Arabian 612 

Peninsula, and a mixed signal over the eastern coast of the United States and Central America. In 613 

general, the GCM and RegCM4 ensembles show consistent signals in mean annual TC rainfall, 614 

precipitation rate and contribution to extreme events, with the exception of Australia and 615 

Mexico, where however, the GCMs have the largest bias in mean annual TC rainfall and TC 616 

contribution to extreme precipitation during the historical period. A summary of the results for 617 

the RegCM4 simulations is found in Table 6. 618 

Our results clearly indicate that the issue of TC responses to increased GHG forcing is a 619 

complex one, as it depends strongly on changes in the large-scale atmospheric environments 620 

forcing TC formation, and thus it is highly basin-dependent. Future work should explore more in 621 

detail the role of the vertical wind shear (Tran-Quang et al. 2020) and other environmental 622 

factors (Emanuel et al. 2004) in future changes in TC intensity. Also, while we focused on cross 623 

basin intercomparison of responses, more detailed analysis of individual basins might yield a 624 
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more in depth understanding of local driving mechanisms of changes in TC activity. Some robust 625 

and statistically significant responses were found in our study, often but not always in line with 626 

previous studies, and not always consistent between the RegCM4 and driving GCMs. This 627 

implies that a robust assessment of TC changes requires analyses of large ensembles of 628 

simulations with high resolution models driven by different GCMs capable of representing the 629 

response of different TC characteristics to critical atmospheric factors. Multi-model 630 

intercomparison projects such as CORDEX, HighResMIP and CMIP6 will thus provide 631 

increasingly valuable platforms to address this critical issue for society. 632 
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List of Figures 

 

 
Figure 1. TC annual cycle over the a) North Atlantic, b) Australasia, c) the Eastern Pacific, d) 

the North Indian and e) Northwest Pacific Ocean during 1995-2014.  
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Figure 2. TC track density (TC days in a calendar year in which a storm center passes within a 

500-km great circle distance of the grid point) from a) IBTrACS, b) GCM ensemble mean and c) 

RegCM ensemble mean.   

 



 3 

 
Figure 3. Annual number of TCs categorized by the Saffir-Simpson scale (before bias 

correction) for the a) North Atlantic, b) Australasia, c) the Eastern Pacific, d) the North Indian 

and e) Northwest Pacific Ocean for 1995-2014. Category 0 refers to storms of Tropical Storm 

intensity. 

 

 

 



 4 

 
 

Figure 4. Normalized frequency in the life cycle of TCs for the a) North Atlantic, b) Australasia, 

c) the Eastern Pacific, d) the North Indian and e) Northwest Pacific Ocean.  
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Figure 5. Spatial distribution of the mean annual TC rainfall (mm yr-1) from a) IBTrACS with 

MSWEP precipitation, b) GCM ensemble mean and c) RegCM ensemble mean.   
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Figure 6. Relative contribution of TCs to extreme rainfall using the POT approach (%, left 

column) for the (top – bottom) IBTrACS with MSWEP precipitation, GCM ensemble mean and 

RegCM4 ensemble mean. 
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Figure 7. 95th percentile of precipitation (mm d-1) for the (top – bottom) IBTrACS with 

MSWEP precipitation, GCM ensemble mean and RegCM4 ensemble mean. 
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Figure 8. Changes in TC annual cycles for the RegCM4 for the a) North Atlantic, b) Australasia 

c) the Eastern Pacific, d) the North Indian and e) Northwest Pacific Ocean. Mid-future period 

refers to 2041–2060 and Far-Future period refers to 2080-2099. Asterisks show where changes 

are significant to a 95% level of confidence, based on the Wilcoxon rank-sum test. 
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Figure 9. As in Figure 8, but for the GCMs under the RCP8.5 scenario 
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Figure 10. Percent change in TC track density relative to the baseline period for the RegCM 

ensemble mean under the RCP2.6 scenario for the (a) mid- and (b) late future; under the RCP8.5 

scenario for the (c) mid- and (d) late future and for the GCM ensemble (e) mid- and (f) late 

future. Mid-future period refers to 2041–2060 and Far-Future period refers to 2080-2099. 

The map show regions with a track density of least 5 days in the historical period. Hatched areas 

show where changes are significant to a 95% level of confidence, based on the Wilcoxon rank-

sum test. 
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Figure 11. Changes in the annual number of TCs as categorized by the Saffir-Simpson scale for 

the a) North Atlantic, b) Australasia c) the Eastern Pacific, d) the North Indian and e) Northwest 

Pacific Ocean. Asterisks show where changes are significant to a 95% level of confidence, based 

on the Wilcoxon rank-sum test. 
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Figure 12. Normalized changes in the life cycle of TCs for the RegCM4 for the a) North 

Atlantic, b) Australasia, c) the Eastern Pacific, d) the North Indian and e) Northwest Pacific 

Ocean. Before calculating the differences, the values of life duration were normalized with 

respect to the total number of TC in each period. 
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Figure 13. Changes in the total mean annual TC rainfall for the RegCM ensemble mean under 

the RCP2.6 scenario for the (a) mid- and (b) late future; under the RCP8.5 for the (c) mid- and 

(d) late future and for the GCM ensemble (e) mid- and (f) late future. The map show regions 

with precipitation greater than 1 mm/day and with a track density of least 5 days in the historical 

period. Hatched areas show where changes are significant at a 95% level of confidence, based on 

the Wilcoxon rank-sum test. 
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Figure 14. Changes in contributions of TCs to extreme rainfall using POT approaches for the 

RegCM ensemble mean under the RCP2.6 scenario for the (a) mid- and (b) late future; under the 

RCP8.5 for the (c) mid- and (d) late future and for the GCM ensemble (e) mid- and (f) late 

future. 
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Figure 15. Changes in large-scale environmental parameters associated with hurricane intensity 

and activity in (left)–(right) vertical wind shear between 850 and 200 hPa (m s−1), 700 hPa 

relative humidity (%), wind maximum potential intensity (MPI, m s−1), and genesis potential 

index (GPI), in (top)–(bottom) for the RegCM4 in the RCP8.5 for the mid- and late future and 

the GCM in the RCP8.5 for the mid- and late future. The mean differences were calculated for 

the June-November season for the Atlantic, Western and Eastern Pacific basins, the November-

March season for the Australasia domain and for the months of May, June, September-December 

for the North Indian Ocean. 
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List of Tables 

 

Table 1. Details for models used in the simulations in each domain 

Region Driving GCMs Physics Scheme Parametrization Reference 

Australasia 

 

 Boundary Layer Holtslag Holtslag, 1990 

HadGEM2-ES 

(Collins et al. 2011) 
Cumulus (Land) Tiedtke Tiedtke,1996 

MPI-ESM-MR 

(Zanchettin et al. 

2013) 

Cumulus (Ocean) Tiedtke 
Kain-Fritsch, 1990, 

2004 

NorESM1-M 

(Zhang et al. 2012) 
Microphysics SUBEX Pal et al 2000 

 Ocean Flux Zeng et al Zeng et al 1998 

North Atlantic and 

Eastern Pacific 

 

 Boundary Layer Holtslag  

HadGEM2-ES 

 
Cumulus (Land) Emanuel Emanuel,1991 

MPI-ESM-MR Cumulus (Ocean) Kain-Fritsch  

GFDL-ESM2M 

(Dunne et al. 2012) 
Microphysics SUBEX  

 Ocean Flux Zeng et al  

North Indian 

 Boundary Layer UW PBL (2) 
Bretherton et al. 

2004 

MPI-ESM-MR Cumulus (Land) Emanuel  

NorESM1-M Cumulus (Ocean) Tiedtke  

MIROC5 

(Watanabe et al. 

2010) 

Microphysics SUBEX  

 Ocean Flux Zeng et al  

Northwest Pacific 

 

 Boundary Layer Holtslag  

MPI-ESM-MR Cumulus (Land) Emanuel  

NorESM1-M Cumulus (Ocean) Emanuel  

 Microphysics SUBEX  

 Ocean Flux Zeng et al  

 

 



 2 

Table 2. Correlation coefficients between model and observed TC annual cycle (R) and their 

mean absolute error (MAE). 

 
 North Atlantic Australasia Eastern Pacific North Indian Northwestern Pacific 

 R MAE R MAE R MAE R MAE R MAE 

GCM ensemble 0.81 1.04 0.94 0.35 0.95 0.88 0.44 0.27 0.55 1.28 
GCM HadGEM2-ES 0.36 1.10 0.91 0.66 0.86 0.97     
GCM MPI-ESM-MR 0.95 0.84 0.97 0.55 0.99 0.57 0.28 0.35 0.68 1.01 
GCM NorESM1-M   0.67 0.38   -0.04 0.32 -0.03 1.62 

GCM MIROC5       0.63 0.22   
GCM GFDL-ESM2M -0.22 1.22   0.28 1.11     

RegCM4 ensemble 0.88 0.6 0.85 0.38 0.94 1.08 0.42 0.23 0.91 0.71 
RegCM4 HadGEM2-ES 0.41 1.04 0.84 0.27 0.93 0.72     

RegCM4 MPI-ESM-

MR 
0.92 1.03 0.92 0.36 0.9 1.03 0.42 0.23 0.86 0.68 

RegCM4 NorESM1-M   0.56 0.61   0.04 0.31 0.91 1.06 
RegCM4 MIROC5       0.39 0.27   
RegCM4 GFDL-

ESM2M 
0.89 0.57   0.82 1.63     

 

 

 

Table 3. Correlation coefficients between model and observed life cycle (normalized frequency) 

of TC (R) and their mean absolute error (MAE). 

 North Atlantic Australasia Eastern Pacific North Indian 
Northwestern 

Pacific 

 R MAE R MAE R MAE R MAE R MAE 

GCM 

ensemble 
0.83 0.025 0.89 0.017 0.63 0.042 0.85 0.020 0.65 0.032 

RegCM4 

ensemble 
0.95 0.017 0.92 0.016 0.75 0.037 0.86 0.028 0.97 0.010 

 

 

Table 4. Correlation coefficients between model and observed TC rainfall (R) and their mean 

absolute error (MAE, mm). 

 North Atlantic Australasia Eastern Pacific North Indian 
Northwestern 

Pacific 

 R MAE R MAE R MAE R MAE R MAE 

GCM 

ensemble 
0.81 16.2 0.89 14.4 0.64 6.9 0.92 6.8 0.83 31 

RegCM4 

ensemble 
0.85 11 0.83 10.9 0.86 7.6 0.37 16 0.91 32.5 
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Table 5. Correlation coefficients between model and observed contribution of TCs to extremes 

of precipitation (R) and their mean absolute error (MAE; %). 

 North Atlantic Australasia Eastern Pacific North Indian 
Northwestern 

Pacific 

 R MAE R MAE R MAE R MAE R MAE 

GCM ens 0.79 3 0.86 6 0.83 2 0.75 3 0.84 1 

RegCM ens 0.9 2 0.9 4 0.88 1 0.44 5 0.83 1 

 

Table 6. Tropical cyclone activity (percent change) statistics for RegCM4 ensemble (near or far 

future vs historical period), over the regions of the Figure 2a. 

 North Atlantic Australasia Eastern Pacific North Indian 
Northwestern 

Pacific 

Scenario RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

Period N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. N.F. F.F. 

No. of TC (cat 

0-5) 
0 5 -3 -6 -30 -10 -38 -45 15 19 21 33 15 13 9 52 -8 -4 21 9 

No. of hur (cat 

3-5) 
25 31 26 35 -22 1 -38 -21 22 16 31 66 22 33 0 255 -18 -65 71 40 

TC rainfall 

(total) 
22 6 6 -1 21 19 11 24 26 8 18 0 245 221 255 324 77 75 100 132 

Contribution of 

TCs to extremes 

of precipitation 

17 22 -1 -23 -27 51 -38 -42 11 32 14 -21 456 430 386 431 33 29 82 126 
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Supplementary materials 

 

 
Figure S1. Annual number of TCs categorized by the 10-m wind speed for the a) North Atlantic, 

b) Australasia, c) the Eastern Pacific, d) the North Indian and e) Northwest Pacific Ocean for 

1995-2014. 
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Figure S2. Seasonal climatological fields for the period 1995–2014 in (left)–(right) Sea Surface 

Temperature (SST, °C), 700 hPa relative humidity (%) and vertical wind shear between 850 and 

200 hPa (m s−1), in (top)–( bottom) in the ERA5 reanalysis and the bias for GFDL-ESM2M, 

HadGEM2-ES, MIROC5, MPI-ESM-MR and NorESM1-M. The Northern (Southern) 

Hemisphere show the seasonal mean for the May–October (November–April) season. 
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Figure S3. Bias of the relative contribution of TCs to extreme rainfall using the POT approach 

(%, left column) and 95th percentile of all precipitation (mm d-1, right column) for the (top – 

bottom) GCM ensemble mean and RegCM4 ensemble mean. 
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Figure S4. Changes in the annual number of TCs by the 10-m wind speed for the a) North 

Atlantic, b) Australasia c) the Eastern Pacific, d) the North Indian and e) Northwest Pacific 

Ocean. 
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Figure S5. Normalized changes in the life cycle of TCs for the GCMs under the RCP8.5 

scenario for the a) North Atlantic, b) Australasia, c) the Eastern Pacific, d) the North Indian and 

e) Northwest Pacific Ocean. Before calculating the differences, the values of life duration were 

normalized with respect to the total number of TC in each period. 
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Figure S6. Changes in Sea Surface Temperature (SST, °C) for CMIP5 models in (left)–(right) in 

the RCP2.6 scenario for the mid- and late future, and under the RCP8.5 for the mid- and late 

future, in (top)–(bottom) GFDL-ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-MR and 

NorESM1-M. The Northern (Southern) Hemisphere shows the seasonal mean for the May–

October (November–April) season. 
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Figure S7. Changes in vertical wind shear between 850 and 200 hPa (m s−1) for CMIP5 models 

in (left)–(right) in the RCP2.6 scenario for the mid- and late future, and under the RCP8.5 for the 

mid- and late future, in (top)–(bottom) GFDL-ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-

MR and NorESM1-M. The Northern (Southern) Hemisphere shows the seasonal mean for the 

May–October (November–April) season. 
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