
Dynamic anthropogenic activitieS 
impacting heat emissions (DASHv1.0): 
development and evaluation 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Capel-Timms, I., Smith, S. T. ORCID: https://orcid.org/0000-
0002-5053-4639, Sun, T. ORCID: https://orcid.org/0000-0002-
2486-6146 and Grimmond, S. ORCID: https://orcid.org/0000-
0002-3166-9415 (2020) Dynamic anthropogenic activitieS 
impacting heat emissions (DASHv1.0): development and 
evaluation. Geoscientific Model Development, 13 (10). pp. 
4891-4924. ISSN 1991-9603 doi: 10.5194/gmd-13-4891-2020 
Available at https://centaur.reading.ac.uk/92057/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.5194/gmd-13-4891-2020 

Publisher: European Geosciences Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Geosci. Model Dev., 13, 4891–4924, 2020
https://doi.org/10.5194/gmd-13-4891-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Dynamic Anthropogenic activitieS impacting Heat emissions
(DASH v1.0): development and evaluation
Isabella Capel-Timms1,2, Stefán Thor Smith2, Ting Sun1, and Sue Grimmond1

1Department of Meteorology, University of Reading, Reading RG6 6ET, UK
2School of the Built Environment, University of Reading, Reading RG6 6DF, UK

Correspondence: Sue Grimmond (c.s.grimmond@reading.ac.uk)

Received: 15 February 2020 – Discussion started: 6 May 2020
Revised: 7 July 2020 – Accepted: 28 July 2020 – Published: 15 October 2020

Abstract. Thermal emissions – or anthropogenic heat fluxes
(QF ) – from human activities impact urban climates at a lo-
cal and larger scale. DASH considers both urban form and
function in simulating QF through the use of an agent-based
structure that includes behavioural characteristics of urban
residents. This allows human activities to drive the calcula-
tion ofQF , incorporating dynamic responses to environmen-
tal conditions. The spatial resolution of simulations depends
on data availability. DASH has simple transport and build-
ing energy models to allow simulation of dynamic vehicle
use, occupancy and heating–cooling demand, and release of
energy to the outdoor environment through the building fab-
ric. Building stock variations are captured using archetypes.
Evaluation of DASH in Greater London for periods in 2015
uses a top-down inventory model (GQF) and national energy
consumption statistics. DASH reproduces the expected spa-
tial and temporal patterns of QF , but the annual average is
smaller than published energy data. Overall, the model gen-
erally performs well, including for domestic appliance en-
ergy use. DASH could be coupled to an urban land surface
model and/or used offline for developing coefficients for sim-
pler/faster models.

1 Introduction

The anthropogenic heat flux,QF , the thermal emissions aris-
ing from metabolic, chemical, and electrical energy use, is
an additional energy source in the urban surface energy bal-
ance.QF varies with human activity across a range of spatial
and temporal scales, impacting weather and climate at micro,
local, and city scales. Heating of buildings in cold climates

can be an important influence on the urban heat island (UHI)
(Hinkel et al., 2003; Bohnenstengel et al., 2014), whilst in
summer the additional heat release from air conditioning (de
Munck et al., 2013; Salamanca et al., 2014) can elevate air
temperatures. The impacts of additional heat may exacerbate
heat-related mortality rates during heatwaves in urban areas
(Heaviside et al., 2016) and increase electricity consumption
in warmer weather (Santamouris et al., 2001). Although there
are multiple methods to estimate anthropogenic heat emis-
sions, and it can be a significant term, it has often been ig-
nored in urban climate studies (Sailor, 2011).

The impact of QF on other surface energy balance fluxes
can be important (Bueno et al., 2012; Best and Grimmond,
2016; Ward et al., 2016). The surface energy balance for an
urban volume can be written as follows (Oke, 1988):

Q∗+QF =QH +QE +1QS +1QA (Wm−2), (1)

where Q∗ is the net all-wave radiation, QF the anthro-
pogenic heat flux, 1QS the net storage heat flux, QH the
turbulent sensible and QE the turbulent latent heat fluxes,
and 1QA the net energy transported by advection. These
fluxes influence the transfer of heat, mass and momentum
(Oke, 1988) and the stability of the urban boundary layer.
The three major source terms of QF (Grimmond, 1992),

QF =QF,B+QF,M+QF,T (Wm−2), (2)

relate to buildings (QF,B), metabolic (people, animals) activ-
ity (QF,M), and transport (QF,T). As a result, QF is highly
variable, both spatially and temporally. The daily movement
of people through a city will have a local, short-term effect,
whilst the widespread uptake of new technologies (e.g. en-
ergy efficient appliances) could have city-wide, long-term
consequences.
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There are multiple approaches to estimate QF (Sailor,
2011). Using population data, top-down methods disaggre-
gate energy consumption and traffic data to produce diurnal
profiles of QF (Sailor and Lu, 2004; Lee et al., 2009; Allen
et al., 2011; Ferreira et al., 2011; Iamarino et al., 2012; Lind-
berg et al., 2013; Lu et al., 2016) Although constrained by
data availability, such approaches can be updated quickly to
provide representative values of past states for large areas
(Gabey et al., 2019). However, these methods generate little
variation between days, as the models tend to use static di-
urnal profiles. For example, the flow of people between res-
idential and work areas does not respond to potential events
that cause actual changes (e.g. blocked roads from an acci-
dent or from flooding) and is assumed to be homogeneous
across a city (Iamarino et al., 2012). Furthermore, energy is
often assumed to be released directly to the outdoor envi-
ronment (Sailor, 2011) rather than indoors. Whilst aggregate
behaviour may be captured, the heterogeneity in processes
(e.g. attributable to appliance use, technology uptake, chang-
ing work practices) is missed despite components (of Eq. 2)
being determined. Top-down approaches do though provide
a basis to assess other approaches as their aggregate output
is based on metered data.

Bottom-up models exist for the different types of heat
emissions (of Eq. 2) from buildings (e.g. Kikegawa et al.,
2003; Bueno et al., 2012; Schoetter et al., 2017), transport
(e.g. Smith et al., 2009), and metabolism (e.g. Thorsson et
al., 2014). Individually, they provide information about be-
havioural and system change impacts on energy use and heat
emissions. For example, building heat releases to the outdoor
environment can be modified by building design (e.g. mate-
rial conduction) and occupancy behaviours (e.g. ventilation,
heating systems); and metabolic models capture activity and
metabolic types (e.g. adults, children, animals). Other meth-
ods to estimate QF include assuming energy balance clo-
sure (Offerle et al., 2005; Pigeon et al., 2007; Crawford et
al., 2017; Chrysoulakis et al., 2018) in Eq. (1), with all other
terms measured or estimated, and measurements of compo-
nent fluxes (e.g. Kotthaus and Grimmond, 2012).

Whilst existing models of QF give plausible estimates,
they typically do not capture changes resulting from human
behaviour in small areas as city-wide assumptions are used
when finer spatial resolutions are unavailable. This means
QF hotspots (Gabey et al., 2019) cannot be identified. More-
over, they do not allow changes in anthropogenic energy use
to be modelled dynamically, so the nature ofQF and implica-
tions of disruption to social practices cannot be investigated.
Capturing the interplay between energy-related behaviours
and meteorological conditions is important to explore sys-
tem feedbacks and resulting effects on urban climates and
city activities.

The terms of Eq. (2) vary with land use and activity within
an area resulting in spatial and temporal heterogeneity of
QF . In turn, this impacts the urban surface energy balance
(Eq. 1). Models that can respond to influencing factors allow

changes to be understood and potentially managed or miti-
gated. Changes may occur at different spatial and temporal
scales, for example, (i) city-wide building stock (e.g. type,
dimension, materials) changes at decadal timescales impact
heating and cooling needs (i.e. modifying QF,B); (ii) indi-
viduals’ many activities and travel decisions each day impact
all three components at the microscale; (iii) social–cultural
practices play out across large spatial and temporal extents;
(iv) transport dynamics can be modified over small spatio-
temporal scales (e.g. road closures) or large spatial and tem-
poral extents through changes in technology (e.g. fuel, trans-
port) and policy and/or planning (e.g. speed limits in neigh-
bourhoods, planning legislation).

Human behaviour and regional climate can impact each
source term of QF . High- to mid-latitude cities with colder
climates use winter space heating, whereas in hotter climates
air conditioning in summer (Sailor and Lu, 2004) is increas-
ingly used. Work schedules and other culturally informed
practices (e.g. social eating, religious worship) alter the time
of day, day of week, and time of year (i.e. national holidays)
that energy demand occurs (Allen et al., 2011). These influ-
ences are not addressed by many static models (Allen et al.,
2011; Dong et al., 2017), and associated dynamics are ne-
glected despite having important impacts on emissions (e.g.
Björkegren and Grimmond, 2018).

Here we present a new bottom-up model for QF (DASH,
Dynamic Anthropogenic activitieS impacting Heat emis-
sions) that captures city features (i.e. place), variations in
building type (e.g. thermal properties), peoples’ activities
and the variability in these with demographics, transport en-
ergy use, and heat release. The DASH model allows the im-
pacts of activities and their interactions across a wide range
of spatial and temporal scales to be explored by taking an
agent-based approach. With both the heterogeneity of city
energy use and dynamics of the whole city captured by
DASH, comparisons to top-down inventories or other data
with coarser spatial and temporal scale resolutions are pos-
sible. These patterns can be analysed to diagnose the sensi-
tivity of the steady state to events that cause perturbations by
human (agent-level) behaviour. The general model structure
and functionality are described (Sect. 2). DASH is applied
(Sect. 3) and evaluated (Sect. 4) in Greater London using
inventory-based results (Gabey et al., 2019).

2 Model development

Given DASH takes an agent-based approach, all processes
involve either an interaction or reaction of agents (Macal and
North, 2010). The agents represent the decisions for move-
ment and activities of people (e.g. cooking) that impact en-
ergy use and therefore QF . The dynamics result from agent
activity across multiple processes in each QF source term
(Fig. 1a) but share outputs (Fig. 1b). For each spatially scal-
able agent (Sect. 2.1) there are the following (Fig. 1a):

Geosci. Model Dev., 13, 4891–4924, 2020 https://doi.org/10.5194/gmd-13-4891-2020
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Figure 1. Overview of DASH (a) Agent–agent interaction and estimation of QF with the AN (mid blue) to aNS (light blue) relations,
changes in process outputs (yellow, purple, green) between time steps and the reaction (arrows) to give QF . (b) Processes include agent–
agent interactions (blue boxes), agent reaction and interaction with environment (QF,B: purple; QF,M: yellow; QF,T: green boxes), inputs
(dashed lines), process outputs (dotted lines) and their interactions (thick lines), and QF outputs (solid grey lines). Notation list gives
definitions.
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1. an agent-based model (ABM) scheduler – to capture the
evolutionary dynamics (Sect. 2.2) of the spatially dis-
crete agents AN

2. three source-specific QF estimators – they use move-
ment and activity from the ABM scheduler to model
metabolic (QF,M, Sect. 2.4.1) and transport-related
(QF,T, Sect. 2.4.2) anthropogenic heat; given the domi-
nant role of building energy use to urban anthropogenic
heat (Sailor and Lu, 2004; Pigeon et al., 2007; Allen
et al., 2011; Sailor, 2011; Nie et al., 2014; Zheng and
Weng, 2017; Gabey et al., 2019), a building energy
model (Sect. 2.4.3 and Appendix B) is integrated within
DASH to estimate QF,B – this accounts for behaviour
of occupants that impacts both appliance energy use and
any indoor environmental conditioning.

The main DASH workflow is driven by agent–agent inter-
actions with a three-stage process determining QF per time
step (Fig. 1b).

– Stage 1: agent–agent interaction occurs through occu-
pant (OC) exchange processes (blue, Fig. 1b) that are
modified by demographics as well as type and time of
day.

– Stage 2: occupancy levels associated with an agent (yel-
low, Fig. 1b) modify appliance energy use (Pα , Fig. 1),
building heating and cooling control (via the building
energy model, STEBBS – Simplified Thermal Energy
Balance for Building Scheme), and volume of vehicles
on the transport network (green, Fig. 1).

– Stage 3: source-specific QF,B, QF,T, and QF,M terms
are calculated for each agent and combined to give QF

for each agent’s geographical region.

All processes operate at the same spatial unit (rather than
area) and time step. These are both defined by the data used
to inform the ABM scheduler. Rules that govern the pro-
cesses may be informed by data and actions at coarser scales.

2.1 Spatial granularity

Agent-based model design allows flexibility as to what
“agents” represent; for example, individuals, households,
specified areas, or businesses (Crooks and Heppenstall,
2012; O’Sullivan et al., 2012). However, the chosen units
should be able to interact with each other and respond. The
constraints on selecting the most suitable entity for an agent
include the purpose of the simulation, data availability, and
computer resources. In DASH, agents represent spatial units
that interact by exchange of occupants – the number, activity,
and type of which informs the calculations of QF (Fig. 1).

The QF of a spatial unit depends on the number of oc-
cupants and their characteristics and activities. For example,
in residential areas QF,B increases as occupants wake up

and start to use appliances or heating/cooling. As they leave
home, QF,T increases as fuel is used for transport and as the
OC are passed between agents the changing activity and oc-
cupancy numbers impact on each agent’s QF . By using spa-
tial units as agents (with OC as an agent property), agents
can be scaled according to behavioural data and computa-
tional constraints. The relationship of agents to occupants
can be from many-to-one and many-to-many. Here, a many-
to-many relationship is used, given computational and data
constraints.

The agents interact by exchanging OC based on rules as-
sociated with the number, type, and activities of occupants.
These are also used in calculation of the energy use of an
agent, i.e. the agents’ response. Agent representation is de-
signed to be data driven (analysed), and so behaviour is con-
strained by data availability. For individual cities, the context
(social, physical) provides the agents probable (exact) char-
acteristics, while administrative boundaries from national
census (or other large survey data) will typically constrain
DASH.

The agent (AN )-based spatial unit (as determined by data
availability) contains subareas (aNS ) of activity (not spa-
tial units) to which the OC are assigned. Hence, popula-
tion statistics are needed to characterise subareas. The sub-
area notation identifies the agent (superscript) and activity
area (subscript). In this version of the model, there are six
subareas: (i) domestic (aND ), (ii) workplace (aNW), (iii) pri-
mary school (aNE ), (iv) secondary school (aNH ), (v) shop (aNR ),
and/or (vi) other (aNO ). There is a minimum of one subarea in
each AN , with the total number and type in each AN to be
determined according to available data and city context (e.g.
a commercial district may only consist of aNW). Despite the
AN location being static, their properties are dynamic.

As AN have the decision-making capability for exchang-
ing OC , they interact by “releasing” or “accepting” occu-
pants. Spatial variation in OC exchange is provided by the
characteristics of the aNS , for example aNW with higher work-
day populations being more likely to accept occupants during
workday hours than other aNW with smaller workday popula-
tions. Temporal variability is governed by aspects of human
behaviour, with granularity provided by different categories
of OC identified within the data used to inform the ABM
scheduler. The model can, therefore, capture differences as-
sociated with time of day, day of week, type of day (e.g. holi-
day or not), and time of year within (and across) differentOC
categories. Thus, this design results in the spatio-temporal
dynamics of QF .

Each AN is located within larger spatial units (B) to allow
coarser-resolution spatial data to inform model behaviour
(e.g. traffic speed limits, school districts), as well as enabling
different spatial representation of QF in analysis. Note that
there can be multiple levels of directly nested spatial units.
This permits different levels of data availability and gover-
nance structure (e.g. impacting decision making/options) to
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I. Capel-Timms et al.: Dynamic Anthropogenic activitieS impacting Heat emissions (DASH v1.0) 4895

be appropriately captured. Hence, impacts from changes in
small areas on the surroundings can be explored.

2.2 Rules of AN interaction

OC are generated and assigned to categories used to inform
energy demand behaviour and movement (e.g. age, work).
To enable movement of OC , they are each associated with
subarea types aNS corresponding to different activities. The
aNS may be located both within one AN or across as many
AN ’s as there are aNS ’s. A minimum of one “anchor” sub-
area is required per OC to identify a place of residence, aND .
For other activities (e.g. work or formal education) to be cap-
tured further aNS ’s are needed. Data-driven assignment of oc-
cupants to subareas enables the exchange of OC by AN ’s
(Sect. 3.1). The anchor aNS ’s are relatively static (i.e. chang-
ing infrequently) as for example workplace remains constant
for long periods.

If data do not allow direct matching of multiple anchor
aNS ’s for OC , then aND is assigned randomly (SciPy, 2019)
but in proportion to the available choices. The choice can
be informed by rules, such as those imposed by local gov-
erning structures (e.g. school choice). For OC trips to non-
anchor subareas (e.g. leisure activity, shopping), assignment
is stochastic. Gravity weightings (0) for all potential trips
between origin i and destination j locations (B, for coarser
resolution than AN ) of distance di,j are precalculated and
stored in a matrix (Casey, 1955):

0i,j =
BiBj

d2
ij

, (3)

where weights 0i,j are derived by an attractor (e.g. total
number of shops) within B and the distance (d) between
locations. The destination is randomly selected using grav-
ity weightings (Eq. 3), accepting amenity attraction rules
(Reilly, 1953). The process is nested to allow for spatial nest-
ing of agents and account for spatial resolution of data on
amenities.

Within an AN , further rules, associated with movement,
can be assigned to OC to represent structural and personal
factors that impact timing and ability to move between aNS .
For example, associated dependants (e.g. children) impact on
timing of movement of an OC due to caring responsibilities.

2.3 Evolutionary dynamics

At each time step, the decision for an AN to release OC ap-
plies a Markovian approach (Appendix A). This stochastic
state determination process decides the nature of an object’s
(e.g. OC) next state (e.g. aNS ) using knowledge of its pre-
vious states (Blitzstein and Hwang, 2019). The subsequent
time at which an OC is accepted by the destination AN is in-
fluenced by factors such as distance and time of travel. This
allows random variability in human behaviour to be simu-
lated such as presence and activities of occupants in a single

building (Page et al., 2008; Richardson et al., 2008; Widén et
al., 2009a) for long periods (Page et al., 2008), whilst aggre-
gate behaviour (informed social structure) will still be appar-
ent. This requires knowledge (data) based on movement and
location associated with time and allows decision making to
be identified with individual OC as well as populations.

The movement and location data are used to create the
Markov matrices’ stationary distributions (Eq. A1) for the
exchange of occupants at each time step (t). The Markov
matrices are created prior to a model run but could be re-
calculated between each time step of the model run in order
to capture potential response (in movement and activity) to
disruptions.

2.4 Calculation of QF

Heat sources (Eq. 2) from people, buildings (with appliance
load breakdown), and transport are determined using the OC
count and associated activity in each of the aNS ’s of all AN ’s.

2.4.1 Metabolism QF,M

Metabolism (QF,M) of eachOC uses an individual metabolic
rate (M):

QF,M,i =M ·OC, (4)

with the sensible (H ) and latent (E) components, using the
Bowen ratio β (sensible to latent heat) as follows (for one
OC):

QF,M(E),i =
QF,M,i

1+β
(5)

QF,M(H),i =
QF,M,i ·β

1+β
. (6)

Both β andM can vary with activity (e.g. office work/sitting,
walking, sleeping) and demographics (e.g. age, gender). Oc-
cupants are assumed to be indoors when present in an aNS .
When occupants travel and are outside, contributions are
made to QF,M(T).

2.4.2 Transport QF,T

If anAN releases anOC , the journey time, route and mode of
transport are needed to determine QF,T. These allow travel
dynamics to influence the time and nature of energy use at the
associated spatial unit through a simple traffic model. QF,T
is calculated at each time step for the spatial units for each
mode type m (e.g. car, truck, train, walk) and route type r
(e.g. minor or major road, overground or belowground rail),
with speed v (m s−1) and heat emission F (W m−1) for all
travelling OC . The journey time is tracked to enable release
of OC at appropriate (e.g. timely, delayed) periods at their
destination AN by using a mode- and journey-specific time
bin (tb). The journey time tb is updated at each time step.

https://doi.org/10.5194/gmd-13-4891-2020 Geosci. Model Dev., 13, 4891–4924, 2020



4896 I. Capel-Timms et al.: Dynamic Anthropogenic activitieS impacting Heat emissions (DASH v1.0)

The notional duration is found from the mode’s distance–
time relation using LOWESS analysis (Cleveland, 1988) on
travel data for distance travelled.

The total number of travelling OC’s in each spatial unit is
the sum of OC’s in all tb’s for all m. The number of OC’s in
a tb changes at each time step as – and when – new journeys
begin. When the tb time is zero, the held OC’s are released
to the next spatial unit of their journey, which may be a des-
tination or an intermediate location (e.g. mode transfer from
walking to bus).

The choice of m is informed by data that associate prob-
ability of m to origin–destination pairings. If journey com-
binations data are unavailable, weighting by distance di,j is
used, informed by other sources (e.g. travel surveys). The
journey route (through different spatial units that calculate
local QF,T) is determined from geographical information
system (GIS) data (e.g. OpenStreetMap, 2017), mapping ap-
plication programming interfaces (APIs, e.g. Google, 2019),
or straight-line distances between centroids (in the absence
of data). For the latter, spatial nesting can be used between
AN and B. Routing options between spatial units can be one
(most basic) or many (data dependent).

Route (r) parameters have a capacity limit (Rlim) assigned
by r-related spatial (B, AN ) capacity constraints (e.g. size
and possible number of occupants of a bus or a railway car-
riage that operate in that area, road congestion limits). How-
ever, these may be modified if a disruption impacts part of
the transport network (e.g. power failure, intense flooding).
The current occupancy is constrained by a mode-appropriate
ratio (Cm,r ) such as number of occupants (no,m,r ) per unit
vehicle. For road-related transport, unit vehicle length (Lm)
is required as, for example, buses hold more people than a
car but require more space on the road. These constraints are
informed by local data.

A total vehicle count for each “m, r” (as Vm,r ) is used to
determine ifOC in travel can be moved between spatial units.
When both

Vm,r ≤
no,m,r

Cm,r
and((

lim∑
m=1

Vm,r ·Lm

)
+1Vm,r

)
≤ Rlim, (7)

then Vm,r is incremented by1Vm,r (i.e. Vm,r +1Vm,r ), where
1Vm,r =

OC
Cm,r

. If Rlim (e.g. total road-type length in a spatial
unit) is exceeded, OC will not be passed to the next spatial
unit – time associated (tb) in neighbouring spatial units will
be lengthened. When

Vm,r >
no,m,r

Cm,r
, (8)

then Vm,r becomes Vm,r −1Vm,r .
Where transport is considered at the spatial resolution of

B, Vm,r ’s are distributed to child spatial units based on the

ratio of nested spatial unit capacity to the parent spatial unit’s
capacity (e.g. Lm,AN /Lm,B for cars).

The anthropogenic heat flux from transport, QF,T for an
AN of area A, at time t is (Grimmond, 1992)

QF,T =

∑nr
r=1
∑nm
m=1Vm,r ·Fm,f ·Lr,t

A
(Wm−2), (9)

where Lr,t is the distance travelled in a time step. Heat emis-
sion (Fm,f ; W m−1) varies with fuel type (f ), m, r , and ve-
hicle speed (vm,r ; m s−1). For the case of road traffic, speed
can be represented as a function of permitted – or average –
speed limit (vr,lim). This is linked to traffic density (i.e. ve-
hicles per unit length; e.g. Salter, 1989), which we relate to
a ratio of total on-road vehicle length to total route length
(equates to Rlim) as

D =

lim∑
m=1

Vm,r ·Lm

Rlim
. (10)

Hence, the speed–density function changes with time as fol-
lows (e.g. Greenshields et al., 1935; Wu, 2000):

vr (t)= vr,lim−D(t) · vr,lim (ms−1). (11)

The relation of vr(t) to Fm,f is dependent on local fuels types
(e.g. Grimmond, 1992; Smith et al., 2009) and is part of the
model parameters specification (e.g. Sect. 3).

2.4.3 Building energy (QF,B)

QF,B accounts for appliance usage (Qα
F,B), lighting (Ql

F,B),
heating and cooling demands (QHC

F,B), and hot water demand
(QHW

F,B):

QF,B =Q
α
F,B+Q

l
F,B+Q

HC
F,B+Q

HW
F,B (Wm−2). (12)

These vary by AN asOC composition changes activities aNS ,
and the local building form, construction (materials and di-
mensions), and control systems (heating, cooling, lighting)
change (e.g. as neighbourhood age or construction period
varies). AN release (acceptance) of OC to (from) the move-
ment and travel module leads to a change in occupancy levels
in associated building types. Activity of OC informs appli-
ance (α), hot water (HW), and lighting (l) energy use as well
as heating and cooling (HC) setpoints for building environ-
mental control.
QF,B is determined through use of STEBBS, which cal-

culates heat transfer through building fabric and ventilation
using an adjustable time resolution.QF,M, α, HW, and l pro-
vide internal gains to the building volume and fabric (Ap-
pendix B). The dynamic 1-D energy model enables both sim-
ple representation of individual buildings (Klein et al., 2017),
as well as scaling to represent groups of building within an
AN . By using building archetypes, STEBBS provides a com-
putationally efficient representation of buildings across a city

Geosci. Model Dev., 13, 4891–4924, 2020 https://doi.org/10.5194/gmd-13-4891-2020
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(Heiple and Sailor, 2008; Bueno et al., 2012; Kikegawa et al.,
2014) and permits multiple types within an AN .

For each archetype with an AN , STEBBS requires the
building dimensions (width, depth, height), window–wall ra-
tio, and thermo-physical properties for the building compo-
nents (i.e. window, wall, roof, floor, internal mass). Thermal
inertia of appliances and lighting is assumed to be negligible
(i.e. no regulating thermal mass), and so the heat resulting
from their use (i.e. total power demand Pα) is exchanged di-
rectly with the indoor air.

Domestic hot water (DHW; following building services
convention this includes both domestic and commercial
buildings) heating and air heating–cooling are a response
to internal conditions, controlled by a setpoint temperature
(Tset; K). The energy use (q) depends on the system effi-
ciency (κ) and maximum power rating (Pmax) for heating
using an exponential control to avoid heating overshoot as
follows:

qH = κ

(
Pmax−

Pmax

exp(Tset−Ti)

)
(W). (13)

And for cooling:

qC = κ

(
Pmax−

Pmax

exp(Ti−Tset)

)
(W), (14)

where Ti is the internal water/air temperature (K). Efficiency
losses of the heating system and all cooling energy are calcu-
lated as direct heat ejection to the outdoor environment. The
heating of the building fabric modifies the storage heat flux
of the urban energy balance (Grimmond et al., 1991; Grim-
mond and Oke, 1999). Thus this term is tracked and removed
from QF,B. Setpoint temperatures are controlled (between
minimum and maximum) in relation to occupancy recognis-
ing the one-to-many representation of buildings in the model.
Domestic instances vary based on proportion of active occu-
pants to total residential population, whilst non-domestic in-
stances may have setpoint temperatures based on occupancy
thresholds.

Ventilation loss/gain (qvent) is given as (Spitler, 2011)

qvent = VRρacp (To− Ti) (W), (15)

where VR is the ventilation rate (m3 s−1), ρa is the air density
(kg m−3), cp is the specific heat capacity of air at constant
pressure (J kg−1 K−1), and To is the outdoor air temperature
(K). In the stand-alone version of this model no spatial vari-
ations in these are considered. If coupled to a meteorological
model, these outdoor variables can be spatially dynamic and
respond toQF emissions locally (Sun and Grimmond, 2019).

DHW is considered as a sensible heat gain only (no la-
tent), with hot water to drains unaccounted for inQF,B. Heat
exchange between DHW in storage (tank and water pipes)
and building volume is accounted for. Volumetric flow rates
(VFR, m3 s−1) of DHW use and to drain can be set to con-
trol volume of DHW in use. The internal heat gain from this
varies with OC level and activity.

The combined internal gains based on internal building ac-
tivities are passed to STEBBS. The number of active (i.e.
present and awake) OC’s in a building (e.g. domestic, work)
influences total energy use (Druckman and Jackson, 2008;
Yohanis et al., 2008) and the energy demand profiles at
timescales from seconds (Richardson et al., 2010) to hours
(Widén et al., 2009b). Hence, occupancy levels are essential
to reproducing commercial (Kim and Srebric, 2017) and do-
mestic load patterns (Widén and Wäckelgård, 2010).

Hence, each building archetype within an AN is impacted
by itsOC level and their activities (i.e. aNS ). AsOC categories
(e.g. age related) participate in different activities (e.g. infant
differs from adult), local census (or other) data both constrain
and spatially inform OC characteristics.

Lighting and appliance gains are associated with activity,
appliance type α (Firth et al., 2008) set efficiency, and power
usage (Pα) associated with different building types (e.g. com-
mercial, domestic). We distinguish three energy consumption
classes:

i. active only (AO) – only occurs with user activity (e.g.
oven, iron);

ii. continuous (C) – always consuming energy (e.g. cold
appliances: fridge, freezer; small appliances: telephone,
clock, burglar alarm); as these may cycle power (e.g.
cold appliances) the power rating accounts for the frac-
tion of time the appliance draws power during a single
complete cycle and the mean power consumed whilst
operating;

iii. active/standby (AS) – two modes which depend on user
activities (e.g. television, computer): (1) as AO and (2)
less when not actively used.

Each appliance (α) type (j ) is assigned to AO, C, or AS with
an active power rating αp and additionally for AS appliances
a standby rating αs . The number of appliances of type j in
AN (αj,AN ) is determined by domestic/non-domestic appli-
ance market permeation (αj,k) as

αj,AN = αj,k · nb, (16)

where nb is the number of households (domestic), number of
work desks (non-domestic, commercial), or floor area (non-
domestic, other) in an AN ; αj,AN acts as the limit of appli-
ance use at any time. If no distinction between j use profiles
can be given (data dependent), all appliance demand is com-
bined as one type.

For domestic use, households are categorised by total
number of residents such that proportion of αj,AN (by AO,
C, or AS) in use at a given time t is

αj,u(t)=

lim∑
x=1

fx,αj (t) ·
nb,x(t)

nb
·αj,AN , (17)

with fx,αj (t) the fraction of households with x active occu-
pants using αj at t (based on occupant activity scheduling)
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and nb,x(t) the number of households with x active occu-
pants at t . For non-domestic buildings, appliance use is pro-
portional to occupancy level and lighting is considered part
of this load.

The power demand Pα (W) of all appliances in use is

Pα =

nAO∑
j=1
(αj,u(t) ·Pα,j )+

nAS(1)∑
j=1

(αj,u(t) ·Pα,j )︸ ︷︷ ︸
Pα(active)

+

nAS(2)∑
j=1

[
(αj,AN −αj,u(t)) ·Pαj

]
︸ ︷︷ ︸

Pα(standby)

+

NC∑
j=1
(Pαj ·αj,AN )︸ ︷︷ ︸
Pα(continuous)

(18)

and is the heat gain passed to each STEBBS instance (i.e.
each building archetype per AN ). Appliance characteristics
are currently uniform throughout AN but could be variable
(e.g. by socio-economic structure).

Domestic lighting is considered as a separate load im-
pacted by an outdoor downwelling shortwave radiation
threshold (K↓lim), a number of households with active
(awake) occupants nb,x , and a base/min/max luminous inten-
sity, lbase/min/max, per household for scaling lighting require-
ment (Widén et al., 2009a):

K↓ (t) < K↓lim : Plight = Pl · nb,x

·

[
lbase+

(
lmin ·

K↓ (t)

K↓lim

+ lmax ·

(
1−

K↓ (t)

K↓lim

))]
(W). (19)

Luminous intensity is converted to total power (Plight) using
a per light power rating (Pl). This is passed to STEBBS as
part of the appliance load Pα .

3 Evaluation of DASH in Greater London

3.1 DASH setup and data sources

We evaluate DASH in Greater London (GL). In the United
Kingdom (UK), the output area (OA) is the smallest spa-
tial unit for census data. We adopt the OA as the agent spa-
tial unit (i.e. AN ) in the model runs, with AN nested within
four coarser spatial units (B): lower-layer super output area
(LSOA), middle layer super output area (MSOA), local au-
thority (LA), and city/region as data (from various agencies)
are aligned to one or more of these spatial units. The LA
have several governance roles (traffic speed, school districts,
planning decisions, etc.) that will impact energy use (LGA,
2019). Similar structures are used in other countries but with

varying levels creating the complete city (National Bureau of
Statistics of China, 2017; Statistics Bureau of Japan, 2017;
Statistics Canada, 2017; US Census Bureau, 2019). In Lon-
don there are 25 053 OA (determined by residential pop-
ulation and social homogeneity; ONS, 2017a) that vary in
size from 1.56×10−4 to 12.3 km2, 4835 LSOA, 983 MSOA,
and 33 LA within one Greater London Authority region (Ta-
ble 1).

The UK Time Use Survey (TUS) 2014–2015 (Gershuny
and Sullivan, 2017) provides a structured source of data
for simulating population movement and human activity (Ia-
marino et al., 2012; McKenna et al., 2015; Baetens and Sae-
lens, 2016). Such surveys are carried out in many countries
by governments or research institutes (Fisher and Gershuny,
2013), allowing DASH to be applied elsewhere with appro-
priate cultural practises accounted for. In the UK TUS, resi-
dents record their activities and location for 1 weekday and
1 weekend day, normally creating profiles of individuals with
income, age, sex and household type metadata. The data sam-
ples are sufficient to allow analysis at national to regional
(e.g. GL) scale in many cases. The 10 min time step resolu-
tion of TUS data (Gershuny and Sullivan, 2017) is the basis
for the model time step.

The TUS data are used to construct Markov chains (Ap-
pendix A) that govern the exchange of occupants in DASH
(Fig. 1a) and the levels and type of activities undertaken by
different groups of OC across the day (Sect. 2.3, Table 2).
Age cohorts (Table 2) are used as the group identifier. Ap-
pliances attributed to TUS activities (Table 2) have different
power ratings and market permeation (Tables 3, C1). Non-
domestic activity varies by workplace appliance types ac-
cording to the land use (e.g. industrial, office) of the AN
(BEIS, 2017a; OpenStreetMap, 2017) with appliances (Ta-
ble D1.iii) having greater energy consumption in industrial
than commercial areas.

The application is undertaken for 2015 to coincide with
the TUS data, when GL had a population of 8.539 million
(census data updated annually; Table 2). The remaining data
needed are obtained for the closest year. Throughout we en-
deavour to use open-source, freely available data. A variety
of data types are used, at a range of spatial resolutions (Ta-
ble 1) with more detail given subsequently (Tables 2–5).

Movement of occupants is informed by the National
Travel Survey (DfT, 2017) and census data on commute pat-
terns (§8,10, Table 4), to determine choice of mode by dis-
tance or type of journey providing the travel attributes (Ta-
ble 4). In this evaluation, nine modes of transport (m) ex-
ist: cars, motorcycles, vans, taxis, buses, surface rail, under-
ground rail, cycling, and walking. Other deployments could
include freight- and boat-related modes. Exclusion of freight
vehicles does not directly affect the travel dynamics but
will result in an underestimation of QF,T. Route types (r)
considered, include four road types – residential, minor (so
called B roads in the UK), major (UK’s A roads), and mo-
torways (highways) – and two rail types (underground and
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Table 1. Sources of data used by DASH and the highest spatial resolution (columns) used in Greater London. Details are given in the other
tables (Tab) and appendices (App.) indicated. Notation defined in text.

Spatial scale

AN B

Data category OA LSOA MSOA LA City London/national

Population Tab 2

Activities App. A

Appliance Tab C1

Building
Size Tab 4
Types Tab 4
Properties Tab 4 Tab C2

Transport
Mode attributes Tab 3
Route speed limits Tab 3
Mode & route capacity Tab 3

Environmental conditions Tab 5

surface). In the model runs, journey distances for all routes
that move between LAs are determined at LA scale based on
GIS shapefile LA centroids. This is the coarsest implementa-
tion of the transport component of the model.

STEBBS is used with different parameters for domestic
and non-domestic buildings (Field, 2008). We simplify to the
three most common domestic building (houses, bungalows,
and flats) archetypes in GL, varied by presence at LSOA
level (Table 3; Mavrogianni et al., 2012; VOA, 2015). De-
spite advances in non-domestic building characterisation for
GL (Evans et al., 2019), the heterogeneity in form and use
limits the use of a range of archetypes (Steadman et al.,
2000). Again, for simplicity in this evaluation, we use a sin-
gle STEBBS characterisation based on the most common do-
mestic archetype parameters for non-domestic (e.g. shops,
hospitals, offices). Hence, a maximum of four STEBBS in-
stances per AN with the appropriate building fabric thermo-
physical properties assigned from one of two building age
groups (pre- or post-1965; Tables 3 and C2). Building dimen-
sions are informed by total AN building footprint and height
(Table 3) for each archetype by age category. The limited
consideration of building material thermo-physical proper-
ties and dimensions is expected to reduce the spatial variance
in heating and cooling contributions toQF in DASH. DASH
can use more building features given suitable input data.

Meteorological data to force the model are from the
KSSW site in central London (Kotthaus and Grimmond,
2014, Table 5). Means (1 and 5 min) are used to obtain 10 min
means (model time step). Outgoing longwave radiation ob-
served with a Kipp and Zonen CNR4 radiometer (Table 5) is
used assuming an emissivity of 0.9 (Butcher and Craig, 2016)
and Stefan–Boltzmann equation (Oke, 1988) to obtain sur-
face temperature. Soil temperature (at 5 m depth) is assigned

assuming it is equivalent to the mean annual (2014–2015) air
temperature (Sellers, 1972; Busby, 2015) of 11.9 ◦C.

As the model requires continuous atmospheric data, gaps
are filled in consecutive order: (a) linear interpolation when
less than 4 h; (b) median for same time in the surrounding
±48 h for gaps of 4–24 h; and (c) similarly for gaps greater
than 24 h, using the median ±72 h. The various model runs
(Table 6) have a spin-up period of 24 h (144 time steps) for
the STEBBS model to become stable.

3.2 Evaluation methodology

Ideally a model is evaluated with observations of the simu-
lated variables (Table 6). However, direct observations ofQF

are extremely limited or are indirect with a series of assump-
tions within them. At the neighbourhood scale, combining
radiation and eddy covariance observations while assuming
energy balance closure has been used to assess monthly and
daily values (e.g. Offerle et al., 2005; Pigeon et al., 2007).
Using satellite earth observation, a much larger spatial extent
(e.g. city wide) is observed but with a bias to clear-sky condi-
tions. The snapshot values at the time of the satellite overpass
require a very large number of assumptions in addition to
energy balance closure (e.g. Chrysoulakis et al., 2018). The
closest to “direct” measurements ofQF are microscale emis-
sions from building vents (i.e. part of QF,B) using eddy co-
variance sensors (Kotthaus and Grimmond, 2012), but there
are extremely limited data available. Thus, the spatial and
temporal scales that DASH is capable of simulating cannot
be directly compared to measured QF . We therefore use a
series of different sources of public data and another model
to evaluate various aspects of DASH.

The reference model used, GQF (Iamarino et al., 2012;
Gabey et al., 2019), is a top-down inventory QF model de-
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Table 2. Spatial, temporal, and demographic data used to inform activity in Greater London. Data sources: Greater London Authority (GLA),
Office for National Statistics (ONS), Chartered Institution of Building Service Engineers (CIBSE), Ordnance Survey (OS), Valuation Office
Agency (VOA). See also Table D1.

Data category Model application Data source

Area codes All B – LSOA, MSOA, LA
All AN – OA

GLA (2011)

Centroid All B, AN GLA (2011)

Area AN – OA

Population Domestic (aND ) – no. by age cohort (all) ONS (2015)
Workplace (aNW) – no. by age cohort (teen/adult/senior) ONS (2014a)
Primary school (aNE ) – no. registered (child)

GLA (2014)
Secondary School (aNH ) – no. registered (teen)
Shops (aNR ) – no. of shops

OpenStreetMap (2017)
Other (aNO ) – no. of businesses

Household Domestic (aND ) – distribution by no. of OC per house ONS (2011)

Age cohort Infant (0–4 years) – no. in aND
ONS (2015)Child (5–11 years) – no. in aND , aNE

Teen (12–18 years) – no. in aND , aNH , aNW
Adult (19–64 years) – no. in aND , aNW
Seniors (65+ years) – no. in aND , aNW

Anchor locations AN – no. of residents/workers/students as function of age –

Day types (to inform activity profiling) School weekday (by age cohorts: child/teen/adult)
Gershuny and Sullivan (2017)Weekend (by all age cohorts)

Public holiday (by all age cohorts – as weekend)
Non-school weekday (by age cohorts: child/teen/adult and
no. of dependent children in different households)

ONS (2017a), Gershuny and
Sullivan (2017)

Initiation of travel Clock time of start of journeys within city and subareas Gershuny and Sullivan (2017)

Building archetypes assigned areas Typical height (m), depth (m), and total floor area (m) of
identified types. Height-to-depth ratios are house: 9 : 12.5;
bungalow: 5.5 : 12.5; low-rise flats: 6.1 : 20. Width calcu-
lated to maintain ratio and total building volume.

VOA (2015), Butcher and
Craig (2016), Mavrogianni et
al. (2012)

Floor plan area (m2) and average height (m) to give volume. OS (2014)

veloped for London. This is selected as it is amongst the most
(spatially and temporally) detailed models for London cur-
rently available (Gabey et al., 2019). We apply it to 2014–
2015 to align with metered data used in the evaluation. The
model uses energy consumption, traffic, and workday pop-
ulation data to provide half-hourly estimates of QF at city,
LA, and OA resolutions. Hence,QF estimates for both mod-
els are at city scale with OA resolution.

There are several GQF features that restrict DASH being
evaluated in higher detail. These are as follows: (i) GQF uses
data from a range of scales (up to national) to determine OA
results with population weighted disaggregation; (ii) diurnal
patterns are prescribed based on either assumptions or coarse
spatial data, with variation by day type (weekday, week-
end) and season – meaning variability at smaller scales are
not captured; (iii) GQF assumes the same diurnal profile for

both gas and electricity usage; and (iv) effects of tempera-
ture in GQF are the net seasonal diurnal energy use profiles
rather than reproducing the day-to-day conditions in London.
Hence, individual DASH diurnal patterns cannot be evalu-
ated against GQF with fine temporal or spatial resolution as
differences are expected.

To evaluate DASH, appliance (including cooking) power
demand is equated to GQF electricity demand and DASH
heating and cooling demand to GQF gas demand. This will
lead to discrepancies as the demand profiles used in GQF
are not energy carrier or vector specific. The calculation and
evaluation of QF,T is undertaken at AN scale rather than in-
dividual routes. In both models, many of the minor residen-
tial roads in AN are unaccounted for.

DASH evaluations (Table 6) use annual (1 October 2014
to 30 September 2015) publicly available gas and electric-
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Table 3. Data sources for physical building characteristics applied to building archetypes. Symbols in notation table. Symbols used are L:
wall thickness (m); ρ: building material density (kg m−3); ke: wall effective thermal conductivity (W m−1 K−1); ε: emissivity; h: convection
coefficient (W m−2 K−1); VT: volume of tank (m3; dependent on number of persons per household); and ToU: time of use. Data sources: §1
– British Council for Offices (BCO, 2009), §2 – Richardson et al. (2010), §3 – DECC and BRE (2016), §4 – Hawkins (2011), §5 – DECC
(2015), §6 – HCA (2010), §7 – Butcher (2004). §2 is used for cycling patterns of continuously on appliances (i.e. fridge/freezer). See also
Table D1.

Characteristic Domestic Non-domestic

Building dimension Height/floor plan Mavrogianni et al. (2012), OS (2014)

WWR Butcher (2012)

Thermo-physical properties (Table C2) Building L, ρ, ke Butcher and Craig (2016)

ε,cp Stewart et al. (2014), Butcher and Craig (2016)

VR Butcher (2014)

Internal h Butcher and Craig (2016)

External h Cole and Sturrock (1977)

External kground Butcher and Craig (2016)

DHW services (tank and pipes) L Flamco (2017)

ε,cp,ke Butcher and Craig (2016), Flamco (2017)

ρ Butcher and Craig (2016), Flamco (2017)

h Butcher and Craig (2016), Knudsen (2002)

VT MWS (2019) IOP (2002)

Power ratings (W) Heating–cooling Butcher and Craig (2016)

DHW Flamco (2017), Palmer (2016)

Appliance* §1 §2 §3 §7 §4 §5 §6

Activity Appliance αj,k §7, §1, §3

DHW VFR BSI (1997), Butcher (2014)

ToU Gershuny and Sullivan (2017)

* see further details in Table C1

ity consumption data (GW h) for domestic and non-domestic
(commercial and industrial) use (BEIS, 2017a, b) and na-
tional gas transmission operational data for the same period
(NG, 2015). DASH, run with the appropriate meteorology
(Table 5), OA results are aggregated for assessment to the
LSOA (domestic) and MSOA (non-domestic) scales. These
evaluation data have some issues: (i) some non-domestic me-
ter data are undisclosed at MSOA level but appear at LA
level (without a MSOA) (BEIS, 2018); (ii) meters with in-
sufficient address metadata cause underreported consump-
tion statistics for some areas; (iii) some gas consumption
statistics may be wrongly classified (domestic/non-domestic)
as this is done based on annual consumption (threshold =
73 200 kW h yr−1) (BEIS, 2018); and (iv) spatial misalloca-
tion of metered commercial gas consumption to the billing
address rather than actual building/location of use (BEIS,
2018).

Basic metrics assessed include the median (50 %), in-
terquartile range (IQR), and standard deviation (SD). To
evaluate the modelled (XM,i) and observed (or reference)
(XO,i) time and/or spatial data series both the difference,

1i =XM,i −XO,i, (20a)

and the absolute errors,

AEi = |1i |, (20b)

are determined, from the following:

1. Cumulative distribution of AEi (obtained from all val-
ues, e.g. across all 25 053 OA; Fig. 9).

2. Maximum-normalised value: nMax = Xi
max(Xi )

(e.g.
Fig. 10).

3. Normalised errors (%): nEi = (1i/XO,i)100 (e.g.
Fig. 11a, b,; ideal value would be 0).
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Table 4. Data sources for (a) modes and (b) routes. Variations from data include the following: buses: 85 % diesel of fleet (in 2015) and
rest mostly hybrid; electric (EV) and low-emission vehicles: EV cars 0.2 % of GL registered vehicles (2015) (DfT and DVLA, 2019). Data
sources: §8 – ONS (2014b); §9 – ONS (2018); §10 – DfT (2017); §11 – DfT (2014a, b); §12 – London Datastore (2014); §13 – OS (2016);
§14 – Smith et al. (2009); §15 – Highways Agency (2017); §16 – TfL (2018); §17 – TfL (2019); §18 – OS (2015); §19 – TfL Train and
Underground Rolling Stock Information Sheets from §10; §20 – TfL working timetables from §10; §21 – Iamarino et al. (2012).

(a) Mode m People per vehicle §10, §15 QF,M per person (Wm−2) §21 Fuel use ratio §10, §17

Petrol Diesel

Car 1.4 70 0.84 0.16
Van 1.4 70 0.1 0.9
Taxi 2.5 70 0 1
Motorcycle 1 70 1 0
Bus 17.3 55 0 1
UG rail – 62∗ – –
Surface rail – 55∗ – –
Bicycle 1 230 – –
Walking 1 140 – –

(b) Route (data vary) Source

AADT (road vehicles) §12
vr,lim (road vehicles) §18
Fm,f by speed & fuel for road vehicles (electric not considered in this evaluation) §9, §14
Commute mode choice (aiD→ a

j
W) §8

Journey Time §10
Cm,r , Rlim §11, §∗19, §∗20
Route (r) dimensions (e.g. length, no. of lanes, no. of tracks) §12, §13, §16, §∗19

∗ Not applied in evaluation.

Table 5. Observed meteorological variables at King’s College London KSSW site, 60.9 m above ground level (Kotthaus and Grimmond,
2014; Ward et al., 2016). See Fig. 1a in Kotthaus and Grimmond (2014) for site location. From these other variables are derived.

Meteorological variable Sensor

To Outdoor air temperature (◦C) Vaisala WXT 520
ws Wind speed (m s−1)
K↓ Incoming shortwave radiation (W m−2) Kipp & Zonen CNR4 net radiometer
QL↑ Outgoing longwave radiation (W m−2)

4. Absolute normalised error:
AnEi =

∣∣∣ XM,i
max(XM,i)−min(XM,i )

−
XO,i

max(XO,i)−min(XO,i )

∣∣∣
(e.g. Fig. 11c, d; ideal value would be 0).

4 Analysis of model dynamics

As behaviour, demographics, and travel choices influence the
temporal and spatial variation in movement and activity pro-
files in DASH QF estimates, we examine these first. A criti-
cal control onQF is the number of occupants within an area.
The area itself may be static (e.g. where buildings are lo-
cated) or moving (e.g. transport area). The occupancy level
will change as people travel to different locations (Fig. 2).

In model run R1 (Table 6), the results for one B spa-
tial unit (LA Camden, London) are used to demonstrate the

OC movement and travel through time (6 consecutive days)
within each aNS for each age group for three day types (week-
day – school/non-school, weekend) as a result of AN occu-
pant exchange (Sect. 2.2). The occupancy levels vary by day
type and between age groups, whilst having general consis-
tency within day type by age cohort. Note, people travel out-
side (and into) this B during the period, but no perturbation is
undertaken (e.g. changing transport availability or road con-
struction).

During school weekdays most children and teenagers are
in school (aNE , aNH ). Adults, some teenagers, and some se-
niors work during all day types and during all times of day.
Adult aNW occupancy at work (increase at home) is slightly
lower on non-school (NS) weekdays than school/work (SW)
days as a result of childcare – a small dip observed during
noon on NS and SW days that reflects lunchtime activity. aND ,
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Figure 2. Total occupancy of each aNS in one LA for five age groups across 6 consecutive days of three types (textured background): SW
(diagonal lines), WE (dotted), NS (horizontal lines) (R1, Table 6).

aNR , and aNO occupancy levels increase after peak school and
work times, with aND occupancy returning to similar levels
each night.

The occupancy levels of each aND , aNW, aNE , and aNH are
partly informed by population data, so it is important that
realistic values occur from the movement processes. This is
assessed by comparison of the median and IQR of the to-
tal occupancy across each aNS in the city to the static pop-
ulations of each AN and subarea (i.e. residential, workday,
school populations) for 1 weekday (Fig. 3). Hence, a value
of 1 indicates the total population is present. aNW occupancy
levels have a median peak just over 0.6 of the workday pop-
ulation. AN interaction in DASH allows for different types
of work, such as full/part-time and shift work, as it is inher-
ent to the movement data (in this case the TUS; Table 2).
Whilst this might not reflect the accurate behaviour of a par-
ticular aNW (e.g. an aNW comprising entirely office work may
in reality only be occupied 09:00–17:00 local time), the total
variability over a group of aNW may be more realistic, given
varying work times between commercial sectors.

For R2 (Table 6) both aNE and aNH IQR occupancy levels are
less than some AN school populations (Fig. 3), but for morn-
ing to noon aNH the population is exceeded in some areas.
Both the deficit and surplus may relate to the method of as-
signing school anchors to child and teenager OC (Sect. 2.2).
If the age group residential population is lower (higher) than
the school population in a LA, there will be too few (many)
students occupying this LA schools during the day. As stu-
dents are assumed not to cross LA boundaries, given state
school catchment area restrictions. In Greater London 89 %
of pupils are in state schools (DfE, 2019).

Figure 3. Median (line) and IQR (shading) of total occupancy of
each aNS in Greater London for 1 weekday (R2, Table 6), normalised
by actual static population (Table 2).

The aND occupancy levels are always below 1. The highest
values occur overnight when most people are expected to be
at home. The narrow IQR indicates there is little variation in
total occupancy levels between areas. Variations are expected
with active occupancy (e.g. household sizes; Sect. 2.3.1) and
in aND with large differences in resident age groups.

Total occupancy varies with behaviour of different age
groups and will affect the power demand within the neigh-
bourhood. To demonstrate the impact of demographics on
daily profiles of OC in the aND , three AN ’s (neighbourhood,
OA, scale) with similar residential populations but different
dominant age cohort are compared in Fig. 4 (R3, Table 6).
The aND of each of the three AN ’s have distinct dominant
age groups as follows: asenior

D , 78 % (291) of residents are se-
niors; aworking

D , 92 % (297) of residents are adults; and ayoung
D ,

47 % (300) of residents are infants, children or teenagers. In
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asenior
D (Fig. 4a), daytime OC remains proportionally higher

(Fig. 4d) than aworking
D (Fig. 4b) and ayoung

D (Fig. 4c). ayoung
D

has a steeper morning decrease in OC and earlier inflec-
tion point in the afternoon than aworking

D , likely due to for-
mal school day lengths (Fig. 2). On the weekend day, all age
groups, apart from teenagers, follow similar patterns, with
about 60 %–70 % remaining in the AN (Fig. 4d).

The diurnal pattern of occupancy levels by day type is
consistent between days and boroughs (R4, Table 6). The
variability in borough occupancy levels for aND (Fig. 5a) and
aNW (Fig. 5b) is greater in the daytime when movement is
more likely. Although, these standard deviations are quite
small compared to the actual LA-level residential (8760–
379 691 residents) and workday (58 444–356 706 workers)
populations (ONS, 2014a, 2015). This demonstrates that the
occupancy exchange method (Sect. 2.2) produces variation in
occupancy levels on a daily basis when the same parameters
are used for each day.

In this road vehicle evaluation (R5, Table 6), routing is at
LA scale with inter-LA routes determined using Google Di-
rections (Google, 2019). The volumes of vehicles in use by
mode (Fig. 6) predicted by the movement component (Fig. 1,
Sect. 2.3) peaks in the morning (07:30–09:30 local time).
Slight increases are present around noon and early evening.
Low values (00:00–06:00 local time) occur when movement
is low (Fig. 2). The increase at 04:00 local time is due to both
low sampling and the temporal boundary of the TUS, which
considers a day’s worth of entries to occur 04:00–04:00 lo-
cal time. The volume of buses is constant over the period
08:00–20:00 local time due to an imposed condition on ca-
pacity that represents an increase in Cbus,r (Sect. 2.4.2) in-
stead of increasing Vbus,r . With only one route option given
per LA origin–destination pair, road traffic is distributed be-
tween AN in proportion to LA total road area. Routing op-
tions at AN scale have not been implemented.

5 Evaluation of DASH with GQF

The evaluation of DASH assumes average or typical con-
ditions (i.e. no disruptions are imposed to modify move-
ment and/or timing of activity). As a result, the contribution
of appliance use to QF,B is expected to be similar for all
days of each type (e.g. weekday, weekend) throughout the
year for both domestic and commercial settings (seasonal-
ity in appliance-based activity is not considered). In a non-
perturbed state, variation within day types across a year is ex-
pected to come from heating (space and water) and cooling
use as these demands respond to immediate environmental
forcing within DASH. As GQF (Sect. 3.2) only varies elec-
tricity demand with day type and season, and gas varies with
season, we compare the DASH diurnal pattern and magni-
tude of QF,B components for two school weekdays (SW)
in different seasons (summer: 18 June 2015; winter: 27 Jan-
uary 2015). The mean air temperature is warmer in summer

Geosci. Model Dev., 13, 4891–4924, 2020 https://doi.org/10.5194/gmd-13-4891-2020
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Figure 4. Present occupancy levels (R3, Table 6) in three aND ’s by day type (textured background): (a) asenior
D (number of people per age

group living in the area: 0 infants, 2 children, 0 teenagers, 61 adults, 228 seniors); (b) aworking
D (5 infants, 6 children, 3 teenagers, 274 adults,

9 seniors); (c) ayoung
D (77 infants, 41 children, 24 teenagers, 157 adults, 1 senior). (d) Normalised total occupancy levels for the three aND ’s.

Figure 5. Standard deviation of LA (all boroughs of London,
colours; for 44 weekdays preceded by weekdays) active occupancy
levels (R4, Table 6) for (a) aND and (b) aNW.

Figure 6. Simulated volume of vehicles across Greater London for
19 June 2015 (R5, Table 6).

Figure 7. Incoming shortwave radiation (K↓; W m−2) and outdoor
air temperature (To; ◦C) for 2 SW days. Observations (Table 5) are
assumed to be constant across the domain in all runs (Table 6).

(17.0 ◦C) than winter (7.0 ◦C) and has more total radiation
(Fig. 7).

To evaluate heat emissions from buildings (QF,B), the
city-wide emissions of domestic (dom) and commercial/non-
domestic buildings (n-dom) are considered separately (R6,
Table 6). As DASH and GQF have the same spatial resolu-
tion, comparison is made between spatial interquartile ranges
(IQR) at the GQF 30 min temporal resolution (i.e. 30 min

https://doi.org/10.5194/gmd-13-4891-2020 Geosci. Model Dev., 13, 4891–4924, 2020
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Figure 8. Analysis ofQF (R6, Table 6) median (line) and IQR (shading) in 2015 for (a, b, c) 18 June and (d, e, f) 27 January – showing total
QF,B for (a.i, d.i) domestic and (b.i, e.i) commercial, with the following: (a.ii, d.ii) domestic electricity (GQF) or appliance power demand
(DASH); (a.iii, d.iii) domestic gas (GQF) or heating + cooling + hot water demand (DASH); (b.ii, e.ii) commercial electricity (GQF) or
appliance power demand (DASH); (b.iii, e.iii) commercial gas (GQF) or heating + cooling + hot water demand (DASH); and (c.i, f) QF,T
at AN scale and (c.ii) QF,T for road area only. Figure 7 shows weather conditions. Figure 9 shows absolute errors between the two models.

means – time ending – are calculated from the DASH 10 min
values). DASH appliance emissions (Qα

F,B) are compared to
GQF electricity demand (Qelec

F,B), whilst combined heating
(space and water) and cooling (QHC

F,B+Q
HW
F,B) in DASH are

equated to GQF gas demand (Qgas
F,B). Discrepancies between

values are expected – for example in some areas heating may
be powered by electricity.

For the summer weekday, DASH domestic QF,B has sim-
ilar characteristics to GQF with consistent morning and
evening peaks. The mean and IQR are similar from midnight
to 05:00 local time but consistently lower (difference in me-
dians of 2–2.5 W m−2) in DASH from the morning to end
of evening peak (Fig. 8a.i). Across spatial AN ’s, more than
60 % have an absolute error (AE; Eq. 20b) of ≤ 2 W m−2

for all times sampled, and for ∼ 90 % the AE ≤ 5 W m−2

(Fig. 9a).
Domestic Qα

F,B closely follows Qelec
F,B in both pattern

and magnitude on the summer day. DASH has three dis-
tinct appliance demand peaks: morning, midday, and evening
(larger, more sustained peak). The magnitude and timing of
Qα
F,B and Qelec

F,B peaks are similar between DASH and GQF,
although the morning peak in GQF is maintained with less
variability throughout the day (Fig. 8a.ii). The domestic sum-
mer day gas (GQF) and heating–cooling (DASH) QF,B pro-
files (Fig. 8a.iii) have the largest discrepancy in daily profile
and magnitude. Under summer conditions, DASH heating–
cooling is largely driven by hot water demand as indoor tem-
peratures in all instances of STEBBS are passively main-
tained between heating and cooling setpoints.

DASH domestic QF,B has a more distinct morning peak
in winter (Fig. 8d.i), and from midnight to the morning
peak DASH values are 1–4 W m−2 greater than GQF. This
is caused by greater QHC+HW

F,B and may relate to greater sen-
sitivity to temperature for DASH and low outdoor air tem-
peratures. The evening peak is less pronounced and shifted
to later evening, with roughly 70 % of the AN having AE
≤ 5 W m−2 at 18:00 local time (Fig. 9b). All other times anal-
ysed were more in agreement with GQF. Qα

F,B remains sim-
ilar to the summer values (Fig. 8a.ii) as the only seasonal
variation is due to indoor lighting. After the morning peak
it is slightly lower than Qelec

F,B (Fig. 8d.ii) but follows a simi-
lar pattern throughout the day. This discrepancy is likely due
to electric heating use, which Qelec

F,B would include on both
a small (e.g. space heaters) and large (e.g. “district” electric
heating in high-rise flats) scale.

Summer commercial QF,B is consistently lower in DASH
(median ∼ 1.5 W m−2 less) than GQF in the middle of the
day (Fig. 8b.i), with morning and evening medians more sim-
ilar. The evening IQR increases for DASH and is reflected
in Qα

F,B, likely associated with energy demand from com-
mercial properties that remain open later in the evening (e.g.
leisure facilities). There is close agreement between Qα

F,B
and Qelec

F,B medians (Fig. 8b.ii). At least 60 % of AN agree
within 2 W m−2 for all sampled time steps (Fig. 9c).

The winter diurnal patterns for commercial QF,B are sim-
ilar for DASH and GQF (Fig. 8e.i), but DASH has a steeper
morning (evening) increase (decrease) as well as consis-
tently higher values (median 2–3 W m−2 in the daytime). The
evening decrease starts ∼ 2 h later in DASH. These higher
values are due toQHC+HW

F,B (Fig. 8e.iii), which dominates the

Geosci. Model Dev., 13, 4891–4924, 2020 https://doi.org/10.5194/gmd-13-4891-2020
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Figure 9. Ranked cumulative frequency of spatial AEi (Eq. 20b) with 2 and 5 W m−2 (vertical lines) and maximum (key; W m−2) indicated
at six times (colour) for R6 (Table 6, Fig. 8) in 2015 on (a, c, e) 18 June 2015, (b, d, f) 27 January 2015, for (a, b) total domestic QF,B (c,
d) total commercialQF,B, and (e, f) total transportQF,T. Note y axes are different between rows (50 % of spatial units shown by horizontal
dashed line if applicable) and x axes are log10.

total pattern. The medianQα
F,B andQelec

F,B profiles (Fig. 8e.ii)
are in good agreement, with slightly broader IQR for DASH.
More than 50 % of AN ’s have a MAE of ≤ 2 W m−2 for all
times except 09:00 local time, which is slightly below 50 %
(Fig. 9d).

For both domestic and commercial use, summer
QHC+HW
F,B ’s have the largest discrepancy in profile and

magnitude compared to Qgas
F,B (Fig. 8a.iii, b.iii). In summer

for DASH, QHW
F,B is expected to dominate as indoor temper-

atures in all instances of STEBBS are passively maintained
between heating and cooling setpoints. City-wide domestic
QF,B is greater than commercial QF,B in both DASH and
GQF.

The median QF,T values are fairly similar between both
models, but GQF has less temporal variability (Fig. 8c.i, f)
with IQRDASH ∼ 4× IQRGQF. As DASH responds to varia-
tions in travel demand and exchanges occupants across the
city more temporal variation occur between AN . Figure 9e
and f, show small MAEs between the two models, with
more than 98.5 % of AN within 2 W m−2. When consid-
ered for road area only, DASH QF,T median values reach
2.9 W m−2, with diurnal mean of 3.25 W m−2 (Fig. 8c.ii).
Summer (Fig. 8c.i) and winter (Fig. 8f) values differ because

of the behavioural change caused by daylight savings time.
But no other seasonal changes are expected or occur.

Here the mean GQF values are based on key day types
appropriately weighted for the year, whereas DASH is run
for the year. The GL annual average QF,M for DASH
is 0.663 W m−2; for GQF it is 0.717 W m−2, whereas as-
suming one mean metabolic flux for all that live in GL
gives 0.386 W m−2. The GL annual average QF,T from
DASH (0.24 W m−2) is larger than for GQF (0.0303 W m−2)
as GQF uses a smaller road network – OS (2016) vs.
AADT, respectively. The GL annual averageQF,B for DASH
(5.53 W m−2) is slightly smaller than the 2015 average me-
ter data (7.22 W m−2; Sect. 6). The GL annual total QF for
DASH (5.79 W m−2) is smaller than for GQF (7.97 W m−2).
The Iamarino et al. (2012) (earlier version of) GQF annual
average (10.9 W m−2) for 2005 to 2008 is larger, which is
consistent with the decrease in published values seen for
London (e.g. Ward et al., 2016; Ward and Grimmond, 2017).

6 Evaluation of DASH with annual gas and electricity
consumption data

To assess the annual DASH city-wide hot water, heating, and
cooling energy demand (R7, Table 6) results are compared to
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Figure 10. Daily (1 October 2014–30 September 2015) DASH normalised total HC and DHW energy demand (R7, Table 6) for Greater
London, minimum and maximum London outdoor air temperature (◦C) (Table 5), and normalised national gas demand (NG, 2015). See
Sect. 3.2 for normalisation.

normalised national gas demand. The seasonal pattern (win-
ter peak, summer minimum) is evident in both (national,
DASH) heating datasets, with short- and long-period re-
sponses to temperature also evident (Fig. 10). The DASH re-
sponse to the higher-frequency variations is similar to the de-
mand data, but the amplitude of normalised demand differs.
DASH is seemingly more sensitive to temperature changes
but as the national demand profile has net local responses
to weather (etc.) variations across the country these may be
smoother than if only London responses were observed.

In June to August, DASH heating–cooling demand is
solely attributed to DHW demand for both domestic and
commercial buildings. The consistency in DASH daily be-
haviour (i.e. R7 without imposed perturbations) results in
a steady-state summer load, with a baseline demand that is
less dependent on environmental variability. The normalised
national data have both greater magnitude and amplitude of
fluctuation in summer (cf. DASH). The national data include
appliance (e.g. cooking) and industrial gas demands, whereas
DASH accounts for these in appliances (omitted in Fig. 10).
The heating season dominates the DASH results (Fig. 10).
The DASH pattern is less variable with the cooking and in-
dustrial baseline demands included (not shown).

Evaluation of DASH (R7, Table 6) at LSOA scale (Ta-
ble 1) suggests the DASH total domestic energy consump-
tion is less than metered values (Fig. 11a.i). The DASH IQR
is 46 % to 29 % lower (Fig. 11a.ii). Although the LSOA do-
mestic consumption in the central business district (CBD –
City of London) has the largest discrepancy (−82.56 %), this
may in part be caused by misallocation in the published data
(e.g. some dwellings classified as commercial because of a
large shared meter). There is no evidence of a relation be-
tween percentage difference and population density.

The percentage difference between commercial DASH
and non-domestic energy consumption is skewed to overes-
timation by DASH in most MSOAs (Fig. 11b.ii). The CBD
underestimation (−53.2 %, Fig. 11b.i) is likely caused by a
large misallocation of commercial gas consumption in this
area (Sect. 3.2). One spatial unit (East London) overestimates

by more than 1000 % (maximum being 1184 %, 24.2 GW h).
Some OAs (i.e.AN scale) with large retail buildings have po-
tential uncertainty in both the energy consumption data (e.g.
undisclosed data, Sect. 3.2) and DASH simulations.

At MSOA scale, DASH simulates 38 % of the areas to
within±100 % of published values. The MSOAs that DASH
most overestimates (as percentage differences) have fairly
small actual magnitude differences and low workplace popu-
lations. The mean difference in magnitude across the top 5th
percentile is 28.7 GW h; however 77 % of these (mean dif-
ference 18.1 GW h) have workday populations of fewer than
2000 people in the MSOA, with most businesses in these
MSOAs having fewer than 50 employees. Whilst the propor-
tion of these small businesses is fairly high (89 % on aver-
age) across Greater London (ONS, 2019), it is not the main
cause of the uncertainty, as this arises from misclassification
of small businesses as domestic within published data. Some
overestimation occurs in areas with buildings that are not typ-
ically temperature controlled (e.g. warehouses, factories) as
DASH assumes all commercial spaces are temperature con-
trolled.

Although the percentage differences in commercial annual
energy consumption are larger than for domestic (Fig. 11a.ii,
b.ii), the actual commercial values (Fig. 11d) are more spa-
tially similar across the city than domestic values (Fig. 11c).
The most spatially disparate commercial area, containing
Heathrow Airport (west GL, Fig. 11d), likely has undisclosed
data, hence the large difference (394.7 %) of 726.8 GW h.
Domestic values are more spatially similar in the less densely
populated suburbs, whereas areas east of the CBD are more
densely populated and more spatially variable.

The annual LA (Table 1) energy fluxes have fewer
data inconsistencies when the domestic and non-
domestic/commercial energy consumption are combined,
allowing meter classification to be ignored. DASH QF

estimates for Greater London (5.53 W m−2) are lower than
those found using the published meter data (7.22 W m−2),
with the greatest difference in the smallest LA, City of
London (DASH gives 57.53 W m−2, and published data give
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Figure 11. DASH (R8, Table 6) nEi of total energy consumption represented by (i) choropleth and (ii) histogram for (a) LSOA-scale domestic
use and (b) MSOA-scale commercial use. AnEi of total energy consumption for (c) LSOA-scale domestic and (d) MSOA-scale commercial.
Annual average energy flux at LA scale for (e) reference data and (f) DASH.
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123.48 W m−2). The overall spatial patterns are similar, with
greater values towards the city centre and more consistent
values in the surrounding suburbs.

Although address misallocation (Sect. 3.2) is expected to
cause the observed discrepancies (i.e. apparent DASH under-
estimation for aggregate annual values) found in the CBD,
it is not possible to quantify this uncertainty. Similarly, an
underestimation is expected from DASH as the meteorolog-
ical input used is for one central site (Table 5), so variations
(e.g. cooler temperatures or wind effects) are unaccounted
for. This could be improved by coupling DASH with a mete-
orological model accounting for spatial heterogeneity.

7 Conclusions

DASH allows anthropogenic heat fluxes to be simulated ac-
counting for both urban form and function, using an agent-
based structure. The impact of peoples’ behaviours at the
neighbourhood scale is captured as occupants move (10 min
time step), varying by day type (e.g. week day, weekend),
demographics (e.g. age), location (e.g. residential, work,
school), activity (e.g. cooking, recreation, travelling to school
or work), and socio-economic factors (e.g. appliance avail-
ability) and in response to environmental conditions (e.g.
temperature-related heating use). DASH includes simple
transport and building energy models to allow simulation
of dynamic vehicle use, occupancy, and heating–cooling de-
mand with subsequent release of energy to the outdoor envi-
ronment through the building fabric or ventilation.

Evaluation of DASH in Greater London for periods in
2015 uses a top-down inventory model (GQF) and national
energy consumption statistics (as cited in Table 6, R8). Over-
all, the model performs well. Some of the spatial and tem-
poral differences may be explained by data inconsistencies
in the official data (e.g. privacy related, allocation of use to
office headquarters rather than place of use). Analyses with
DASH allow high spatial and temporal resolution for a wide
range of time periods (demonstrated here from 10 min to
1 year) and large spatial extent (demonstrated from output
area to megacity). The model performance evaluation ad-
dresses a wide range of these scales (e.g. 30 min spatial pat-
terns at OA, annual at LA scale).

The expected temporal and spatial patterns of QF are ob-
tained (e.g. two diurnal peaks and larger fluxes in the city
centre). Given DASH’s capabilities these can be explored and
explained. For example, domestic building QF,B is more in-
tense towards the city centre than in outer suburbs, follow-
ing residential population density. The morning and evening
peaks are linked to active occupancy and appliance power
demand.

As DASH is demonstrated to be able to reproduce condi-
tions generally, future work will investigate dynamic feed-
backs within a city that result from changes in urban form
and function. DASH is designed to allow parameters to be
altered spatially, and thus impacts on QF emissions can
be assessed. Changes may be both slow (i.e. over years),
such as from an ageing population, uptake or new technol-
ogy (e.g. change of vehicle fuels and efficiency), or gover-
nance (e.g. national energy or carbon goals), and short term
(i.e. hours, days to months), resulting from traffic restrictions
(e.g. roadworks, flooding) changing flows. The model perfor-
mance suggests that other capabilities (e.g. additional trans-
port types) and feedback on other variables’ (e.g. CO2) emis-
sions are warranted in the future. With DASH coupled to an
urban land surface model, impacts can be assessed both on
QF itself (e.g. a traffic disruption at one point in terms of
the impact on QF,B) and feedbacks on other surface energy
balance terms and near-surface urban temperatures. Such a
model capability is critical in considering future urban cli-
mate scenarios and impacts of human behaviours and feed-
backs.
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Appendix A: Creation of Markov chains

A Markov transition matrix (Hermanns, 2003; Sericola,
2013) is built from the probabilities of transition from one
state to another in the next time step, with n states forming
an n×nMarkov transition matrix (Table A1a). Entries are the
probabilities p of transitioning from one state at time step t
(row) to another at time step t + 1 (column) (e.g. Table A1b,
c). Stationary distribution for state 1 is

π(t)=[p(t)1,1,p(t)1,2,p(t)1,3,p(t)1,4,

p(t)1,5,p(t)1,6]. (A1)

The transition matrices created for this model are time inho-
mogeneous, reflecting a realistic diurnal profile with changes
in likelihood state through the day. If state transition ”n, n” is
chosen, the state does not change. Markov transition matrices
may exclude entry to particular states by setting the column
and row of a restricted state to zero.

As there is no way to determine the states prior to the start
of a model run and to ensure no spin-up is required, the sta-
tionary distribution for the first-time step in the run is given
by the diagonal of the matrix (e.g. based on the six states in
Table A1):

π(t)=[p(t)1,1,p(t)2,2,p(t)3,3,p(t)4,4,

p(t)5,5,p(t)6,6]. (A2)

This represents the distribution across states that are not in
transition during the previous or the current time step.

For travel (Sect. 2.4.2) at t = 1, OC are distributed using
a weighted choice with the diagonal of the transition matrix
(Eq. A2) for that time step and age group as the weight dis-
tribution. At each subsequent time step, the origin AN has a
choice to keep each OC or release them into another aNS , ac-
cording to weighted choice (Eq. 3) using the transition prob-
abilities dictated by the origin aNS ’s stationary distribution
(Eq. A1) at t as ω. The AN destination depends on the des-
tination aNS selected. If aNS for the next time step is the same
as the previous time step, the AN does not release the OC .

Appendix B: Heat exchange within STEBBS

STEBBS employs a nodal approach (Foucquier et al., 2013)
as found in commonly used simulation tools such as TRN-
SYS (Klein et al., 2017) and EnergyPlus (Crawley et al.,
2000). Each node represents a homogeneous layer within a
specified component of the building, with heat transfer equa-
tions solved between each node (Fig. B1). STEBBS’ eight
nodes are two layered for wall–roof, ground floor, and win-
dows – plus a bulk air node and an all internal mass node (cal-
culated as a percentage of total volume). Additionally, there
are six nodes associated with the domestic hot water (DHW)
system. There are two layers for the hot water tank walls and
a bulk DHW distribution system, plus a bulk water node for

Table A1. Markov transition matrix (a) general for six states (rows
and columns), (b) example data for adult OC at a single time step
(Gershuny and Sullivan, 2017), and (c) transition probabilities for
the data in (b).

(a) 1 2 3 4 5 6

1 p(t)1,1 p(t)1,2 p(t)1,3 p(t)1,4 p(t)1,5 p(t)1,6

2 p(t)2,1 p(t)2,2 p(t)2,3 p(t)2,4 p(t)2,5 p(t)2,6

3 p(t)3,1 p(t)3,2 p(t)3,3 p(t)3,4 p(t)3,5 p(t)3,6

4 p(t)4,1 p(t)4,2 p(t)4,3 p(t)4,4 p(t)4,5 p(t)4,6

5 p(t)5,1 p(t)5,2 p(t)5,3 p(t)5,4 p(t)5,5 p(t)5,6

6 p(t)6,1 p(t)6,2 p(t)6,3 p(t)6,4 p(t)6,5 p(t)6,6

(b) Domestic Workplace Shops Other

Domestic 270 46 2 4
Workplace 1 170 0 1
Shops 0 0 5 0
Other 0 1 1 18

(c) Domestic Workplace Shops Other

Domestic 270/322 46/322 2/322 4/322
Workplace 1/172 170/172 0 1/172
Shops 0 0 1 0
Other 0 1/20 1/20 18/20

the storage and a distribution node. Effective thermal prop-
erties are applied to each component (i.e. a wall cavity and
insulation layers are not modelled separately). As this is com-
putationally cheap, it allows multiple instances for each AN
at high temporal resolution. The only latent heat considera-
tion is that of people from metabolic processes (Sect. 2.4.1).

STEBBS considers heat exchanges by convection, con-
duction, and radiation, and heat gain from solar insolation
and casual heat sources (Fig. B1). The convective flux, qcv,
between a fluid f and a surface s (Bergman et al., 2017) is

qcv = hA(Tf− Ts), (B1)

where Tf and Ts are the temperatures of the fluid (f) and sur-
face (s), respectively, and A is the surface area of the build-
ing. Convective fluxes occur between indoor (outdoor) air
and internal (external) wall/window/floor surface as well as
the internal mass surface. For DHW, Eq. (B1) calculates con-
vective flux between water and hot water tank/vessel walls.
Forced convection h is experienced on external walls as a
function of wind speed ws (m s−1) at roof height, so it is
variable, whilst internal values are held constant (Cole and
Sturrock, 1977):

h= 5.8+ 4.1ws. (B2)

Conduction between internal and external surfaces of a com-
ponent (i.e. wall, window, floor, hot water tank/vessel, and
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ground floor to ground) is

qcd = keA
Tsi− Tso

L
, (B3)

where ke is the effective conductivity of a building compo-
nent with 1 to n layers of thickness Ln (sum to L) and con-
ductivity kn.

ke =
L

L1
k1
+
L2
k2
+ . . .+ Ln

kn

, (B4)

and Tsi and Tso are the component’s inside and outside sur-
face temperatures, respectively. This is calculated for inside
surfaces of a wall, ceiling, window, floor, hot water tank, and
hot water vessel components and their respective outside sur-
faces, as well as the point of contact between the ground floor
and the external ground.

Shortwave insolation (K↓) is considered on building walls,
roof and windows, with transmitted proportion through win-
dows added to internal heat gain and absorbed propor-
tion contributing to wall/roof/window gains (Underwood and
Yik, 2004). Windows have an effective shortwave transmis-
sivity (τ ) and albedo (2), whereas walls and roof depend
only on their albedo. Solar internal heat gain (qsi) is

qsi = τ ·K↓, (B5)

and solar gain to external wall (qase) and window (qise) is

qase = (1−2)K↓ and qise = (1− τ −2)K↓. (B6)

The net longwave radiation (QL∗) exchange between
building surfaces (walls or windows) and surfaces (including
sky) in their view is found using Bergman et al. (2017):

QL∗ = A

n∑
i=1

[
ψiσε

(
T 4

so− T
4

s,i

)]
, (B7)

where σ is the Stefan–Boltzmann constant (5.67× 10−8

W m−2 K−4), ε is the wall/window emissivity, and surface
temperature Ts,i is the temperature of the surface (i) in view.

The three view factors (ψi) for external wall/window sur-
faces (sky ψs, buildings ψb, and ground ψg) will sum to 1.
Currently, for neither short- nor longwave radiation is ψ ac-
counted for (i.e. uniform temperature is assumed). This could
be improved when coupled with more detailed morphology
data and urban meteorology as ψ varies across a city with
height (building facet) and density of buildings (Grimmond
et al., 2001). Internal wall radiative exchanges are currently
not considered.

Energy for heating (cooling) is controlled by setpoint tem-
perature with energy added (removed) directly from the in-
door air node that is controlled according to a maximum
power rating and set system efficiency. The temperature set-
points can change at each time step, allowing both automated

and human control to be accounted for. The level of heat-
ing (cooling) is further controlled by the difference between
indoor air and setpoint temperatures. Internal gains are ac-
counted for as a bulk gain to the indoor air node.

The BESTEST Case 600 single-zone building case is used
with EnergyPlus (v.9.3.0). to evaluate STEBBS. The Ener-
gyPlus BESTEST model downloaded from the EnergyPlus
helpserve website (EnergyPlus, 2020) is modified to run with
v9.3.0. Observed London weather data for 2012 (Kotthaus
and Grimmond, 2014) are generated using SuPy (Sun and
Grimmond, 2019) at an hourly resolution for EnergyPlus and
STEBBS. Although EnergyPlus indicates it interpolates sub-
hourly weather data for consistency, we use both with a 1 h
time step.

Following EnergyPlus Engineering Reference, the
STEBBS external convection coefficient is changed to
the DOE-2 method (U.S. Department of Energy, 2020,
pp. 95–96) for consistency between the models. Note,
this is found to have little impact on the results. The
internal mass and DHW in STEBBS are reduced in vol-
ume to ensure they have negligible impact on results (see
https://doi.org/10.5281/zenodo.3745523, Capel-Timms et
al., 2020, for BESTEST setup). The bulk building thermal
properties in STEBBS are calculated using the BESTEST
Case 600 values as presented in ASHRAE 140 (ASHRAE,
2017). Building dimensions for STEBBS are set to give
consistent total indoor volume, wall–roof surface area,
window area, and floor area. As STEBBS has only one pair
of nodes (i.e. two-layer wall; Fig. B1), building geometry
and orientation are not represented in STEBBS.

The EnergyPlus annual and inter-day heating and cooling
dynamics are captured in STEBBS (Fig. B2). Both models
control the indoor air temperature to within the setpoint lim-
its of 20 ◦C (heating) and 27 ◦C (cooling). EnergyPlus simu-
lates a higher heating and cooling load with more times when
the indoor temperature is between (rather than at) the setpoint
temperatures. EnergyPlus also simulates a cooling require-
ment during the heating season, which STEBBS does not.

The modal hourly heating–cooling load differences be-
tween the two models are relatively small (Fig. B2). Al-
though the distribution range is large, the differences are per-
haps best attributed to a difference in load control. The Ener-
gyPlus BESTEST case uses the maximum heating (cooling)
capacity to add (remove) thermal energy to (from) the build-
ing that is likely to result in the observed indoor tempera-
ture overshoots, the higher frequency of switching (on–off)
for heating and cooling, and need for cooling during heating
season as heating and cooling power are set high (100 kW)
– to prevent this type of behaviour, STEBBS uses the differ-
ence between air and setpoint temperature to help control the
heating and cooling power.
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Figure B1. STEBBS 1-D model simulates building facets and nodes (dots), casual heat sources, and heat exchanges. Longwave radiation is
absorbed by building facets from the outdoor environment and shortwave radiation from direct, diffuse, and reflected sources.
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Figure B2. BESTEST Case 600 is used with London weather data to evaluate STEBBS relative to EnergyPlus (EP) at an hourly timescale for
2012 (a) heating and (b) cooling loads (J ), (c) indoor air temperature, (d) frequency distribution of hourly differences between EnergyPlus
and STEBBS for heating and cooling loads, (e) interquartile range of hourly differences in winter (January, February, March, October,
November, December) and summer (May, June, July, August) loads, and indoor temperatures (whiskers 1 % and 99 %).
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Appendix C: Parameter values

Table C1. Appliances used in domestic and workplace subareas and their attributes. Usage categories: active only (AO) consume energy
as a result of user activities; active with standby (AS) consume less when not in active use (standby); continuous (C) have constant power
consumption independent of human activity (cycling appliance power converted to continuous). See Table 3 for references.

Appliance Attributed Usage Power rating Standby power Proportion Market
activity category (W) rating (W) on standby permeation

Domestic appliances

Oven Food preparation AO 2125 – – 0.616
TV Watching TV AS 124 3 1 0.977
Desktop Computer use AS 100 20 1 0.35
Laptop Computer use AS 70 10 1 0.71
Iron Ironing AO 1000 – – 0.9
Washing machine Laundry AS 792 1 0.5 0.93
Chest fridge – C 38 – – 1
Small appliance (generic) – C 2 – – –
Lighting (single bulb) Active AO 43 – – –

Workplace appliances

Office “desk” At work AS 250 25 0.5 per worker
Office background (e.g. IT equipment) – C 230 – – per worker
Lighting At work AS 120 120 0.5 per worker

https://doi.org/10.5194/gmd-13-4891-2020 Geosci. Model Dev., 13, 4891–4924, 2020
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Table C2. Properties used in STEBBS vary by property age (< 1965, > 1965), type (HB – house & bungalow; flat), component (roof etc.)
for (a) building fabric and external ground, and (b) DHW. L: thickness (m); ε: emissivity; τ : effective transmissivity; 2: surface albedo;
ke: effective thermal conductivity (Wm−1 K−1); ρ: density (kgm−3); cp: specific heat of air at constant pressure (Jkg−1 K−1) (Internal
Air 1005); h: convection coefficient (Int: internal, Ext: external) (Wm−2 K−1); VFR: volumetric flow rate of DHW per water user (dom:
domestic, n-dom: non-domestic) (10−3 m3 s−1); VR: ventilation rate (10−3 m3 s−1); VT: DHW tank volume (m3); WWR: window-to-wall
ratio (0.4). Vessels: all other storage of DHW. For data sources refer to Table 3.

(a) Building fabric Roof & wall Window Ground floor Internal mass External ground

HB Flat

L
< 1965 0.241 0.327 0.005 0.5 – 2
> 1965 0.373 0.373 0.02 0.5 –

ke
< 1965 0.837 0.835 1.05 0.752 0.121 1.28
> 1965 0.104 0.104 0.041 0.690 0.121

ρ
< 1965 1692 1690 2500 1540 873.7 –
> 1965 1076 1076 1000.7 1470 873.7 –

cp
< 1965 803.1 804.1 840 1012.8 967.9 –
> 1965 865.9 865.9 902.4 1016 967.9 –

h
Int. 3 3 3 2.8 3 –

Ext. vara vara vara – – –

2 0.6 0.6 0.05 – 0 –
ε 0.9 0.9 0.88 – 0.91 –
τ 0 0 0.9 – 0 –
VR 600 –

(b) DHW Tank Vessel

L (m) 0.055 0.0047
ε 0.9 0.91
ke 0.0275 0.16
ρ 745.55 1380
cp 1380 1380

h
Int. 243 243

Ext. 3 3

VFR
dom 0.183 0.1372

n-dom 0.15 0.1125

People per residence 1 2 3 4 5 6+
VT (m3) 0.115 0.115 0.125 0.148 0.17 0.18

a Varies with wind speed.
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Appendix D: Code availability and data availability

All code and data are deposited at
https://doi.org/10.5281/zenodo.3745523 (Capel-Timms et
al., 2020).

Table D1. Data examples. More details (example structure, units, raw data source, location in repository, and location of use in code) can be
found at https://doi.org/10.5281/zenodo.3745523 (Capel-Timms et al., 2020). Data indicated in Table 6 are also archived.

Filename File type Definition

(i) Population

a age_groups csv Population of each age group in each AN
b allworkers csv Residential and workplace spatial unit relation
c area_hierarchy csv List of AN in the larger, containing, spatial unit (B)
d daytype csv Dates used by run and corresponding day of year and day type
e SchoolWorkShopcap csv School and workplace populations and shops and “other” subarea capacities for each

AN

(ii) Transport

a SpatialUnitRoadLengths csv Lr in each B
b average_passengers csv Average number of people in a single m vehicle
c distance_freqs csv Journey distance categories and their respective mode weightings
d fuel_consumption csv Average urban fuel consumption for urban roads for vehicle stock (g km−1)
e fuel_ratio csv Proportions of each m using each f
f IntraBorDist/xmatrix csv Distance matrix for distance between AN centroids in B
g IndivBor/xh_wsorted csv Proportions of people using each mode to travel from home to work for origin Bx
h IndivBor/xw_hsorted csv Proportions of people using each mode to travel from work to home for origin Bx
i MeanSpeedLimits csv Mean vr,lim for each r in each B
j RoadAADTMeansLengthWeighted csv AADT means of each r , m for each B
k routes_distances csv List of route segment distances for each spatial unit traversed for each route
l routes_int csv List of routes between each origin–destination pair, including the spatial units traversed

for each route
m route_reference_matrix csv Reference matrix for route numbers
n ShopsGravity csv Gravity weightings (Eq. 3) for travel to shops and other subareas
o speed_fuel_ratio_func pickle Functions of normalised speed–fuel consumption relation for each m
p traveltime_functions pickle Functions relating distance to time travelled for each mode
q vehicle_length (in settings.nml) – Length of representative vehicle

(iii) Area

a env_vars csv Environmental variables used for each time step
b IndustrialOAs csv Location of industrial land use around the study area
c OA_area_details csv Population, road length, building stock and dimensions, floor plan area data for each

AN

(iv) Buildings

a CommBuildingArchetype nml Multiple .nml lists for each commercial building archetype and their STEBBS parame-
ters

b CommTypes nml Multiple .nml lists for each school/shop/other land use type and their parameters
c DomApplianceList nml Multiple .nml lists for appliances used by occupants in domestic buildings, and their

parameters
d DomBuildingArchetype nml Multiple .nml lists for each commercial building archetype and their STEBBS parame-

ters
e domlighting nml Parameters for domestic lighting
f WorkApplianceList nml Multiple .nml lists for appliances used by occupants in commercial buildings, and their

parameters
g xpersonactiveweekend/day csv Proportions of people active (awake and present) in households with x people present

at each time step
h xpersonweekend/day csv Proportions of people who belong to household of size x present in household at each

time step, given that someone is present

https://doi.org/10.5194/gmd-13-4891-2020 Geosci. Model Dev., 13, 4891–4924, 2020
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Appendix E

Table E1. Notation (with location of first mention).

Description First section

αj,AN ,αj,k,αj,u Characteristic of appliance α of type j : quantity inAN , domestic usage factor u, market
permeation k

2.4.3

aND ,a
N
E ,a

N
H ,a

N
O a

N
R ,a

N
W Domestic, primary school, secondary school, other (e.g. leisure) shop and work subareas 2.1

asenior
D ,a

working
D ,a

young
D Dominant age cohort characteristics of subareas (analysed): seniors, working adults,

and young people (infants, children, or teenagers)
4

aNS Subarea of AN with specific activity s occurring 2.1
A Building surface area (m2) B
AADT Annual average daily traffic 3.1
ABM Agent-based model 2
AEi Absolute error (|1i |) 3.2
AN Spatially discrete agent 2
AnEi Absolute normalised error 3.2
AO Consumption class: active only 2.4.3
API Application programming interface 2.4.2
AS Consumption class: active/standby 2.4.3
β Bowen ratio (QH /QE) 2.4.1
B Spatial unit, may be coarser than AN 2.2
C Consumption class: continuous 2.4.3
CBD Central business district 6
Cm,r Mode-appropriate ratio for m on r (no,m,r per vehicle) 2.4.2
c,cp Specific heat capacity, specific heat capacity of air at constant pressure (J kg−1 K−1) 2.4.3
1i Model–observation (reference) difference for variable i 3.2
DASH Dynamic Anthropogenic activitieS impacting Heat emissions 1
DHW Domestic hot water 2.4.3
di,j Distance between origin i and destination j (m) 2.2
ε Emissivity B
f Fuel type 2.4.2
fx,αj Fraction of households with x active occupants using αj 2.4.3
Fm,f Heat emission with fuel type f for m (W m−1) 2.4.2
0i,j Gravity weighting for all potential trips between origin i and destination j 2.2
GIS Geographical information system 2.4.2
GL Greater London 3.1
GQF GQF model (Gabey et al., 2019) 3.2
h Convection coefficient (W m−2 K−1) 3.1
HC Heating and cooling usage 2.4.3
HW Hot water usage 2.4.3
IQR Interquartile range 3.2
κ System efficiency 2.4.3
K↓ Downwelling shortwave radiation (W m−2) 2.4.3
ke Effective thermal conductivity (W m−1 K−1) 3.1
l Lighting 2.4.3
lbase (lmin/lmax) Base (min/max) luminous intensity 2.4.3
L Thickness of building component (m) B
LA Local authority 3.1
Lm Length of unit vehicle for m (m) 2.4.2
LOWESS Locally weighted scatterplot smoothing 2.4.2
Lr,t Distance travelled in t (m) 2.4.2
LSOA Lower-layer super output area 3.1
m Travel mode (e.g. car, bus, train, walk) 2.4.2
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Table E1. Continued.

Description 1st (Sect.)

M Metabolic rate (W) 2.4.1
MSOA Middle layer super output area 3.1
nb(nb,x ) Number of households (with x active occupants) 2.4.3
no,m,r Number of occupants for m on r 2.4.2
nEi Normalised error 3.2
nMax Maximum-normalised value 3.2
NS Non-school weekday 4
OA Output area 3.1
OC Occupant 2
π (t) Stationary distribution for state at time step t A
yb/g/s/i View factor for buildings/ground/sky/surface i B
PPmax Power rating, maximum power rating (W) 2.4.3
p(t)m,n Transition probability from state m to state n at time step t A
q, qH, qC Energy use (for heating, cooling) (W) 2.4.3
qcd Building conductive flux (W) B
qcv Building convective flux (W) B
Q∗ Net all-wave radiation (W m−2) 1
QE Turbulent latent flux (W m−2) 1
QF(B/M/T) Anthropogenic heat flux (emissions from buildings/metabolic activity/transport)

(W m−2)
1

Qα
F,BQ

HC
F,B,Q

HW
F,B,Q

l
F,B QF,B from appliance usage, heating and cooling, hot water demand, lighting (W m−2) 2.4.3

Qelec
F,B,Q

gas
F,B QF,B from electricity or gas consumption 5

QH Turbulent sensible flux (W m−2) 1
QL∗, QL↑ Net longwave radiation; outgoing longwave radiation (W m−2) B
1QS Net storage heat flux (W m−2) 1
qvent Energy loss/gain from ventilation (W) 2.4.3
ρ(ρa) Density (of air) (kg m−3) 2.4.3
r Route type r (e.g. minor or major road, overground or belowground rail) 2.4.2
Rlim Route capacity limit 2.4.2
σ Stefan–Boltzmann constant (W m−2 K−4) B
STEBBS Simplified Thermal Energy Balance for Building Scheme 2.4.3
SW School day or workday 4
T Time step (e.g. 10 min) 2.3
τ Effective transmissivity B
2 Albedo B
tb Journey specific time bin 2.4.2
Tf/s/si/so Temperature of fluid f/surface s/indoor surface si/outdoor surface so (K) B
Ti Internal water/air temperature (K) 2.4.3
To Outdoor air temperature (K) 2.4.3
ToU Time of use 3.1
Tset Setpoint temperature (K) 2.4.3
TUS UK Time Use Survey 3.1
UK United Kingdom 3.1
VFR,VR Volumetric flow rate, ventilation rate (m3 s−1) 2.4.3
Vm,r Number of unit vehicles for m on r 2.4.2
v,vr ,vr,lim Speed, speed of travelling vehicle on r , speed limit on r (m s−1) 2.4.2
VT Volume of water tank (m3) 3.1
WD Weekday 3.2
ws Wind speed (m s−1) 3.1
WWR Window-to-wall ratio 3.1
Xi(XM,i ,XO,i ) Output (M: modelled; O: observed/reference) value 3.2
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Data availability. All code and data are deposited at
https://doi.org/10.5281/zenodo.3745523 (Capel-Timms et al.,
2020).
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