
Investigating the overhead of the REST
protocol to reveal the potential for using
cloud services for HPC storage
Conference or Workshop Item

Accepted Version

Gadban, F., Kunkel, J. and Ludwig, T. (2020) Investigating the
overhead of the REST protocol to reveal the potential for using
cloud services for HPC storage. In: HPC I/O in the Data Center
Workshop, 21-25 June 2020. doi: https://doi.org/10.1007/978-
3-030-59851-8_10 (High Performance Computing. ISC High
Performance 2020. Lecture Notes in Computer Science)
Available at https://centaur.reading.ac.uk/92527/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1007/978-3-030-59851-8_10

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Investigating the Overhead of the REST
Protocol when Using Cloud Services for HPC

Storage

Frank Gadban1, Julian Kunkel2, and Thomas Ludwig3

1 University of Hamburg, 20146 Hamburg, Germany
frank.gadban@studium.uni-hamburg.de

2 Reading University, Reading, UK
3 DKRZ, 20146 Hamburg

Abstract. With the significant advances in Cloud Computing, it is in-
evitable to explore the usage of Cloud technology in HPC workflows.
While many Cloud vendors offer to move complete HPC workloads into
the Cloud, this is limited by the massive demand of computing power
alongside storage resources typically required by I/O intensive HPC ap-
plications. It is widely believed that HPC hardware and software proto-
cols like MPI yield superior performance and lower resource consumption
compared to the HTTP transfer protocol used by RESTful Web Services
that are prominent in Cloud execution and Cloud storage. With the ad-
vent of enhanced versions of HTTP, it is time to reevaluate the effective
usage of cloud-based storage in HPC and their ability to cope with var-
ious types of data-intensive workloads. In this paper, we investigate the
overhead of the REST protocol via HTTP compared to the HPC-native
communication protocol MPI when storing and retrieving objects. Albeit
we compare the MPI for a communication use case, we can still evaluate
the impact of data communication and, therewith, the efficiency of data
transfer for data access patterns. We accomplish this by modeling the im-
pact of data transfer using measurable performance metrics. Hence, our
contribution is the creation of a performance model based on hardware
counters that provide an analytical representation of data transfer over
current and future protocols. We validate this model by comparing the
results obtained for REST and MPI on two different cluster systems, one
equipped with Infiniband and one with Gigabit Ethernet. The evalua-
tion shows that REST can be a viable, performant, and resource-efficient
solution, in particular for accessing large files.

Keywords: HPC · Cloud · Convergence · HTTP2 · RESTful APIs ·
HTTP3 · Storage.

1 Introduction

High-Performance Computing (HPC) utilizes clusters of powerful and fast inter-
connected computers that can handle complex and data-intensive computational
problems. These systems are managed by batch schedulers [41] where user jobs

2 F. Gadban et al.

are queued to be served based on resource usage and availability and without
any visibility or concerns on the costs of running jobs. Due to various factors,
Cloud Computing [42] gained popularity over the last decade. This has led to
the emergence of the HPC Cloud, where Cloud providers offer high-end hardware
platforms and software environments to run HPC applications.
Due to its simplicity, reliability, flexibility, and consistency, HTTP is the de facto
standard for accessing object storage like Amazon S3 [2], OpenStack Swift, and
EMC Atmos. A wide adoption of cloud storage in HPC requires the evaluation
of the suitability of using HTTP in the HPC environment as an alternative to
HPC-native communication protocols like MPI.
In this work, we first provide a detailed examination of the HTTP protocol and
its performance in terms of latency and throughput under different conditions
for accessing remote data. Secondly, we elaborate on an analytic performance
model for data transfer over several protocols, this model allows us to compare
current and future protocols in a common framework and will help us predict
protocol performance in different hardware environments. We perform several
benchmarks comparing MPI to HTTP and use our model to validate the ob-
tained results. Finally, and based on the evaluation, we pinpoint the cause of
the HTTP overhead and find that TCP is not the ideal transport protocol for
HTTP and that new versions of the HTTP protocol, like HTTP3 which uses
UDP, might accelerate the usage of cloud storage in HPC. The structure of this
paper is as follows: Section 2 represents the related work. Section 3 describes
the test scenarios and defines the relevant metrics that will be addressed using
our benchmarks. Section 4 describes the experimental procedure, the used sys-
tems, and the methodology of the evaluation conducted in this work. Section 5
analyzes the obtained results. The last section summarizes our findings.

2 Related Work

In the world of HPC, computational performance has long exceeded the perfor-
mance of the traditional file-centric storage systems since the POSIX file system
interface was hardly suitable for data management on supercomputers[56]. Many
workarounds to address this issue were proposed, some of them tried to introduce
evolved I/O algorithms in MPI, like Data aggregation/sieving in ROMIO, [51] or
to implement different data organizations on the back-end storage, like PLFS [3]
or to introduce richer data formats for example HDF5, NetCDF [19]. Eventu-
ally and although a file represents a convenient way to store the data, the ideal
concept for scientific computing/HPC would be rather the use of a data object
model[38] where all levels of metadata are encapsulated. Object storage orga-
nizes information into containers of flexible sizes, referred to as objects. Each
object includes the data itself as well as its associated metadata and has a
globally unique identifier. Objects are often accessed directly from the client
application, usually using a RESTful API [49]. As such, any comprehensive per-
formance study of an object storage system should take into consideration the
latency introduced by a RESTful system. Many researchers have tried to solve
data transfer issues through HTTP; some [35] proposed encapsulating TCP data

Title Suppressed Due to Excessive Length 3

in UDP payloads, others [12] proposed a dynamic connection pool implemented
by using the HTTP Keep-Alive feature to maximize the usage of open TCP
connections and minimize the effect of the TCP slow start. Intel®is marketing
DAOS [40] as the ultimate Open Source Object Store, nonetheless with a high
vendor Lock-in potential since the promised performance can only be achieved
on its own proprietary Optane [55] storage Hardware. Since Infiniband [1] is one
of the most commonly used interconnects in HPC, the performance of IP over In-
finiband [4,23] has been thoroughly studied, however, the performance of HTTP
over IP over IB did not get much attention. Our approach to model and analyze
the viability of HTTP over Infiniband using performance counters is explained
in the next section.

3 Methodology

The two major efficiency indicators addressed in our study are latency and
throughput. To our knowledge, few tried to assess the Performance of a REST
Service inside HPC, i.e., within a high-performance network. This is why we in-
troduce a modeling approach, based on performance counters, then we perform
an evaluation on a testbed, consisting of a content server and a client application
consuming the content. Our benchmark for storage access emulates a best-case
scenario (HTTP GET Operation / Read Only Scenario from a ”remote” Stor-
age Server) because we only want to test the viability and base performance of
REST/HTTP as an enabling technology for an object-store. The model with the
performance counters can nevertheless be extended to assess and measure the
resource consumption of different object storage implementations. The tools and
the accomplished tests will be extensively described in Section 4. To identify the
major factors impacting the performance, we vary the underlying hardware and
the connection mechanism (Ethernet, Infiniband, RDMA) between the server
and the client. Finally, to validate our model, we compare its predictions with
the experimentally observed values.

3.1 Performance Model

To define our performance model, many metrics are considered, which depict the
used hardware, the software stack, and the network protocol in use. Alongside the
standard network metrics, we focus on hardware counters of the CPU namely the
number of required CPU cycles to identify the processing cost of a data transfer
and the L3 evicted memory, this can be used further to check the memory
efficiency of the different implementations. In a first step, we consider TCP
as a transport protocol, however, the model is later extended in Section 5 to
cover MPI. The metrics involved can be summarized as follows. Fixed system
parameters:

– R: CPU clock rate in Hz
– rtt: round trip time
– mtu: maximum transfer unit

4 F. Gadban et al.

– mss: maximum segment size, transmission protocol dependent (see eq. (4))
– mem tp: the memory throughput i.e. speed of data eviction from L3 to main

memory.
– eBW [7]: is the effective bandwidth between client and server.

Experiment-specific configurations and results:

– Obj size: file size transferred from the server to be read by the client.
– Nreq: number of requests achieved in 60 sec
– Ncon: number of open connections kept
– Nthr: number of CPU threads executing the benchmark on the client.

Observable metrics (e.g., using Likwid):

– CUC: number of unhalted cycles on each core
– L3EV:amount of data volume loaded and evicted from/to L3 from the per-

spective of CPU cores[24,31], L3EVs and L3EVc are for server and client
respectively.

– PLR: the packet loss rate, proportional to the number of parallel connections.

In our preliminary model t(request) is the time starting from the sending of the
first byte of the request to the time the complete response is received:

t(request) = t(client) + t(network) + t(server) (1)

where t(client), t(network), t(server) are the time fractions needed by the client,
network and server respectively to accomplish the request:

t(client) = t(compute) + t(memory) + t(cpu client busy) (2)

t(server) = t(compute) + t(memory) + t(cpu server busy) + t(pending) (3)

As a rough estimation of the network throughput when using the TCP proto-
col, and based on the Mathis et.al. formula [27], while presuming that the TCP
window is optimally configured, we can safely assume that:

net tp = min{ mss · C
RTT ·

√
PLR

, eBW} (4)

where C=1 and mss = mtu-40 in case of Ethernet. From this we can calculate
t net:

t net = Obj size/net tp+ t queuing (5)

For the sake of simplicity, we suppose that the routing devices between the nodes
don’t add any latency and as such we can neglect t queuing The execution time
t(compute) can then be defined as:

t(compute) = CUC/R (6)

t(memory) is the time to traverse the different memory caches, usually narrowed
down to:

t(memory) = L3EV/mem tp (7)

Title Suppressed Due to Excessive Length 5

Putting it all together, and in the case of intra-node communication, we can
safely assume that:

t(request) =
CUCs

Rs
+
L3EV s

mem tp
+
CUCc

Rc
+
L3EV c

mem tp
+
Obj size

net tp
(8)

Generalizing a bit further, we end up with :

t(request) = α·rtt+β1·
CUCs

Rs
+β2·

L3EV s

mem tp
+β3·

CUCc

Rc
+β4·

L3EV c

mem tp
+β5·

Obj size

net tp
(9)

Where α is a weighting factor (0 ≤ α < 1) [30], βi are platform and protocol
dependent factors to be evaluated in a later section. As such, many factors can
influence the above starting from the application delivering the content which
affects server CPU and memory usage, those metrics are also affected by the type
of client consuming the data as well as by the networking protocol in use and
the path traversed by the data. In the following sections, we validate this model
while comparing the performance of HTTP over different types of hardware and
connection protocols.

4 Experiments

The tests were performed on two different hardware platforms: the first is the
WR Cluster, a small test system, equipped with Intel Xeon 5650 processors and
Gbit Ethernet, the second is the Mistral supercomputer [14], the HPC system
for earth-system research at the German Climate Computing Center (DKRZ),
it provides 3000 compute nodes each equipped with an FDR Infiniband inter-
connect. The nodes used for the testing are equipped with two Intel Broadwell
processors (E5-2680 @2.5 GHz) [33]

4.1 Benchmark and Analysis Tools

The RESTful API is the typical way to realize access to object storage, and as
such the tools used in this article were preliminary developed to assess HTTP
performance. The first experiment checks the latency introduced by a simple
web server serving static files, the setup, shown in fig. 1, consists of the lighttpd
web server [34] hosting files of different sizes. These files contain randomly gen-
erated data, and are placed initially in the in-memory file system (tmpfs) to
minimize any storage-related overhead such as disk drive access time. The tests
are accomplished using the wrk2 tool [50]. In the following analysis, we vary

Fig. 1: A simplified overview of the Benchmark Setup

the number of threads and the number of HTTP connections kept open while

6 F. Gadban et al.

trying to keep a steady rate of 2000 requests/second for 60 seconds for each file
size.

4.2 Latency

The diagrams in figs. 2a and 2b show the obtained latency distributions.
Observations and interpretations:

– Latency linearly increases with the number of open connections (see Fig-
ure 2a), especially true for small file sizes however when the file size grows
beyond a certain limit, the number of connections will become irrelevant to
the introduced latency (see Figure 2b).

– As shown in fig.2c, for small file size, we observe a latency divergence in
particular in the 99 percentile area for bigger file size, we noticed in the case
of the 100 KB, the desired request rate of 2000 req/s is not met due to the
limitation of the underlying network infrastructure (1Gb/s 125 MB/s)

– It is interesting to note that, in relation to file size (fig.2c), larger files lead
to higher memory and network latencies in a way that they can saturate the
server’s network bandwidth, lowering throughput (see Figure 2b). There-
fore, for serving large files, high network bandwidth is more important than
compute resources. On the other hand, increasing the number of open Con-
nections (fig.2d) will trigger TCP’s congestion mechanism and such they
will be competing for the same bandwidth. Increasing the file size as well
will cause the Open Connections to lose packets and get stuck waiting for
retransmissions.

A similar latency distribution is observed when the tests are conducted on the
same machine, thus using the optimized[15] loopback interface, where theoreti-
cally the network does not pose any throughput bottleneck (iperf [45] result 20
Gbs). From these experiments, we learn that to optimize the throughput, the
web requests should not be using different open connections but rather use one
or a relatively small number of open Connections and label the web requests
accordingly, which is commonly known as HTTP multiplexing [20], where, us-
ing the same TCP connection, multiple HTTP requests are divided into frames,
assigned a unique ID called stream ID and then sent asynchronously, the server
receives the frames and arranges them according to their stream ID and also
responds asynchronously; same arrangement process happens at the client side
allowing to achieve maximum parallelism.

4.3 Throughput

The network throughput of our system
is calculated as follow: Throughput =

Nreq ·Obj size
time

The results are shown in Figure 3. In the case of inter-node communication,
an increase in the number of Open Connections will increase the throughput,
however, this is only relevant for small file sizes below 1 MB.

Title Suppressed Due to Excessive Length 7

(a) Variable open connections for 100 KB files

(b) Variable open connections for 1000 KB files

(c) Variable file size for 24 open connections

(d) Variable file size for 500 open connections

Fig. 2: Measured latency for different experiments

8 F. Gadban et al.

Fig. 3: Throughput in KB/sec for a variable object size and open connec-
tions/threads

4.4 Resource Usage Measurements

In addition to the latency diagrams and the findings gained from them, another
point to consider is the efficiency of the IO itself, this is why we measure the
Memory and CPU usage needed to achieve a certain throughput. To accom-
plish this, likwid-perfctr [16] is used. It uses the Linux ‘msr’ module to access
the model specific registers stored in /dev/cpu/*/msr (which contain hardware
performance counters), and calculates performance metrics, FLOPS, bandwidth,
etc, based on the event counts collected over the runtime of the application pro-
cess. The conducted experiment is similar to Section 4.2, however, this time we
are using wrk[21] without specifying a maximum req/s rate, for 1 minute, during
this time Likwid is recording the CPU performance counters which are relevant
in this scenario. The server application is pinned to one core using Likwid, the
same is done on the client side, As wrk tests are performed using only 1 thread,
this doesn’t impose a performance limitations and ensures that the process is
run on the first physical core and not migrated between cores which may lead to
overhead. CPU consumption is recorded, CPU CLK UNHALTED CORE is the
metric provided by Likwid that represents the number of clock ticks needed by
the CPU to do some reasonable work. The instructions required to accomplish
one request - by the server as well as by the client - seems to be linear with the
file size, as shown in Figure 4a. To note that the server seems to be consuming
more CPU cycles as the client to deliver a request, which might be because we
are using the lighttpd web server without modifying the default configuration.
Note also that over a certain file size limit, the number of timeouts increases
since we are approaching the maximum throughput achieved by the system.

Title Suppressed Due to Excessive Length 9

(a) CPU cycles

(b) L3 evicted volume

Fig. 4: Likwid metrics for the client and server with a variable size and Open
Connections/Threads combination

Regarding memory utilization: Basically, when reading a file (represented by
HTTP response), the client needs to store the data received in memory. If the
file size exceeds the size of the CPU cache, we expect that data is evicted to
main memory, which is measured in L3 cache evictions. This metric is recorded
using Likwid and shown in Figure 4b. Basically, we can see that even for 100
MB files only 10 MB of data is evicted on the client. There is no eviction on the
server because it sends the data directly to the client. This is an indication that
zero-copy [53] is in use on the client and the network interface card offloads the
processing of TCP/IP. This allows the network card to store the data directly
into the target memory location. Generally, with zero-copy, the application re-
quests the kernel to copy the data directly from a file descriptor to the socket
bypassing the copy in user mode buffer and, therefore, reducing the number of
context switches between kernel and user mode. Furthermore, when data does
not fit in the processor L3 caches (12 MB), the evicted data, i.e., the data passed
to memory increases significantly causing a performance drop, curiously the rate
of increase of the client evicted memory is greater than on the server, leading
us to another interesting conclusion, namely that while most studies focused on
optimizing the server-side, it might be the client-side that needs to be addressed.

10 F. Gadban et al.

(a) Latency

(b) Throughput

Fig. 5: Results for the protocols for a variable file size

4.5 REST vs. MPI

As found in the previous tests, the available bandwidth plays an important role
in determining the latency and the throughput being achieved. The following
tests are achieved on Mistral where Infiniband [1] is available. Our next step
is to compare the REST protocol with an established data transfer method
in the HPC world, namely the Message Passing Interface MPI [52]. To achieve
this we launch the same tools used above (likwid+lighttpd) on one node and
(likwid+wrk) on another while varying the file size in a power of 2, and recording
the different metrics, the transfer takes place over the Infiniband interface. Then
we launch the OSU Micro Benchmark [39] alongside with likwid on two nodes
using the same file sizes and record the same metrics. The OSU tests are executed
over Infiniband, the first time by using RDMA and the second time over TCP.
The obtained results are used to plot fig. 5a and fig. 5b. We notice that:

– For small object sizes, the latency of Rest is obviously higher than the one
of MPI, as already mentioned in our latency tests, this is due to the HTTP
overhead.

– The throughput achieved using MPI is better than the one using REST
however when comparing MPI and REST both over TCP, we notice that
this is not the case especially for very small and large files which leads to
the conclusion that the overhead due to the TCP stack is the main factor
slowing down the object storage implementation.

– The performance dip seen in the red line for a file size of above 1 KB is due to
the MPI implementation that uses a combination of protocols for the same
MPI routine, namely the use of the eager protocol [11] for small messages,
and rendezvous protocol for larger messages.

Title Suppressed Due to Excessive Length 11

(a) CPU cycles per request

(b) L3 evicted per request

Fig. 6: Likwid metrics for the client and server for the different protocols

– Another particular finding depicted by fig. 6a is that the CPU cycles needed
for the sender to push the data when using MPI is higher than by using
REST, this becomes visible for file sizes above 100 KB.

– Figure 6b shows that, as expected, the evicted data volume stays constant
in the case of MPI over RDMAoIB because of the direct data transfer from
server main memory to client main memory. Furthermore, the L3-evicted
memory for both REST and MPI over TCPoIB is constant for files smaller
than 100 KB but increases exponentially afterward. Presumably, because
parts of the protocol such as network packets re/assembly is controlled by
the kernel and not the network interface.

4.6 HTTP Overhead

For HTTP 1.1, knowing the amount of bytes read by the HTTP parser in wrk,
and the number of request achieved: overhead per request = bytes read

Nreq −objsize

12 F. Gadban et al.

We find that the overhead is about 233 bytes per request, mainly due to the
uncompressed, literally redundant, HTTP response headers.

5 Evaluation of the Performance Model

To validate the predictive model defined in eq. (9), we use the values reported by
the REST latency Benchmark on Mistral in Section 4.5; the hardware-specific pa-
rameters are calculated as follows: Data between sockets and memory is shipped
via a 9.6 GT/s QPI interface [33]. According to the Intel QPI specification [32]
16 bit of data are transferred per cycle, thus the uni-directional speed is 19,6
GB/s. The communication protocol has an overhead of roughly 11 The compute
nodes of Mistral are integrated in one FDR InfiniBand fabric, the measured
bandwidth between two arbitrary compute nodes is 5.9 GByte/s, as such net tp
= 5,9 GByte/s, rtt measured using qperf and found = 0.06ms and mtu = 65520
Bytes. We only need to get the values of the coefficients βi in eq. (9). This is
done by using a regression analysis tool, in this case the one provided by Excel:
the obtained R square and F values are examined, for each iteration, to check
respectively the fitness and the statistically significant of our model. Finally we
calculate the predicted values and we compare them to the ones obtained in the
benchmark by determining the error rate using eq. (10). The tables can be found
at : https://github.com/http-3/rest-overhead-paper.

error% = (t req − t req calcul) · 100/t req (10)

In case of RESToTCPoIB, we find that (α = 1) , β1 = β3 = β4 ∼ 1 , β2 = 6
and β5 = 3/2. The deviation (error rate) between the estimated value and the
benchmark results is primarily below 10 percent, and indeed in the range of 1
percent for small and large file sizes.Equation (9) yields:

t(request) = rtt+
CUCs

Rs
+6 · L3EV s

mem tp
+
CUCc

Rc
+
L3EV c

mem tp
+

3

2
· Obj size
net tp

(11)

In case of MPIoTCP, we obtain (α = 0.1), β1 = β2 = β3 = β4 ∼ 1 , and β5 =
2.7. The error rate is less than 5 percent for small and large file sizes.

t(request) = 0.1·rtt+CUCs

Rs
+
L3EV s

mem tp
+
CUCc

Rc
+
L3EV c

mem tp
+2.7·Obj size

net tp
(12)

In case of MPIoRDMA, we obtain (α = 0), β1 = β3 = 1/2 and β2 = β4 = β5
∼ 1 . The error rate is primarily below 10 percent, and less than 5 percent for
small and large file sizes.

t(request) =
1

2
· CUCs

Rs
+
L3EV s

mem tp
+

1

2
· CUCc

Rc
+
L3EV c

mem tp
+
Obj size

net tp
(13)

By investigating the model terms, we can infer some general behavior and verify
our expectations. The latency for MPIoRDMA is expected to be lower than
the others, this is why α is close to 0 for this model. If β5 is above 1, it is an

https://github.com/http-3/rest-overhead-paper

Title Suppressed Due to Excessive Length 13

indicator that we cannot achieve full network throughput. REST and MPIoTCP
show otherwise similar performance characteristics while the MPIoRDMA model
is approximated to use half the CUC, which actually means it needed twice
as many compared to the TCP models - maybe due to busy waiting. These
assumptions can be verified by looking at Figure 6a and Figure 6b. In conclusion,
we notice that while TCP proved itself for end-to-end communications over long
distances, it is however less suitable for data center networking, mainly because of
its processing overhead, hence degrading the aspired performance. On the other
side, CPU and Memory consumption for the REST over TCP Model remained
adequate in comparison with MPI over TCP and MPI over RDMA.

5.1 Comparing the protocols: HTTP1.1 vs HTTP2 vs HTTP3

The same setup described in fig. 1 is used here, however the web server, in this
case, should be able to deliver the three different protocols. Therefore, openlite-
speed [46] is used and the suitable benchmark tool is h2load [26]. To note that
we test here the ngtcp2 [44] implementation of HTTP3, because it’s TLS library
independent, not like other HTTP3 implementations like quiche [10] which re-
quires boringssl. Since at the time of writing, the official OpenSSL Team doesn’t
support QUIC [47] we use a patched version of OpenSSL provided by the ngtcp2
team. Since HTTP3 didn’t achieve the maturity phase yet, we are using the pro-
tocols as they are defined in the 27th Draft by the IETF QUIC Working group
[29]. The latency and throughput results of the tests on Mistral over InfiniBand
are shown in Figure 7a and Figure 7b
Although we are expecting HTTP2 and HTTP3 to perform better than HTTP
1.1, this is not the case. A closer look at the evolution of the parameters defined
in our model reveals the cause: Despite the obvious traffic saving of HTTP2, it
comes at a considerable memory consumption, which renders the gained advan-
tages negligible. The chosen HTTP3 implementation is circa 10 times more CPU
and memory consuming in comparison to the earlier versions, which indicates
an implementation issue.

6 Summary

This paper provides a first assessment of using REST as a storage protocol in an
HPC environment. A performance model for the relevant HTTP Get/Put oper-
ation based on hardware counters is provided and experimentally validated. Our
results demonstrate that REST can provide, in many cases, similar latency and
throughput to the HPC-specific implementations of MPI while enabling better
portability. The developed model covered the general behavior of the different
protocols well and was able to generalize and verify the expected behavior.
The new techniques introduced in HTTP (the use of a small number of connec-
tions, multiplexing the HTTP datagram, compressing the header and allowing
the server to “push” data pro-actively to the client whilst eventually using UDP
to accomplish these) bear the potential to improve performance and, thus, pro-
vide a perspective for using cloud storage inside HPC environments. However,

14 F. Gadban et al.

(a) Latency (b) Throughput

(c) Client CPU Consumption (d) Client Memory consumption

Fig. 7: Results for the different versions of the HTTP protocol

in this evaluation, they couldn’t show their benefit. As future work, we aim to
validate that REST is a performant and efficient alternative to common HPC
I/O protocols in an actual HPC scenario.

References

1. Association, I.T.: About Infiniband. https://www.infinibandta.org/

about-infiniband/, [Online; accessed 29-July-2019]

2. AWS: AWS S3. https://aws.amazon.com/de/s3/, [Online; accessed 19-July-2019]

3. Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J.,
Polte, M., Wingate, M.: Plfs: a checkpoint filesystem for parallel applications.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. p. 21. ACM (2009)

4. Bortolotti, D., Carbone, A., Galli, D., Lax, I., Marconi, U., Peco, G., Perazzini, S.,
Vagnoni, V.M., Zangoli, M.: Comparison of udp transmission performance between
ip-over-infiniband and 10-gigabit ethernet. IEEE Transactions on Nuclear Science
58(4), 1606–1612 (2011)

5. Borzemski, L., Starczewski, G.: Application of transfer regression to tcp through-
put prediction. In: 2009 First Asian Conference on Intelligent Information and
Database Systems. pp. 28–33. IEEE (2009)

https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://aws.amazon.com/de/s3/

Title Suppressed Due to Excessive Length 15

6. Cao, R., Chi, X., Zhao, Y., Xiao, H., Wang, X., Lu, S.: Sceapi: A unified restful
web api for high-performance computing. In: J. Phys. Conf. Ser. vol. 898, p. 092022
(2017)

7. Chang, C.S., Thomas, J.A.: Effective bandwidth in high-speed digital networks.
IEEE Journal on Selected areas in Communications 13(6), 1091–1100 (1995)

8. Chen, S., GalOn, S., Delimitrou, C., Manne, S., Mart́ınez, J.F.: Workload char-
acterization of interactive cloud services on big and small server platforms. In:
Workload Characterization (IISWC), 2017 IEEE International Symposium on. pp.
125–134. IEEE (2017)

9. intel cloud: cosbench. https://github.com/intel-cloud/cosbench, [Online; ac-
cessed 19-July-2019]

10. Cloudflare: Implementation of the QUIC protocol. https://github.com/

cloudflare/quiche, [Online; accessed 01-April-2020]
11. Denis, A., Trahay, F.: Mpi overlap: Benchmark and analysis. In: 2016 45th Inter-

national Conference on Parallel Processing (ICPP). pp. 258–267. IEEE (2016)
12. Devresse, A., Furano, F.: Efficient http based i/o on very large datasets for high

performance computing with the libdavix library. In: Workshop on Big Data Bench-
marks, Performance Optimization, and Emerging Hardware. pp. 194–205. Springer
(2014)

13. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: Ad-
vanced Information Networking and Applications (AINA), 2010 24th IEEE Inter-
national Conference on. pp. 27–33. Ieee (2010)

14. DKRZ: Mistral. https://www.dkrz.de/up/systems/mistral/configuration,
[Online; accessed 19-July-2019]

15. Dumazet, E.: Increase loopback mtu. https://bit.ly/3c4PHVO (2012), [Online;
accessed 24-Feb-2020]

16. Eitzinger, J., Röhl, T., Hager, G., Wellein, G.: Likwid 4 tools architecture
17. Evangelinos, C., Hill, C.: Cloud computing for parallel scientific hpc applications:

Feasibility of running coupled atmosphere-ocean climate models on amazons ec2.
ratio 2(2.40), 2–34 (2008)

18. Expósito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance
analysis of hpc applications in the cloud. Future Generation Computer Systems
29(1), 218–229 (2013)

19. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
hdf5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases. pp. 36–47. ACM (2011)

20. Gettys, J.: SMUX Protocol Specification . https://www.w3.org/TR/1998/

WD-mux-19980710 (1998), [Online; accessed 19-July-2019]
21. Glozer, W.: wrk - a HTTP benchmarking tool. https://github.com/wg/wrk, [On-

line; accessed 19-July-2019]
22. Goodell, D., Kim, S.J., Latham, R., Kandemir, M., Ross, R.: An evolutionary path

to object storage access. In: 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. pp. 36–41. IEEE (2012)

23. Grant, R.E., Balaji, P., Afsahi, A.: A study of hardware assisted ip over infiniband
and its impact on enterprise data center performance. In: 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS). pp. 144–
153. IEEE (2010)

24. Gruber, T.: Likwid:about L3 evict. https://github.com/RRZE-HPC/likwid/

issues/213, [Online; accessed 13-July-2019]
25. Gupta, A., Sarood, O., Kale, L.V., Milojicic, D.: Improving hpc application per-

formance in cloud through dynamic load balancing. In: Cluster, Cloud and Grid

https://github.com/intel-cloud/cosbench
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.dkrz.de/up/systems/mistral/configuration
https://bit.ly/3c4PHVO
https://www.w3.org/TR/1998/WD-mux-19980710
https://www.w3.org/TR/1998/WD-mux-19980710
https://github.com/wg/wrk
https://github.com/RRZE-HPC/likwid/issues/213
https://github.com/RRZE-HPC/likwid/issues/213

16 F. Gadban et al.

Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on. pp.
402–409. IEEE (2013)

26. h2load: benchmarking tool for HTTP/2 server. https://nghttp2.org/

documentation/h2load.1.html, [Online; accessed 19-October-2019]
27. He, Q., Dovrolis, C., Ammar, M.: On the predictability of large transfer tcp

throughput. Computer Networks 51(14), 3959–3977 (2007)
28. Huppler, K.: The art of building a good benchmark. In: Technology Conference on

Performance Evaluation and Benchmarking. pp. 18–30. Springer (2009)
29. IETF: QUIC Working Group. https://quicwg.org/, [Online; accessed 01-April-

2020]
30. IETF: Request for Comments: 6298 . https://tools.ietf.org/html/rfc6298

(2011), [Online; accessed 19-January-2020]
31. Intel: Adress Translation on Intel X56xx. https://software.intel.com/en-us/

forums/software-tuning-performance-optimization-platform-monitoring/

topic/277182, [Online; accessed 15-September-2019]
32. Intel: An Introduction to the Intel® QuickPath Interconnect. https://

www.intel.com/technology/quickpath/introduction.pdf, [Online; accessed 15-
September-2019]

33. Intel: Intel® Xeon® Processor E5-2680. https://

ark.intel.com/content/www/us/en/ark/products/81908/

intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html, [Online;
accessed 15-September-2019]

34. Kneschke, J.: lighttpd. https://www.lighttpd.net/, [Online; accessed 29-July-
2019]

35. Ko, R.K., Kirchberg, M., Lee, B.S., Chew, E.: Overcoming large data transfer bot-
tlenecks in restful service orchestrations. In: 2012 IEEE 19th International Confer-
ence on Web Services. pp. 654–656. IEEE (2012)

36. Kunkel, J.: md-workbench. https://github.com/JulianKunkel/md-workbench,
[Online; accessed 19-August-2019]

37. Lafayette, L.: Exploring issues in event-based hpc cloudbursting
38. Liu, J., Koziol, Q., Butler, G.F., Fortner, N., Chaarawi, M., Tang, H., Byna, S.,

Lockwood, G.K., Cheema, R., Kallback-Rose, K.A., et al.: Evaluation of hpc ap-
plication i/o on object storage systems. In: 2018 IEEE/ACM 3rd International
Workshop on Parallel Data Storage & Data Intensive Scalable Computing Sys-
tems (PDSW-DISCS). pp. 24–34. IEEE (2018)

39. Liu, J., Chandrasekaran, B., Yu, W., Wu, J., Buntinas, D., Kini, S., Panda, D.K.,
Wyckoff, P.: Microbenchmark performance comparison of high-speed cluster inter-
connects. Ieee Micro 24(1), 42–51 (2004)

40. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: Daos and
friends: a proposal for an exascale storage system. In: SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 585–596. IEEE (2016)

41. Ma, D., Zhang, W., Li, Q.: Dynamic scheduling algorithm for parallel real-time
jobs in heterogeneous system. In: Computer and Information Technology, 2004.
CIT’04. The Fourth International Conference on. pp. 462–466. IEEE (2004)

42. Mell, P., Grance, T., et al.: The nist definition of cloud computing (2011)
43. Netto, M., N. Calheiros, R., R. Rodrigues, E., Cunha, R., Buyya, R.: Hpc cloud

for scientific and business applications: Taxonomy, vision, and research challenges
51 (10 2017)

44. ngtcp2: Effort to implement IETF QUIC protocol. https://github.com/ngtcp2/
ngtcp2, [Online; accessed 01-April-2020]

https://nghttp2.org/documentation/h2load.1.html
https://nghttp2.org/documentation/h2load.1.html
https://quicwg.org/
https://tools.ietf.org/html/rfc6298
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://www.intel.com/technology/quickpath/introduction.pdf
https://www.intel.com/technology/quickpath/introduction.pdf
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://www.lighttpd.net/
https://github.com/JulianKunkel/md-workbench
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2

Title Suppressed Due to Excessive Length 17

45. NLANR/DAST: Iperf. https://github.com/esnet/iperf, [Online; accessed 11-
July-2019]

46. OpenLiteSpeed: OpenLiteSpeed Web Server. https://openlitespeed.org/, [On-
line; accessed 19-December-2019]

47. OpenSSL: QUIC and OpenSSL. https://www.openssl.org/blog/blog/2020/02/
17/QUIC-and-OpenSSL/, [Online; accessed 01-April-2020]

48. Piderit, R., Mainoti, G.: Mitigating user concerns to maximize trust on cloud
platforms. In: 2016 IST-Africa Week Conference. pp. 1–9. IEEE (2016)

49. Richardson, L., Ruby, S.: RESTful web services. ” O’Reilly Media, Inc.” (2008)
50. Tene, G.: A constant throughput, correct latency recording variant of wrk. https:

//github.com/giltene/wrk2, [Online; accessed 11-July-2019]
51. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective i/o in romio. In: Pro-

ceedings. Frontiers’ 99. Seventh Symposium on the Frontiers of Massively Parallel
Computation. pp. 182–189. IEEE (1999)

52. The MPI Forum, C.: Mpi: A message passing interface. In: Proceedings of the
1993 ACM/IEEE Conference on Supercomputing. pp. 878–883. Supercomputing
’93, ACM, New York, NY, USA (1993). https://doi.org/10.1145/169627.169855,
http://doi.acm.org/10.1145/169627.169855

53. Tianhua, L., Hongfeng, Z., Guiran, C., Chuansheng, Z.: The design and implemen-
tation of zero-copy for linux. In: 2008 Eighth International Conference on Intelligent
Systems Design and Applications. vol. 1, pp. 121–126. IEEE (2008)

54. Truong, H.L., Dustdar, S.: Composable cost estimation and monitoring for compu-
tational applications in cloud computing environments. Procedia Computer Science
1(1), 2175–2184 (2010)

55. Wu, K., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: Towards an unwritten contract
of intel optane ssd. In: 11th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19). USENIX Association, Renton, WA (2019)

56. Zadok, E., Hildebrand, D., Kuenning, G., Smith, K.A.: Posix is dead! long live...
errr... what exactly. In: Proceedings of the 9th USENIX Conference on Hot Topics
in Storage and File Systems. pp. 12–12. USENIX Association (2017)

57. Zhang, Y., Meisner, D., Mars, J., Tang, L.: Treadmill: Attributing the source of tail
latency through precise load testing and statistical inference. In: ACM SIGARCH
Computer Architecture News. vol. 44, pp. 456–468. IEEE Press (2016)

https://github.com/esnet/iperf
https://openlitespeed.org/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://doi.org/10.1145/169627.169855
http://doi.acm.org/10.1145/169627.169855

	Investigating the Overhead of the REST Protocol when Using Cloud Services for HPC Storage

