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A GALERKIN BOUNDARY ELEMENT METHOD FOR HIGH
FREQUENCY SCATTERING BY CONVEX POLYGONS∗

S. N. CHANDLER-WILDE† AND S. LANGDON†

Abstract. In this paper we consider the problem of time-harmonic acoustic scattering in two
dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering
problems have a computational cost that grows at least linearly as a function of the frequency of
the incident wave. Here we present a novel Galerkin boundary element method, which uses an
approximation space consisting of the products of plane waves with piecewise polynomials supported
on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that
the best approximation from the approximation space requires a number of degrees of freedom to
achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency.
Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin
method solution. Our boundary element method is a discretization of a well-known second kind
combined-layer-potential integral equation. We provide a proof that this equation and its adjoint
are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general
Lipschitz domains.
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Helmholtz equation, large wave number, Lipschitz domains
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1. Introduction. The scattering of time-harmonic acoustic waves by bounded
obstacles is a classical problem that has received much attention in the literature
over the years. Much effort has been put into the development of efficient numerical
schemes, but an outstanding question yet to be fully resolved is how to achieve an
accurate approximation to the scattered wave with a reasonable computational cost
in the case that the scattering obstacle is large compared to the wavelength of the
incident field.

The standard boundary or finite element method approach is to seek an approxi-
mation to the scattered field from a space of piecewise polynomial functions. However,
due to the oscillatory nature of the solution, such an approach suffers from the lim-
itation that a fixed number of degrees of freedom K are required per wavelength in
order to achieve a good level of accuracy, with the accepted guideline in the engi-
neering literature being to take K = 10 (see, e.g., [53] and the references therein). A
further difficulty, at least for the finite element method, is the presence of “pollution
errors,” phase errors in wave propagation across the domain, which can lead to even
more severe restrictions on the value of K when the wavelength is short [9, 39].

Let L be a linear dimension of the scattering obstacle, and set k = 2π/λ, where
λ is the wavelength of the incident wave, so that k is the wave number, proportional
to the frequency of the incident wave. Then a consequence of fixing K is that the
number of degrees of freedom will be proportional to (kL)d, where d = N in the case
of the finite element method, d = N − 1 in the case of the boundary element method,
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and N = 2 or 3 is the number of space dimensions of the problem. Thus, as either the
frequency of the incident wave or the size of the obstacle grows, so does the number
of degrees of freedom, and hence the computational cost of the numerical scheme.
As a result, the numerical solution of many realistic physical problems is intractable
using current technologies. In fact, for some of the most powerful recent algorithms
for three-dimensional (3D) scattering problems (e.g., [13, 21]), the largest obstacles
for which numerical results have been reported have diameter not more than a few
hundred times the wavelength.

For boundary element methods, the cost of setting up and solving the large linear
systems which arise can be reduced substantially through a combination of precondi-
tioned iterative methods [4, 22, 36] combined with fast matrix-vector multiply meth-
ods based on the fast multipole method [5, 26, 21] or the FFT [13]. However, this does
nothing to reduce the growth in the number of degrees of freedom as kL increases
(linear with respect to kL in two dimensions, quadratic in three dimensions). Thus
computations become infeasible as kL → ∞.

1.1. Reducing the number of degrees of freedom for kL large. To achieve
a dependence of the number of degrees of freedom on kL which is lower than (kL)d,
it seems essential to use an approximation space better able to replicate the behavior
of the scattered field at high frequencies than piecewise polynomials. To that end,
much attention in the recent literature has focused on enriching the approximation
space with oscillatory functions, specifically plane waves or Bessel functions.

A common approach (see, e.g., [8, 16, 27, 37, 53]) is to form an approximation
space consisting of standard finite element basis functions multiplied by plane waves
travelling in a large number of directions, approximately uniformly distributed on the
unit circle (in two dimensions) or sphere (in three dimensions). Theoretical analysis
(e.g., [8]) and computational results (e.g., [53]) suggest that these methods converge
rapidly as the number of plane wave directions increases, with a significant reduction
in the number of degrees of freedom required per wavelength, compared to standard
finite and boundary element methods. But the number of degrees of freedom is still
proportional to (kL)d, and serious conditioning problems occur when the number of
plane wave directions is large.

A related idea is to attempt to identify the important wave propagation directions
at high frequencies, and to incorporate the oscillatory part of this high frequency
asymptotic behavior into the approximation space. This is the idea behind the finite
element method of [34] and the boundary element methods of [25, 19, 12, 33, 45]. This
idea has been investigated most thoroughly in the case that the scattering obstacle
is smooth and strictly convex. In this case the leading order oscillatory behavior is
particularly simple on the boundary of the scattering obstacle, so that this approach is
perhaps particularly well adapted for boundary element methods. If a direct integral
equation formulation is used, in which the solution to be determined is the trace of
the total field or its normal derivative on the boundary, the most important wave
direction to include is that of the incident wave (see, e.g., [1, 25, 12, 28]). This
approach is equivalent, in the case of a sound hard scatterer, to approximating the
ratio of the total field to the incident field, with physical optics predicting that this
ratio is approximately constant on the illuminated side and approximately zero on
the shadow side of the obstacle at high frequencies.

In [1], Abboud, Nédélec, and Zhou consider the two-dimensional (2D) problem
of scattering by a smooth, strictly convex obstacle. They suggest that the ratio
of the scattered field to the incident field can be approximated with error of order
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N−ν +((kL)1/3/N)ν+1 using a uniform mesh of piecewise polynomials of degree ν, so
that the total number of degrees of freedom N need be proportional only to (kL)1/3 in
order to maintain a fixed level of accuracy. In fact, this paper appears to be the first
in which the dependence of the error estimates on the wave number k is indicated, and
the requirement that the number of degrees of freedom is proportional to (kL)1/3 is a
big improvement over the usual requirement for proportionality to kL. This approach
is coupled with a fast multipole method in [25], where impressive numerical results
are reported for large scale 3D problems.

The same approach is combined with a mesh refinement concentrating degrees of
freedom near the shadow boundary in [12]. The numerical results in [12] for scattering
by a circle suggest that, with this mesh refinement, both the number of degrees
of freedom and the total computational cost required to maintain a fixed level of
accuracy remain constant as kL → ∞. The method of [12] has recently been applied
to deal with each of the multiple scatters which occur when a wave is incident on
two, separated, smooth convex 2D obstacles [33]. Numerical experiments have also
recently been presented in [29], where the convergence of this iterative approach to
the multiple scattering problem is analyzed.

In [28] a numerical method in the spirit of [12] is proposed, namely a p-version
boundary element method with a k-dependent mesh refinement in a transition region
around the shadow boundary. A rigorous error analysis, which combines estimates
using high frequency asymptotics of derivatives of the solution on the surface with
careful numerical analysis, demonstrates that the approximation space is able to rep-
resent the oscillatory solution to any desired accuracy provided the number of degrees
of freedom increases approximately in proportion to (kL)1/9 as kL increases. And, in
fact, numerical experiments in [28], using this approximation space as the basis of a
Galerkin method, suggest that a prescribed accuracy can be achieved by keeping the
number of degrees of freedom fixed as the wave number increases.

The boundary element method and its analysis that we will present in this paper
for the problem of scattering by a convex polygon are most closely related to our
own recent work [19, 45] on the specific problem of 2D acoustic scattering by an in-
homogeneous, piecewise constant impedance plane. In [19, 45] a Galerkin boundary
element method for this problem is proposed, in which the leading order high fre-
quency behavior as k → ∞, consisting of the incident and reflected ray contributions,
is first subtracted off. The remaining scattered wave, consisting of rays diffracted
by discontinuities in impedance, is expressed as a sum of products of oscillatory and
nonoscillatory functions, with the nonoscillatory functions being approximated by
piecewise polynomials supported on a graded mesh, with larger elements away from
discontinuities in impedance. For the method in [19] it was shown in that paper that
the number of degrees of freedom needed to maintain accuracy as k → ∞ grows only
logarithmically with k. This result was improved in [45], where it was shown, via
sharper regularity results and a modified mesh, that for a fixed number of degrees of
freedom the error is bounded independently of k.

1.2. The oscillatory integral problem. In the above paragraphs we have
reviewed methods for reducing the dependence on k of the number of degrees of
freedom necessary to achieve a required accuracy. Indeed some of the methods we have
described above [12, 45, 33, 28] appear, in numerical experiments, to require only a
number of degrees of freedom M = O(1) as k → ∞. Further, for one specific scattering
problem [45] this has been shown by a rigorous numerical analysis. However, it should
be emphasised strongly that this is not the end of the story; M = O(1) as k → ∞
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does not imply a computational cost which is O(1) as k → ∞. The reason is that,
while M fixed implies a fixed size of the approximating linear system, the matrix
entries become increasingly difficult to evaluate, at least by conventional quadrature
methods, as k → ∞. This observation is perhaps particularly true for boundary
integral equation based methods where the difficulty arises from the high frequency
behavior of both the oscillatory basis functions (necessary to keep M fixed as k → ∞)
and the oscillatory kernels of the integral operators. As a consequence, each matrix
entry is a highly oscillatory integral when k is large. We discuss only briefly in this
paper the effective evaluation of the matrix entries in the Galerkin method we will
propose, referring the reader to [44] for most of the details. And the methods we
describe in [44] are O(1) in computational cost as k → ∞ for many but not all of the
matrix entries, so that further work is required to make the algorithm we will propose
fully effective at high frequency. But we note that, of the papers cited above, only the
methods of Bruno et al. [12], Geuzaine, Bruno, and Reitich [33], and Langdon and
Chandler-Wilde [45] appear to achieve an O(1) computational cost as k → ∞.

The issue in evaluating the matrix entries is one of numerical evaluation of oscil-
latory integrals. In Bruno et al. this is achieved by a “localized integration” strategy
described in [12]. This strategy might be termed a “numerical method of stationary
phase,” in which the integrals are approximated by localized integrals over small, wave
number-dependent neighborhoods of the stationary points of the oscillatory integrand.
A similar strategy for integrals of the same type arising in high frequency boundary in-
tegral methods for 3D problems is developed in [32]. Promising alternative approaches
are two older methods for oscillatory integrals due to Filon [31] (recently reanalyzed
by Iserles [40, 41]; see [6] for a discussion of its application to the matrix entries in a
high frequency collocation boundary element method) and Levin [47], and methods
based on deformation of paths of integration into the complex plane to steepest de-
scent paths [38]. We note that, in contrast to [12, 33, 6], where Nyström/collocation
methods are used and the oscillatory integrals are one-dimensional, the matrix entries
in our Galerkin methods are, of course, 2D oscillatory integrals, so that development
of a robust method for their evaluation is a harder problem.

1.3. The main results of the paper. In this paper, we consider specifically
the problem of scattering by convex polygons. This is, in at least one respect, a more
challenging problem than the smooth convex obstacle since the corners of the polygon
give rise to strong diffracted rays which illuminate the shadow side of the obstacle
much more strongly than the rays that creep into the shadow zone of a smooth convex
obstacle. These creeping rays decay exponentially, so that it is enough to remove the
oscillation of the incident field to obtain a sufficiently simple field to approximate by
piecewise polynomials, though a wave number-dependent, carefully graded mesh (cf.
[12, 28]) must be used to resolve the transition zone between illuminated and shadow
regions.

This approach, of removing the oscillation of the incident field and then approx-
imating by a piecewise polynomial, does not suffice for a scatterer with corners. In
brief, our algorithm for the convex polygon is as follows, inspired by our previously
developed algorithm for scattering by a piecewise constant impedance plane [19], dis-
cussed in the last paragraph of section 1.1. From the geometrical theory of diffraction,
one expects, on the sides of the polygon, incident, reflected, and diffracted ray contri-
butions. On each illuminated side, the leading order behavior as k → ∞ consists of
the incident wave and a known reflected wave. The first stage in our algorithm is to
separate this part of the solution explicitly. (On sides in shadow this step is omitted.)
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The remaining field on the boundary consists of waves which have been diffracted at
the corners and which travel along the polygon sides. We approximate this remaining
field by taking linear combinations of products of piecewise polynomials with plane
waves, the plane waves travelling parallel to the polygon sides. A key ingredient in
our algorithm is to design a graded mesh to go on each side of the polygon for the
piecewise polynomial approximation. This mesh has larger elements away from the
corners and a mesh grading near the corners depending on the internal angles, in such
a way as to equidistribute the approximation error over the subintervals of the mesh,
based on a careful study of the oscillatory behavior of the solution.

The major results of the paper are as follows. We begin in section 2 by intro-
ducing the exterior Dirichlet scattering problem that we will solve numerically via a
second kind boundary integral equation formulation. Our boundary integral equa-
tion is well known (e.g., [23]), obtained from Green’s representation theorem. The
boundary integral operator is a linear combination of a single-layer potential and its
normal derivative, so that the integral equation is precisely the adjoint of the equation
proposed independently for the exterior Dirichlet problem by Brakhage and Werner
[11], Leis [46], and Panič [52]. However, it seems (see, e.g., the introduction to [14])
not to be widely appreciated that these formulations are well-posed for Lipschitz as
well as smooth domains in a range of boundary Sobolev spaces; indeed there exists
only a brief and partial account of these standard formulations for the Lipschitz do-
main case in the literature [50] (the treatment in [23] is for domains of class C2). We
remedy this gap in the literature in section 2, showing that our operator is a bijec-
tion on the boundary Sobolev space Hs−1/2(Γ) and the adjoint operator of [11] is a
bijection on Hs+1/2(Γ), both for |s| ≤ 1/2. Our starting points are known results on
the (Laplace) double-layer potential operator on Lipschitz domains [57, 30] coupled
with mapping properties of the single-layer potential operator [49]. (We note that this
obvious approach of deducing results for the Helmholtz equation as a perturbation
from the Laplace case has previously been employed for second kind boundary inte-
gral equations in Lipschitz domains in [56, 50, 48].) Of course the results we obtain
apply in particular to a polygonal domain in two dimensions.

The design of our numerical algorithm depends on a careful analysis of the oscil-
latory behavior of the solution of the integral equation (which is the normal derivative
of the total field on the boundary Γ). This is the content of section 3 of the paper. In
contrast, e.g., to [28], where this information is obtained by difficult high frequency
asymptotics, we adapt a technique from [19, 45], where explicit representations of the
solution in a half-plane are obtained from Green’s representation theorem. In the
estimates we obtain of high order derivatives, we take care to obtain as precise infor-
mation as possible, with a view to the future design of alternative numerical schemes,
perhaps based on a p- or hp-boundary element method.

Section 4 of the paper contains, arguably, the most significant theoretical and
practical results. In this section we design an approximation space for the normal
derivative of the total field on Γ. As outlined above, on each side we approximate
this unknown as the sum of the leading order asymptotics (known explicitly, and zero
on a side in shadow) plus an expression of the form exp(iks)V+(s) + exp(−iks)V−(s),
where s is arc-length distance along the side and V±(s) are piecewise polynomials.
We show, as a main result of the paper, that the approximation space based on this
representation has the property that the error in best approximation of the normal
derivative of the total field is bounded by Cν(n[1 + log(kL)])ν+3/2M−ν−1

N , where MN

is the total number of degrees of freedom, L is the length of the perimeter, n is the
number of sides of the polygon, ν is the polynomial degree, and the constant Cν
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depends only on ν and the corner angles of the polygon. This is a strong result,
showing that the number of degrees of freedom need only increase like log3/2(kL) as
kL → ∞ to maintain accuracy.

In section 5 we analyze a Galerkin method, based on the approximation space
of section 4. We show that the same bound holds for our Galerkin method approx-
imation to the solution of the integral equation, except that an additional stability
constant is introduced. We do not attempt the (difficult) task of ascertaining the
dependence of this stability constant on k. In section 6 we present some numerical
results which fully support our theoretical estimates, and we discuss, briefly, some nu-
merical implementation issues, including conditioning and evaluation of the integrals,
that arise. We finish the paper with some concluding remarks and open problems.

We note that the Galerkin method is, of course, not the only way to select a
numerical solution from a given approximation space. In [6] we present some results
for a collocation method, based on the approximation space results in section 4.
The attraction of the Galerkin method we present in section 5 is that we are able
to establish stability, at least in the asymptotic limit of sufficient mesh refinement,
which we do not know how to do for the collocation method.

2. The boundary value problem and integral equation formulation.
Consider scattering of a time-harmonic acoustic plane wave ui by a sound-soft convex
polygon Υ, with boundary Γ :=

⋃n
j=1 Γj , where Γj , j = 1, . . . , n, are the n sides of

the polygon with j increasing counterclockwise, as shown in Figure 2.1. We denote
by Pj := (pj , qj), j = 1, . . . , n, the vertices of the polygon, and we set Pn+1 = P1 so
that, for j = 1, . . . , n, Γj is the line joining Pj with Pj+1. We denote the length of Γj

by Lj := |Pj+1 − Pj |, the external angle at each vertex Pj by Ωj ∈ (π, 2π), the unit
normal perpendicular to Γj and pointing out of Υ by nj := (nj1, nj2), and the an-
gle of incidence of the plane wave, as measured counterclockwise from the downward
vertical, by θ ∈ [0, 2π). Writing x = (x1, x2) and d := (sin θ,− cos θ), we then have

ui(x) = eik(x1 sin θ−x2 cos θ) = eikx·d.

We will say that Γj is in shadow if nj · d ≥ 0 and is illuminated if nj · d < 0. If ns is
the number of sides in shadow and it is convenient to choose the numbering so that
sides 1, . . . , ns are in shadow and sides ns + 1, . . . , n are illuminated.

We will formulate the boundary value problem we wish to solve for the total
acoustic field u in a standard Sobolev space setting. For an open set G ⊂ R

N ,
let H1(G) := {v ∈ L2(G) : ∇v ∈ L2(G)} (∇v denoting here the weak gradient
of v). We recall [49] that if G is a Lipschitz domain, then there is a well-defined
trace operator, the unique bounded linear operator γ : H1(G) → H1/2(∂G) which
satisfies γv = v|∂G in the case when v ∈ C∞(Ḡ) := {w|Ḡ : w ∈ C∞(RN )}. Let
H1(G; Δ) := {v ∈ H1(G) : Δv ∈ L2(G)} (Δ the Laplacian in a weak sense), a Hilbert
space with the norm ‖v‖H1(G;Δ) := {

∫
G

[|v|2 + |∇v|2 + |Δv|2]dx}1/2. If G is Lipschitz,
then [49] there is also a well-defined normal derivative operator, the unique bounded
linear operator ∂n : H1(G; Δ) → H−1/2(∂G) which satisfies

∂nv =
∂v

∂n
:= n · ∇v,

almost everywhere on Γ, when v ∈ C∞(Ḡ). H1
loc(G) denotes the set of measurable

v : G → C for which χv ∈ H1(G) for every compactly supported χ ∈ C∞(Ḡ).
The polygonal domain Υ is Lipschitz as is its exterior D := R

2 \ Ῡ. Let γ+ :
H1(D) → H1/2(Γ) and γ− : H1(Υ) → H1/2(Γ) denote the exterior and interior trace
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Fig. 2.1. Our notation for the polygon.

operators, respectively, and let ∂+
n : H1(D; Δ) → H−1/2(Γ) and ∂−

n : H1(Υ; Δ) →
H−1/2(Γ) denote the exterior and interior normal derivative operators, respectively,
the unit normal vector n directed out of Υ. Then the boundary value problem we seek
to solve is the following: given k > 0 (the wave number), find u ∈ C2(D) ∩H1

loc(D)
such that

Δu + k2u = 0 in D,(2.1)

γ+u = 0 on Γ,(2.2)

and the scattered field, us := u− ui, satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂us

∂r
(x) − ikus(x)

)
= 0,(2.3)

where r = |x| and the limit holds uniformly in all directions x/|x|.
Theorem 2.1 (see, e.g., [49, Theorem 9.11]). The boundary value problem (2.1)–

(2.3) has exactly one solution.
Remark 2.2. While for compatibility with most of the boundary element liter-

ature we formulate the above boundary value problem in a standard Sobolev space
setting, where one looks for a solution in the energy space H1

loc(D), we note that
other alternatives are available. In particular, we might seek the solution in classical
function spaces as u ∈ C2(D) ∩ C(D); this is commonly done when the boundary is
sufficiently smooth [23, 24], but is also reasonable when D is Lipschitz, as it follows
from standard elliptic regularity estimates up to the boundary (e.g., [42]) that if D
is Lipschitz, then every solution to the Sobolev space formulation is continuous up to
the boundary. A weaker requirement than u ∈ C2(D)∩C(D) is usual in the harmonic
analysis literature, namely to seek u ∈ C2(D) which satisfies the boundary condition
(2.2) in the sense of almost everywhere tangential convergence, and to require that the
nontangential maximal function of u is in Lp(Γ) for some p ∈ (1,∞) (most commonly
p = 2). For details of this latter formulation for the sound-soft scattering problem
for the Helmholtz equation, and proofs of its well-posedness (for 2 − ε < p < ∞ and
some ε > 0) via second kind integral equation formulations, see Torres and Welland
[56] for the case Im k > 0, and Liu [48] and Mitrea [50] for the case k > 0.
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Suppose that u ∈ C2(D)∩H1
loc(D) satisfies (2.1)–(2.3). Then, by standard elliptic

regularity estimates [35, section 8.11], u ∈ C∞(D̄ \ ΓC), where ΓC := {P1, . . . , Pn} is
the set of corners of Γ. It is, moreover, possible to derive an explicit representation
for u near the corners. For j = 1, . . . , n, let Rj := min(Lj−1, Lj) (with L−1 := LN ).
Let (r, θ) be polar coordinates local to a corner Pj , chosen so that r = 0 corresponds
to the point Pj , the side Γj−1 lies on the line θ = 0, the side Γj lies on the line θ = Ωj ,
and the part of D̄ within distance Rj of Pj is the set of points with polar coordinates
{(r, θ) : 0 ≤ r < Rj , 0 ≤ θ ≤ Ωj}. Choose R so that R ≤ Rj and ρ := kR < π/2, and
let G denote the set of points with polar coordinates {(r, θ) : 0 ≤ r < R, 0 ≤ θ ≤ Ωj}
(see Figure 2.2). The following result, in which Jν denotes the Bessel function of the
first kind of order ν, follows by standard separation of variables arguments.

G

r

Ωj

R

θ

Pj

Γj
Γj−1

Fig. 2.2. Neighborhood of a corner.

Theorem 2.3 (representation near corners). Let g(θ) denote the value of u at the
point with polar coordinates (R, θ). Then, where (r, θ) denotes the polar coordinates
of x, it holds that

u(x) =
∞∑

n=1

anJnπ/Ωj
(kr) sin

(
nθπ

Ωj

)
, x ∈ G,(2.4)

where

an :=
2

ΩjJnπ/Ωj
(kR)

∫ Ωj

0

g(θ) sin

(
nθπ

Ωj

)
dθ, n ∈ N.(2.5)

Remark 2.4. The condition ρ = kR < π/2 ensures that Jnπ/Ωj
(kR) �= 0, n ∈ N,

in fact (see (3.14)), that |anJnπ/Ωj
(kr)| ≤ C(r/R)nπ/Ωj , where the constant C is

independent of n and x, so that the series (2.4) converges absolutely and uniformly
in G. Thus u ∈ C(D̄). Moreover, from this representation and the behavior of the
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Bessel function Jν (cf. Theorem 3.3) it follows that near the corner Pj , ∇u(x) has the
standard singular behavior that

|∇u(x)| = O
(
rπ/Ωj−1

)
as r → 0.(2.6)

From [24, Theorem 3.12] and [49, Theorems 7.15 and 9.6] we see that if u sat-
isfies the boundary value problem (2.1)–(2.3), then a form of Green’s representation
theorem holds, namely

u(x) = ui(x) −
∫

Γ

Φ(x,y)∂+
n u(y) ds(y), x ∈ D,(2.7)

where n is the normal direction directed out of Υ and Φ(x,y) := (i/4)H
(1)
0 (k|x−y|) is

the standard fundamental solution for the Helmholtz equation, with H
(1)
0 the Hankel

function of the first kind of order zero. Note that, since u ∈ C∞(D̄ \ ΓC) and the
bound (2.6) holds, we have in fact that ∂+

n u = ∂u/∂n ∈ L2(Γ) ∩ C∞(Γ \ ΓC).
Starting from the representation (2.7) for u, we will obtain the boundary integral

equation for ∂u/∂n which we will solve numerically later in the paper. This inte-
gral equation formulation is expressed in terms of the standard single-layer potential
operator (S) and the adjoint of the double-layer potential operator (T ), defined, for
v ∈ L2(Γ), by

Sv(x) := 2

∫
Γ

Φ(x,y)v(y) ds(y), T v(x) := 2

∫
Γ

∂Φ(x,y)

∂n(x)
v(y) ds(y), x ∈ Γ \ ΓC .

(2.8)

We note that both S and T are bounded operators on L2(Γ). In fact, more generally
([56, Lemma 6.1] or see [49]), S : Hs−1/2(Γ) → Hs+1/2(Γ) and T : Hs−1/2(Γ) →
Hs−1/2(Γ) for |s| ≤ 1/2, and these mappings are bounded. We state the integral
equation we will solve in the next theorem. Our proof of this theorem is based on
the proof in [23] for domains of class C2, modified to use more recent results on layer
potentials on Lipschitz domains.

Theorem 2.5. If u ∈ C2(D) ∩ H1
loc(D) satisfies the boundary value problem

(2.1)–(2.3), then, for every η ∈ R, ∂+
n u = ∂u

∂n ∈ L2(Γ) satisfies the integral equation

(I + K)∂+
n u = f on Γ,(2.9)

where I is the identity operator, K := T + iηS, and

f(x) := 2
∂ui

∂n
(x) + 2iηui(x), x ∈ Γ \ ΓC .

Conversely, if v ∈ H−1/2(Γ) satisfies (I + K)v = f for some η ∈ R \ {0}, and u is
defined in D by (2.7), with ∂+

n u replaced by v, then u ∈ C2(D)∩H1
loc(D) and satisfies

the boundary value problem (2.1)–(2.3). Moreover, ∂+
n u = v.

Proof. Suppose first that v ∈ H−1/2(Γ) satisfies (I + K)v = f and define u by
u := ui − Sv, where

Sv(x) :=

∫
Γ

Φ(x,y)v(y) ds(y), x ∈ R
2 \ Γ.

Then [49, Chapter 9, Theorem 6.11] u ∈ C2(R2 \ Γ) ∩H1
loc(R

2) and satisfies (2.1) in
R

2 \ Γ and (2.3). Thus u satisfies the boundary value problem as long as γ+u = 0.
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Now standard results on boundary traces of the single-layer potential on Lipschitz
domains [49] give us that

2γ±Sv = Sv, 2∂±
n (Sv) = (∓I + T )v.(2.10)

On the other hand, we have that (I + T + iηS)v = f . Thus

2∂−
n u = 2

∂ui

∂n
− (I + T )v = iηSv − 2iηγ+u

i = −2iηγ−u.

Applying Green’s first identity [49, Theorem 4.4] to u ∈ H1(Υ; Δ), we deduce that

−η

∫
Γ

|γ−u|2 ds = Im

∫
Γ

∂−
n u γ−ū ds = 0.

Thus γ+u = γ−u = 0, so that u satisfies the boundary value problem (2.1)–(2.3).
Further, ∂−

n u = 0 and ∂+
n u = v + ∂−

n u = v.
Conversely, if u satisfies the boundary value problem, in which case ∂+

n u = ∂u
∂n ∈

L2(Γ) ⊂ H−1/2(Γ) and (2.7) holds, then, applying the trace results (2.10), we deduce

2γ+u
i = S∂+

n u, 2
∂ui

∂n
= (I + T )∂+

n u.

Hence (2.9) holds.
The above theorem, together with Theorem 2.1, implies that the integral equation

(2.9) has exactly one solution in H−1/2(Γ), provided that we choose η �= 0.
Remark 2.6. The idea of taking a linear combination of first and second kind

integral equations to obtain a uniquely solvable boundary integral equation equivalent
to an exterior scattering problem for the Helmholtz equation dates back to Brakhage
and Werner [11], Leis [46], and Panič [52] for the exterior Dirichlet problem and
Burton and Miller [15] for the Neumann problem. In fact, the integral equation in
[11, 46, 52] is precisely the adjoint of (2.9) (see the discussion and Corollary 2.8 and
Remark 2.9 below). The above proof is based on that in [23]. But, while Colton and
Kress [23] restrict attention to the case when Γ is sufficiently smooth (of class C2), the
proof of Theorem 2.5 is valid for arbitrary Lipschitz Γ, and in an arbitrary number
of dimensions. (Note, however, that, for general Lipschitz Γ, T v, for v ∈ H−1/2(Γ),
must be understood as the sum of the normal derivatives of Sv on the two sides of Γ
[49, Chapter 7]. This definition of T v is equivalent to that in (2.8) when v ∈ L2(Γ)
[56, section 4],[50, section 7].)

The following theorem, which shows that the operator I + K is bijective on a
range of Sobolev spaces, holds for a general Lipschitz boundary Γ (with T defined as
in Remark 2.6 in the general case) in any number of space dimensions ≥ 2.

Theorem 2.7. Let A := I + K and suppose that η ∈ R \ {0}. Then, for
|s| ≤ 1/2, the bounded linear operator A : Hs−1/2(Γ) → Hs−1/2(Γ) is bijective with
bounded inverse A−1.

Proof. It is enough to show this result for s = ±1/2; it then follows for all s by
interpolation [49]. We note first that, since H1(Γ) is compactly embedded in L2(Γ)
so that L2(Γ) is compactly embedded in H−1(Γ), and since S is a bounded operator
from H−1(Γ) to L2(Γ), it follows that S is a compact operator on H−1(Γ) and L2(Γ).
Let T0 denote the operator corresponding to T in the case k = 0; explicitly, in the
case when Γ is a 2D polygon, T0v, for v ∈ L2(Γ), is defined by (2.8) with Φ(x,y)
replaced by Φ0(x,y) := −(2π)−1 log |x − y|. Then T0 − T is a bounded operator
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from H−1(Γ) to L2(Γ) and thus a compact operator on H−1(Γ) and L2(Γ). (To see
the boundedness of T0 − T it is perhaps easiest to show that the adjoint operator,
T ′

0 −T ′, is a bounded operator from L2(Γ) to H1(Γ), which follows since D(T ′
0 −T ′)

is a bounded operator on L2(Γ). Here D is the surface gradient operator, T ′ and T ′
0

are standard double-layer potential operators [49, Theorem 6.17], in particular

T ′v(x) :=

∫
Γ

∂Φ(x,y)

∂n(y)
v(y)ds(y), x ∈ Γ,

and the boundedness of the integral operator D(T ′
0 − T ′) follows since its kernel is

continuous or weakly singular.) Thus A, as an operator on Hs−1/2(Γ), s = ±1/2, is a
compact perturbation of I+T0. But it is known that I+T ′

0 is Fredholm of index zero
on Hs+1/2(Γ) for |s| ≤ 1/2 (see [57, 30]), from which it follows from [49, Theorem
6.17] that the adjoint operator I + T ′

0 is Fredholm of index zero on Hs−1/2(Γ) for
|s| ≤ 1/2. Thus A is Fredholm of index zero on Hs−1/2(Γ), s = ±1/2. Since A is
Fredholm with the same index on H−1(Γ) and L2(Γ), and L2(Γ) is dense in H−1(Γ),
it follows from a standard result on Fredholm operators (see, e.g., [54, section 1]) that
the null-space of A, as an operator on H−1(Γ), is a subset of L2(Γ). But it follows from
Theorems 2.1 and 2.5 that Av = 0 has no nontrivial solution in H−1/2(Γ) ⊃ L2(Γ).
Thus A : Hs−1/2(Γ) → Hs+1/2(Γ) is invertible for s = ±1/2.

We have observed in Remark 2.6 that an alternative integral equation formulation
for the exterior Dirichlet problem was introduced in [11, 46, 52]. In this formulation
one seeks a solution to the exterior Dirichlet problem in the form of a combined single-
and double-layer potential with some unknown density φ̃ and arrives at the boundary
integral equation A′φ̃ = 2γ+u

i, where

A′ = I + T ′ + iηS

is the adjoint of A in the sense that the duality relation holds that 〈Aφ,ψ〉Γ =
〈φ,A′ψ〉Γ for φ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ), where 〈φ, ψ〉Γ :=

∫
Γ
φ(y)ψ(y)ds(y) [49,

Theorems 6.15 and 6.17]. It is known that A′ maps Hs+1/2(Γ) to Hs+1/2(Γ) and
that this mapping is bounded for |s| ≤ 1/2 [56, 49]. This, the duality relation, and
Theorem 2.7 imply the invertibility of A′. Precisely, we have the following result.

Corollary 2.8. For |s| ≤ 1/2 and η ∈ R \ {0}, the mapping A′ : Hs+1/2(Γ) →
Hs+1/2(Γ) is bijective with bounded inverse A′−1

.
Remark 2.9. We note that brief details of a proof that the related operator

Ã′ := I+T ′+iηSS2
0 , where S0 denotes S in the case k = 0, is invertible as an operator

on L2(Γ) if η ∈ R \ {0} are given in Mitrea [50]. Moreover, the argument outlined in
[50], which follows the same pattern that we have used to prove Theorem 2.7, namely
to show that Ã′ is Fredholm of index zero by perturbation from the Laplace case, and
then to establish uniqueness by mirroring the usual uniqueness argument for smooth
domains [23] (though the details of this are omitted in [50]), could be applied equally
to show that A′ is invertible on L2(Γ) for η ∈ R\{0}. Then, arguing by duality in the
same way in which we deduce Corollary 2.8, we could deduce that A is invertible on
L2(Γ). Thus the argument outlined in [50] offers an alternative route to that written
out above for establishing that A and A′ are invertible as operators on L2(Γ) for
η ∈ R \ {0}.

We also note that for the case η = 0 when A′ = I + T ′, it is shown that A′ is
invertible as an operator on L2(Γ) if Imk > 0 in [56]. This result is sharpened in [50],
where it is shown that A′ is also invertible as an operator on L2(Γ) if k > 0 is not



HIGH FREQUENCY SCATTERING BY CONVEX POLYGONS 621

an eigenvalue of an appropriately stated interior Neumann problem in Υ. See [50]
(and Liu [48]) for further discussion of the case when k > 0 is an interior Neumann
eigenvalue when A′ has a finite-dimensional kernel.

In the remainder of the paper we will focus on the properties of A as an operator
on L2(Γ). We remark that the result that I + T ′

0 is Fredholm of index zero on L2(Γ)
dates back to [58] in the case when Γ is a 2D polygon. Letting ‖ · ‖2 denote the norm
on L2(Γ), the technique in [58] (or see [17]) is to show that T ′

0 = T ′
1 + T ′

2 , where
‖T ′

1‖2 < 1. Since taking adjoints preserves norms and compactness, and since S and
T − T0 are compact operators on L2(Γ), it holds in the case of a 2D polygon that
A = I +K = I +K1 +K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(Γ).

Throughout the remainder of the paper we suppose that η ∈ R with η �= 0, so
that A is invertible, and let

CS := ‖A−1‖2 = ‖(I + K)−1‖2.(2.11)

We note that the value of CS depends on k, η, and the geometry of Γ. But recently
an upper bound has been obtained for CS as a function of k, η, and the geometry of
Γ in the case when Γ is (in two dimensions or three dimensions) the boundary of a
piecewise smooth, starlike Lipschitz domain [20, Theorem 4.3], by using Rellich-type
identities. In particular, for the commonly recommended choice |η| = k (see, e.g.,
[28]), this bound implies for the convex polygon that

CS ≤ 1

2

(
1 + 9θ + 4θ2

)
(2.12)

for kR0 ≥ 1. Here it is assumed that the coordinate system is chosen so that the
origin lies inside Γ, and we define R0 := maxx∈Γ |x|, θ := R0/δ−, and δ− to be
the perpendicular distance from the origin to the nearest side of the polygon. For
example, in the case of a square (for which we carry out computations in section 6,
choosing η = k), taking the origin at the center of the square gives θ =

√
2 and so

CS ≤ 9
2 (1 +

√
2) < 11 for kR0 ≥ 1.

3. Regularity results. In this section we aim to understand the behavior of
∂u/∂n, the normal derivative of the total field on Γ, which is the unknown function in
the integral equation (2.9). Precisely, we will obtain bounds on the surface tangential
derivatives of ∂u/∂n in which the dependence on the wave number is completely
explicit. This will enable us in section 4 to design a family of approximation spaces
well adapted to approximating ∂u/∂n.

To understand the behavior of ∂u/∂n near the corners Pj , our technique will be
to use the explicit representation (2.4). To understand the behavior away from the
corners, we will need another representation for ∂u/∂n which we now derive.

Our starting point is the observation that if U = {x = (x1, x2), x1 ∈ R, x2 > 0}
is the upper half-plane and v ∈ C2(U) ∩ C(Ū) satisfies the Helmholtz equation in U
and the Sommerfeld radiation condition, then [18, Theorem 3.1]

v(x) = 2

∫
∂U

∂Φ(x,y)

∂y2
v(y) ds(y), x ∈ U.(3.1)

The same formula holds [18] if v is a horizontally or upwards propagating plane wave,
i.e., if v(x) = eikx.d with d = (d1, d2), |d| = 1, and d2 ≥ 0.

To make use of this observation, we make the following construction. Extend the
line Γj to infinity in both directions; the resulting infinite line comprises Γj and the
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ui

Pj

Pj+1

Υ

Dj

Γj

Γ+
j

Γ−
j

Fig. 3.1. Extension of Γj , for derivation of regularity estimates.

half-lines Γ+
j and Γ−

j , above Pj and below Pj+1, respectively; see Figure 3.1. Let
Dj ⊂ D denote the half-plane on the opposite side of this line to Υ.

Now consider first the case when Γj is in shadow, by which we mean that nj .d ≥ 0.
Then it follows from (3.1) that

us(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
us(y) ds(y), x ∈ Dj ,(3.2)

and also that

ui(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ Dj .(3.3)

Since u = ui + us and u = 0 on Γ, we deduce that

u(x) = 2

∫
Γ+
j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .

In the case when Γj is illuminated (nj .d < 0), (3.2) holds, but (3.3) is replaced by

ui(x) = −2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ R

2\D̄j .(3.4)

Now let ur(x) := −ui(x′) for x ∈ Dj , where x′ is the reflection of x in the line
Γ+
j ∪ Γj ∪ Γ−

j . (The physical interpretation of ur is that it is the plane wave that
would be reflected if Γj were infinitely long.) From (3.4), for x ∈ Dj ,

ur(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x′,y)

∂n(y)
ui(y) ds(y) = −2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y),

and adding this to (3.2) we find that

u(x) = ui(x) + ur(x) + 2

∫
Γ+
j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .
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Thus on an illuminated side it holds that

∂u

∂n
(x) = 2

∂ui

∂n
(x) + 2

∫
Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γj .(3.5)

The same expression, but without the term 2∂ui

∂n (x), holds when Γj is in shadow. The
high frequency Kirchhoff or physical optics approximation to ∂u/∂n is just ∂u/∂n =
2∂ui/∂n on the illuminated sides and zero on the sides in shadow. Thus the integral in
(3.5) is an explicit expression for the correction to the physical optics approximation.

The representation (3.5) is very useful in understanding the oscillatory nature of
the solution on a typical side Γj . In particular we note that, in physical terms, the
integral over Γ+

j can be interpreted as the normal derivative on Γj of the field due to

dipoles distributed along Γ+
j . The point is that the field due to each dipole has the

same oscillatory behavior eiks on Γj . To exhibit this explicitly, we calculate, using
standard properties of Bessel functions [2], that for x ∈ Γj , y ∈ Γ±

j , with x �= y,

∂2Φ(x,y)

∂n(x)∂n(y)
=

ikH
(1)
1 (k|x − y|)
4|x − y| =

ik2

4
eik|x−y|μ(k|x − y|),(3.6)

where μ(z) := e−izH
(1)
1 (z)/z for z > 0. The function μ(z) is singular at z = 0 but

increasingly smooth as z → ∞, as quantified in the next theorem (cf. [19, Lemma 2.5]).
Theorem 3.1. For every ε > 0,

|μ(m)(z)| ≤ Cε(m + 1)! z−3/2−m

for z ≥ ε and m = 0, 1, . . . , where

Cε =
2 4
√

5(1 + ε−1/2)

π
.(3.7)

Proof. From [51, equation (12.31)], μ(z) = (−2i/π)
∫∞
0

(t2 − 2it)1/2e−zt dt for

Rez > 0, where the branch of (t2 − 2it)1/2 is chosen so that Re(t2 − 2it)1/2 ≥ 0. Thus

μ(m)(z) = (−1)m+1 2i

π

∫ ∞

0

tm+1/2(t− 2i)1/2e−zt dt

and hence

|μ(m)(z)| ≤ 2

π

∫ ∞

0

tm+1/2(t2 + 4)1/4e−zt dt.

Now for t ∈ [0, 1], (t2 + 4)1/4 ≤ 51/4 and for t ∈ [1,∞), (t2 + 4)1/4 ≤ 51/4t1/2. So

π

2 4
√

5
|μ(m)(z)| ≤

∫ ∞

0

tm+1/2e−zt dt +

∫ ∞

0

tm+1e−zt dt

= Γ(m+3/2)z−3/2−m+Γ(m+2)z−2−m ≤ (1+ε−1/2)Γ(m+2)z−3/2−m

for z ≥ ε.
To make use of the above result, let x(s) denote the point on Γ whose arc-length

distance measured counterclockwise from P1 is s. Explicitly,

x(s) = Pj +
(
s− L̃j−1

)(
Pj+1 − Pj

Lj

)
for s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,
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where L̃0 := 0 and for j = 1, . . . , n, L̃j :=
∑j

m=1 Lm is the arc-length distance from
P1 to Pj+1. Define

φ(s) :=
1

k

∂u

∂n
(x(s)) for s ∈ [0, L],(3.8)

where L := L̃n so that φ(s) is the unknown function of arc-length whose behavior we
seek to determine. Let

Ψ(s) :=

{
2
k
∂ui

∂n (x(s)) if s ∈ (L̃ns , L),

0 if s ∈ (0, L̃ns),

so that Ψ(s) is the physical optics approximation to φ(s), and set ψj(s) := u(x̃j(s)),
s ∈ R, where x̃j(s) ∈ Γ+

j ∪ Γj ∪ Γ−
j is the point

x̃j(s) := Pj +
(
s− L̃j−1

)(
Pj+1 − Pj

Lj

)
, −∞ < s < ∞.

From (3.5) and (3.6) we have the explicit representation for φ on the side Γj that

φ(s) = Ψ(s) +
i

2
[eiksv+

j (s) + e−iksv−j (s)], s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,(3.9)

where

v+
j (s) := k

∫ L̃j−1

−∞
μ(k|s− t|)e−iktψj(t) dt, s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,

v−j (s) := k

∫ ∞

L̃j

μ(k|s− t|)eiktψj(t) dt, s ∈ [L̃j−1, L̃j ], j = 1, . . . , n.

The terms eiksv+
j (s) and e−iksv−j (s) in (3.9) are the integrals over Γ+

j and Γ−
j , respec-

tively, in (3.5) and can be thought of as the contributions to ∂u/∂n on Γj due to the
diffracted rays travelling from Pj to Pj+1 and from Pj+1 to Pj , respectively, including
all multiply diffracted ray components.

Thus the equation we wish to solve is (2.9), and we have the explicit representa-
tion (3.9) for its solution. At first glance this may not appear to help us, since the
unknown solution u appears (as ψj) on the right-hand side of (3.9). However, (3.9)
is extremely helpful in understanding how φ behaves since it explicitly separates out
the oscillatory part of the solution. The functions v±j are not oscillatory away from
the corners, as the following theorem quantifies. In this theorem and hereafter we let

uM := sup
x∈D

|u(x)| < ∞(3.10)

and note that ‖ψj‖∞ ≤ uM , j = 1, . . . , n.
Theorem 3.2 (solution behavior away from corners). For ε > 0, j = 1, . . . , n,

and m = 0, 1, . . . , it holds for s ∈ [L̃j−1, L̃j ] that

|v+
j

(m)
(s)| ≤ 2Cεm!uMkm(k(s− L̃j−1))

−1/2−m, k(s− L̃j−1) ≥ ε,

|v−j
(m)

(s)| ≤ 2Cεm!uMkm(k(L̃j − s))−1/2−m, k(L̃j − s) ≥ ε,

where Cε is given by (3.7).
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Proof. From Theorem 3.1, for s ∈ [L̃j−1 + ε/k, L̃j ]

|v+
j

(m)
(s)| = km+1

∣∣∣∣∣
∫ L̃j−1

−∞
μ(m)(k|s− t|)e−iktψj(t) dt

∣∣∣∣∣
≤ Cε(m + 1)!km+1‖ψj‖∞

∫ L̃j−1

−∞
(k|s− t|)−3/2−m dt

= Cε
(m + 1)!

(m + 1/2)
k−1/2‖ψj‖∞(s− L̃j−1)

−1/2−m

≤ 2Cεm!uMkm(k(s− L̃j−1))
−1/2−m.

The bound on v−j
(m)

(s) is obtained similarly.
The above theorem quantifies precisely the behavior of ∂u/∂n away from the

corners. Complementing this bound, using Theorem 2.3 we can study the behavior of
∂u/∂n near the corners. To state this result it is convenient to extend the definition
of φ from [0, L] to R by the periodicity condition φ(s + L) = φ(s), s ∈ R.

Theorem 3.3 (solution behavior near corners). If kRj = min(kLj−1, kLj) ≥ π/4

for j = 1, . . . , n, then for j = 1, . . . , n and 0 < k|s− L̃j−1| ≤ π/12, it holds that

∣∣∣φ(m)(s)
∣∣∣ ≤ CuM

√
m +

1

2
m!km(k|s− L̃j−1|)−αj−m, m = 0, 1, . . . ,

where

αj := 1 − π

Ωj
∈ (0, 1/2)(3.11)

and C = 72
√

2π−1 e1/e+π/6.
Proof. To analyze the behavior of u using (2.4) we will use the representation for

the Bessel function of order ν [2, equation (9.1.20)],

Jν(z)=
2(z/2)ν

π1/2Γ(ν + 1/2)

∫ 1

0

(1 − t2)ν−1/2 cos(zt) dt for Rez > 0, ν > −1/2,

where the branch of (z/2)ν is chosen so that (z/2)ν > 0 for z > 0 and (z/2)ν is
analytic in Rez > 0. This representation implies that

cos z ≤ Jν(z)π
1/2Γ(ν + 1/2)

2(z/2)ν
∫ 1

0
(1 − t2)ν−1/2 dt

≤ 1, 0 ≤ z ≤ π/2.(3.12)

Recalling the definitions of R and G before Theorem 2.3 and the Definition (2.5) of
the coefficient an, we have that ρ := kR < π/2 and

|an| ≤
2uM

Jnπ/Ωj
(ρ)

.(3.13)

Thus, for 0 < r < R,

∣∣anJnπ/Ωj
(kr)

∣∣ ≤ 2uM

cos ρ

( r

R

)nπ/Ωj

,(3.14)
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confirming that the series (2.4) converges for 0 ≤ r < R. Further, the bound (3.14)
justifies differentiating (2.4) term by term to get that for x ∈ Γj−1 ∩ G, ∂u

∂n (x) =
kF (kr), where

F (z) :=
π

Ωjz

∞∑
n=1

nanJnπ/Ωj
(z), Rez > 0, |z| < ρ.(3.15)

Since | cos z| ≤ e|Imz|, z ∈ C, so that | cos zt| ≤ e|Imz| for z ∈ C, 0 ≤ t ≤ 1, we see
from (3.13) that for Rez > 0,

∣∣nanJnπ/Ωj
(z)

∣∣ ≤ 2uMn

cos ρ
e|Imz|

(
|z|
ρ

)nπ/Ωj

.(3.16)

Thus the series (3.15) is absolutely and uniformly convergent in Rez > 0, |z| < ρ0, for
every ρ0 < ρ, and F is analytic in Rez > 0, |z| < ρ. Further, from (3.16) and since
for 0 ≤ α < 1,

∑∞
n=1 nα

n = α d
dα

∑∞
n=1 α

n = α
(1−α)2 , we see that for Rez > 0, |z| < ρ,

|F (z)| ≤ π

Ωj |z|
2uM

cos ρ

e|Imz|

(1 − |z/ρ|π/Ωj )2

(
|z|
ρ

)π/Ωj

.

We can use this bound to obtain bounds on derivatives of F , and hence bounds
on derivatives of ∂u/∂n. For 0 < t ≤ ρ/3, 0 < ε < t, from Cauchy’s integral formula
we have that

|F (m)(t)| =
m!

2π

∣∣∣∣
∫

Γε

F (z)

(z − t)m+1
dz

∣∣∣∣ ,
where Γε is the circle of radius ε centered on t, which lies in Rez > 0, |z| < ρ. Since

|F (z)| ≤ 2πuMe|Imz|(t− ε)π/Ωj−1

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2

for z ∈ Γε, we see that

|F (m)(t)| ≤ 2πuMet(t− ε)π/Ωj−1ε−mm!

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2
.(3.17)

Now, for α > 0, β > 0, (t−ε)−αε−β is minimized on (0, t) by the choice ε = βt/(α+β).
Setting ε = mt/(m + 1 − π/Ωj) in (3.17), we see that

|F (m)(t)| ≤ 2πuMetm!(m + 1 − π/Ωj)
m+1−π/Ωj tπ/Ωj−1−m

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2mm(1 − π/Ωj)1−π/Ωj
.

Now

(m + 1 − π/Ωj)
m+1−π/Ωj

mm
≤ (m + 1/2)m+1/2

mm
=

(
1+

1

2m

)m
√
m +

1

2
≤ e1/2

√
m +

1

2
,

2π

Ωj(1 − π/Ωj)1−π/Ωj (1 − (2/3)π/Ωj )2
≤ 18

(1 − π/Ωj)1−π/Ωj
≤ 18e1/e,

and hence

|F (m)(t)| ≤ 18e1/e+1/2+t
√
m + 1/2m!uM

ρπ/Ωj cos ρ
tπ/Ωj−1−m, 0 < t ≤ ρ/3.(3.18)
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Since ∂u
∂n (x) = kF (kr), this implies that∣∣∣∣∂(m)

∂rm

[
∂u

∂n
(x)

]∣∣∣∣ ≤ C̃uM km+1(kr)π/Ωj−1−m, 0 < r ≤ R/3 <
π

6k
,

where C̃ = (18e1/e+1/2+π/6
√
m + 1/2m!)/(ρπ/Ωj cos ρ). Choosing ρ = π/4, the result

follows.
From Theorems 3.2 and 3.3, and (3.9), which gives that

v±j (s) = −2ie∓iks(φ(s) − Ψ(s)) − e±2iksv∓j (s),

we deduce the following corollary, in which αn+1 := α1.
Corollary 3.4. Suppose that kRj = min(kLj−1, kLj) ≥ π/4 for j = 1, . . . , n.

Then, for m = 0, 1, . . . , there exists Cm > 0, dependent only on m, such that if
j ∈ {1, . . . , n}, then

|v+
j

(m)
(s)| ≤ CmuMkm(k(s− L̃j−1))

−αj−m, 0 < k(s− L̃j−1) ≤ π/12,

|v−j
(m)

(s)| ≤ CmuMkm(k(L̃j − s))−αj+1−m, 0 < k(L̃j − s) ≤ π/12.

The following limiting case suggests that the bounds in Theorem 3.2 and Corollary
3.4 are optimal in their dependence on k, s− L̃j−1, and L̃j − s, in the sense that no
sharper bound holds uniformly in the angle of incidence. Suppose that Υ lies in the
right-hand half-plane with P1 located at the origin and d · n1 = 0, and consider
the limit min(kL0, kL1) → ∞ and Ω1 → 2π. In this limit α1 → 1/2, and it is
plausible that u(x) → uk.e.(x), where uk.e. is the solution to the following “knife
edge” diffraction problem: where Γk.e. := {(x1, 0) : x1 ≥ 0}, given the incident plane
wave ui, find the total field uk.e. ∈ C2(R2\Γk.e.)∩C(R2) such that Δuk.e.+k2uk.e. = 0
in R

2 \Γk.e., uk.e. = 0 on Γk.e., and uk.e. − ui has the correct radiating behavior. The
solution to this problem which satisfies the physically correct radiation condition is
given by [10, equation (8.24)]. This solution implies that ϕ(s) := 1

k
∂uk.e.

∂n ((s, 0)) =
±eiksv(s), where the +/− sign is taken on the upper/lower surface of the knife edge
and v(s) := ĉ(ks)−1/2, where ĉ = e−iπ/4

√
2/π. The function v(s) and its derivatives

satisfy the bounds on v+
1 in Theorem 3.2 and Corollary 3.4 (with αj = 1/2), but do

not satisfy any sharper bounds in terms of dependence on k or s− L̃j−1.

4. The approximation space. Our aim now is to use the regularity results
of section 3 to design an optimal approximation space for the numerical solution of
(2.9). We begin by rewriting (2.9) in parametric form. Defining, for j = 1, . . . , n,

aj :=
pj+1 − pj

Lj
, bj :=

qj+1 − qj
Lj

, cj := pj − ajL̃j−1, dj := qj − bjL̃j−1,

and noting that nj1 = bj , nj2 = −aj , we can rewrite (2.9) as

φ(s) +

∫ L

0

κ(s, t)φ(t) dt = f(s), s ∈ [0, L],(4.1)

where, for x(s) ∈ Γl, y(t) ∈ Γj , i.e., for s ∈ (L̃l−1, L̃l), t ∈ (L̃j−1, L̃j),

κ(s, t) := −1

2

[
ηH

(1)
0 (kR) + ik [(albj − blaj)t + bl(cl − cj) − al(dl − dj)]

H
(1)
1 (kR)

R

]
,
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with R = R(s, t) :=
√

(als− ajt + cl − cj)2 + (bls− bjt + dl − dj)2 and f ∈ L2(0, L)
defined by

f(s) := 2i[bl sin θ + al cos θ + (η/k)]eik((als+cl) sin θ−(bls+dl) cos θ).

The first step in our numerical method is to separate off the explicitly known
leading order behavior, the physical optics approximation Ψ(s). Thus we introduce a
new unknown,

ϕ := φ− Ψ ∈ L2(0, L).(4.2)

Substituting into (4.1) we have

ϕ + Kϕ = F,(4.3)

where the integral operator K : L2(0, L) → L2(0, L) and F ∈ L2(0, L) are defined by

Kψ(s) :=

∫ L

0

κ(s, t)ψ(t) dt, 0 ≤ s ≤ L, F := f − Ψ −KΨ.

Equation (4.3) is the integral equation we will solve numerically. By Theorem 2.7,
(4.3) has a unique solution in L2(0, L) and ‖(I + K)−1‖2 = CS , where CS is defined
in (2.11) and I is the identity operator on L2(0, L).

We will design an approximation space to represent ϕ based on (3.9). The novelty
of the scheme we propose is that on each side Γj , j = 1, . . . , n, of the polygon, we
approximate v±j by conventional piecewise polynomials, rather than approximating

ϕ itself. This makes sense since, as quantified by Theorem 3.2, the functions v±j are
smooth (their higher order derivatives are small) away from the corners Pj and Pj+1.
To approximate v±j we use piecewise polynomials of a fixed degree ν ≥ 0 on a graded
mesh, the mesh grading adapted in an optimal way to the bounds of Theorems 3.2
and 3.3. In [19] the 2D problem of scattering of a plane wave by a straight boundary
of piecewise constant surface impedance was considered. We will construct a similar
mesh on each side of the polygon as was used on each interval of constant impedance
in [19], except that we use a different grading near the corners, with the grading near
each corner dependent on the angle at that corner.

To construct this mesh we choose a constant c∗ > 0 (we take c∗ = 2π in the
numerical examples in section 6) and set λ∗ := c∗/k. Next, for every A > λ∗, we
define a composite graded mesh on [0, A], with a polynomial grading on [0, λ∗] and a
geometric grading on [λ∗, A] (note that the mesh on [0, λ∗] is similar to that classically
used near corners (e.g., [17, 7]) for solving Laplace’s equation on polygonal domains).

Definition 4.1. For A > λ∗, N = 2, 3, . . . , ΛN,A,q := {y0, . . . , yN+NA,q
} is the

mesh consisting of the points

yi = λ∗
(

i

N

)q

, i = 0, . . . , N, and yN+j := λ∗
(

A

λ∗

)j/NA,q

, j = 1, . . . , NA,q,

(4.4)

where NA,q := �N∗�, i.e., NA,q is the smallest integer greater than or equal to N∗,
and

N∗ :=
− log(A/λ∗)

q log(1 − 1/N)
.
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Let us explain the rationale behind this definition. Having the bounds of Theo-
rems 3.2 and 3.3 in mind, the mesh on [0, λ∗] is chosen to be approximately optimal
if q is chosen appropriately (see Theorem 4.2 below), in terms of equidistributing the
error between the subintervals of the mesh when s−α, with 0 < α < 1/2, is approxi-
mated on [0, λ∗] in the L2 norm. That the mesh we propose on [0, λ∗] has this property
and the appropriate choice of q as a function of α is well known and dates back to
Rice [55]. Similarly, the mesh on [λ∗, A] is chosen to be approximately optimal, in
terms of equidistributing the error between the subintervals of the mesh, when s−1/2

is approximated on [λ∗, A] in the L2 norm. Finally, the choice of N∗ ensures a smooth
transition between the two parts of the mesh, and thus approximately the same L2

error in the two adjacent subintervals on either side of λ∗. In particular, in the case
that NA,q = N∗, it holds that yN+1/yN = yN/yN−1, so that yN−1 and yN are points
in both the polynomial and the geometric parts of the mesh. Note that by the mean
value theorem, − log(1 − 1/N) = 1/(ξN) for some ξ ∈ (1 − 1/N, 1), and hence

NA,q <
N log(kA/c∗)

q
+ 1.(4.5)

For a < b let ‖·‖2,(a,b) denote the norm on L2(a, b), ‖f‖2,(a,b) := {
∫ b

a
|f(s)|2ds}1/2.

Similarly, for f ∈ C[a, b], let ‖f‖∞,(a,b) := supa<s<b |f(s)|. For A > λ∗, ν ∈ N ∪ {0},
q ≥ 1, let ΠN,ν ⊂ L2(0, A) denote the set of piecewise polynomials

ΠN,ν := {σ : σ|(yj−1,yj) is a polynomial of degree ≤ ν for j = 1, . . . , N + NA,q},

and let P ∗
N be the orthogonal projection operator from L2(0, A) to ΠN,ν , so that

setting p = P ∗
Nf minimizes ‖f − p‖2,(0,A) over all p ∈ ΠN,ν .

Theorem 4.2. Suppose that f ∈ C∞(0,∞), kA > c∗, and α ∈ (0, 1/2), and that
for m = 0, 1, 2, . . . , there exist constants cm > 0 such that

|f (m)(s)| ≤
{

cmkm(ks)−α−m, ks ≤ 1,
cmkm(ks)−1/2−m, ks ≥ 1.

(4.6)

Then, with the choice q := (2ν + 3)/(1 − 2α), there exists a constant Cν , dependent
only on c∗, ν, and α, such that for N = 2, 3, . . . ,

‖f − P ∗
Nf‖2,(0,A) ≤

Cν c̃ν(1 + log(kA/c∗))1/2

k1/2Nν+1
,

where c̃ν := max(c0, cν+1).
Proof. Throughout the proof let Cν denote a positive constant whose value de-

pends on ν, c∗, and α, not necessarily the same at each occurrence. For 0 ≤ a < b ≤ A,
let pa,b,ν denote the polynomial of degree ≤ ν which is the best approximation to f
in the L2 norm on (a, b). Then it follows from Taylor’s theorem that

‖f − pa,b,ν‖2,(a,b) ≤ Cν(b− a)ν+3/2‖f (ν+1)‖∞,(a,b).(4.7)

Now

‖f − P ∗
Nf‖2

2,(0,A) =

N+NA,q∑
j=1

∫ yj

yj−1

|f − P ∗
Nf |2 ds =

N+NA,q∑
j=1

ej ,(4.8)
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where ej := ‖f − pyj−1,yj ,ν‖2
2,(yj−1,yj)

. From the definition (4.4) we see that

e1 ≤
∫ y1

0

|f(s)|2 ds ≤ c20k
−2α

∫ λ∗/Nq

0

s−2α ds ≤ Cνc
2
0

kN2ν+3
.(4.9)

Using (4.7) we have, for j = 2, 3, . . . , N + NA,q,

ej ≤ Cν(yj − yj−1)
2ν+3‖f (ν+1)‖2

∞,(yj−1,yj)
.(4.10)

Further, for j = 2, . . . , N ,

yj − yj−1 =
c∗

kNq
[jq − (j − 1)q] ≤ c∗qjq−1

kNq
,(4.11)

and, using (4.6) and since N/(j − 1) ≤ 2N/j,

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−αy−α−ν−1

j−1 ≤ cν+1k
ν+1

(
2N

j

)q(α+ν+1)

.(4.12)

Combining (4.10)–(4.12) we see that for j = 2, . . . , N ,

ej ≤
Cνc

2
ν+1

kN2ν+3
.(4.13)

For j = N + 1, . . . , NA,q, recalling (4.4) and the choice of N∗ and then using (4.11),

yj − yj−1 = yj−1

(
yj − yj−1

yj−1

)
≤ yj−1

(
yN − yN−1

yN−1

)
≤ yj−1

q

N − 1
≤ 2yj−1

q

N
.

Also, from (4.6),

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−1/2y

−ν−3/2
j−1 .

Using these bounds in (4.10), we see that the bound (4.13) holds also for j = N +
1, . . . , N + NA,q. Combining (4.8), (4.9), and (4.13),

‖f − P ∗
Nf‖2

2,(0,A) ≤
Cν c̃

2
ν(N + NA,q)

kN2ν+3
≤ Cν c̃

2
ν(1 + log(kA/c∗))

kN2ν+2
,

using (4.5). Hence the result follows.
We assume through the remainder of the paper that c∗ > 0 is chosen so that

kLj ≥ c∗, j = 1, . . . , n.(4.14)

For j = 1, . . . , n, recalling (3.11), we define qj := (2ν + 3)/(1 − 2αj) and the two
meshes

Γ+
j := L̃j−1 + ΛN,Lj ,qj , Γ−

j := L̃j − ΛN,Lj ,qj+1
.

Letting e±(s) := e±iks, s ∈ [0, L], we then define

VΓ+
j ,ν := {σe+ : σ ∈ ΠΓ+

j ,ν}, VΓ−
j ,ν := {σe− : σ ∈ ΠΓ−

j ,ν}
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for j = 1, . . . , n, where

ΠΓ+
j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym) is a polynomial of degree ≤ ν

for m = 1, . . . , N + NLj ,qj , and σ|(0,L̃j−1)∪(L̃j ,L) = 0},
ΠΓ−

j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j−ỹm−1)
is a polynomial of degree ≤ ν

for m = 1, . . . , N + NLj ,qj+1 , and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

with 0 = y0 < y1 < · · · < yN+NLj,qj
= Lj the points of the mesh ΛN,Lj ,qj and

0 = ỹ0 < ỹ1 < · · · < ỹN+NLj,qj+1
= Lj the points of the mesh ΛN,Lj ,qj+1

. We define

P+
N and P−

N to be the orthogonal projection operators from L2(0, L) onto ΠΓ+,ν and
ΠΓ−,ν , respectively, where ΠΓ±,ν denotes the linear span of

⋃
j=1,...,n ΠΓ±

j ,ν . We also

define the functions v± ∈ L2(0, L) by

v+(s) := v+
j (s), v−(s) := v−j (s), L̃j−1 < s < L̃j , j = 1, . . . , n.

We then have the following error estimate, in which uM is as defined in (3.10) and we
abbreviate ‖ · ‖2,(0,L) by ‖ · ‖2.

Theorem 4.3. There exists a constant Cν > 0, dependent only on c∗, ν, and Ω1,
Ω2, . . . ,Ωn, such that

‖v+ − P+
N v+‖2 ≤ CνuM

n1/2(1 + log(kL̄/c∗))1/2

k1/2Nν+1
,

where L̄ := (L1 . . . Ln)1/n, with an identical bound holding on ‖v− − P−
N v−‖2.

Proof. From Theorem 3.2, Corollary 3.4, and Theorem 4.2,

‖v+ − P+
N v+‖2

2 =

n∑
j=1

‖v+
j − P+

N v+
j ‖2

2,(L̃j−1,L̃j)
≤ n

C2
νu

2
M (1 + log(kL̄))

kN2ν+2
,

and the result follows.

Our approximation space VΓ,ν is the linear span of

⋃
j=1,...,n

{VΓ+
j ,ν ∪ VΓ−

j ,ν}.

The dimension of this approximation space, i.e., the number of degrees of freedom, is

MN = 2(ν + 1)

n∑
j=1

(N + NLj ,qj ) < 2(ν + 1)nN(1 + N−1 + log(kL̄/c∗))(4.15)

by (4.5). We define PN to be the operator of orthogonal projection from L2(0, L)
onto VΓ,ν . It remains to prove a bound on ‖ϕ − PNϕ‖2, showing that our mesh and
approximation space are well adapted to approximating ϕ.

To use Theorem 4.3 we note from (3.9) and (4.2) that ϕ = i
2 (e+v+ + e−v−). But

e+P
+
N v+ +e−P

−
N v− ∈ VΓ,ν and PNϕ is the best approximation to ϕ in VΓ,ν . Applying
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Theorem 4.3 we thus have that

‖ϕ− PNϕ‖2 ≤
∥∥∥∥ϕ− i

2
(e+P

+
N v+ + e−P

−
N v−)

∥∥∥∥
2

=
1

2
‖e+(v+ − P+

N v+) + e−(v− − P−
N )‖2

≤ ‖e+‖∞‖v+ − P+
N v+‖2 + ‖e−‖∞‖v− − P−

N v−‖2

≤ CνuM
n1/2(1 + log1/2(kL̄))

k1/2Nν+1
.

Combining this bound with (4.15), we obtain the following main result of the paper.
We remind the reader that we are assuming throughout that (4.14) holds.

Theorem 4.4. There exist positive constants Cν and C ′
ν , depending only on c∗,

ν, and Ω1, Ω2, . . . ,Ωn, such that

k1/2‖ϕ− PNϕ‖2 ≤ CνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1
≤ C ′

νuM
(n[1 + log(kL̄/c∗)])ν+3/2

Mν+1
N

.

A comment on the factor k1/2 on the left-hand side is probably helpful. Reflecting
that the solution of the physical problem must be independent of the unit of length
measurement and that we are designing our numerical scheme to preserve this prop-
erty, it is easy to see that the values of both k1/2‖ϕ‖2 and k1/2‖ϕ − PNϕ‖2 remain
fixed as k changes if we keep kLj fixed for j = 1, . . . , n (and also, of course, keep
Ωj , j = 1, . . . , n, c∗, and ν fixed). Thus inclusion of the factor k1/2 ensures that the
value of k1/2‖ϕ−PNϕ‖2 is independent of the unit of length measurement as are the
bounds on the right-hand side.

5. Galerkin method. Theorem 4.4 has shown that it is possible to approximate
accurately the solution of the integral equation (4.3) with a number of degrees of free-
dom that grows only very modestly as the wave number increases. To select an approx-
imation, ϕN , from the approximation space VΓ,ν we use the Galerkin method. Let (·, ·)
denote the usual inner product on L2(0, L), defined by (χ1, χ2) :=

∫ L

0
χ1(s)χ̄2(s) ds,

so that ‖χ‖2 = (χ, χ)1/2. Then our Galerkin method approximation ϕN ∈ VΓ,ν is
defined by

(ϕN , ρ) + (KϕN , ρ) = (F, ρ) for all ρ ∈ VΓ,ν ;(5.1)

equivalently

ϕN + PNKϕN = PNF.(5.2)

Our goal now is to show that (5.2) has a unique solution ϕN , to establish a bound
on the error ‖ϕ−ϕN‖2 in this numerical method, and to relate this error to the best
approximation error ‖ϕ−PNϕ‖2. We begin by establishing that I+PNK is invertible
if N is large enough. We remind the reader (see the end of section 2) that we are
assuming that η ∈ R, the coupling parameter in the integral equation, is chosen with
η �= 0, which ensures that I + K is invertible.

Theorem 5.1. For all v ∈ L2(0, L), ‖PNv − v‖2 → 0 as N → ∞.
Proof. Since ‖PN‖2 = 1, it is enough to show that PNv → v in L2(0, L) for all

v ∈ C∞[0, L], a dense subset of L2(0, L). But this follows from Theorem 4.2 and the
definition of PN .
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Theorem 5.2. There exists a constant N∗ ≥ 2, dependent only on Γ, k, and η,
such that, for N ≥ N∗, the operator I + PNK : L2(0, L) → L2(0, L) is bijective with

Cs := sup
N≥N∗

‖(I + PNK)−1‖2 < ∞,(5.3)

so that (5.2) has exactly one solution for N ≥ N∗.
Proof. Recalling the discussion at the end of section 2, we note that it holds that

K = K1 + K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(0, L). Since
‖PNK1‖2 ≤ ‖K1‖2 < 1, I+PNK1 is invertible and ‖(I+PNK1)

−1‖2 ≤ (1−‖K1‖2)
−1.

Since K2 is compact and I +K is injective, it follows from Theorem 5.1 and standard
perturbation arguments for projection methods (e.g., [7, Theorem 8.2.1], [17]) that
(I + PNK)−1 exists and is uniformly bounded for all N sufficiently large.

From (4.3) and (5.2) it follows that ϕ−ϕN = (I +PNK)−1(ϕ−PNϕ), and hence

‖ϕ− ϕN‖2 ≤ ‖(I + PNK)−1‖2‖ϕ− PNϕ‖2.(5.4)

Combining (5.3) and (5.4) with Theorem 4.4, we obtain our final error estimate.
Theorem 5.3. There exist positive constants Cν and C ′

ν , depending only on c∗,
ν, and Ω1, Ω2, . . . ,Ωn, such that

k1/2‖ϕ− ϕN‖2 ≤ CsCνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1

≤ CsC
′
νuM

(n[1 + log(kL̄/c∗)])ν+3/2

Mν+1
N

(5.5)

for N ≥ N∗, where N∗ and Cs are as defined in Theorem 5.2.
Note that we will take c∗ = 2π and η = k in all our numerical calculations

in the next section. Note also that, while the constants Cν and C ′
ν , from the best

approximation theorem, Theorem 4.4, depend only on c∗, ν, and the corner angles of
Γ, the numbers N∗ and Cs depend additionally on k, L1, L2, . . . , Ln, and η. We do
not attempt the difficult task of elucidating this dependence in this paper. We note
only that, very recently, for the boundary integral equation formulation (2.9) applied
to scattering by a circle, Domı́nguez, Graham, and Smyshlyaev [28] have shown that
I + K is elliptic if η = ±k and k is sufficiently large, so that every Galerkin method
is automatically stable; specifically, (5.3) holds for every N∗ if PN is the orthogonal
projection from L2(0, L) onto the Galerkin approximation space. Further it follows
from results in [28] that, at worst, Cs = O(k1/3) as k → ∞ in the circle case. Our
numerical results in section 6 will suggest the stronger result that for our particular
scheme and geometry, the bound of Theorem 5.3 holds with a constant Cs independent
of k. We recall from section 2 (2.12) that it has been shown that the corresponding
continuous continuity constant CS = O(1) as k → ∞ if the choice η = k is made.

Of course our aim in approximating ϕ by ϕN is to approximate ∂+
n u and hence,

via (2.7), the solution u of the scattering problem. Clearly, from (3.8) and (4.2), an
approximation to ∂u/∂n is

∂u

∂n
(x(s)) ≈ k(Ψ(s) + ϕN (s)), 0 ≤ s ≤ L.

Using this approximation in (2.7), we conclude that

u(x) ≈ uN (x) := ui(x) − k

∫ L

0

Φ(x,x(s))[Ψ(s) + ϕN (s)] ds, x ∈ D.(5.6)
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Theorem 5.3 implies the following error estimate.
Theorem 5.4. There exist positive constants Cν and C ′

ν , depending only on c∗,
ν, and Ω1, Ω2, . . . ,Ωn, such that

supx∈D |u(x) − uN (x)|
supx∈D |u(x)| ≤ CsCν

n(1 + log(kL̄/c∗))

Nν+1
≤ CsC

′
ν

(n[1 + log(kL̄/c∗)])ν+2

Mν+1
N

for N ≥ N∗, where N∗ and Cs are as defined in Theorem 5.2.
Proof. From (2.7) and (5.6),

|u(x) − uN (x)| = k

∣∣∣∣∣
∫ L

0

Φ(x,x(s)) [ϕ(s) − ϕN (s)] ds

∣∣∣∣∣
≤ k

4

{∫ L

0

|H(1)
0 (k|x − x(s)|)|2 ds

}1/2

‖ϕ− ϕN‖2

≤ k

4

⎧⎨
⎩2

n∑
j=1

∫ Lj/2

0

|H(1)
0 (kt)|2 dt

⎫⎬
⎭

1/2

‖ϕ− ϕN‖2

≤ Cνk
1/2n1/2(1 + log(kL̄/c∗))1/2‖ϕ− ϕN‖2,

where we have used that |H(1)
0 (t)| is a monotonic decreasing function of t on (0,∞)

and that |H(1)
0 (t)| = O(t−1/2) as t → ∞ (see e.g., [2]). The result now follows from

Theorem 5.3.

6. Numerical results. There has been much work on the optimal choice of the
parameter η in (2.9) (see, e.g., [3, 43]). Here we choose η = k as in [28]. We also
set c∗ = 2π and restrict attention to the case ν = 0. For higher values of ν the
implementation of the scheme is similar. Note that, with c∗ = 2π and ν = 0, there
are approximately N degrees of freedom used to represent the solution in the first
wavelength on each side adjacent to a corner.

The equation we wish to solve is (5.1) with ν = 0. Writing ϕN as a linear
combination of the basis functions of VΓ,0, we have

ϕN (s) =

MN∑
j=1

vjρj(s), 0 ≤ s ≤ L,

where ρj is the jth basis function and MN is the dimension of VΓ,0. For p = 1, . . . , n,
where n is the number of sides of the polygon, we define n±

p to be the number of
points in the mesh Γ±

p , so that n+
p = N +NLp,qp , n

−
p = N +NLp,qp+1 , and we denote

the points of the mesh Γ±
p by s±p,l for l = 1, . . . , n±

p , with s±p,1 < · · · < s±
p,n±

p
. Setting

n1 := 0, np :=
∑p−1

j=1(n+
j + n−

j ) for p = 2, . . . , n− 1, we define, for p = 1, . . . , n,

ρnp+j(s) :=

{
eiksχ(s+p,j−1,s

+
p,j)

(s)/
√
s+
p,j − s+

p,j−1, j = 1, . . . , n+
p ,

e−iksχ(s−p,j−1,s
−
p,j)

(s)/
√
s−p,j − s−p,j−1, j = n+

p + 1, . . . , n+
p + n−

p ,

where χ(y1,y2) denotes the characteristic function of the interval (y1, y2). From (4.15),

MN =
∑n

j=1(n
+
j + n−

j ) < 2nN(3/2 + log(kL̄/c∗)).
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Equation (5.1) with ν = 0 is equivalent to the linear system

MN∑
j=1

vj((ρj , ρm) + (Kρj , ρm)) = (F, ρm), m = 1, . . . ,MN .(6.1)

In order to set up this linear system we need to determine the integrals (ρj , ρm),
(Kρj , ρm), and (F, ρm). We note that many of the integrals (Kρj , ρm) and (F, ρm)
are highly oscillatory; in particular, all these integrals become highly oscillatory in the
limit as k → ∞ with N fixed. The efficient calculation of these integrals is an aspect
of the numerical scheme which requires further research, as discussed in section 1.2.
But note that explicit formulae for the analytic evaluation of some of these integrals,
and a consideration of the quadrature techniques required to evaluate the rest of them
numerically, are presented in [44].

Another important issue is the conditioning of the linear system. Standard anal-
ysis of the Galerkin method for second kind equations [7] implies that, where M :=
[(ρj , ρm)] is the mass matrix (which is necessarily Hermitian and positive definite) and
A = [(ρj , ρm) + (Kρj , ρm)] is the whole matrix, it holds that cond2A ≤ Cscond2M ,
where Cs is defined by (5.3). Thus Theorem 5.2 implies that cond2A is bounded as
N → ∞ if the mass matrix is well conditioned. Unfortunately, it appears that, as
N → ∞ with k fixed, M must ultimately become badly conditioned. However, the
results below will show only moderate condition numbers of A even for large values of
N (see Table 6.1). More positively, in the limit as k → ∞ with N fixed, cond2M → 1.
To see this we observe that if (ρj , ρm) is a nonzero off-diagonal element of the mass
matrix (in which case the supports of ρj and ρm are overlapping subintervals of the

meshes Γ+
p and Γ−

p for some side p), it holds that |(ρj , ρm)| = | sin(ko)|
√
o/(kS1S2),

where S1 and S2 are the lengths of the two subintervals, and o is the length of the
overlap.

As a numerical example, we consider the problem of scattering by a square with
sides of length 2π. In this case n = 4 and Ωj = 3π/2, j = 1, 2, 3, 4. The corners of the
square are P1 := (0, 0), P2 := (2π, 0), P3 := (2π, 2π), P4 := (0, 2π), and the incident
angle is θ = π/4, so the incident field is directed towards P4, with P2 in shadow (as
shown in Figure 6.1, where the total acoustic field is plotted for k = 10).

In Figure 6.2 we plot |ϕN (s)| against s for k = 10 and N = 4, 16, 64, 256. As
we expect, |ϕN (s)| is highly peaked at the corners of the polygon, s = 0, 2π, 4π, 6π
and 8π (which is the same corner as s = 0), where ϕ(s) is infinite. Except at these
corners, |ϕN (s)| appears to be converging pointwise as N increases. (We do not plot
ϕN (s) itself, which is highly oscillatory.)

In order to test the convergence of our scheme, we take the “exact” solution to
be that computed with a large number of degrees of freedom, namely with N = 256.
For k = 5 and k = 320 the relative L2 errors ‖ϕN − ϕ256‖2/‖ϕ256‖2 are shown
in Table 6.1 (all L2 norms are computed by approximating by discrete L2 norms,
sampling at 100000 evenly spaced points around the boundary of the square). For
this example, Theorem 5.3 predicts that for N ≥ N∗, ‖ϕ − ϕN‖2 ≤ CN−1, where
C is a constant. Thus Theorem 5.3 predicts that for N > N∗, the average rate of
convergence is

EOC :=
log(‖ϕ− ϕN‖2/‖ϕ− ϕN∗‖2)

log(N/N∗)
≥ 1 − Ĉ

log(N/N∗)
∼ 1

as N → ∞, where Ĉ := log(‖ϕ−ϕN‖2/C). This behavior is clearly seen in the EOC
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Fig. 6.1. Total acoustic field, scattering by a square, k = 10. Incident field is directed from the
top left corner towards the bottom right corner.
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Fig. 6.2. |ϕN (s)| plotted against s, various N , for scattering by a square of side length ten
wavelengths.

values (defined with N∗ = 8) in Table 6.1 for both values of k. We also show in Ta-
ble 6.1 the 2 norm condition number, cond2A, of the matrix A = [(ρj , ρm)+(Kρj , ρm)]
for each example. Unlike methods where the approximation space is formed by mul-
tiplying standard finite element basis functions by many plane waves travelling in a
large number of directions [27, 53, 37], the condition number does not grow signifi-
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Table 6.1

Errors and relative L2 errors, various N , k = 5, and k = 320.

k N MN k1/2‖ϕN − ϕ256‖2 ‖ϕN − ϕ256‖2/‖ϕ256‖2 EOC cond2A
5 8 88 5.7339×10−1 2.4426×10−1 9.5×100

16 176 3.7454×10−1 1.5955×10−1 0.6 4.6×101

32 360 1.6176×10−1 6.8909×10−2 0.9 2.6×101

64 712 7.7267×10−2 3.2916×10−2 1.0 2.4×102

128 1416 3.3541×10−2 1.4289×10−2 1.0 1.5×103

320 8 120 7.0765×10−1 3.6736×10−1 2.4×102

16 240 5.9792×10−1 3.1040×10−1 0.2 6.9×102

32 472 1.9668×10−1 1.0211×10−1 0.9 8.1×102

64 944 7.5808×10−2 3.9354×10−2 1.1 1.1×103

128 1888 4.8814×10−2 2.5341×10−2 1.0 3.8×103

Table 6.2

Errors and relative L2 errors, various k, N = 64.

k MN k1/2‖ϕ64 − ϕ256‖2 ‖ϕ64 − ϕ256‖2/‖ϕ256‖2 cond2A

5 712 7.7267×10−2 3.2916×10−2 2.4×102

10 752 6.6373×10−2 2.8702×10−2 8.4×101

20 792 3.8309×10−1 1.6914×10−1 5.1×103

40 824 1.3162×10−1 5.9856×10−2 1.2×103

80 864 7.4315×10−2 3.4801×10−2 2.7×103

160 904 7.0884×10−2 3.4570×10−2 1.4×103

320 944 7.5808×10−2 3.9354×10−2 1.1×103

640 984 6.4280×10−2 3.5693×10−2 1.5×103

Table 6.3

Relative errors, |uN (x) − u256(x)|/|u256(x)|, as a function of N , at three points x.

k N x = (−π, 3π) x = (3π, 3π) x = (3π,−π)

5 4 1.9587×10−2 1.0071×10−3 1.5885×10−2

8 4.2629×10−3 2.8031×10−3 2.3215×10−3

16 3.6284×10−4 3.1410×10−4 1.3513×10−3

32 6.7523×10−5 2.9803×10−5 1.7939×10−5

64 1.2675×10−5 5.9626×10−6 4.6158×10−6

320 4 2.2938×10−3 2.9350×10−3 2.0897×10−2

8 4.3176×10−3 1.5157×10−3 1.1652×10−2

16 3.3908×10−3 9.6409×10−4 9.3922×10−3

32 3.3898×10−4 1.6984×10−4 9.0526×10−4

64 1.0022×10−4 9.6493×10−5 2.6204×10−4

cantly as the number of degrees of freedom increases.
In Table 6.2 we fix N = 64 and show ‖ϕ64−ϕ256‖2/‖ϕ256‖2 and k1/2‖ϕ64−ϕ256‖2

for increasing values of k. Both measures of errors remain approximately constant in
magnitude as k increases. Recall that, keeping N fixed as k increases corresponds to
keeping the number of degrees of freedom per wavelength fixed near each corner and
increasing the total number of degrees of freedom, MN , approximately in proportion
to log(kL̄). Thus these results are consistent with the approximation error estimate of

Theorem 4.2 which suggests that increasing MN proportional to log3/2(kL̄) is enough
to keep the error bounded; indeed these results are suggestive that the bound (5.5) in
the Galerkin error estimate, Theorem 5.3, holds with a constant Cs which is indepen-
dent of k. Note that the condition number of the coefficient matrix A only increases
modestly as k increases, and is approximately constant for k ≥ 40.

In Table 6.3 we show numerical convergence of the total field uN (x) at the three
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points x = (−π, 3π) (illuminated), x = (3π, 3π), and x = (3π,−π) (shadow), for
k = 5 and k = 320. The errors are consistent with the estimate of Theorem 5.4. As
might be expected for the computation of linear functionals of ϕN , the relative errors
in Table 6.3 are a lot smaller and converge to zero more rapidly than the relative
errors in the computation of the boundary data in Tables 6.1 and 6.2.

7. Conclusions. In this paper we have described a novel Galerkin boundary
integral equation method for solving problems of high frequency scattering by convex
polygons. In section 2, building on previous results for Lipschitz domains [56, 48, 50,
49], we have shown that the standard second kind boundary integral equations for the
exterior Dirichlet problem for the Helmholtz equation are well-posed for general Lip-
schitz domains in a scale of Sobolev spaces. We have understood very completely in
section 3 the oscillatory behavior of the normal derivative of the field on the boundary
of the polygon. We have then used this understanding to design an optimal graded
mesh for approximation of the diffracted field by products of piecewise polynomials
and plane waves. Our error analysis demonstrates that the number of degrees of free-
dom required to achieve a prescribed level of accuracy using the best approximation
to the solution from the approximation space grows only logarithmically with respect
to the wave number k as k → ∞. Numerical experiments indicate that the same
statement holds for the Galerkin approximation from the same approximation space.
However, while we have established that the error in the Galerkin approximation
space is bounded by the stability constant Cs times the best approximation error, our
Theorem 5.3 holds only for a sufficiently refined mesh and we have not established
a bound on Cs which is independent of k, to mirror the recently established bound
(2.12) on the corresponding continuous stability constant.

There are very many open problems in extending the results of this paper to more
general scatterers. In this extension we expect that our mesh design and parts of our
analysis will have relevance for representing certain components of the total field. For
example, in the case of 2D convex curvilinear polygons, something close to the mesh
grading we use may be appropriate on each side of the polygon, especially at higher
frequencies when the waves diffracted by the corners become more localized near the
corners. In the case of three-dimensional scattering by convex polyhedra, it seems
to us that the mesh we propose may be useful in representing the variation of edge
scattered waves in the direction perpendicular to the edge.
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