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Abstract Predicting the arrival of coronal mass ejections (CMEs) is one key objective of space weather
forecasting. In operational space weather forecasting, solar wind numerical models are used for this task
and ensemble techniques are being increasingly explored as a means to improve these forecasts. Currently,
these forecasts are not constrained by the available in situ and remote sensing observations, such as those
from the heliospheric imagers (HIs) on the National Aeronautics and Space Administration's (NASA's)
STEREO spacecraft, which record white-light images of solar wind and CMEs. We report case studies of
four CMEs and show how HI observations can be used to improve the skill and reduce the uncertainty of
ensemble hindcasts of these events. Using a computationally efficient solar wind model, we produce
200-member ensemble hindcasts, perturbing the modeled CME parameters within uniform distributions
about the best estimates. By comparing the trajectory of the modeled CME flanks with HI observations, we
compute a weight for each ensemble member. Weighting the ensemble distribution of CME arrival times
improves the skill and reduces the hindcast uncertainty of each event. For these four events, the weighted
ensembles show a mean reduction in arrival time error of 20.1± 4.1%, and a mean reduction in arrival time
uncertainty of 15.0± 7.2%, relative to the unweighted ensembles. This technique could be applied in
operational space weather forecasting, if real-time HI observations were available. Therefore, as NASA and
the European Space Agency are currently planning the next space weather monitoring missions, our
proof-of-concept study provides some evidence of the potential value of including HIs on these missions.

Plain Language Summary Coronal mass ejections (CMEs) are large eruptions of magnetized
plasma from the Sun's atmosphere that flow out through space. CMEs that reach Earth are the main
cause of severe space weather and can disrupt technology we rely on, such as satellites, communications
networks, and power grids. Consequently, forecasting the arrival of CMEs at Earth is an important service
performed by various national weather agencies. Improving these forecasts is an important area of
space weather research, particularly measuring and improving the uncertainty of the CME arrival time
predictions. We show how pictures of CMEs taken by the heliospheric imagers on NASA's STEREO
spacecraft can be used to reduce the uncertainty and improve the accuracy of CME arrival time predictions.
NASA and ESA are currently planning the next spacecraft missions that will observe the Sun and space for
space weather forecasting. Our proof-of-concept study provides some evidence that it would be useful to
include a heliospheric imager on these future missions.

1. Introduction
Coronal mass ejections (CMEs) are vast eruptions of magnetized plasma from the Sun's corona. At Earth,
CMEs are the main driver of space weather, which energizes Earth's space environment and disrupts critical
services provided by spacecraft, power grids, and aircraft (Cannon et al., 2013; Hapgood, 2011). Conse-
quently, understanding the propagation of CMEs through the solar wind, and being able to estimate their
expected arrival at Earth, are key research questions and objectives for space weather forecasting centers.
Despite recent progress, the evolution of CMEs through the solar wind and heliosphere is still not well
understood, due to historically sparse heliospheric observations and open questions regarding CME struc-
ture (Luhmann et al., 2020). Owens, Lockwood, and Barnard (2020) showed that CME arrival time forecasts
are valuable for a range of hypothetical operational settings. They also demonstrated that additional value
can be added to a CME forecast by including information about a CME's speed and magnetic field strength.
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This highlights that although CME arrival time estimates are a necessary element of CME forecasting, they
are not, and should not be, the sole focus.

Since the launch of the National Aeronautics and Space Administration's (NASA's) STEREO mission in
2007 (Kaiser et al., 2008), we have been able to routinely observe the propagation of CMEs from the
solar corona, out through the inner heliosphere to Earth orbit, using the white-light coronagraph and
heliospheric imager (HI) instruments in the Sun-Earth-Connection-Heliospheric-Investigation instrument
package (Howard et al., 2008). Before this, CMEs could only be routinely observed close to the Sun (typically
within 30 solar radii) in the white-light Large Angle and Spectrometric Coronagraph (LASCO) on NASA's
SOHO mission (Brueckner et al., 1995), and measured with in situ solar wind plasma monitors, typically in
near-Earth space.

Observations reveal that CMEs undergo many different dynamical processes during their propagation
through the corona and heliosphere. Coronagraphs show that CMEs are accelerated and can be deflected
and deformed by structures in the solar corona (Jones et al., 2017). This is expected to be due largely to gra-
dients in magnetic pressure between features like coronal holes, active regions, and the heliospheric current
sheet (Kay et al., 2015). Furthermore, interactions with the solar wind are important in determining a CME's
evolution. Fast and slow solar wind streams can accelerate or decelerate a CME's speed (Tucker-Hood et al.,
2015), and can also lead to distortions of a CME's structure if they flow through the boundary between fast
and slow solar wind streams (Owens et al., 2017; Savani et al., 2010). Consequently, forecasting the arrival
of CMEs at Earth requires a good knowledge of the ambient solar wind conditions.

The current state-of-the-art for forecasting CME arrivals at Earth uses 3-D magnetohydrodynamic (3-D
MHD) models of the heliosphere (Merkin et al., 2016; Odstrcil, 2003; Riley et al., 2001; Tóth et al., 2005).
However, the Riley et al. (2018) review of CME forecasting techniques (many based on 3-D MHD models)
concluded that the mean absolute arrival time error is ±10 hr (20% to 50% of the expected Sun-Earth transit
time) and, more interestingly, that the accuracy of arrival time forecasts had not measurably improved since
2012. However, this significant uncertainty and stalled progress is maybe not surprising.

These models, such as ENLIL (Odstrcil, 2003) (used by the UK Met Office and NOAA's Space Weather Pre-
diction Center (SWPC)), require an inner boundary condition only for determining the state of the solar
wind. However, these inner boundary conditions cannot be observed directly, and must be estimated from
observations of the Sun's photosphere and extrapolated using models of the Sun's corona; heliospheric
models are currently driven by the output of coronal models that are empirically tuned to match in situ
observations near Earth. Furthermore, currently for forecasting, CMEs are typically introduced to these 3-D
MHD models as time-dependent perturbations of the solar wind speed and plasma parameters at the mod-
el's inner boundary (so-called “cone model” CMEs), with coronagraphs used to estimate the CME's initial
state (Odstrcil, 2003). Both of these procedures have significant uncertainties that are difficult to estimate.

Therefore, initial condition ensembles are being increasingly investigated as a way to estimate the uncer-
tainty in 3D MHD simulations of CME propagation (Mays et al., 2015; Murray, 2018; Pizzo et al., 2015).
Furthermore, ensemble modeling allows a probabilistic interpretation of the forecast, which can be more
valuable than a single deterministic forecast (Owens & Riley, 2017a). However, 3D MHD simulations are
sufficiently computationally expensive that it is challenging to appropriately sample the relevant param-
eter space of CME and solar wind properties, particularly for a large number of events or for multiple
interacting CMEs.

Data assimilation (DA), widely used in meteorology, is another promising tool for improving space weather
forecasts from solar wind numerical models (Lang & Owens, 2019). DA provides a framework to optimally
combine models with observations to provide a best estimate of the state of a dynamical system. How-
ever, despite the current and past availability of HI observations throughout the domain of the heliospheric
models, difficulties in interpreting HI data in terms of the model state have meant that it has not been
possible to use HI and DA techniques to provide a better representation of solar wind CME interactions
(Lang et al., 2017).

Alternatively, in recent publications, there is growing interest in using HI observations to weight ensemble
members as a means of providing improved estimates of solar wind-CME interactions and CME arrival times
at Earth (Harrison et al., 2017; Murray, 2018; Wharton et al., 2019). Here we report case studies of four CMEs
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Table 1
Cone CME Properties

Event CME-1 CME-2 CME-3 CME-4
Time at 21.5r⊙ 2012-08-31T22:46 2012-09-28T03:49 2012-10-05T08:47 2012-11-20T17:40
Longitude (deg) −30 20 9 22
Latitude (deg) 0 4 −24 20
Width (deg) 66 110 84 94
Speed (km s−1) 1,010 872 698 664
Predicted arrival 2012-09-03T17:00 2012-09-30T15:00 2012-10-08T15:00 2012-11-23T17:00
Observed arrival 2012-09-03T11:23 2012-09-30T22:13 2012-10-08T04:31 2012-11-23T21:12

that highlight the potential utility of such an approach, enabled through computationally efficient solar wind
modeling. Using the HUXt solar wind model (Owens, Lang, et al., 2020; Riley & Lionello, 2011), we consider
the evolution of the CMEs launched on 31 August, 28 September, 10 October, and 20 November in 2012.
With HUXt, we produce an ensemble hindcast of these events and demonstrate that HI observations of these
CMEs can be used to appropriately weight the ensemble members. This leads to improved CME arrival time
estimates and reduced ensemble spread, and thus improved hindcast performance. The method presented
here could be readily integrated into an existing forecasting system, assuming real-time availability of HI
data, and so might be a valuable tool for operational space weather forecasting centers.

2. Methods and Data
2.1. CME Events

Here we study four CMEs that were previously analyzed by Barnard et al. (2017). For each event, NOAA's
SWPC produced a forecast of the CME using the standard WSA-ENLIL Cone modeling system. Using the
available coronagraph data, SWPC calculated estimates of the required cone CME parameters, specifically
the CME source longitude and latitude, width, speed, and the time at a height of 21.5r

⊙
; these are given in

Table 1. Verification of these forecasts using in situ solar wind plasma observations from the ACE spacecraft
at the L1 point subsequently established their arrival times. Over this period, the STEREO-A and STEREO-B
spacecraft were at HEEQ longitudes of∼125◦ and 240◦, and so were separated from Earth by∼125◦ and 120◦,
respectively. In the following case studies, we use the same cone CME parameters as used by SWPC, except
for adjusting the initiation time, to account for the fact the inner boundary of HUXt is at 30r

⊙
, rather than

21.5r
⊙

. For the rest of the article, these events will be referred to as CME-1, CME-2, CME-3, and CME-4.

2.2. Solar Stormwatch CME Tracking

As part of the study of Barnard et al. (2017), these CMEs were tracked by the Solar Stormwatch (SSW) project.
Many citizen scientists tracked the events through the HI1 field of view (FOV) on both the STEREO-A and
STEREO-B spacecraft (referred to as HI1A and HI1B, respectively). The HI1 instruments are white-light
imagers that observe sunlight Thomson scattered from solar wind electrons (Howard et al., 2008). Figure 1
shows examples of running differenced images for HI1A and HI1B, which highlight transient features such
as CMEs. The HI1 FOV spans 20◦ and is centered at 14◦ in the ecliptic plane. The nominal cadence of HI1
science images is 40 min with a binned pixel size of 70 arcsec. The location of features in the HI FOV will be
discussed in terms of Helioprojective-Radial-Coordinates: position angle (PA), the anticlockwise angle from
solar north, and elongation (𝜖), the angular distance from Sun center.

Barnard et al. (2017) developed a procedure to produce a statistical consensus estimate of the CME front
location for each HI1A and HI1B image, which allows the time-elongation profile of the CME front to be
computed at any position angle spanned by the CME. Examples of these consensus profiles are presented in
Figure 1. They also demonstrated that the resulting time-elongation profiles had better uncertainty estimates
and more stable feature tracking than those obtained through the more commonly used J-map technique
(Davies et al., 2009). Here we use the SSW profiling of these events to extract the time-elongation profile of
the CME flanks along the latitudinal plane corresponding to the mean HEEQ latitude of Earth during each
event. Here we define the CME flank as the maximum elongation of a CME front viewed from a particular
vantage point, along a specified position angle direction.
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Figure 1. (left) The HUXt model solution along Earth's latitudinal plane for the deterministic (i.e., “best estimate”) run of CME-1 at 2012-09-01T08:46. The
orange line marks the boundary of the CME region. The shaded red and pink regions mark the HI1A and HI1B fields-of-view. The red-cross and pink-diamond
mark the flanks of the modeled CME from the HI1A and HI1B perspective. (middle) The meridional plane of the same CME differenced imaged by HI1A, at
the closest time to the model snapshot. The solid-red line marks the SSW consensus profile of the CME front, while the dashed lines mark the uncertainty in
this profile. The dashed-green lines mark a 4◦ position angle band around the solar equatorial plane. The red cross marks the elongation of the CME front in
the equatorial plane. (right) HI1B differenced image of this CME, marked in the same way as the HI1A image.

2.3. HUXt

HUXt (Owens, Lang, et al., 2020) is a numerical model of the solar wind that uses a reduced physics
approach, treating the solar wind as a 1-D incompressible hydrodynamic flow. This allows very efficient
computational solutions, being ∼1,000 times faster than comparable 3-D MHD solar wind models. Despite
this reduced physics approach, HUXt has been shown to closely emulate full 3-D MHD models; a 40-year
validation test of ambient solar wind from HelioMas (Riley et al., 2001) was reproduced to within 7% of
the HelioMAS solar wind speeds throughout the entire model domain (Owens, Lang, et al., 2020; Riley &
Lionello, 2011). Therefore, HUXt can serve as an effective surrogate in situations where full 3-D MHD sim-
ulations are too computationally expensive. In particular, HUXt ensembles of model solutions that more
completely explore the full range of uncertainties in the initial conditions. HUXt only requires the solar wind
speed at the model inner boundary to be specified and so can work with the output of any model that can
provide this. Here we use output from the MAS coronal model (Riley et al., 2001), but it can also operate with
output from, for example, the Wang-Sheely-Arge model (Arge & Pizzo, 2000). In this work, HUXt is run in
the latitudinal plane corresponding to Earth's HEEQ latitude at the initialization time of each cone CME.

Figure 2. The same structure as Figure 1 but for CME-2.
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Figure 3. The same structure as Figure 1 but for CME-3.

Within HUXt, CMEs are parameterized as cone CME perturbations to the solar wind speed. Spatially, the
cone CME consists of two hemispheres connected by a cylinder; at one extreme a CME is spherical, while
more generally it is sausage shaped. The axis of the cone CME is directed radially and located by the CME's
source longitude and latitude. The CME's width is used to parameterize the angular extent of the hemi-
spheres, while the “thickness” sets the length of the cylindrical portion. This structure is advected through
the model inner boundary at the CME's speed, and anywhere on the boundary within the cone CME domain
is assigned the CME speed. This perturbation then propagates hydrodynamically through the model solu-
tion. CMEs are traced through the HUXt solution by computing the difference between the ambient and
CME solutions, identifying and tracking areas where the speed differences are >20 km s−1. In this work we
must also calculate the flank of the CME from the HI1A and HI1B perspectives. This is achieved by com-
puting the elongation of each point on the CME boundary and finding the point with maximum elongation,
for both the HI1A and HI1B field of view.

For each event, we first use HUXt to produce a deterministic hindcast, using the same cone model param-
eters as was used in the SWPC WSA-ENLIL forecast. The HUXt inner boundary solar wind speeds at 30r

⊙

are set by the MAS coronal model, driven by Carrington maps of the photospheric magnetic field provided
by the HMI instrument on NASA's Solar Dynamics Observatory. The MAS solutions are available at this site
(https://www.predsci.com/mhdweb/home.php). Thus, we must estimate the time at which the cone CME
enters the model domain. We linearly extrapolate the WSA-ENLIL CME initiation time at 21.5r

⊙
, assum-

ing the the CME speed remains constant. An example of the output of HUXt for these hindcasts are shown
in Figures 1 to 4. HUXt returns the boundary of the CME region, and from this we compute the maximum
elongation of the CME flank in the HI1A and HI1B fields of view.

Figure 4. The same structure as Figure 1 but for CME-4.
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Further to this, we also produce 200-member ensemble hindcasts of each event, where the CME cone model
parameters are randomly perturbed. Ideally, we would sample from the empirically determined uncertainty
distribution of each parameter. However, these distributions are not accurately known. Therefore, for this
proof-of-concept study, we simply assume that the parameters uncertainty distributions are uniform. Each
parameter is perturbed by sampling from the random uniform distribution, with the following limits: speed
is ±200 km/s; longitude is ±20◦; latitude is ±20◦; width is ±20◦; radial thickness is ±2 r

⊙
; and initial height

is ±3 r
⊙

. We consider these uncertainty limits as at the larger end of plausibility, but they are comparable to
those explored in Pizzo et al. (2015). Additionally, the time that the cone CME enters the model domain is
also updated to account for the perturbed CME speed and initial height.

3. Results
From both the deterministic and ensemble HUXt runs, we compute the expected arrival of a CME at Earth,
and the time-elongation profile of a CMEs flank that would be observed by HI1A and HI1B, as shown
schematically in Figures 1–4. Figure 5 shows the observed time elongation profiles for HI1A and HI1B, as
well as the modeled time elongation profiles for both the deterministic and ensemble HUXt runs, for each
of CME-1 to CME-4. It should be noted that the comparison between the observed and modeled time elon-
gation profiles is limited by idealized nature of the cone CME paramterization and that we do not forward
model the HI observations from the HUXt solutions. However, for the purposes of this proof-of-concept
study, we consider the comparison of these observed and modeled time elongation profiles sufficient.

For these four events, there is some agreement between the observed and modeled time elongation profiles.
We note that the agreement is typically better for the HI1B SSW observations, rather than HI1A, especially
for CME-2, CME-3, and CME-4; these SSW profiles are within the ensemble spread and track closely to the
deterministic run and other ensemble members.

This is less the case for the HI1A SSW profiles, which are typically closer to the edge of the ensemble distri-
bution and in some cases outside it, particularly for CME-2 and CME-4. For CME-2 the HI1A SSW profile
follows an obviously different trajectory from the deterministic HUXt run and is outside of the spread of all
ensemble members. The cause of the disagreement in HI1A is not immediately clear. Both the SSW tracking
of the CME in HI1A images, and the representation of the CMEs evolution within HUXt could be factors.
It is also possible that the best estimates of the CME parameters were far from the truth, or that the ensem-
ble spread was not appropriate for this event. We investigated this by repeating the ensemble analysis with
twice the range in the cone CME parameter. Even with double the range, the SSW HI1A profile for CME-2
remained outside the ensemble spread, while for CME-4 it was at the very edge of the ensemble. However,
the CME front is clearly defined in both the HI1A and HI1B differenced images, and the uncertainty in the
SSW profiling of this event is modest. Therefore, on balance, we expect that the representation of the CME
with the cone model in HUXt is the main factor. In fact, it is plausible that CME front could have been
deformed at heliospheric distances below the inner boundary of HUXt at 30r

⊙
(Kay et al., 2015), which

might explain these differences. We are experimenting with moving the inner boundary of HUXt to lower
altitudes, and the impacts this has will form the basis of a future study.

Furthermore, we note that in all instances the SSW profiles lead HUXt, both in the deterministic form and
the majority of the ensemble members. We interpret this as evidence there might be a bias in HUXt, such
that CMEs slightly lag the observations. However, it is not obvious what the source of such a bias would be,
and could involve many factors in the model's implementation. This too requires further investigation in a
future study. But we are nevertheless able to compare weighted and unweighted HUXt ensembles, which
are subject to the same biases.

To be able to use the SSW profiles to constrain the ensemble hindcast, it is first necessary to show that it is
possible to weight each ensemble member according to its agreement with the SSW time-elongation pro-
file. Here we test using a weight based on the root-mean-square difference between the SSW and ensemble
time-elongation profiles. To do this, we linearly interpolate the HUXt time-elongation profile onto the SSW
profile, and then compute the root-mean-square difference between the HUXt and SSW profiles. The inverse
of the root-mean-square difference is then used to weight each ensemble member. We also compute a HI1A
and HI1B combined weight using the mean of the HI1A and HI1B weights. Figure 6 shows scatter plots of
the absolute arrival time error for each ensemble member as a function of the weight computed from the
HI1A, HI1B, and combined HI1A + HI1B data, respectively.
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Figure 5. Time elongation profiles of the modeled and observed CME flanks, from the HI1A and HI1B perspectives,
for each CME (top to bottom). (left column) The blue points show the HI1A SSW consensus profile along Earth's
latitudinal plane. The black line shows the modeled flank from the HI1A perspective for the deterministic HUXt run.
The cluster of gray and orange lines show the modeled flank for the 200 ensemble members; gray lines mark ensemble
members that hit Earth; orange lines mark ensemble members that miss Earth. (right column) This panel shows the
observed and modeled data from the HI1B perspective.
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Figure 6. Panels show scatter plots of the HUXt ensemble member weights versus the absolute arrival time error, for each of CME-1 to CME-4 (top to bottom).
The ensemble member weight is calculated from the comparison of the observed and modeled CME flanks. Only ensemble members that hit Earth (and so
have an arrival time error) are displayed. Left, middle, and right columns show the weightings for the HI1A, HI1B, and combined HI1A and HI1B observations,
respectively.

BARNARD ET AL. 8 of 15



AGU Advances 10.1029/2020AV000214

Figure 7. Histograms of the distribution of modeled CME arrival time for CME-1. In each panel, the gray histogram shows the distribution of transit times for
the basic ensemble of HUXt runs, and the black square marks the ensemble median and spread of the distribution. The dashed red line shows the predicted
CME transit time from SWPC's WSA-ENLIL forecast. The solid black line marks the observed CME transit time, and the dotted green line marks the transit
time of the deterministic HUXt run. The blue, pink, and orange histograms show the distribution of transit times for the ensemble members weighted by their
agreement with the HI1A, HI1B, and HI1A + HI1B SSW observations of the CME. The blue, pink, and orange circles mark the weighted medians and spread of
the transit time distributions.

In most cases, it is clear that members with larger weights typically have smaller arrival time errors. How-
ever, it is also apparent that the relationship between ensemble member weight and arrival time error is
not linear and there is significant scatter. A detailed understanding of this requires further investigation,
but we suggest that this is possibly due to the fact the observed time-elongation profiles of the CME flanks
are projections onto a plane of the true CME evolution. Consequently, there is no unique mapping of a
CMEs parameters to the observed time elongation profiles, and many profiles are degenerate for different
combinations of CME parameters, both modeled and observed. Nonetheless, Figure 6 does show that the
computed weights do contain useful information about the expected arrival of the studied CMEs. On this
basis, it is reasonable to test if these weights can be used to improve the expected CME arrival times from the
ensemble hindcasts.

In the following, we analyze the CME arrival time distributions for the ensemble hindcasts and compare
them with weighted arrival time distributions, where each ensemble member is weighted according to
their agreement with the SSW time elongation profile, as presented in Figure 6. We note that weighting
ensembles with one source of relevant information is expected to lead to a reduction in ensemble spread.
Therefore, although we expect that the HUXt ensemble spread will decrease after weighting with the SSW
profiles, it is necessary to quantify by how much, and whether the reduced spread remains consistent with
the observations.

3.1. CME-1 Arrival Time Distribution

Figure 1 shows that for the deterministic run this CME hits Earth with a glancing blow, with Earth inter-
secting the western flank. Consequently, when perturbing the cone CME initial conditions, many of the
ensemble members subsequently miss Earth. Of the 200 ensemble members, there are 113 hits, and 87
misses. Figure 7 presents histograms of the distribution of the CME arrival time for the HUXt ensemble
members that hit Earth. In each panel, the gray histogram shows the distribution of the full ensemble of
arrival times. The solid black vertical line shows the observed arrival time, the dashed red line marks the
SWPC forecast arrival time, and the dotted green line marks the arrival time of the deterministic HUXt run.
The black square shows the ensemble median, with the error bar marking the range between the 0.16 and
0.84 quantiles of the arrival time distribution (an approximate 1− 𝜎 error). The full range of the ensemble
arrival time distribution spans 31.2 hr, which is significantly larger than the average arrival time uncertainty
over many different CME forecasts of ±10 hr (Riley et al., 2018). This highlights the need for event-specific
uncertainty estimates.
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Table 2
CME Arrival Time Forecast Statistics

Arrival uncertainty Arrival error
Event Type Arrival time (hr) (hr)

Deterministic 2012-09-04T13:51 — 26.5
Ensemble 2012-09-04T06:41 16.4 (−6.2, +10.2) 19.3

CME-1 HI1A weighted 2012-09-04T03:12 14.9 (−4.8, +10.0) 15.8
HI1B weighted 2012-09-04T06:06 16.3 (−5.8, +10.5) 18.7

HI1A/B weighted 2012-09-04T03:47 15.2 (−4.6, +10.6) 16.4
Deterministic 2012-09-30T23:31 — 1.3

Ensemble 2012-10-01T00:24 8.6 (−4.1, +4.5) 2.2
CME-2 HI1A weighted 2012-09-30T23:49 8.7 (−4.1, +4.6) 1.6

HI1B weighted 2012-09-30T23:49 7.5 (−3.5, +4.1) 1.6
HI1A/B weighted 2012-09-30T23:49 7.8 (−3.8, +4.1) 1.6

Deterministic 2012-10-08T16:32 — 12.0
Ensemble 2012-10-08T16:47 13.5 (−5.7, +7.8) 12.3

CME-3 HI1A weighted 2012-10-08T14:54 12.4 (−5.6, +6.8) 10.4
HI1B weighted 2012-10-08T14:19 9.0 (−4.1, +4.9) 9.8

HI1A/B weighted 2012-10-08T14:28 10.7 (−4.8, +5.9) 10.0
Deterministic 2012-11-24T01:16 — 4.1

Ensemble 2012-11-24T03:45 16.4 (−7.3, +9.1) 6.6
CME-4 HI1A weighted 2012-11-24T01:42 16.2 (−6.5, +9.7) 4.5

HI1B weighted 2012-11-24T02:43 11.9 (−6.1, +5.8) 5.5
HI1A/B weighted 2012-11-24T02:26 12.6 (−5.8, +6.8) 5.2

The weighted ensemble distributions are also shown in Figure 7. The blue, pink, and orange histograms
show the arrival time distributions weighted by the HI1A, HI1B, and combined HI1A and HI1B observa-
tions, respectively. Similarly, the blue, pink, and orange circles mark the medians and approximate 1− 𝜎

spread of the weighted distributions. Details of the modeled arrival times are provided in Table 2.

For this event, all the ensemble members arrive significantly later than observed CME at L1. Consequently,
the observed arrival is outside the uncertainty region of the unweighted and weighted ensemble medians,
and the corresponding errors of the ensemble medians span 15.8 to 19.3 hr. The medians of the weighted
distributions are closer to the observed arrival time than the unweighted ensemble median, although these
differences are smaller than the ensemble spread in each case. Additionally, the spread of the arrival time
distributions is slightly less for each of the weighted ensembles, indicating smaller uncertainty (∼1 hr) in
the expected arrival time. Focusing on the HI1A/HI1B weighted ensemble, there is a 15% reduction in the
arrival error, and a 7% reduction in the arrival uncertainty, relative the the unweighted ensemble.

3.2. CME-2 Arrival Time Distribution

For CME-2, all 200 of the ensemble members hit Earth, and the distribution of arrival times is shown in
Figure 8. The full range of the ensemble arrival time distribution spans 19.5 hr; this is a much smaller ensem-
ble spread than any of the other studied CMEs. In this instance, the observed arrival time is within the
uncertainty band for each of the weighted and unweighted ensembles, and the arrival errors are all small,
between 1.6 and 2.2 hr. Again, the medians of the weighted distribution are closer to the observed arrival
time than the unweighted ensemble median, but these differences are smaller than the ensemble spread in
each case. The spread of the arrival time distributions is less for each of the weighted ensembles, indicating
slightly smaller uncertainty (∼1 hr) in the expected arrival time. For the HI1A/HI1B weighted ensemble,
there is a 27% reduction in the arrival error, and a 9% reduction in the arrival uncertainty, relative the the
unweighted ensemble.

3.3. CME-3 Arrival Time Distribution

For CME-3, 158 of the ensemble members hit Earth, and the distribution of arrival times is shown in Figure 9.
The full range of the ensemble arrival time distribution spans 50 hr. In this instance, the observed arrival time

BARNARD ET AL. 10 of 15



AGU Advances 10.1029/2020AV000214

Figure 8. Histograms of the distribution of modeled CME arrival time for CME-2, in the same format as Figure 7.

leads all the ensemble members, being on the edge of the ensemble distribution, but outside the uncertainty
band for each of the weighted and unweighted ensembles. The arrival errors of the ensemble medians are
between 10 and 12.3 hr. Again, the medians of the weighted distribution are closer to the observed arrival
time than the unweighted ensemble median, but these differences are smaller than the ensemble spread
in each case. The spread of the arrival time distributions is reduced for each of the weighted ensembles,
indicating smaller uncertainty (∼3 hr) in the expected arrival time. For the HI1A/B weighted ensemble,
there is a 19% reduction in the arrival error, and a 21% reduction in the arrival uncertainty, relative the the
unweighted ensemble.
3.4. CME-4 Arrival Time Distribution

For CME-4, 198 of the ensemble members hit Earth, and the distribution of arrival times is shown in Figure
10. The full range of the ensemble arrival time distribution spans 51 hr. In this instance, the observed arrival
time leads many of the ensemble members, but is close to the center of the ensemble distribution, and
inside the uncertainty band for each of the weighted and unweighted ensembles. The arrival errors of the
ensemble medians are between 4.5 and 6.6 hr. Again, the medians of the weighted distribution are closer to
the observed arrival time than the unweighted ensemble median, but these differences are smaller than the
ensemble spread in each case. The spread of the arrival time distributions is less for each of the weighted
ensembles, indicating a smaller uncertainty (∼4 hr) in the expected arrival time. For the HI1A/B weighted
ensemble, there is a 20% reduction in the arrival error, and a 23% reduction in the arrival uncertainty, relative
the the unweighted ensemble.

Figure 9. Histograms of the distribution of modeled CME arrival time for CME-3, in the same format as Figure 7.
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Figure 10. Histograms of the distribution of modeled CME arrival time for CME-4, in the same format as Figure 7.

For each of these four events, the weighted ensemble medians are closer to the observed arrival time than
the unweighted ensemble and also have less uncertainty (with the exception of CME-2, for HI1A only). The
results are similar when weighting by either HI1A, HI1B, or HI1A/HI1B combined. For the HI1A/HI1B
weighting, there is a mean reduction in the arrival error of 20.1± 4.1%, and a reduction in the arrival uncer-
tainty of 15.0± 7.2%, relative to the unweighted ensemble. These statistics are similar for the HI1A and HI1B
weightings, but we use the HI1A/HI1B combined weighting to illustrate this as we think the combined
weighting is probably more robust than weighting by a single perspective. We interpret this as evidence that
the inclusion of the HI1 tracking data has improved the performance of the ensemble hindcast, relative to
the unweighted ensemble.

Note that availability of photospheric magnetic field data, and hence the ambient solar wind speed input,
were significantly different between the HUXt hindcasts and the SWPC genuine forecast. Thus, it isn't useful
to directly compare their performance. The key conclusions we can draw are that HUXt can be used to
perform a skilful hindcast of CME arrival time and that weighting the ensemble by comparison with HI
observations can improve the skill and reduce the uncertainty.

4. Conclusions
We have used the HUXt solar wind model to produce an ensemble hindcast of four CMEs from 2012. By
comparing the modeled and observed locations of the CMEs flanks, we have shown how HI observations
can be used to weight ensemble members to provide an improved estimate of CME arrival time.

We have shown that HI observations can be used to constrain the ensemble hindcasts of these four CMEs
and that this leads to reduced uncertainty in the CME arrival time hindcasts. However, it is important to note
that uncertainty estimates are only useful if they are, on average, consistent with the observed arrival times.
Of the four CMEs we study, the hindcasts of CME-2 and CME-4 are consistent with the observed L1 arrival,
and so it is fair to say that the weighted ensemble has improved these hindcasts. For CME-1 and CME-3, the
observed arrival leads all the ensemble members, and so the hindcast uncertainty is not consistent with the
observed arrival, and the weighting cannot improve this situation. It is not clear why the observed arrival
is outside the ensemble spread for these two events, especially CME-1 which arrives significantly earlier.
We repeated these hindcasts with double the spread in the perturbed cone CME parameters and it did not
significantly improve the situation. We are confident that the Solar Stormwatch identifications are robust
and consistent with the CME identified by SWPC. Therefore, this suggests to us that HUXt isn't correctly
capturing the evolution of this CME due to either the background solar wind environment or a breakdown
of the assumptions of the cone CME parameterization, or perhaps both factors. Additionally, it is possible
that the incorrect signature has been identified as this event in the L1 in situ data. Clearly, these issues need
further investigation so that the technique proposed here can be developed into a robust tool for hindcasting,
and potentially forecasting.
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Therefore, following this work, several lines of research should be taken. First, we must test this method
on more events to build a robust assessment of its performance. Solar Stormwatch is currently tracking
over 1,000 CMEs in the same manner as Barnard et al. (2017), and these will be ready for analysis in
2020. Additionally, the time elongation profiles provided by the HELCATS project could be used (https://
doi.org/10.6084/m9.figshare.5803152.v1); however, these do not track features as consistently as the Solar
Stormwatch profiles.

Furthermore, a similar experiment could be performed with the WSA-ENLIL ensemble forecast runs. The
approach advocated in Harrison et al. (2017) was an “Ensemble pruning” technique, where HI data are
used to exclude ensemble members considered unrealistic compared to the HI observations. Given the low
computational expense of HUXt, it might be beneficial to run a large ensemble using HUXt to compare
against the HI observations, from which a targeted ensemble of the most plausible CME parameters could be
run in WSA-ENLIL. Similarly, this approach could also be useful within the ADAPT-WSA-ENLIL modeling
framework (Adamson et al., 2019).

The initial condition ensemble used here only examined uncertainty in the cone model CME parameters.
However, there is also uncertainty in the ambient solar wind speed solution. Perturbation of the ambient
solar wind solution, using a method similar to Owens and Riley (2017b), could help more fully quantify all
sources of uncertainty; this is a practical option with a computationally efficient model such as HUXt.

It is also possible more advanced comparisons between the HI observations and modeled CMEs could be
beneficial. Here we have limited comparison to the forward flank of the CME from the HI1A and HI1B
perspectives. This consequently ignores much of the extra information regarding both the modeled and
observed CME. The advantage of our approach is that there are several well established tools and processes
for identifying the forward flank of a CME in HI data (Barnard et al., 2017; Davies et al., 2009). However,
it is possible that further improvements could be gained by also tracking the rear flank of the CME, as per
Savani et al. (2009), or other features such as the “ghost fronts” reported in Scott et al. (2019). Physics-based
forward modeling of the HI images from the modeled solar wind and CME is also worth investigation. A
Thomson scattering simulation of the modeled inner heliosphere could allow a more direct comparison
with HI data, that doesn't require manually identifying CME properties. However, due to the nature of the
cone model CME parameterization, this approach could be particularly challenging. Cone model CMEs
are a hydrodynamic perturbation that ignores the magnetic and density structure of observed CMEs. This
parameterization works well for estimating the front of CMEs in numerical solar wind models, but could
be misleading when comparing real and forward modeled HI images. Therefore, it is quite plausible this
approach would require more complex CME parameterizations to be effective.

The next operational space weather missions are currently being developed by NASA and ESA. Of particular
note is the proposed Lagrange mission to the L5 point. Our results provide support for including a HI on
such a mission, as we have demonstrated a simple way that these data can be used to improve the prediction
of CME arrival time at Earth.
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