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Abstract

Dynamic subgrid models are increasingly being used in simulations of the

atmospheric boundary layer. We have implemented several variant forms of

dynamic models in the UK Met Office Large Eddy Model (MetLEM), including

a state-of-the-art Lagrangian-Averaged-Scale-Dependent (LASD) model. The

implementation includes optional use of stability functions in the specification

of the eddy viscosity and diffusivity, as well as optional use within the dynamic

calculation of the Smagorinsky parameter. This paper reports on the behaviour

of the LASD model with different choices for the inclusion and treatment of

stability functions in convective boundary layer simulations at different resolu-

tions. Results are compared against a high-resolution Large-Eddy simulation

(LES) and against simulations employing the Smagorinsky–Lilly subgrid

model. We conclude that the use of stability functions improves the behaviour

of the LASD model in the grey zone regime. Moreover, a careful treatment of

the stability functions in the calculation of the dynamic parameters, while

attractive theoretically, is found to be unnecessary in practical terms.

KEYWORD S

convective boundary layer, dynamic Smagorinsky subgrid model, grey zone, scale-dependent

Lagrangian dynamic scheme

1 | INTRODUCTION

While a variety of sub-grid parameterizations for large-
eddy models (LEMs) now exist, the simple Smagorinsky
scheme and its variants are still probably the most

widely-used approach (Yang, 2015). This model, first pro-
posed by Smagorinsky (1963), is based on the application
of the mixing length formulation in three dimensions
(Mason, 1994). The eddy viscosity ν is obtained by assum-
ing that the small scales are in equilibrium, so that
energy production and dissipation are in balance. This
yields an expression of the form ν csΔð Þ2 j S j where Δ is
the filter width (which is proportional to the grid size), cs
is the Smagorinsky constant, and a product of the two
makes up the mixing length and S is the modulus of the
rate of strain tensor Sij given by j S j = 2SijSij

� �1=2
.

Abbreviations: LASD, Lagrangian-averaged scale-dependent dynamic
model; NO-STABF, LASD model without stability functions; PAR-
STABF, LASD model with stability functions partially implemented;
SMAG, Smagorinsky model; STABF, LASD model with stability
functions fully implemented.
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Mason (1994) showed that reducing the value of cs
from about 0.8 results in finer scales being resolved, with
cs ≈ 0.2 providing the most accurate simulation in the
inertial-subrange for a neutral boundary layer; reducing
the value of cs further results in larger finite-differencing
errors. Mason and Callen (1986) used a centred difference
scheme (Piacsek and Williams, 1970) in their model and
found cs values of 0.1 and 0.07 to produce poor numerical
representations of the flow, nonphysical structure, with
significant features dominated by single grid-point
values. The optimal value of cs is dependent on the flow
being simulated (Yang, 2015) and a single, universal con-
stant does not exist. Germano et al. (1991) proposed a
dynamic Smagorinsky model that calculates a suitable,
local, value of cs using test filtering at the smallest
resolved scales in the flow. Such locally-derived values of
cs have been found to be highly variable both in magni-
tude and sign (You and Moin, 2009). To reduce the vari-
ability Germano et al. (1991) took a horizontal plane
average of the calculated values of cs. Plane-averaging is
unsuitable for inhomogeneous flows over complex ter-
rain. Meneveau et al. (1996) developed an alternative
Lagrangian dynamic model that averages in time follow-
ing fluid pathlines.

Both the Germano et al. (1991) and the Meneveau
et al. (1996) models use 2Δ as a test filter scale and
assume scale-similarity, so that cs,Δ = cs,2Δ. The scale-
invariance assumption is reasonable in the inertial sub-
range but is not expected to hold when Δ falls near a
transition scale that separates different physical processes
occurring in distinct ranges of scales (Honnert et al.,
2011). Porte-Agel et al. (2000) proposed a scale-dependent
version of the plane-averaged dynamic model in which a
second test filter is applied to determine how the coeffi-
cient changes across scales. The plane-averaging implies
that although the Porte-Agel et al. (2000) model is scale-
dependent, it cannot be applied to nonhomogeneous flow
over complex topography. Bou-Zeid et al. (2005) com-
bined the Lagrangian and scale-dependent methods to
develop a model applicable for inhomogeneous flows
over complex topography.

In various applications, the Smagorinsky model has
also been extended to include stability functions in order
to account for the effects of stratification (e.g., Beare and
Macvean, 2004; Efstathiou and Beare, 2015). This is
because when the ideal of the long inertial subrange is
not achieved, buoyancy effects are expected to influence
the subgrid model (Brown et al., 1994; Mason, 1994).
Applications of dynamic models so far have typically
excluded these stability functions (e.g., Kleissl et al., 2006;
Huang and Bou-Zeid, 2013). An exception is Kirkpatrick
et al. (2006) though the emphasis of that study was not
on the effect of the stability functions per se.

This study is focused on the use of the scale-
dependent dynamic model in convective boundary-layer
simulations at different resolutions from the near-LES
through to the so-called grey zone regimes. The study
shows the effects of stability functions on the CBL simu-
lations with changing horizontal resolutions. The stabil-
ity functions are employed fully in the calculation of cs,
and the eddy viscosity and diffusivity, as well as partially
by being used only in the calculation of the eddy viscosity
and diffusivity.

2 | NUMERICALMODEL, DYNAMIC
MODEL IMPLEMENTATION, AND
SIMULATIONS

The simulations in this study were performed using the
UK Met Office Large Eddy Model (MetLEM) described in
Shutts and Gray (1994) and Brown et al. (1994), and
briefly summarized in Section 2.1. The turbulent stress
and subfilter-scale heat flux terms are parameterized
using the Smagorinsky–Lilly scheme as well as different
variations of the dynamic Smagorinsky scheme which
were coded into the MetLEM specifically for the present
study. Details of the schemes reported upon are given in
Sections 2.2 and 2.3.

2.1 | The MetLEM

The MetLEM solves momentum, continuity, and thermo-
dynamic equations given by Equations (1), (2) and (3),
respectively.

Dui
Dt

= −
∂

∂xi

p0

ρs

� �
+ δi3B+

1
ρs

∂τij
∂xj

−2ϵijkΩjuk ð1Þ

∂

∂xi
ρsuið Þ=0 ð2Þ

Dθ
Dt

=
1
ρs

∂hθi
∂xi

+
∂θ

∂t

� �
mphys

+
∂θ

∂t

� �
rad

ð3Þ

Here u is the flow velocity, θ is the potential tempera-
ture, p is the pressure, ρ is the density, B is the buoyancy,
τ is the subgrid stress, hθ is the subgrid scalar flux of θ, δij
is the Kroneker delta function, ϵijk is the alternating
pseudo-tensor, and Ω is the Earth's angular velocity. The
subscript s indicates a height-dependent reference state.
The term on the left hand side of Equation (1) is the total
time-derivative of momentum. The first term on the right
is the pressure gradient; the second term, buoyancy, is
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nonzero only in the vertical; the third term is the
divergence of the turbulent stress; the final term is the
Coriolis acceleration. The left hand side of Equa-
tion (3) is the total derivative of potential tempera-
ture, while the first term on the right hand side is the
divergence of the heat flux. The second and the final
terms represent the effect of latent heating or cooling
and the effect of radiation, respectively. These last
two terms are zero in our study. The second-order
centred difference scheme of Piacsek and Wil-
liams (1970) is used for advecting both momentum and
scalars. The p

0
needed for Equation (1) is calculated using

the Poisson-like elliptic equation given by.

∂

∂xi
ρs

∂

∂xi

p0

ρs

� �� �
=

∂

∂xi
ρssið Þ ð4Þ

where

si = δi3B
0−uj

∂ui
∂xj

−
1
ρs

∂τij
∂xj

−2ϵijkΩjuk ð5Þ

which is solved by performing a Fourier transform in the
horizontal.

2.2 | The Smagorinsky–Lilly Sub-Filter
model

The sub-filter stress, τij, and heat flux, hθi in Equations (1)
and (3) as parameterized in the Smagorinsky–Lilly
scheme (Smagorinsky, 1963; Lilly, 1965) are specified
respectively by

τij = ρsνSij ð6Þ

and

hθi = −ρsνh
∂θ

∂xi
, ð7Þ

where ν is the sub-filter eddy viscosity and νh the
corresponding diffusivity for scalars. The rate of strain
tensor is defined by

Sij =
∂ui
∂xj

+
∂uj
∂xi

, ð8Þ

and the eddy viscosity and diffusivity are prescribed
through

ν= λ2Sf m Rip
� �

, ð9Þ

νh = λ2Sf h Rip
� �

, ð10Þ

where Rip is the local Richardson number given by

Rip =
∂B=∂z

S2
: ð11Þ

B = g
θs
θ0 is the buoyancy, and fm and fh are

Richardson–number dependent functions applied to the
viscosity and diffusivity, respectively as described by Shutts
and Gray (1994). The stability functions are defined based
on the Richardson number as described below.

For Rip < 0

f m = 1−cRip
� �1=2 ð12Þ

f h = a 1−bRip
� �1=2 ð13Þ

For 0 ≤ Rip < Ric

f m = 1−
Rip
Ric

� �r

1−hRip
� � ð14Þ

f h = 1−
Rip
Ric

� �r

1−gRip
� �

ð15Þ

For Rip ≥ Ric

f m =0 ð16Þ

f h =0 ð17Þ

Default values of the constants shown in the above
equations are: a = 1/PrN, b = 40.0, c = 16.0, g = 1.2,
h = 0.0, PrN = 0.7, and Ric = 0.25. The stability functions
encourage mixing for smaller values of Rip, and suppress
mixing for larger values. Rip < 0 is characterized by buoy-
ant instability, 0 < Rip < Ric is Kelvin–Helmholtz insta-
bility, while Rip > Ric is associated with stable conditions.
S is the modulus of Sij given by

S=
1
2

X
i, j=1,3

S2ij

 !1=2

: ð18Þ

λ is a mixing length scale given by

1

λ2
=

1

λ20
+

1

κ z+ z0ð Þ½ �2 , ð19Þ
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where κ is von Karman's constant with value 0.4,
λ0 = csΔ, Δ = (Δx + Δy)/2 is the horizontal grid spacing,
and cs is a constant diagnostic of the ratio of the subgrid
filter scale to the grid scale known as the Smagorinsky
constant, chosen to be 0.23 in this study.

2.3 | Implementation of the Lagrangian-
Averaged Scale-Dependent (LASD)
dynamic model in the MetLEM

We have implemented several variants of dynamic
Smagorinsky models in the MetLEM. In this study, we
focus on the Lagrangian Averaged Scale Dependent
(LASD) model of Bou-Zeid et al. (2005) to dynamically
compute a suitable value of cs from the smallest resolved
scales.

The Germano identity (Germano et al., 1991) relates
the subgrid stresses at different scales as

Tij− eτij = Lij =guiuj− eui euj ð20Þ

where the overbar and tilde indicate filtering on scales Δ
and αΔ, respectively, and Lij represents the stress on
scales intermediate between Δ and αΔ.

Using a Smagorinsky representation, the stresses are
parameterized by:

τsmag
ij = −2 cs,ΔΔð Þ2j S jSijf m Rip

� �
;

Tsmag
ij = −2 cs,αΔαΔð Þ2 fj S j eSijf m eRi� � ð21Þ

and the parameterization error, which is to be minimized
by the dynamic procedure, is therefore

eij =Lij− Tij− eτij� �
: ð22Þ

Substituting the Smagorinsky formulation produces

eij = Lij−c2s,ΔMij ð23Þ

where

Mij =2Δ2 gj S j Sijf m Rip
� �

−α2β fj S j eSijf m eRi� �n o
ð24Þ

having defined β=
c2s,αΔ
c2s,Δ

. In the Germano model, a scale-
invariance assumption is made for cs so that β = 1. An
optimum value for cs,Δ can then be obtained by minimiz-
ing the square error eijeij.

In practice, pointwise, instantaneous values of cs,Δ so-
derived can be noisy (Kleissl et al., 2005) and lead to
numerical difficulties so it is common to introduce some
averaging procedure (Meneveau and Katz, 2000). In the
Lagrangian procedure, the coefficient is obtained by min-
imizing the weighted time-average of the local error con-
traction eijeij over pathlines. The average error metric is
defined by

E=
ðt
−∞

eij z t0ð Þ, t0½ �eij z t0ð Þ, t0½ �W t− t0ð Þdt0 ð25Þ

where z(t
0
) are the previous positions of the fluid ele-

ments and W(t) is a relaxation function that allocates
larger weights to the more recent history of the coeffi-
cients (i.e., W(τ) is a decreasing function of τ). cs,Δ is then
determined from the stationary point of E, resulting in

c2s,Δ =
TLM

TMM
, ð26Þ

where

TLM =
ðt
−∞

LijMij z t0ð Þ, t0½ �W t− t0ð Þdt0 ð27Þ

and

TMM =
ðt
−∞

MijMij z t0ð Þ, t0½ �W t− t0ð Þdt0: ð28Þ

Several weighting options could be used, but an
attractive choice is to take an exponential weighting of
the form W t− t0ð Þ=T−1e− t− t0ð Þ=T which allows the inte-
gral definitions to be replaced by transport equations:

DTLM

Dt
� ∂TLM

∂t
+ u:rTLM =

1
T

LijMij−TLM
� � ð29Þ

DTMM

Dt
� ∂TMM

∂t
+ u:rTMM =

1
T

MijMij−TMM
� �

: ð30Þ

The generalization to a scale-dependent dynamic
model can be motivated by consideration of model reso-
lutions approaching the grey zone for which the simula-
tion may not lie fully within the inertial subrange
(e.g., Efstathiou et al., 2018). The idea is to extend the
above model by dynamically computing β alongside c,
and to do so by means of a second test-filter operation
(Porte-Agel et al., 2000). The additional equations we
have implemented are closely analogous to those pres-
ented above and can be found summarized in Efstathiou
et al. (2018) or in a more detailed presentation and
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discussion by Bou-Zeid et al. (2005). It may be noted that
the Smagorinsky representation used by Bou-Zeid
et al. (2005) is given by

τsmag
ij = −2 cs,ΔΔð Þ2j S jSij ð31Þ

which implies that fm = fh = 1 as opposed to Equa-
tion (20) where fm and fh are defined in Equations (12)–
(17). Hence, the cs,Δ obtained by Bou-Zeid et al. (2005) is
not influenced by stability functions, while the one
described here includes the stability functions.

Once the value of cs,Δ has been computed through the
above procedure, the mixing length λ is determined as
λ = cs,ΔΔ without the need for any special treatment close
to the surface as in Equation (19) for the Smagorinsky–
Lilly model. Finally, the mixing length so-derived is used
within Equations (6) and (7) for the eddy viscosity and
diffusivity.

2.4 | Simulations

Simulations were performed for a dry convective boundary
layer with a strong inversion and a strong surface sensible
heat flux, following Sullivan and Patton (2011). These sim-
ulations imposed a surface sensible heat flux of 241 Wm−2

and geostrophic winds of (Ug, Vg) = (1, 0) ms−1 and (Ug,
Vg) = (10, 0) ms−1 were considered. Similar conclusions are
drawn from these weakly and strongly sheared cases, and
so only results from the 10 ms−1 simulations are presented
here. The initial inversion height is zi = 1024 m and the
surface roughness used is z0 = 0.1 m. The initial sounding
has a three layer structure with a strong inversion as fol-
lows: 300 K for 0 < z < 974 m, 300 K + (z − 974 m)
0.08 Km−1 for 974 < z < 1, 074 m, 308 K + (z − 1, 074 m)
0.003 Km−1 for z > 1, 074 m. This profile results in negative
Richardson numbers up to an altitude of 270 m, less than
0.25 up to about 880 m and larger numbers beyond.

Horizontal grid lengths of Δ = 25, 50, 100, 200, and
400 m were used with a horizontal domain size of
(9.6 km)2. These grid lengths correspond to 0.024zi,
0.049zi, 0.098zi, 0.195zi, and 0.39zi. The vertical grid
length is constant for each simulation and was set to
0.4Δ for Δ = 25, 50, 100 m, and then kept at 40 m for
Δ = 200 and 400 m. The domain height is 2 km and the
horizontal boundaries are cyclic. The simulation time is
4 hours and the data is averaged from 12,600 to 14,400 s,
which is the last 30 min of the simulation. This last
30 min represents a time when all simulations have long
since reached equilibrium.

Separate runs were performed using the Smagorinksy–
Lilly subgrid model (SMAG; Section 2.2) and with the

LASD dynamic model (Section 2.3) using stability func-
tions (STABF), without stability functions (NO-STABF)
and with a partial inclusion (PAR-STABF) of stability
functions. The NO-STABF formulation without stability
functions corresponds to setting fm = fh = 1 throughout all
of the calculations within the sub-grid model. In the PAR-
STABF simulations, the Smagorinsky coefficient, and
hence the mixing length, is calculated without the stability
functions, but these functions are retained in Equations (6)
and (7) for the final calculation of the viscosity and the
heat diffusivity. The highest resolution run, an LES at
25 m grid spacing, was performed with SMAG only and
will be used as a reference against which to compare the
other runs.

3 | RESULTS

Results from the 100 m grid spacing simulation are quali-
tatively similar to those obtained with 50 m spacing and
so the discussions below focus on the relatively well-
resolved 50 m case, the 200 m case towards the grey zone
and the 400 m case within the grey zone.

3.1 | Temperature variance and mean
temperature

The temperature variance profiles are shown in Figure 1
for 50, 200, and 400 m grid spacing, together with the
associated LES simulation at 25 m coarse grained to
50, 200, and 400 m. Profiles for the different variants of
the dynamic model are presented, as well as the original
Smagorinsky. The peak in the upper boundary layer is
associated with the occurrence of the inversion layer. For
a 50 m grid spacing, the height of the peak is the same
for all subgrid models, and occurs at a slightly higher alti-
tude than for the LES. The results agree with previous
studies (e.g., Sullivan and Patton, 2011) that showed that
the boundary layer height somewhat increases as the res-
olution is reduced. There are relatively slight differences
in the magnitudes of the peaks. Larger differences appear
at coarser resolutions. When the grid spacing approaches
the grey zone (i.e., at 200 m), the peak variance of the
NO-STABF simulation occurs at a markedly greater
height. The STABF and PAR-STABF versions of the
LASD simulations produce a peak at a lower height with
a relatively constant altitude for different horizontal reso-
lutions. The peak for the NO-STABF run gets smaller
with reduced resolution. These results are consistent with
the temperature profiles of Figure 2, in which the inver-
sion is seen to become smoother using the dynamic
models. The peak of the variance with SMAG occurs at a
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lower height than the LES at a 400 m grid spacing. As the
resolution is reduced, there is an increasing spread in the
locations of the peaks for the different sub-grid models;
the NO-STABF run also gives an increasingly wider peak.
Larger differences in the variance are also observed close
to the surface, where the NO-STABF simulation is associ-
ated with a larger variance. The SMAG run is associated
with the least amount of variance close to the surface.

When a grid spacing of 50 m is used, the domain-
averaged temperature profiles in Figure 2a are almost
identical across all models, with slight variations in the
inversion layer and close to the surface. For all the 50 m
simulations, the inversion appears at a higher level than
in the LES, consistent with earlier studies (e.g., Sullivan
and Patton, 2011; Beare, 2014). As the resolution is made
coarse, the temperature profiles from different subgrid

(a) (b) (c) FIGURE 1 Domain-

averaged potential-temperature

variance profiles obtained at

different resolutions, using the

Smagorinksy–Lilly (SMAG; blue

dotted) and LASD subgrid

models with (STABF; red),

without (NO-STABF; green) and

partially-implemented (PAR-

STABF; cyan dashed) stability

functions. Also shown is the

corresponding profile obtained

from the LES reference run

(black dash-dotted), coarse-

grained in both the vertical and

the horizontal to the relevant

grid length

6 of 13 BOPAPE ET AL.



models start to show larger differences. For a grid spacing
of 200 m, the Smagorinsky simulation is associated with
a steeper inversion compared to all the versions of the
LASD model. The NO-STABF version has the least steep
inversion and remains cooler than all the other simula-
tions between around 1,100 and 1,400 m. This simulation
is also associated with higher temperatures within the
boundary layer itself. The STABF and PAR-STABF versions

of LASD are very similar to one another and lie between
the NO-STABF and SMAG simulations.

As the resolution is made even coarser, for a grid
spacing of 400 m in Figure 2c, the same trends continue.
The inversion layer of the SMAG run moves to a lower
height, to the extent that it becomes lower than the one
associated with the LES. The inversion associated with
the NO-STABF run is pushed further up, and is yet

(a) (b) (c)FIGURE 2 As in Figure 1,

for the mean potential

temperature profiles
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smoother such that it remains cooler than other simula-
tions up to a height of 1,500 m. The STABF and PAR-
STABF simulations remain similar. The boundary layer
gets warmer with lower resolution, especially without the
inclusion of stability functions. Table 1 shows the domain-
averaged potential-temperature difference between differ-
ent versions of the dynamic model with 400 m grid
spacing and the corresponding coarse-grained LES for
heights of 20, 500, 900, and 1,220 m. The selected heights
represent the surface layer, the middle of the boundary
layer, the entrainment region and the inversion layer. The
difference between the NO-STABF version and the LES is
much larger than with the STABF and PAR-STABF ver-
sions, confirming results shown by line plots.

3.2 | Turbulent kinetic energy

In comparison with the Smagorinsky model, the LASD
model is associated with larger values of the resolved as
well as subgrid TKE close to the surface (Figure 3). At
400 m grid spacing, the SMAG run is associated with the
least amount of resolved TKE throughout most of the
boundary layer. The NO-STABF run is associated with
the most resolved TKE close to the surface and the least
in the vicinity of the boundary layer inversion as com-
pared to other versions of LASD. The LES and SMAG
runs, both of which use constant values of cs, are associ-
ated with the least amount of resolved TKE in those
regions.

The LES is associated with the least amount of subgrid
TKE as expected because of a smaller reliance on subgrid
models at higher resolution (Figure 3). Close to the sur-
face, the LASD runs are associated with more subgrid
TKE than the SMAG run. The shapes of the TKE profiles
close to the surface in the LASD model are more similar
than SMAG to the shapes at higher resolution. While all
the others increase from the surface to a peak slightly
above the surface and start to reduce immediately, the
SMAG profile does not exhibit a distinct peak at 200 and

400 m grid spacings (Figure 3b,c). A near-surface spike
in the TKE was found in other dynamic-model studies
(Porte-Agel et al., 2000; Efstathiou et al., 2018) due to
poorly resolved turbulence, and Efstathiou et al. (2018)
who used the same model as in this study found this
spike to be a result of horizontal velocity fluxes. From
just over 100 m to the upper boundary layer, the SMAG
run is associated with the largest values of the subgrid
TKE. The NO-STABF run is associated with the least
amount of subgrid TKE compared to other runs through-
out the boundary layer. Efstathiou and Beare (2015)
showed that the energy close to the boundary layer top is
larger in the grey zone especially when low resolution is
used in the vertical.

3.3 | Viscosity and Smagorinsky
coefficient

The shape of the viscosity profile is similar to the shape
of the subgrid TKE (Figure 4). The viscosity increases
as the grid spacing is made larger, which indicates a
greater reliance on the subgrid models as the resolution
is lowered. The shape of the viscosity profile with the
LASD model is similar across resolutions, in contrast to
SMAG which has a peak at increasing height for
increasing grid spacing. Larger values of viscosity are
associated with larger values of subgrid TKE. The larg-
est values of viscosity in the LASD runs occur close to
the surface, while in the SMAG runs they occur above a
height of 100 m with the 200 m grid spacing and above
200 m with 400 m grid spacing. The viscosity in the
SMAG simulations is the largest through most of the
boundary layer. The NO-STABF simulation is associ-
ated with the smallest amount of viscosity in the lower
half of the boundary layer.

The differences in viscosity for the LASD simulations
with and without stability functions cannot be simply
explained as a result of the mean value of the calculated
Smagorinsky coefficient. However, for the LASD model
as used here, it is important to recall that the calculated
Smagorinsky coefficient is applied locally: that is, differ-
ent values are applied for different grid points in the hori-
zontal as well as in the vertical. To assess whether there
are differences in the spread of the derived values, cumu-
lative probability density functions (PDFs) were com-
puted. The cumulative PDFs close to the surface
(at 40 m) are presented in Figure 5 and show that the dis-
tributions are rather similar amongst the different ver-
sions of the LASD model. The same is true for PDFs at
other levels investigated.

It may be noted that the values of the square of the
Smagorinsky coefficient, c2s , are not allowed to become

TABLE 1 Domain-averaged potential-temperature difference

between LASD subgrid models with (STABF), without (NO-STABF)

and partially-implemented (PAR-STABF) stability functions at

400 m grid length and the LES at selected heights

Height
(m)

NOSTABF
(K)

STABF
(K)

PARSTABF
(K)

20 0.69 0.05 0.06

500 0.58 0.24 0.24

900 0.64 0.24 0.26

1,220 −2.72 −1.44 −1.43
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negative because previous studies have shown that, the
model may become unstable if too many negative values
are present, and energy is artificially back-scattered to

the resolved scales. The negative coefficients are there-
fore clipped to a small positive value. When a grid spac-
ing of 50m is used, about 15% of the grid points are

(a) (b) (c)

(e) (f) (g)

FIGURE 3 As in Figure 1, for the profiles of (a–c) resolved and (d-f) subgrid contributions to the TKE. The LES profiles on their native

25 m grid are shown for reference in (a) only
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clipped; this number increases to about 25% with a grid
spacing of 200m and about 30% with a grid spacing of
400m. Thus, as the resolution is coarsened the amount of
clipping needed increases.

Clipping is also applied to excessively large values, so
that c2s is not allowed to be greater than 0.6. The simula-
tions did not produce large values of c2s throughout much
of the boundary layer. Most of the clipping is needed far

above the boundary layer and this is associated with very
large values of the Richardson number. The STABF sim-
ulation is associated with less clipping of the smaller
numbers and more clipping of the larger numbers
because of the influence of the Richardson number in the
calculations of cs. The viscosity profile in Figure 4 how-
ever shows that this does not have an impact on the
simulations produced.

(a) (b) (c) FIGURE 4 As in Figure 1,

for viscosity. The LES profiles on

their native 25 m grid are shown

for reference in (a) only

10 of 13 BOPAPE ET AL.



4 | DISCUSSION AND
CONCLUSIONS

Introducing stability functions in the calculation of the
viscosity and diffusivity has a substantial impact on the
behaviour of the LASD model at near grey-zone resolu-
tions. The inversion layer remains steeper than for the

case without stability functions, the temperature bias is
reduced in the boundary layer, and excessive near-surface
resolved TKE is also ameliorated. Higher temperatures
are associated with a deeper boundary layer, and so the
stability functions also help to better control the
boundary-layer height, and likewise the associated peak
in the temperature variance. Overall, the stability

(a) (b) (c)FIGURE 5 As in Figure 1,

but here for the LASD runs only,

showing the cumulative PDFs of

the Smagorinsky coefficient at

the height z = 40 m
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functions improve the dynamic model simulations, mak-
ing their predictions closer to the LES results. The stabil-
ity functions also increase the horizontal winds in the
vicinity of the inversion layer, while reducing the vertical
winds (not shown).

The dynamic model reacts naturally to the surface
boundary, avoiding any need to prescribe a reduction of
the mixing length scale close to the surface. Additional
advantages are that profiles of viscosity and TKE in the
LASD model are more similar in shape to those of the
high-resolution simulations. As the resolution is reduced
into the grey zone, the level of the inversion associated
with the Smagorinsky model decreases and so do the
resolved velocities. Using a constant value of cs dampens
the resolved flow and reduces the resolved-scale trans-
ports of momentum and heat. The dynamic model main-
tains values of TKE and transports that are more
comparable to the high-resolution simulations, with the
stability functions serving to prevent excessive turbulent
motions, particularly close to the surface. The height of
the maximum variance remains close to the LES value,
whereas it is either too low with Smagorinsky, or too
high without stability functions.

Using the LASD model in the grey zone (e.g., at
400 m grid spacing) results in larger values of TKE close
to the surface and has more mixing than the original
Smagorinsky model. However, this increased vertical tur-
bulence may be excessive, causing a marked reduction in
the steepness of the inversion, with higher temperatures
in the boundary layer, and a larger negative heat flux in
the entrainment zone (not shown). The use of stability
functions as part of the calculation of the diffusion and
viscosity improves the dynamic model simulations. For
example, the near-surface TKE is reduced somewhat, and
the height of the peak in the potential-temperature vari-
ance increases only slightly compared to the LES. More-
over, the boundary-layer warming is reduced.

Accounting for these functions in the derivation of a
dynamic Smagorinsky coefficient as was done for STABF
has very little impact. Their inclusion in Equation (24),
for example, is certainly more satisfactory from a theoret-
ical perspective in providing a self-consistent dynamical
treatment of the subgrid stresses based on Equations (6)
and (9), but it does not seem to be necessary. The intro-
duction of stability functions only in the calculation of
viscosity and diffusion as done for PAR-STABF provides
results that are as good as including the functions in cal-
culation of cs.

Overall, these results show that the use of stability
functions in a quasi-equilibrium convective boundary
layer simulation results improves in the performance of
the LASD model in the grey zone regime. The work pres-
ented in this paper represents an idealized daytime

scenario which is characterized by a quasi-steady CBL. It
may be noted that the same model including stability
functions has also been tested for a morning transition
case and showed improvements over the standard
Smagorinsky model (Efstathiou et al., 2018). Turbulent
mixing in the presence of clouds and latent heating
remains an open subject in atmospheric convection, with
more observations needed to compare directly with
model results and establish the performance of sub-grid
parametrizations (Feist et al., 2018).
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