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Abstract
Aim: Trait data are widely used in ecological and evolutionary phylogenetic compara-
tive studies, but often values are not available for all species of interest. Traditionally, 
researchers have excluded species without data from analyses, but estimation of 
missing values using imputation has been proposed as a better approach. However, 
imputation methods have largely been designed for randomly missing data, whereas 
trait data are often not missing at random (e.g., more data for bigger species). Here, 
we evaluate the performance of approaches for handling missing values when con-
sidering biased datasets.
Location: Any.
Time period: Any.
Major taxa studied: Any.
Methods: We simulated continuous traits and separate response variables to test 
the performance of nine imputation methods and complete-case analysis (excluding 
missing values from the dataset) under biased missing data scenarios. We character-
ized performance by estimating the error in imputed trait values (deviation from the 
true value) and inferred trait–response relationships (deviation from the true relation-
ship between a trait and response).
Results: Generally, Rphylopars imputation produced the most accurate estimate of 
missing values and best preserved the response–trait slope. However, estimates of 
missing data were still inaccurate, even with only 5% of values missing. Under severe 
biases, errors were high with every approach. Imputation was not always the best 
option, with complete-case analysis frequently outperforming Mice imputation and, 
to a lesser degree, BHPMF imputation. Mice, a popular approach, performed poorly 
when the response variable was excluded from the imputation model.
Main conclusions: Imputation can handle missing data effectively in some conditions 
but is not always the best solution. None of the methods we tested could deal ef-
fectively with severe biases, which can be common in trait datasets. We recommend 
rigorous data checking for biases before and after imputation and propose variables 
that can assist researchers working with incomplete datasets to detect data biases 
and minimize errors.
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1  | INTRODUC TION

Trait data describe the characteristics of individuals of a population 
or species (Webb et al., 2010). Trait-based analyses have been es-
sential for improving our understanding of ecological and evolution-
ary processes, for example, identifying negative impacts of climate 
change on biodiversity (Lancaster et al., 2017; Pacifici et al., 2017), 
common life-history strategies among invasive species (Allen et al., 
2017; González-Suárez et al., 2015), and evolutionary changes in re-
productive traits (Baker et al., 2020). Large-scale modelling studies 
like these are increasing in popularity and often require trait data for 
numerous species and across taxonomic groups (Ríos-Saldaña et al., 
2018). However, trait datasets can contain many missing values, and 
these values can be missing with a bias (Roth et al., 2018; Sandel 
et al., 2015). For example, in a widely used mammalian trait data-
set (Jones et al., 2009), species with smaller body mass values are 
more likely to have missing data for other traits, and this bias in miss-
ing data can impact inferences in comparative analyses (González-
Suárez et al., 2012).

The literature recognizes three broad types of missing data 
mechanisms: (a) missing completely at random (MCAR), where there 
is no bias, and records represent a random sample; (b) missing at ran-
dom (MAR), where missing data can be explained by available vari-
ables (for example, we know about the bias and can account for it 
statistically); and (c) missing not at random (MNAR), where missing 
data cannot be explained by available information (for example, we 
either do not know about the bias or we lack associated information 
that could account for it statistically) (Little & Rubin, 2002).

Currently, there are at least 160 packages for handling missing 
data available on the R-CRAN repository (Josse et al., 2020). A sim-
ple, common approach is “complete-case analysis”, that is, to exclude 
all observations with any missing values. This approach is robust 
when there is no bias (MCAR missing data); bias in the missing val-
ues can lead to erroneous inferences. Imputation, estimating missing 
values, is an alternative approach to handle missing data that can 
bypass this disadvantage (Little & Rubin, 2002). Imputation methods 
range from simple approaches, such as filling missing values with an 
average, to more complex approaches, such as estimating missing 
values using statistical models (e.g., regression and random forest). 
Models can also be made more complex e.g. adding hierarchical in-
formation, allowing censored observations and weighting observa-
tions. There are also approaches designed specifically for handling 
values with extreme bias (MNAR), in addition to methods for imput-
ing missing response (sometimes called outcome or dependent vari-
able) values (for a more comprehensive description of methods, see 
Molenberghs et al., 2015).

Imputation can be applied to any dataset but is particularly use-
ful for trait data because traits are often correlated (e.g., body mass 

is correlated with body length) and shaped by evolutionary history. 
Therefore, correlations and phylogenetic information can be used 
to predict missing trait values more accurately (Penone et al., 2014; 
Swenson, 2014). Previous studies have suggested that imputation 
in ecological and evolutionary studies generally outperforms com-
plete-case analysis (Kim et al., 2018; Little & Rubin, 2002; Penone 
et al., 2014). However, imputation can only be successful if it ac-
counts for the mechanism by which data are missing. If the imputa-
tion model cannot account for this mechanism (e.g., under extreme 
biases like MNAR), it is plausible that imputation might even amplify 
error in inference.

In this manuscript, we evaluate the performance of different ap-
proaches for handling missing trait data, considering the following 
questions. How effective is imputation at estimating missing values 
and making inference? Which imputation method is best? Is imputa-
tion better than complete-case analysis? How does the amount of 
missing data and presence of bias affect results? Expanding on pre-
vious comparisons of imputation methods, we introduce two new 
bias types, compare six additional imputation methods, evaluate the 
implications of including the response variable within the imputation 
and propose steps for detecting erroneous imputation. Our study is 
most relevant for phylogenetic comparative studies but still applies 
to wider missing data scenarios.

2  | MATERIAL S AND METHODS

2.1 | Data simulation

We simulated 40 datasets, each with 500 species, using the simtraits 
function (Goolsby et al., 2017). Each dataset included four trait-pre-
dictor variables (“traits” hereafter) and one response variable. The 40 
datasets represent 10 replicates (seeds 1–10) of four dataset types 
reflecting the combination of two correlation levels among traits 
(weak Pearson, R2 = .2, or strong, R2 = .6) with two response–trait 
slopes (no relationship, c. 0, or positive, c. .7). Traits were simulated 
under a Brownian model of evolution, with a Gaussian distribu-
tion of values ranging from zero to 10 to mimic the distribution of 
real trait data on a logarithmic scale (a transformation often used 
in comparative studies). The impact of phylogenetic signal strength 
on imputation performance was already tested by Kim et al. (2018) 
and Molina-Venegas et al. (2018); therefore, we standardized Pagel’s 
λ between the phylogeny and traits at approximately one. The re-
sponse was simulated as a product of a trait, rather than through 
the phylogeny, and has a Gaussian distribution ranging from zero to 
10. We aimed to represent response variables used in comparative 
analyses such as extinction risk or population trend, rather than al-
lometric relationships.

K E Y W O R D S

BHPMF, functional trait, imputation, life-history trait, MAR, MCAR, missing data, MNAR, 
multiple imputation chained equations, Rphylopars
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From each of the 40 original datasets, we removed trait values 
to create scenarios reminiscent of real trait datasets. Values were 
removed from between 5 and 80% of the species (in 5% intervals), 
across 11 distinct bias types (or missing data mechanisms); see the 
Supporting Information (Appendix A, Table A1.1). As a control, one 
mechanism was to remove trait values completely at random, simu-
lating the MCAR category. Two mechanisms stratified deletion with 
trait values removed evenly over the phylogeny and trait range. The 
remaining mechanisms explored four bias types likely to occur in 
trait datasets: (a) Trait (large trait values more likely to be missing); 
(b) Response (trait values more likely to be missing in species with 
larger responses); (c) Trait & response (trait values more likely to be 
missing in species with large trait and large response values); and (d) 
Phylogeny (trait values more likely to be missing in certain clades) 
(Figure 1; Supporting Information, Appendix A, Table A1.1).

Within each of these four bias types, we tested two bias severity 
levels: weak (a conservative lower-end estimate for how much bias 

exists in trait data) and severe (an upper-end estimate aimed at test-
ing how methods perform under the most extreme biases). Under a 
weak trait bias, the distribution of trait values becomes marginally 
skewed and the central point is shifted, but the range of values is 
largely preserved. Under a severe trait bias, the distribution is trun-
cated and the range reduced with extreme skew and shift in the cen-
tral point. The weak and severe biases replicate the MAR and MNAR 
categories, respectively. The Supporting Information (Appendix A1) 
provides a comprehensive description and justification of the bias 
severities. In total, across all dataset types, levels of missing data 
(missingness) and bias types, we generated 7,040 datasets.

2.2 | Data imputation

Testing all available imputation methods was not feasible; instead, 
we expanded upon previous ecological and evolutionary imputation 

F I G U R E  1   Schematic illustration of the 
effects of different biases. Panels contain 
an example scatterplot (x axis = trait; 
y axis = response) depicting a positive 
trend. In each panel there are 20 points, 
each representing a species, of which 50% 
are missing trait values (shown in red). 
Dotted lines illustrate a removal threshold 
based on the percentage of missing data 
(missingness) and bias type, which shows 
a different mechanism by which data are 
missing: Trait = large trait values more 
likely to be missing; Response = trait 
values more likely to be missing in species 
with larger responses; Trait & response 
= trait values more likely to be missing in 
species with large trait and large response 
values; Phylogeny = trait values more 
likely to be missing in certain clades. 
For each bias type, we illustrate two 
severities: left panels show weak severity, 
in which species are split into two groups 
and species in the shaded area are 1.33 
times more likely to be removed; and right 
panels show severe severity, in which 
values are removed systematically from 
large to small (all values removed from 
the shaded area). For further descriptions 
of these biases, see the Supporting 
Information (Appendix A1) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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studies (Penone et al., 2014; Poyatos et al., 2018) to compare meth-
ods already identified as effective with new, promising methods. 
In total, we evaluated the performance of nine imputation meth-
ods available from three R packages (R v.3.5.0, R Core Team, 
2018): (a) BHPMF, Bayesian hierarchal probabilistic matrix factori-
zation (Schrodt et al., 2015); (b) Rphylopars (Goolsby et al., 2017); 
and (c) Mice, multiple imputation chained equations (Van Buuren 
& Groothuis-Oudshoorn, 2011). We summarize these approaches 
below, providing a more detailed description in the Supporting 
Information (Appendix A2).

BHPMF is a machine learning technique that takes a sparse trait 
matrix and uses Bayesian probabilistic matrix factorization to im-
pute and estimate uncertainty in values, but it is not fully Bayesian 
in that imputation and analysis are not conducted simultaneously 
(Molenberghs et al., 2015). BHPMF provides a multilevel hierarchal 
framework, which can control for spatial and taxonomic struc-
tures (for a comprehensive description of BHPMF, see Schrodt 
et al., 2015). This hierarchical framework, coupled with the overall 
flexibility of probabilistic matrix factorization (e.g., it can handle 
nonlinear relationships and binary categories), makes BHPMF ver-
satile and potentially robust. However, unlike other approaches it 
is unable to make estimates for species for which all trait values 
are missing.

Rphylopars is a maximum likelihood frequentist method that uses 
a phylogeny and a sparse trait matrix to estimate simultaneously the 
across-species (phylogenetic) and within-species (phenotypic) trait 
covariance (similar to a phylogenetic mixed model) to reconstruct 
the ancestral state and impute missing values (Goolsby et al., 2017). 
This method is designed explicitly for phylogenetic imputation 
and requires a phylogenetic tree, which means that the success of 
Rphylopars imputation depends on the phylogenetic signal in a trait; 
with low signal, the phylogeny may simply add noise. An earlier ver-
sion of Rphylopars was amongst the most accurate methods exam-
ined by Penone et al. (2014).

Mice is the most general and flexible of the imputation packages 
used in this study, offering 24 different methods of imputation, from 
which we explored three:

1. Predictive mean matching imputes data by matching observed 
values between traits, then populates missing values in incom-
plete traits by adopting information from the matched species. 
This is the default Mice approach for continuous data and was 
considered the best overall method by Poyatos et al. (2018).

2. Bayesian linear regression uses a linear model between traits to 
estimate missing values. This method is rarely tested and strug-
gles with nonlinear relationships but is appealing to researchers 
familiar with linear regression.

3. Random forest uses machine learning to produce and aggregate 
regression trees of the observed data and impute missing values. 
A similar imputation method, “missForest”, was found to be effec-
tive by Penone et al. (2014), with results comparable to Rphylopars 
and Mice predictive mean matching.

The three imputation approaches we explore fall into two 
groups: (a) single imputation (BHPMF and Rphylopars), where each 
missing value is populated by one estimate (but can have an associ-
ated variance); and (b) multiple imputation (Mice), where each miss-
ing value is assigned multiple estimates from a stochastic draw of the 
distribution (Little & Rubin, 2002). If the objective of the imputation 
is to produce estimates of missing values (for example, to fill gaps in 
a dataset), single imputation is considered most effective, because 
the stochastic draws in multiple imputation add error (Van Buuren, 
2012). However, if the objective is to model imputed values against 
another variable, the added error in the multiple imputation is ad-
vantageous, because when the trait data are modelled the within- 
and among-dataset errors are pooled, inflating the standard error 
and reducing the type 1 error rate (Van Buuren, 2012). Although 
this makes multiple imputation more robust to type 1 errors, it does 
not necessarily mean that multiple imputation can predict the slope 
more accurately within a model, because although this slope will 
have a greater standard error, it might still have the wrong direction.

2.2.1 | Phylogenetic imputation

Imputation has been suggested to improve when phylogenetic infor-
mation is incorporated (Kim et al., 2018; Penone et al., 2014). To test 
this, we imputed missing data with BHPMF and Mice, incorporating 
and ignoring phylogenetic information (for Rphylopars, a phylogeny 
is required). BHPMF is unable to process phylogenies automatically, 
but its hierarchal nature can support taxonomies. We created a hi-
erarchical node structure reminiscent of a taxonomy by splitting 
the phylogeny. For Mice, we used phylogenetic eigenvectors that 
described the relationship between the phylogeny and traits (Diniz 
et al., 2015). Eigenvectors that were effective predictors of a trait 
were included as predictors within the imputation. We provide a 
comprehensive description of these approaches in the Supporting 
Information (Appendix A3).

2.2.2 | Including a response variable 
in the imputation

The standard practice in comparative studies that use imputation 
is to impute values using only the traits and, where relevant, the 
phylogeny. However, the medical statistics literature recommends 
the inclusion of every variable you plan to analyse, including the 
response, within the imputation model (Moons et al., 2006; Sterne 
et al., 2009). Including a response within the imputation of traits, 
which will then be modelled against the response in later analyses, 
appears circular and poor practice. However, in the event that the 
trait has a response bias, including it within the imputation could 
control for this bias and shift data from the MNAR to the MAR cat-
egory, where imputation is more robust. We test this by performing 
each imputation with the response present and absent.
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2.3 | Error calculation

2.3.1 | Imputation error: Is there a difference 
between the true and imputed values?

We compared true and imputed trait values under each of the nine 
imputation approaches (using the mean value across the repeated im-
putations for Mice), estimating the root mean squared error (RMSE):

where N is the number of imputed values, ranging from 25 (5% 
of 500) to 400 (80% of 500), yIm is the imputed value for a given 
observation, and yTr is its true value. The units for the RMSE are the 
same as those of the trait (range 0–10). We show alternative error 
metrics (mean absolute error, median absolute error and R2 between 
true and imputed values) in the Supporting Information (Appendices 
A5 and B4).

Mice guidelines stress that multiple imputation is not effective 
at predicting missing values and should instead be used for infer-
ence after model averaging. However, in the event that inference is 
prone to error (where the imputed response–trait relationship de-
viates from the true relationship), it is important to consider how 
the imputation of missing values influenced this error. Conversely, it 
is also plausible that a method could produce inaccurate estimates 
of missing values but still produce valid inference. Thus, assessing 
error in both the imputations and the inference (see headings 2.3.2 
& 2.3.3 below) provides a more holistic view of the imputation ap-
proach, which can help to determine the point at which imputation 
becomes unreliable.

2.3.2 | Slope error: Is there a difference 
between the true and imputed response–trait slope?

We fitted linear regressions with the imputed datasets to describe 
the response–trait relationship, recording the slope and associated 
standard error. We checked assumptions (e.g., normality) in a sub-
set of these models, which were acceptable regardless of the bias 
or amount of missing data. Given that Mice repeats the imputation 
process numerous times, we fitted multiple regressions using each 
of the imputed sets and then averaged the slope coefficients. To es-
timate “slope error”, we calculated the absolute difference between 
the imputed slope (or the complete-case slope) and the true slope. 
This “slope error” metric illustrates how wrong the imputed slope 
could be, with the next step showing whether the estimated slope 
coefficient differed significantly from the true slope. Previous stud-
ies have considered how imputation can alter inference, focusing on 
allometric relationships between traits (Penone et al., 2014) and the 
impact on functional diversity metrics (Kim et al., 2018). Here, we 
explored how imputation affects the relationship between traits and 
a separate response variable.

2.3.3 | Slope significance: Is the difference 
between the true and imputed slope significant?

We tested whether imputed slopes differed significantly from the 
true slope and the complete-case slope using the t statistic (Cohen 
et al., 2003):

where Slope1 is the true slope coefficient and Slope2 is the im-
puted or complete-case slope coefficient; SESlope1 is the standard 
error of the true slope and SESlope2 is the standard error of the im-
puted or complete-case slope. We calculated degrees of freedom 
as the total sample size from the true relationship dataset plus the 
imputed or complete-case dataset, minus four. We estimated signifi-
cance at the 95% level. The Mice model slopes were averaged across 
each of the repeats, and the standard errors were pooled by calcu-
lating the within- and among-dataset variation, following Little and 
Rubin (2002). Incorporating the within- and among-dataset variation 
inflates the standard errors around the slope. This is a key advantage 
to the Mice approaches, because although slope error could be high, 
the inflated standard errors around the slope reduce the probability 
of the imputed slope differing significantly from the true slope, and 
the likelihood of obtaining type 1 errors.

2.4 | Data analysis

To understand the factors influencing the different error estimates, 
we fitted regression models with various predictors (details below 
and in Supporting Information, Appendix A6) and dataset seed as a 
random intercept effect. We used linear mixed models for numeri-
cally continuous responses, with a log10-transformation on impu-
tation error and a square-root transformation on slope error, and 
logistic mixed models for binary responses (e.g., significant or non-
significant difference between the imputed relationship and the true 
relationship). In all cases, we ensured that model assumptions were 
met. Summary statistics display the mean ± SD.

2.4.1 | Modelling imputation error

We modelled imputation error as a function of six predictors: impu-
tation approach, bias type, missingness (percentage of missing values 
in a dataset), response in imputation, initial slope direction (positive 
or none) and between-trait correlation (Supporting Information, 
Appendix A, Table A6.1). We included interaction terms between im-
putation approach and bias type and between imputation approach 
and missingness. We also tested whether including the response in 
the imputation improved accuracy by testing an interaction between 
response in imputation, imputation approach and initial slope direc-
tion. In some cases, the imputation resulted in implausible values; 

RMSE=

√

√

√

√
1

N

N
∑

i=1

(

yIm−yTr
)2

t=
Slope1−Slope2

√

SE
2

Slope1
+SE2

Slope2
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we removed any records with an RMSE > 10 to reduce the effect of 
these outliers.

2.4.2 | Modelling slope error

We modelled slope errors separately for dataset types with initial 
positive relationships (response–trait slope c. .7) and with no initial 
relationship (response–trait slope c. 0). We tested as predictors the 
imputation approach, bias type, missingness and between-trait cor-
relation, in addition to interactions of imputation approach with bias 
type and missingness. We ran this model first including complete 
case as a category within the imputation approach factor to identify 
scenarios where imputation is worse than complete-case analysis. 
This required the exclusion of response in imputation as a predic-
tor, because this variable was not applicable for complete-case re-
cords. Second, we excluded the complete-case records and tested 
response in imputation as a factor, including an interaction with im-
putation approach.

2.4.3 | Predicting imputation and slope error

We predicted imputation error using the variables missingness, phy-
logenetic clustering and change in mean (difference in mean before 
and after imputation). To predict slope error and significance, we 
used the variables missingness, phylogenetic clustering, change in 
mean and change in slope (between imputation and complete case). 
For all models, we grouped the datasets with positive and no rela-
tionship slopes, because in a real scenario a user would not know the 
true relationship.

3  | RESULTS

Including phylogenetic information generally improved imputation 
performance in every method (Supporting Information, Appendix 
B1); thus, we focused on phylogenetic imputation methods, show-
ing results for non-phylogenetic approaches in the Supporting 
Information (Appendix B3).

3.1 | Which method performs best?

Imputed values were most accurate with Rphylopars (Supporting 
Information, Appendix B, Table B2.1), which had consistently lower 
imputation errors in every bias type. However, BHPMF was the best 
approach when missing data exceeded 60% with a severe bias on 
the trait, and Mice random forest, BHPMF and Rphylopars were com-
parable when missing data exceeded 40% with a severe bias on the 
phylogeny (Figure 2; Supporting Information, Appendix B, Figure 
B4.2). Imputation error results were similar regardless of whether 
the true response–trait slope was positive or had no relationship 

(Supporting Information, Appendix B, Figure B4.1), and results were 
similar across all imputation error metrics (Supporting Information, 
Appendix B, Figures B4.2–B4.5).

Rphylopars was also generally the best approach for preserving 
a response–trait relationship, with a significantly lower slope error 
than all other imputation approaches and complete-case analysis, 
regardless of whether the true response–trait slope was positive 
or there was no relationship (Supporting Information, Appendix B, 
Tables B2.2–B2.3). However, for a severe bias on the trait or phy-
logeny, the best method was dependent on the true response–trait 
relationship. With no relationship, the Mice approaches performed 
best (Figure 3), whereas when the true slope was positive, complete 
case was the best approach. Rphylopars was the fastest imputation 
approach (Supporting Information, Appendix B, Table B8.1).

3.2 | Are imputed values accurate?

Imputation errors increased with the percentage of missing data, 
missingness (Est = 0.33, SE = 0.003, t = 103, p < .001), and were af-
fected by bias type (Figure 2). Weak and stratified biases were com-
parable to no bias datasets, but errors were much greater when data 
were missing with severe bias (Supporting Information, Appendix B, 
Appendix B4).

Imputed values were as likely to be overestimated as underes-
timated, except when there was a severe bias on the trait (largest 
trait values removed), where, as expected, imputed values were pri-
marily underestimated (Supporting Information, Appendix B, Figures 
B5.1–B5.5). Although Rphylopars had the smallest imputation er-
rors, imputed values were still inaccurate. At 5% missing data, the 
mean difference between imputed and true values for Rphylopars 
was 0.56 ± 0.15 with no bias, 0.56 ± 0.15 in the stratified biases, 
0.57 ± 0.16 in the weak biases, and 1.39 ± 0.57 in the severe biases, 
all increasing with missingness (Figure 2).

3.3 | Can imputed data preserve response–trait 
relationships?

Slope errors increased with missingness (true positive relation-
ship: Est = 0.27, SE = 0.008, t = 33, p < .001; true no relationship: 
Est = 0.23, SE = 0.004, t = 54, p < .001) and were affected by bias 
type, with large errors detected when data were missing with a 
severe bias (Figure 3). Imputed slopes were both over- and under-
estimates of the true slope when there was no true relationship 
(Supporting Information, Appendix B, Figures B5.6–B5.10). When 
the true relationship was positive, Rphylopars and BHPMF again re-
sulted in both over- and underestimated slopes, but Mice approaches 
consistently underestimated the true relationship, with slopes from 
the imputed datasets tending towards zero (Supporting Information, 
Appendix B, Figures B5.11–B5.15).

Although imputation errors were often large, imputing miss-
ing values did not always introduce errors in the response–trait 
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relationship. We observed low slope errors in all imputation ap-
proaches and all non-severe biases when few data were missing, 
but as missingness increased the slope error increased exponentially 
(Figure 3). Rphylopars was most robust, with slope errors < 0.05 
for all levels of missingness in the no bias, stratified bias and weak 
bias datasets, regardless of the true response–trait relationship 
(Supporting Information, Appendix B, Figures B4.6–B4.7). However, 
Rphylopars, alongside all other approaches, had high errors under the 
severe biases, particularly when the bias acted on both the trait and 
the response.

Missingness and bias type also influenced whether slopes 
were significantly different from the true slope in a comparable 
way to slope error (Supporting Information, Appendix B, Figures 
B4.8–B4.11).

3.4 | Should the response be included in the 
imputation?

When the response–trait slope was positive, including the re-
sponse within the imputation decreased imputation error in all 
approaches and also decreased slope error substantially in Mice, 
to the extent that it was almost comparable with Rphylopars 
(Supporting Information, Appendix B, Figures B6.1–B6.4). 
Including the response in the imputation increased slope error in 
Rphylopars and BHPMF. When there was no relationship between 
the trait and response, including the response in the imputation 
increased imputation and slope errors in every approach, but 
with a small effect (Supporting Information, Appendix B, Figures 
B6.2–B6.6).

3.5 | Can we predict when the imputed values and 
response–trait relationships become inaccurate?

Given that Rphylopars was found generally to be the best method, 
we focused on predicting errors under this method. Missingness, 
phylogenetic clustering and change in mean were important predic-
tors of slope error, significant differences in slope error and imputa-
tion error. Change in slope was also a relevant predictor for slope 
error and significant differences in slope (Supporting Information, 
Appendix B, Figure B7.1).

4  | DISCUSSION

Overall, our results show that there is no single best solution to deal 
with missing data. Rphylopars was generally the best approach for 
predicting missing values and was consistently more accurate than 
BHPMF and Mice at maintaining the true response–trait relation-
ship. However, in some scenarios all imputation approaches were 
outperformed by complete-case analysis, showing that imputation 
is not always the best option. When using imputation, including 
phylogenetic information widely reduced errors in our phylogeneti-
cally derived trait datasets, but including the response during impu-
tation had mixed effects: increased accuracy for Mice approaches, 
but decreased accuracy for Rphylopars and BHPMF. Our results sug-
gest that researchers need to assess the available data and consider 
the need for imputation versus limiting the scope of the study or 
completing analyses for separate groups. Use of data imputation 
should be scrutinized, checking for changes in the data before and 
after imputation (which might indicate biases and assist in detection 

F I G U R E  2   Difference between imputed and true trait values (RMSE = root mean square error) for five phylogenetic imputation 
approaches under varying percentages of missing data (missingness) and bias types. Lines depict the marginal effect of missingness and 
bias type from a regression model and were averaged across other predictors: seed, response in imputation, between-trait correlation and 
initial slope direction. For the equivalent plot split based on initial slope direction, see the Supporting Information (Appendix B, Figure B4.1). 
Confidence intervals were derived from 500 bootstrap simulations and depict the upper and lower bounds (95%) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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of imputation and slope errors). Table 1 summarizes our findings as 
warnings and recommendations.

4.1 | Which method performs best?

Rphylopars was the best overall imputation method in our study. 
However, we found scenarios where complete-case analysis main-
tained the response–trait relationship better, particularly com-
pared with Mice and BHPMF imputation (but also outperforming 
Rphylopars under some severe biases). Our analyses, and others 
from the medical literature (Mukaka et al., 2016), show that imputa-
tion is not always the best solution to handle missing data. Although 
imputation methods in ecology are not yet widely used, the use of 
imputation has been recommended over complete-case analysis in 
recent publications (Kim et al., 2018; Penone et al., 2014). Here, by 
expanding on the scenarios explored in previous studies, we show 
that imputation can lead to errors in some conditions. For example, 

when there was no true relationship between the response and trait, 
Mice approaches performed well. However, when there was a posi-
tive relationship, Mice did poorly even after the substantial improve-
ment resulting from inclusion of the response in the imputation 
(Supporting Information, Appendix B, Figure B6.3), with increases in 
missing data gradually shifting the positive response–trait relation-
ship towards zero. Further investigation of Mice is required, because 
in this scenario we might expect inflated noise around the slope in 
Mice to cause more type 2 errors (reporting no relationship when 
one is present), but we would not expect Mice systematically to shift 
the slope itself.

This poor performance of Mice is particularly surprising, because 
we made a concerted effort to optimize the performance of Mice 
(see Supporting Information, Appendix A4). However, the issues we 
have identified might be relevant only to our scenarios (imputing 
missing traits for phylogenetic comparative studies) and might not 
reflect on Mice or multiple imputation as a whole, which are con-
sidered throughout the literature as the “gold-standard” imputation 

F I G U R E  3   Absolute difference between the true response–trait slope coefficient and the slope coefficients in datasets with varying 
percentages of missing trait values (missingness), removed under a series of bias types. Missing values were imputed under five phylogenetic 
approaches or treated as complete-case analysis. The top row of panels shows datasets in which the true slope was positive (r c. .7), and the 
bottom row shows datasets with no relationship (r c. 0). Lines depict the marginal effect of missingness and bias type from regression models 
and were averaged across other predictors: seed, response in imputation and between-trait correlation. For plots split based on response in 
imputation, see the Supporting Information (Appendix B6). Confidence intervals were derived from 500 bootstrap simulations and depict 
the upper and lower bounds (95%). Note that the range in the y axis differs between top and bottom panels [Colour figure can be viewed at 
wileyonlinelibrary.com]
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approach (Van Buuren, 2012). Furthermore, despite making an ef-
fort to optimize the performance of Mice, there are a variety of Mice 
extensions and other multiple imputation approaches that might 
have fared better and could be tested in future comparisons, such as 
Multilevel Joint Modelling (Quartagno et al., 2019) or Mice: Random 
indicator method for non-ignorable data (Van Buuren & Groothuis-
Oudshoorn, 2011).

One particular issue with Mice was the way in which biases 
interacted with the phylogeny during phylogenetic eigenvector 
selection. As a control, we estimated the number of eigenvectors 
when no values were missing. In this scenario, most datasets had 
between six and 16 eigenvectors, but under a severe trait bias the 
number of eigenvectors frequently surpassed 20, and under a re-
sponse bias it rarely reached six. This discrepancy in the number 
of eigenvectors is likely to explain why incorporating phyloge-
netic information in Mice sometimes resulted in greater imputa-
tion and slope errors under a severe bias (Supporting Information, 
Appendix B, Figure B1.1). Given these findings, we revise the 
advice of Penone et al. (2014) and Kim et al. (2018), and suggest 
that phylogenetic information should only be included in Mice im-
putation when data are missing with no bias or a weak bias. Or, 
otherMice options that allow a phylogeny to be incorporated as 
a hierarchical structure, similar to that used by BHPMF, should be 
used. Further work is needed to establish how different biases 

alter phylogenetic eigenvector selection and the downstream im-
putation and slope errors.

Unlike Mice, we suspect that the performance of BHPMF could 
be enhanced further (see Supporting Information, Appendix A4). 
Most notably, given that BHPMF does not allow imputation for 
species with no trait observations, we forced BHPMF to impute val-
ues by adding a dummy fully populated variable. This allowed us to 
compare the performance of BHPMF across all biases and levels of 
missing data and did not clearly affect the performance of BHPMF 
(Supporting Information, Appendix A, Figure A2.3). This feature of 
BHPMF could hinder the generality and taxonomic scale of studies 
but might also be beneficial if it deters researchers from imputing 
values in cases with lots of missing data (where imputation errors 
are greatest). However, removal of species with no trait values rep-
resents a form of complete-case analysis that could lead to biases 
and erroneous inferences.

Categorical traits are a common data type in ecological and 
evolutionary research and cannot be imputed using Rphylopars but 
can be handled by BHPMF and Mice. There has been limited assess-
ment of the performance of categorical imputation, and available 
evaluations have delivered varied results (Akande et al., 2017; Kim 
et al., 2018; Stekhoven & Buhlmann, 2012). Future work explor-
ing imputation errors and biases with categorical data would be 
valuable to guide researchers confronting missing values. Future 

Warnings  and recommendations 

Carefully select the taxonomic scope of the study, ensuring that species 
are distributed across the phylogeny and trait space. If any clades 
or areas of the trait space are nearly or entirely absent, do not draw 
inferences about them and exclude them from the study to prevent 
severe biases.

Report which species/clades are included in the study and which 
species/clades have been removed to limit bias. Provide descriptive 
statistics or distribution plots for analysed trait values.

Every imputation approach produced inaccurate values, even with as 
little as 5% missing data. Slope errors consistently exceeded 0.1 when 
> 40% of the values were missing or when a severe bias was present.

Imputation is not always the best approach. Complete-case analysis 
performs better than the tested imputation methods in some cases.

If using imputation, Rphylopars is the best approach for handling missing 
continuous data, resulting in smaller overall imputation and slope 
errors.

If using Rphylopars or BHPMF, do not include the response in the 
imputation. If using Mice, including the response is beneficial.

Include phylogenetic information when using imputation if possible. 
If a phylogeny is unavailable but a taxonomy is available, use BHPMF. 
If there is no phylogeny or taxonomy information, use Mice random 
forest or the observation-only BHPMF.

To assist in detecting biases and the subsequently high imputation and 
slope errors, assess phylogenetic clustering, in addition to the change 
in the mean and change in the slope before and after imputation.

Report the amount of missing information that was imputed and 
where this information falls on the phylogeny, trait and response (if 
applicable).

TA B L E  1   Warnings and 
recommendations for handling missing 
trait values
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work could also determine whether machine learning approaches, 
such as Mice random forest and BHPMF, would perform better 
with larger trait datasets (e.g., > 500 simulated species used in the 
present study).

4.2 | Are imputed values and relationships accurate?

The threshold for deciding whether imputation is accurate depends 
on the research question. For example, in Rphylopars, with 5% of data 
missing under no bias (best possible scenario), the mean imputation 
error was 0.56. If we assume the trait data have been ln-transformed 
(base e), such error would mean that the mass of an African Elephant 
weighing 6,000 kg (e8.7) would be imputed with values as low as 
3,430 kg (e8.7–0.56) or as high as 10,500 kg (e8.7+0.56). This error is 
worrying, especially considering that Rphylopars is the most accurate 
imputation approach and that we used the most favourable missing 
data scenario in this example. This finding suggests that imputation 
is not accurate enough to estimate trait values for individual spe-
cies or records. As such, any imputed values should be interpreted 
with great caution. Fortunately, trait values are more commonly im-
puted to establish relationships, in which case our results are less 
concerning. In linear regressions between a response and imputed 
traits, the difference between the Rphylopars slope and true slope 
was < 0.05 at every level of missing data (except for severe biases). 
In many cases, this would be deemed an acceptable amount of error 
and the same qualitative message, with a trend in the same direction 
(positive or negative) and not differing significantly from the true 
slope in most cases (Supporting Information, Appendix B, Figures 
B4.8–B4.11). However, this error would be large and could lead to 
qualitatively different messages in the context of debates about the 
true value of allometric exponents (Isaac & Carbone, 2010). Thus, 
unless the dataset is complete we recommend that results should 
be interpreted cautiously, regardless of whether imputation or com-
plete-case analysis is used for the analyses.

Although different errors might be acceptable for different 
questions, our results show that analysing datasets where values are 
missing with a severe bias (MNAR) can lead to very wrong conclu-
sions, especially when the bias acted on both the trait and response. 
This bias type was not tested by Penone et al. (2014), but it is likely 
to be common in ecology and evolution, because both trait data-
bases (González-Suárez et al., 2012) and response values are biased 
(Boakes et al., 2010; Troudet et al., 2017). In some cases, a severe 
trait and response bias shifted a positive response–trait relation-
ship into no relationship, or even a negative relationship (Figure 3). 
Overall, the methods we tested are unsuitable when a severe bias is 
present. However, there are imputation options, beyond the scope 
of the present study, designed specifically for severely biased MNAR 
data (Molenberghs et al., 2015). These MNAR options add a term to 
the imputation model to account for the bias. In common methods, 
such as selection, pattern-mixture and shared parameter models, 
this term describes a distribution aimed at explaining the mechanism 
by which data are missing. The parameters in these distributions 

(sometimes informed by expert opinion) can have a substantial im-
pact on results, meaning that sensitivity analysis becomes increas-
ingly important. If a severe bias is suspected and the missing data 
mechanism cannot be accounted for by incorporation of additional 
data (e.g., other traits, phylogeny, or other spatial or temporal in-
formation), these MNAR methods should be explored. However, the 
main challenge will be in the detection of the severe bias in the first 
place. Familiarity with the dataset, accompanied by careful checks of 
the distribution of the data across space, time and the phylogeny, in 
addition to the trait and response ranges, might help. Furthermore, 
we recommend accounting for biases in missing datasets before 
designing research, especially in phylogenetic comparative studies, 
where severe biases could be reduced simply by trimming the scale 
of the study and its conclusions to the better represented groups.

4.3 | Should the response be included in the 
imputation?

Including the response within the imputation substantially de-
creased imputation and slope errors in Mice (Moons et al., 2006; 
Sterne et al., 2009) and made its performance almost comparable to 
BHPMF and Rphylopars. However, for BHPMF and Rphylopars, includ-
ing the response had little effect or a negative effect. We are unsure 
why including the response might negatively affect the performance 
of BHPMF, but for Rphylopars we hypothesize that it is attributable 
to the way in which the phylogeny is incorporated. If the response is 
not associated to the phylogeny, including the response might skew 
the phylogenetic–trait covariance matrix, affecting the performance 
of Rphylopars. In contrast, the phylogenetic eigenvectors that are 
appended to the Mice imputation act more like weakly correlated 
traits; therefore, the benefit of adding a highly correlated response 
variable is clear. From this, it seems broadly advisable to include the 
response within Mice imputation and to exclude it from Rphylopars 
and BHPMF. However, caution is needed, because we suspect that 
these conclusions might contain caveats that warrant further re-
search. For example, under the severe trait and response bias when 
there was no true relationship between the response and trait, im-
putation resulted in a significant negative slope, particularly when 
the response was used in the imputation (Supporting Information, 
Appendix B, Figures B6.5–B6.6). This is evidence that including the 
response in the imputation of trait values, which will then be mod-
elled back against the response, can cause a circularity problem. 
Nevertheless, when using Mice, this detrimental effect was small 
compared with the overall gains from incorporating the response in 
the imputation.

4.4 | Can we predict whether imputation is 
advisable for a given dataset?

Within our work, we identify four ways in which data should 
be scrutinized before and after imputation to assist with bias 
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detection, measuring: missingness, phylogenetic clustering, a 
change in mean and a change in slope. These metrics should not 
be used as a free pass to claim that the imputation is valid, be-
cause no method consistently detected bias (for example, finding 
no change in slope could occur if both imputation and complete-
case analyses are equally wrong). Instead, these metrics should be 
used alongside careful scrutiny of the data, viewing the imputation 
process holistically.

Our proposed protocol includes four steps:

1. Explore the data to consider representation of the group of 
interest (in both trait and response) and assess the potential 
for severe bias.

2. Compare the distribution of trait data before and after imputation.
3. Use expert opinion and information on closely related species to 

determine whether imputed values are plausible.
4. Use available tools to assess imputation results. Rphylopars and 

BHPMF currently lack imputation exploration functions, but cus-
tom checks can be created and adapted from the wide range 
offered in Mice (Van Buuren & Groothuis-Oudshoorn, 2011). 
Rphylopars and BHPMF produce uncertainty estimates for each 
imputed value, which could be scrutinized or, potentially, added to 
models to inflate noise and make inference more robust in these 
single imputation approaches. Furthermore, if a phylogenetic im-
putation approach is used, it is important to consider phylogenetic 
signal and branch length; otherwise, the phylogeny might add 
noise (Molina-Venegas et al., 2018).

Notwithstanding these guidelines, gaps remain in the ecological 
and evolutionary literature on imputation. Three important future 
steps would be: (a) to explore imputation methods and errors with 
categorical traits; (b) to validate imputations with non-simulated trait 
datasets as they become increasingly populated; and (c) to improve 
guidance on profiling data pre- and post-imputation. Finally, with 
recent reports of shifts away from fieldwork and into a more quan-
titative and modelling-based ecology (Ríos-Saldaña et al., 2018), it 
is important to note that the foundation for any trait-based analysis 
is the trait values, which can only become available from fieldwork 
and data compilation. There is still a crucial need to go out into the 
field and collect data, particularly on poorly studied species, traits 
and regions.

AUTHOR CONTRIBUTION S TATEMENT
T.F.J. and M.G.-S. conceived the idea; T.F.J., N.J.B.I. and M.G.-S. de-
signed the methodology; T.F.J. analysed the data and led the writ-
ing of the manuscript with substantial contributions by M.G.-S. and 
N.J.B.I. All authors interpreted results and gave final approval for 
publication.

ACKNOWLEDG MENTS
TFJ was funded for this work by a Natural Environment Research 
Council (NERC) Centre for Doctoral Training studentship (J71566E).

DATA AVAIL ABILIT Y S TATEMENT
Code to generate data and repeat all analyses is publicly available 
at https://github.com/GitTF J/Handl ing-missi ng-value s-in-trait -data

ORCID
Thomas F. Johnson  https://orcid.org/0000-0002-6363-1825 
Manuela González-Suárez  https://orcid.
org/0000-0001-5069-8900 

R E FE R E N C E S
Akande, O., Li, F., & Reiter, J. (2017). An empirical comparison of multiple 

imputation methods for categorical data. The American Statistician, 
71, 162–170.

Allen, W. L., Street, S. E., & Capellini, I. (2017). Fast life history traits 
promote invasion success in amphibians and reptiles. Ecology Letters, 
20, 222–230.

Baker, J., Humphries, S., Ferguson-Gow, H., Meade, A., & Venditti, 
C. (2020). Rapid decreases in relative testes mass among mo-
nogamous birds but not in other vertebrates. Ecology Letters, 23, 
283–292.

Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., 
O’Connor, K., & Mace, G. M. (2010). Distorted views of biodiversity: 
Spatial and temporal bias in species occurrence data. PLoS Biology, 
8, e1000385.

Cohen, J., Cohen, P., Stephen, G., & Leona, S. (2003). Applied multiple 
regression/correlation analysis for the behavioral sciences (3rd ed.). 
London, UK: Routledge.

Diniz, J. A. F., Villalobos, F., Bini, L. M., & Bini, L. M. (2015). The best 
of both worlds: Phylogenetic eigenvector regression and mapping. 
Genetics and Molecular Biology, 38, 396–400.

González-Suárez, M., Bacher, S., & Jeschke, J. M. (2015). Intraspecific 
trait variation is correlated with establishment success of alien mam-
mals. The American Naturalist, 185, 737–746.

González-Suárez, M., Lucas, P. M., & Revilla, E. (2012). Biases in com-
parative analyses of extinction risk: Mind the gap. Journal of Animal 
Ecology, 81, 1211–1222.

Goolsby, E. W., Bruggeman, J., & Ané, C. (2017). Rphylopars: Fast 
multivariate phylogenetic comparative methods for missing data 
and within-species variation. Methods in Ecology and Evolution, 8, 
22–27.

Isaac, N. J. B., & Carbone, C. (2010). Why are metabolic scaling expo-
nents so controversial? Quantifying variance and testing hypothe-
ses. Ecology Letters, 13, 728–735.

Jones K. E., Bielby J., Cardillo M., Fritz S. A., O'Dell J., Orme C. D. L., … 
Purvis A. (2009). PanTHERIA: A species-level database of life history, 
ecology, and geography of extant and recently extinct mammals. 
Ecology, 90, 2648–2648. https://doi.org/10.1890/08-1494.1

Josse, J., Tierney, N., & Vialaneix, N. (2020). CRAN task view: Missing 
data. Retrieved from https://cran.r-proje ct.org/web/views/ Missi ng-
Data.html

Kim, S. W., Blomberg, S. P., & Pandolfi, J. M. (2018). Transcending data 
gaps: A framework to reduce inferential errors in ecological analyses. 
Ecology Letters, 21, 1200–1210.

Lancaster, L. T., Morrison, G., & Fitt, R. N. (2017). Life history trade-
offs, the intensity of competition, and coexistence in novel 
and evolving communities under climate change. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 372(1712), 
20160046.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data 
(2nd ed.). Hoboken, NJ: John Wiley & Sons.

Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, 
G. (2015). Handbook of missing data methodology. London, UK: CRC 
Press.

https://github.com/GitTFJ/Handling-missing-values-in-trait-data
https://orcid.org/0000-0002-6363-1825
https://orcid.org/0000-0002-6363-1825
https://orcid.org/0000-0001-5069-8900
https://orcid.org/0000-0001-5069-8900
https://orcid.org/0000-0001-5069-8900
https://doi.org/10.1890/08-1494.1
https://cran.r-project.org/web/views/MissingData.html
https://cran.r-project.org/web/views/MissingData.html


62  |     JOHNSON et al.

Molina-Venegas, R., Moreno-Saiz, J. C., Castro Parga, I., Davies, T. J., 
Peres-Neto, P. R., & Rodríguez, M. (2018). Assessing among-lineage 
variability in phylogenetic imputation of functional trait datasets. 
Ecography, 41, 1740–1749.

Moons, K. G. M., Donders, R. A. R. T., Stijnen, T., & Harrell, F. E. (2006). 
Using the outcome for imputation of missing predictor values was 
preferred. Journal of Clinical Epidemiology, 59, 1092–1101.

Mukaka, M., White, S. A., Terlouw, D. J., Mwapasa, V., Kalilani-Phiri, L., 
& Faragher, E. B. (2016). Is using multiple imputation better than 
complete case analysis for estimating a prevalence (risk) difference 
in randomized controlled trials when binary outcome observations 
are missing? Trials, 17, 341.

Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. 
M., & Rondinini, C. (2017). Species’ traits influenced their response to 
recent climate change. Nature Climate Change, 7, 205–208.

Penone, C., Davidson, A. D., Shoemaker, K. T., Di Marco, M., Rondinini, 
C., Brooks, T. M., … Costa, G. C. (2014). Imputation of missing data 
in life-history trait datasets: Which approach performs the best? 
Methods in Ecology and Evolution, 5, 961–970.

Poyatos, R., Sus, O., Badiella, L., Mencuccini, M., & Martínez-Vilalta, J. 
(2018). Gap-filling a spatially explicit plant trait database: Comparing 
imputation methods and different levels of environmental informa-
tion. Biogeosciences, 15, 2601–2617.

Quartagno, M., Grund, S., & Carpenter, J. (2019). jomo: A flexible package 
for two-level joint modelling multiple imputation. The R Journal, 11, 
205–228. 

R Core Team. (2018). R: A language and environment for statistical comput-
ing. Retrieved from https://www.r-proje ct.org/

Ríos-Saldaña, C. A., Delibes-Mateos, M., & Ferreira, C. C. (2018). Are 
fieldwork studies being relegated to second place in conservation 
science? Global Ecology and Conservation, 14, e00389.

Roth, T., Allan, E., Pearman, P. B., & Amrhein, V. (2018). Functional ecol-
ogy and imperfect detection of species. Methods in Ecology and 
Evolution, 9, 917–928.

Sandel, B., Gutiérrez, A. G., Reich, P. B., Schrodt, F., Dickie, J., & Kattge, 
J. (2015). Estimating the missing species bias in plant trait measure-
ments. Journal of Vegetation Science, 26, 828–838.

Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., … 
Reich, P. B. (2015). BHPMF – A hierarchical Bayesian approach to 
gap-filling and trait prediction for macroecology and functional bio-
geography. Global Ecology and Biogeography, 24, 1510–1521.

Stekhoven, D. J., & Buhlmann, P. (2012). MissForest—Non-parametric miss-
ing value imputation for mixed-type data. Bioinformatics, 28, 112–118.

Sterne, J. A. C., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, 
M. G., … Carpenter, J. R. (2009). Multiple imputation for missing data 
in epidemiological and clinical research: Potential and pitfalls. BMJ 
Clinical Research, 338, b2393.

Swenson, N. G. (2014). Phylogenetic imputation of plant functional trait 
databases. Ecography, 37, 105–110.

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., & Legendre, F. 
(2017). Taxonomic bias in biodiversity data and societal preferences. 
Scientific Reports, 7, 9132.

Van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: 
Chapman and Hall/CRC.

Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate 
imputation by chained equations in R. Journal of Statistical Software, 
10, 1–68.

Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., & LeRoy Poff, 
N. (2010). A structured and dynamic framework to advance 
traits-based theory and prediction in ecology. Ecology Letters, 13,  
267–283.

BIOSKE TCH

This aim of this project was to clarify and expand on guidance 
for handling missing values, specifically in reference to trait 
data. We wanted to examine the performance of imputation 
in comparative analyses to identify weaknesses with the ap-
proach and encourage robust missing data practices in ecology.
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